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Responses Part 2A (R2A): A Brief Note on Turbulence-based Turnover Time 

 

We appreciate the reviewer’s comments, which provide an opportunity for further discussions 
about Lilly’s (1972, 1973) use of turnover time to estimate predictability. While we’re working 
on providing comprehensive responses that will be available later, we’ve offered a quick version 
that specifically addresses the following comments by Reviewer 2: 

 

 
In response to Reviewer 1’s comments, we’ve added a brief note explaining the connection 
between turnover time and the target energy spectrum described by the -5/3 power law (egusphere-
2024-2228-AC2). Below, we delve into the concepts of scale invariance and self-similarity 
associated with power laws to address the raised concerns.  

 

Scale Invariance  

First and foremost, we would like to emphasize that the choice between a uniform or non-uniform 
grid is simply a matter of selecting sample points to construct a series or an integral in our 
manuscript. This choice does not alter the power law characteristics of the turnover time. However, 
a different choice may yield a different result for the series or integral.  

For instance, in the inertial subrange where Kolmogorov’s -5/3 power law holds, the energy 
spectrum is expressed as:  

E(k) ∼ ε
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The corresponding turnover time is given by: 
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Equations (R2A.1) and (R2A.2) imply that when the kinetic energy spectrum exhibits a -5/3 
power, the corresponding turnover time exhibits a -2/3 power. These equations align with the 
findings discussed in Boffetta and Musacchio (2017).  

 

Secondly, we apply Equation (R2A.2) to demonstrate the characteristic of the reviewer’s 
comments.  

“On the other hand, if we add an increment of scale that is proportional to the scale, the 
increment of the turnover time will be proportional to a constant in local turnover 
times.” 

The comment above suggests the following calculation: 
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Note that the left-hand side can be written as 𝑑𝜏'/𝑑(ln(𝑘)). The above indicates that the 
derivative of turnover time with respect to ln(x) is proportional to the local turnover time. Please 
note that the property mentioned in the reviewer’s comment remains valid provided the turnover 
time follows a power function of wavenumber k, with the exception of constant functions. 
However, scale invariance associated with power laws is commonly illustrated using a linear 
transformation of wavenumber as discussed below.  

 

In certain turbulent flows, self-similarity is formalized through the concept of “self-preserving” 
or “self-similar” solutions to the governing equations.  A power-law form for the energy 
spectrum 𝐸(𝑘) = 𝑘#( is indeed a strong indicator of scale invariance and thus suggests self-
similarity. When 𝐸(𝑘) ≈ 𝑘#( for some constant exponent −𝑚, it means that if we rescale the 
wavenumber by some factor, the shape of the spectrum remains the same up to a multiplicative 
constant. Rescaling 𝑘 by a constant factor 𝜆 simply results in 

 

𝐸(𝜆𝑘) = (𝜆𝑘)#( = 𝜆#(𝑘#( = 𝜆#(𝐸(𝑘)												(R2A. 4) 

This transformation shows that the shape of the spectrum is preserved under a change of scale; 
the only difference is an overall multiplicative factor 𝜆#(. This invariance under scale 
transformations is the essence of self-similarity. Scale invariance is most intuitively defined as 
invariance under uniform “stretching” or “shrinking” of the scale, i.e., multiplying by a constant 
factor. This keeps the physical interpretation straightforward: zooming in or out by the same 
factor at every scale.  
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On the other hand, if one instead tries to rescale 𝑘 using an exponential function, say something 
like 𝑘 → 2)' or 𝑘 → 𝑒)', as employed in Lilly’s formula and discussed in the manuscript, it 
turns a power law into an exponential form in terms of the new variable. Exponential 
transformations lose that intuitive interpretation in the original 𝑘 space. As before, we cautioned 
that the findings obtained through such transformations (for instance, the selection of a non-
uniform grid) should be interpreted with caution.  

