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Responses Part 1B (R1B): A Brief Note on Turbulence-based Turnover Time 

 

This brief report specifically addresses the following comments by Reviewer 1: 

 

 
 

 

 

 

We appreciate the reviewer’s comments for enhancing physical discussions about the turnover 
time used by Lilly (1972, 1973) to estimate predictability. These discussions rely on Kolmogorov 
turbulence theory instead of Lilly’s numerical models. Below, we review the discussions in Vallis 
(2006) to introduce the concepts of turnover time and its relationship to the target energy spectrum 
characterized by the -5/3 power law. Subsequently, the turnover time is expressed as a function of 
wavenumbers following the -2/3 power law. In the final section, we discuss possible reasons why 
an integral of turnover time can be used to qualitatively estimate predictability limits, which can 
be finite or infinite. We also illustrate the impact of uniform and non-uniform grids on the 
predictability estimates.   

 

Energy Spectrum 𝐄(𝐤) 

The energy spectrum E(k) describes how the kinetic energy of turbulence is distributed across 
wavenumbers k, where k ∼ !

"
 corresponds to the inverse of a characteristic length scale L. 

• The total kinetic energy per unit mass in the system is given by integrating over all 
wavenumbers: 

Total energy = ∫ E(k) dk.										(R1B. 1) 

 

Physical Interpretation of 𝐄(𝐤) 

The quantity E(k) dk represents the amount of energy per unit mass contained in the range of 
wavenumbers between k and k + dk. 

• For a specific k, the energy density per unit mass at that scale is proportional to E(k). 
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Velocity Scale: 𝒗𝒌𝟐 ∼ 𝒌𝑬(𝒌) 

The velocity 𝑣% at scale 𝑘 (or eddy size 𝐿) is a measure of the characteristic turbulent velocity at 
that scale. The kinetic energy per unit mass associated with eddies of scale 𝐿 ∼ !

%
 is proportional 

to 𝑣%&, yielding: 

 

𝑣%& ∼ 𝑘𝐸(𝑘).																					(R1B. 2) 

The above equation indicates that the energy in the eddies at scale 𝑘 is distributed across a 
"shell" of wavenumbers near 𝑘 (i.e., a small range of wavenumbers near 𝑘). 

 

Turnover Time (𝝉𝒌 ) and Velocity (𝒗𝒌)  

The turnover time in turbulence refers to the characteristic time for a parcel with velocity 𝑣% to 
move a distance of 1/k, with 𝑣% being the velocity associated with wavenumber k. It is a measure 
of energy cascading to smaller scales. Mathematically, it is written as follows: 

𝜏% ≈
1
𝑘
𝑣%

=
𝐿
𝑣%
,																		(R1B. 3) 

From Eq. (R1B.2) and Eq. (R1B.3), we have 

𝜏% ≈
1
𝑘𝑣%

=
1

𝑘
'
&E(k)

!
&
.					(R1B. 4) 

The above equation connects the turnover time to energy spectrum E(k) at specific scales, 
providing a foundation for applying the Lilly’s integral formula. In the inertial subrange where 
Kolmogorov’s −5/3 power law, the energy spectrum is written as:  

E(k) ∼ ε
&
'k(

)
'.																(R1B. 5) 

Plugging Eq. (R1B.5) into Eq. (R1B.4) yields: 

τ* ∼ ε(
!
'k(

&
'.																		(R1B. 6) 

Equations (R1B.5.) and (R1B.6) suggest that when the kinetic energy spectrum exhibits a -5/3 
power, the corresponding turnover time exhibits a -2/3 power.  

 

The Lilly’s Series and Integral: ∫ 𝝉𝒌𝒅	𝐥𝐧	(𝒌)
+  
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As shown in the top panel of Figure R1B-1, Lilly (1972) first suggested that the sum of a sequence 
of turnover time over the selected wavenumbers (2,𝑘-, where 𝑘- represent the reference 
wavenumber) could provide predictability estimate. Later, the series was re-formulated as an 
integral in Lilly (1973) and became the following in Lilly (1990): 

! 𝜏𝑘
1
𝑘
𝑑𝑘

∞

= ! 𝜏𝑘𝑑	𝑙𝑛	(𝑘)

∞

					 (R1B. 7) 

Equation (R1B.4) is a representation of Equation (2.1) from Lilly (1990), while Equation (R1B.7) 
is indeed Equation (2.2) from the same source. The expression on the right-hand side of Equation 
(R1B.7) was also adapted by Vallis (2006). Mathematically, Equation (R1B.7), which includes the 
contribution of all wavenumbers, including 𝑘 → ∞, is known as an improper integral. This integral 
can either yield a finite or an infinite value. The physical interpretation of the above integral and 
its significance in terms of its finite value are discussed in the subsequent subsection.  

