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Abstract 30 

 31 

Recent studies have reiterated that the two-week predictability limit was originally estimated 32 

using a doubling time of five days from the Mintz-Arakawa model in the 1960s. However, this 33 

two-week predictability limit has conventionally been viewed as one of Lorenz's major findings 34 

from his 1969 studies. The limit has been presumably attributed to the mechanism involving the 35 

insignificant contributions of unresolved scales smaller than 38 meters. To understand the 36 

discrepancies in the origin of the two-week limit and to validate the mechanism in addressing the 37 

dependence of finite predictability on the atmospheric spectrum, we revisit Lorenz's studies, Lilly's 38 

work, and related research from the 1960s and early 1970s. 39 

 40 

We first review how Lilly applied turnover time in turbulence theory to construct a convergent 41 

series that appears mathematically similar to the original Lorenz series. We then reexamine how 42 

Lorenz observed regularity in a sequence of saturation times over 21 selected wave modes and 43 

used the regularity to construct a convergent series, illustrating the negligible contribution of 44 

unresolved small-scale processes to predictability enhancement. 45 

 46 

Our reanalysis does not support the claim that Lorenz’s and Lilly’s formulas are 47 

mathematically identical or physically comparable. Major discrepancies and inconsistencies 48 

include the use of different physical time scales in Lorenz's and Lilly's studies and the lack of a 49 

common factor of 2^{-2/3} that can be robustly determined from Lorenz's data. This falsifies the 50 

assumption that saturation time difference and turnover time are linearly proportional over the 51 

selected wave modes. Additionally, given the -5/3 power spectrum, we demonstrate that the 52 

convergence properties of Lorenz's or Lilly's series depend on spectral discretization. These issues, 53 

along with the highly simplified features of the Lorenz 1969 model, indicate that an upper bound 54 

for the predictability limit has not been robustly determined in Lorenz's and Lilly's studies. This 55 

view is consistent with Lorenz’s updated review in the 1990s and 2000s. Therefore, caution should 56 

be exercised when applying Lilly's formula to conclude the dependence of finite predictability on 57 

the slopes of spectra. This perspective suggests opportunities to explore larger predictability and 58 

extend weather forecasts using various approaches, including sophisticated theoretical, real-world, 59 

and artificial intelligence-powered models. 60 
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1. Introduction 61 

 62 

Recent advancements in numerical models, data assimilation systems, and numerical 63 

approaches (e.g., the application of ensemble runs) have demonstrated promising, long-range 64 

simulations surpassing the previously considered two-week predictability limit.  These 65 

advancements have been achieved using physics-based models (e.g., Shen et al. 2010, 2011; 66 

Buizza and Leutbecher 2015; Bretherton and Khairoutdinov 2015; Judt 2018, 2020), hybrid 67 

dynamical and artificial intelligence (AI) systems (e.g., Bach et al. 2024), and AI-based systems 68 

(e.g., Li et al. 2024; Lang et al. 2024; See a review in Shen et al. 2024). 69 

 70 

Such a result leads to an intriguing question regarding the apparent gap between current 71 

modeling capabilities and the theoretical predictability limit. To address this question, several 72 

review articles regarding Lorenz's predictability studies have recently been completed by the 73 

authors. For example, Shen et al. (2023a, 2024) presented Lorenz's perspective on predictability 74 

limits, while Shen et al. (2023b) and Shen (2023) examined the major features of Lorenz's models 75 

spanning 1960 to 2008. These studies reaffirmed that a predictability limit of two weeks was 76 

indeed established, based on a doubling time of 5 days obtained using the Mintz-Arakawa model 77 

(e.g., Charney et al. 1966; GARP 1969; Lorenz 1969a, b, c, d, e; Lewis 2005). Two-week 78 

predictability was later attributed to the findings of Lorenz's studies during the 1960s, likely due 79 

to the following: (1) Lorenz’s chaotic or multiscale models demonstrated a qualitatively finite 80 

predictability (Lorenz 1963, 1969d); (2) Lorenz's study in 1969 reported an estimated 81 

predictability limit of 16.8 days at the largest wavelength (Lorenz 1969d); and (3) In the early 82 

1970s, surprising similarities were determined between Lorenz's saturation-time-based formula 83 