 

Error Growth and Lyapunov Exponent  

 

We have presented an analysis of Lyapunov exponents within generalized Lorenz models over a 
decade (Shen 2014-2019). In recent years, we have also discussed the validation of Lyapunov 
exponents in determining predictability horizons (e.g., Shen et al. 2022a, b), citing related studies 
by Aurell, Boffetta et al. (1996). 

 

We acknowledge that Aurell et al. (1996) referenced Ruelle’s work on the relationship between 
two time scales, namely the reciprocal of the largest Lyapunov exponent and turnover time for 
the smallest eddy (for instance, Figure R2A.1). Nevertheless, we assert that no theoretical studies 
have conclusively proven a direct one-to-one correspondence between these two time scales 
across a wide range of wavenumbers.   

 

While Boffetta and Musacchio (2017) employed the concept of error growth, particularly the 
Lyapunov exponent, to evaluate predictability, this manuscript delves into the application of the 
integral of the turnover time, as expressed in Eq. (R2A.2), to determine predictability horizons, 
encompassing both finite and infinite predictability horizons. We will offer supplementary 
responses in the final responses section if the reviewer can provide specific comments.  

 

In fact, the findings of Boffetta and Musacchio (2017) support our view in the manuscript and 
Shen et al. (2021), suggesting the discrepancies between Lorenz’s and Lilly’s formulas and a 
revised perspective on the dual nature of chaos and order, with distinct predictability.  

 

“Our findings suggest that the dimensional estimate of the Lyapunov exponent as the 
inverse Kolmogorov time does not give an accurate characterization of the chaoticity of a 
turbulent flow.” 

 

“The independence of the FSLE in the scaling range on the value λ observed for 
infinitesimal errors provides a clear explanation of how in turbulent flows it is possible to 
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observe the coexistence of long predictability time at large scales and strong chaoticity at 
small scales.” 

In fact, if the above predictability time scales are related to the turnover time scales at the 
corresponding wavenumbers, we can inquire about the physical significance of the sum of these 
turnover times.  

 

The Lilly’s Series and Integral: ∫ 𝝉𝒌𝒅	𝐥𝐧	(𝒌)
"  

 

As discussed, the following integral of turnover time with respect to ln(k) has been used in Lilly 
(1990) and Vallis (2006): 
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We contend that while the aforementioned integral may capture certain aspects of turbulence, such 
as cascades, and consequently weather patterns, it cannot definitively determine the upper limit of 
predictability for the entire weather system. 

 

For instance, such a choice with a non-uniform grid omits crucial weather systems at wavenumber 
10 for baroclinic waves. Furthermore, Lorenz’s 1969 model was derived from a partial differential 
equation (PDE) that preserves 2D barotropic vorticity. The original PDE lacks the necessary 
forcing and dissipation terms required for studying turbulence (e.g., Figure R2A.2), and it also 
omits the inclusion of thermodynamic equations essential for understanding weather. 
Consequently, the results obtained from Lorenz’s and Lilly’s formulas should be interpreted with 
caution. As we have consistently emphasized in several of our papers, when Lorenz published his 
book titled “The Essence of Chaos” in 1993, he did not cite the Lorenz (1969) study or the related 
works by Lilly.   
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Figure R2A.1 The relationship between the largest Lyapunov exponent (LE, 𝜔(𝑙+)) and the 
eddy size (𝑙+). (Ruelle 1978). Equation (1) represents the following expressions: 	
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The time scale T, which corresponds to the largest Lyapunov exponent, follows a -2/3 power law 
and is therefore proportional to the turnover time at the smallest eddy.  
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Figure R2A.2: The top panel emphasizes the significance of energy sources and sinks in 
sustaining stationary turbulence. Notably, the partial differential equation (PDE) used to derive 
the Lorenz 1969 model omits these sources and sinks. The bottom panel asserted that Lorenz 
proposed the relationship between the growth rate and turnover time. However, to our 
knowledge, we have not found any of Lorenz’s studies that explicitly describe this relationship. 
(Two panels were adapted from Boffetta and Celani 1998.)  

 

 

 

 

 