 
Possible Physical Interpretation of Lilly’s Series and Integral  
 

Although Lilly’s series and integral, derived from turnover time, have been utilized to estimate 
predictability (e.g., Lilly 1972, 1973, 1990; Vallis 2006), these studies lack convincing detailed 
physical interpretations of these series and integrals. To address this gap, we present our analysis 
below. 

The turnover time at a specific scale denotes the duration of energy transfer from that scale to a 
different scale within a system. Consequently, it becomes evident that the physical processes 
underlying the turnover time differ from those associated with the saturation time, which is linked 
to the growth of initial energy and the instability of the system. Therefore, our manuscript 
underscores the significance of investigating the physical and mathematical connection between 
the turnover time employed by Lilly and the saturation time difference used by Lorenz. 

 

On the other hand, we can explore what we can learn from the Lilly’s formula alone, without 
comparing it to Lorenz’s formula, in this response. From Figure R1B-1, it is reasonable to interpret 
the sum or integral of the turnover time with respect to (non-dimensional) wavenumber as the total 
time for energy cascade across all scales through a chain of processes. Consequently, the integral 
could potentially signify the total transfer time of an initial noise throughout the entire fully 
turbulent system. Therefore, the integral may serve as another definition of predictability horizons. 
However, readers should be reminded of the following: 

• To what extent does the predictability limit of stationary turbulence reflect the 
predictability limit of weather?  

• Does the integral with a varying scale factor of 1/k in Eq. (R1B.7) represent a specific or 
general route for energy cascade observed in weather?  
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To address the first equation, it is acknowledged that predictability estimates in stationary and 
decaying turbulence differ (e.g., Metais and Lesieur 1986). While it’s possible to argue that both 
cases yield comparable results, our response is that turbulence models that may not accurately 
simulate real weather systems have adjustable time scales that can effectively reach the 
predictability limit of two weeks. Furthermore, when using a specific case like Madden-Julian 
Oscillations (MJOs), can turbulence models be employed to estimate the predictability of MJOs? 

 

To address the second question, our manuscript first presented that Lilly’s series over a non-
uniform grid (𝑘 = 2,𝑘-)	and Lilly’s integral with a varying scale factor of 1/k are consistent. A 
follow-up question is the physical meaning of the scale factor 1/k in the integral. After extensive 
searching for comprehensive discussions, we found none in the original studies. However, in an 
email from Vallis in 2022, it was suggested that the inclusion of the scale factor 1/k may be due to 
self-similarity: 

“The error cascades from 4k to 2k, and then 2k to k, and so on, because of self-similarity 
in the cascade.” 

The above describes the inverse cascade. In the forward cascade, energy transfers from 𝑘 → 2𝑘 →
4𝑘 → ⋯2,(!𝑘- ,	and so on. While we agree that Vallis’s physical explanation supports the scale 
factor of 1/k in Eq. (R1B.7), we argue in the manuscript that real weather systems may not always 
exhibit exact self-similarity. For instance, Vallis’s assumption of self-similarity excludes non-
power-of-2 wavenumbers such as 3, 5, and 10. As discussed in the manuscript, wavenumber 10 
systems (e.g., baroclinic waves) play important roles in real weather phenomena.  

 

In the manuscript, we discussed that the factor of 1/k is crucial for producing a finite value in Eq. 
(R1B.7), thereby establishing the concept of a finite predictability. However, our manuscript also 
demonstrated that when considering a different set of wavenumbers, the sum of turnover time over 
a uniform grid (i.e., an integral with respect to k, associated with a different scaling factor 1/𝑘-) 
can result in an infinite value. This underscores the limitations of Lilly’s formula with a scaling 
factor 1/k in Eq. (R1B.7) when applied to predictability limits in complex weather systems. 
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Figure R1B-1: This figure is from Figure 3 of the manuscript. In the bottom panel, Eqs. (2.1) and 
(2.2) of Lilly (1990) are represented as Eqs. (R1B.4) and (R1B.7), respectively.   
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