(Lorenz 1969d) and Lilly's turnover-time based formula (Lilly 1972, 1973), which was applied in 84 

order to project the impact of unresolved small-scale processes on predictability. To address the 85 

above question, Shen et al. (2021a, b, 2022a, 2023a, b, 2024) previously reexamined the validity 86 

of the first two points by presenting new insights of Lorenz's models, including the linear feature 87 

of the Lorenz 1969 model. This study specifically revisits Lorenz's and Lilly's formulas for the 88 

validity of the third point outlined above.  89 

 90 
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During the 1960s, Lorenz conducted a series of studies that documented the existence of non-91 

periodic solutions and examined their dependence on initial conditions. These findings were 92 

fundamental in establishing chaos theory and in defining the objective of determining 93 

predictability limits (Lorenz 1962, 1963, 1965, 1969a, b, c, d, e; 1993). A review of Lorenz's 94 

studies by Shen et al. (2023a, b, 2024) indicated that Lorenz and others attempted to quantitively 95 

estimate predictability limits using results obtained from three approaches (including general 96 

circulation models, natural analogues, and a theoretical model in five of Lorenz’s 1969 studies). 97 

The well-cited study Lorenz (1969d) applied the concept of saturation time to report a 98 

predictability of 16.8 days at the largest wavelength, close to the estimated well-acknowledged 99 

predictability limit estimated using a doubling time of 5 days by Charney et al. (1966). However, 100 

it remains unclear regarding the relationship between the saturation time and doubling time. In 101 

particular, Lorenz obtained a doubling time of ~2-3 days, different from the doubling time of 5 102 

days. 103 

 104 

Lorenz (1969d) is, indeed, the most well-known study amongst his five studies published 105 

during 1969.  The Lorenz (1969d) study has often been cited together with Lorenz (1963), in 106 

particular, in meteorology. In Lorenz (1969d), the Lorenz 1969 (L69) model, consisting of a 107 

system of 21, 2nd-order ordinary differential equations (ODEs), was proposed for estimating 108 

predictability at multiple scales. As reanalyzed by Shen et al. (2022a), the L69 model is a closure-109 

based, physically multiscale, mathematically linear, and numerically ill-conditioned system. The 110 

overlooked feature that Lorenz 1969 model is linear was indeed mentioned in Lorenz's own study 111 

(e.g., Lorenz 1969d; 1984). Such a feature is acknowledged in Sakai and Yorke (2023) and by 112 

Prof. Tim Palmer (personal communication, May 2024). 113 

 114 

One unique feature of the L69 model is the application of a non-uniform spectral discretization 115 

that allows illustrations of predictability over a wide range of wavelengths, from 38 m to 40,000 116 

km. As defined in Eq. (1a), 𝑘! = 2!"#𝑘$,  the wavenumber 𝑘 is an exponential function of integer 117 

𝑗, where 𝑘$represents the wavenumber for the largest scale. In fact, the feature of the non-uniform 118 

grid and its strength and weakness has also been overlooked. Numerical results obtained from the 119 

L69 model yield a sequence of saturation times for estimating predictability at different 120 

wavelengths (i.e., spatial scales). As shown in the excerpts in Figure 1, from Lorenz (1969d), such 121 
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a sequence (i.e., saturation time at a specific scale) is associated with energy growth at different 122 

scales.  123 

 124 

By observing regularity in the finite sequence of saturation time differences, Lorenz suggested 125 

an empirical, convergent series for estimating the predictability limit at the system scale. In this 126 

study, such a series is referred to as Lorenz’s formula (or Lorenz’s predictability series). Based on 127 

the series, which is a geometric series and can be extended to become an infinite series, Lorenz 128 

made it feasible to examine the impact of unresolved scales on the contribution of predictability. 129 

Compared to coarse-resolution general circulation models from the 1960s, which rely on 130 

parameterizations due to their lack of fine resolution, the uniqueness of Lorenz’s (1969d) study 131 

rests in its utilization of a non-uniform grid and the identification of regularity within the sequence 132 

of saturation times. However, some issues are reported below. 133 

 134 

Later, during the early 1970s, Lilly applied a turbulence theory-based turnover time in order 135 

to formulate the energy transfer described in Figure 1. Lilly (1972) discovered similar regularity 136 

in the sequence of turnover times at non-uniform grids under the same spectral discretization as 137 

that in Lorenz (1969d). Based on turnover times over an infinite set of wavenumbers, a series was 138 

formulated for estimating predictability.  The turbulence-theory-based formula is referred to as 139 

Lilly’s formula (or Lilly’s predictability series). Lilly's work linked the two concepts of turnover 140 

time and saturation time differences although he did not provide physical justifications. As defined 141 

in Section 3.1, the concepts of turnover time and saturation time are physically different.  142 

 143 

By considering turnover times for various atmospheric spectra over the non-uniform grid, 144 

Lilly's formula is effective for illustrating the dependence of “finite” or “infinite” predictability on 145 

the slopes of the kinetic energy spectrum as well as the dimensionality of turbulence (i.e., two vs. 146 

three dimensions). Lilly's studies produced results that appear consistent with the findings of 147 

Lorenz, and, thus, Lorenz's and Lilly's formulas have been jointly applied to explain the 148 

predictability limit of two weeks (e.g., Lorenz 1969d; Lilly 1972, 1973, 1990). However, such an 149 

approach that also appeared in follow-up predictability studies (e.g., Palmer et al. 2014; Durran 150 

and Gingrich 2014) will be reexamined in this study. 151 
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 153 

 154 

 155 

 156 

 157 

 158 

 159 

 160 

 161 

 162 

 163 

 164 

 165 

 166 

 167 

 168 

 169 

Figure 1: An excerpt from page 14 of Lorenz (1969d). Note that symbols “𝑘”  and “𝑛" in the 170 

above Figure are, indeed, “𝑛” and N, respectively, in this study.  171 

 172 

While today’s atmospheric predictability studies are usually based on the growth of root-mean-173 

sqauare error and/or anomaly correlation coefficients (ACC), the above studies and associated 174 

concepts (e.g., scale-dependent error-doubling time and turnover time, energy cascade, 175 

predictability limit) remain foundational in our understanding of atmospheric predictability and 176 

predictions. Using a real-world model, recent results by Lloveras, Tierney, and Durran (2022, 177 

hereafter referred to as LTD22) reported discrepancies in the fundamental concepts applied to 178 

derive Lorenz’s and Lilly’s formulas. We applaud the results of LTD22.  In this study, we further 179 

provide a mathematical analysis in order to show discrepancies in Lorenz’s and Lilly’s formulas 180 

and, thus, illustrate unrealistic features produced by the two formulas. Assuming that discrepancies 181 

in the two formulas could be ignored, we apply Lilly's formula in order to reveal the dependence 182 
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of series convergence (i.e., finite predictability in his studies) on spectral discretization, and, then, 183 

re-examined its dependence on the slopes of a spectrum. Our analysis not only supports LTD22’s 184 

result but also provides aid regarding proper interpretations for Lilly’s formula. Due to the 185 

dependence on spectral discretization, implying different impacts using different multiscale 186 

interactions, we, furthermore, provide comments on the validity of the two formulas in the support 187 

of the two-week predictability limit.  188 

 189 

This paper, which combines a summary of a recent review by the authors, as well as new 190 

mathematical analyses, is organized as follows. Section 2 documents a summary of a recent review 191 

regarding Lorenz’s view on the predictability limit during the 1990s and 2000s. We additionally 192 

provide a brief review of 2D and 3D turbulence. In Section 3, we first compare the similarities and 193 

differences of Lilly’s and Lorenz’s formulas, which were originally proposed based on different 194 

physical time scales, and report the mathematical discrepancy of the two formulas. We then 195 

applygeneralize Lilly’s formula and apply it in order to illustrate to reiterate the dependence of 196 

finite predictability on different spectral discretization for a non-uniform, stretching grid and a 197 

uniform grid. Section 4 provides a summary. Appendix A includes discussions regarding the 198 

impact of different discretization on the convergent property of a simple function of 1/𝑘 . 199 

Appendix B provides the mathematical details of the Lilly’s formula over the uniform and non-200 

uniform grids. Supplementary Materials provide a review for the integral test and convergent 201 

properties of the so-called p-series (Stewart 2014). Additionally, Supplementary Materials (e.g., 202 

Eqs. S10a and S10b) analyze the integral over a non-uniform grid in Leith and Kraichhan (1972) 203 

to demonstrate that, as a result of the variable change, a scaling factor in the form of a Jacobian 204 

should be taken into account. 205 

 206 

2. A Review of Related Studies 207 

 208 

2.1 Lorenz’s View on the Predictability Limit 209 

 210 

Based on the content of Lorenz's studies during the 1990s and 2000s (Lorenz 1993, 1996, 211 

2006) and his responses in an interview from 2007 (Reeves, 2014), Shen et. al. (2023a) 212 

summarized Lorenz’s view on predictability, as follows:  213 
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A. The essence of a finite predictability limit within a chaotic system (e.g., atmosphere) was 214 

(qualitatively) revealed using the Lorenz 1963 model. However, the 1963 model did not 215 

quantitively determine a limit for the predictability of the atmosphere. 216 

B. During the 1960s, the so-called two-week predictability limit was originally estimated 217 

based on a doubling time of five days in real world models. Since that time, such a finding 218 

was documented in Charney et al. (1966) and has become a consensus. 219 

While Lorenz's major predictability estimates for the 2-week limit were reported in the 1960s, 220 

different estimates of predictability limits for an approximate 3-week limit were also discovered 221 

during the 1970s and 1980s (Lorenz 1970, 1972, 1984, 1985) using the same 1969 model and 222 

included a spectral gap (e.g., Figure 2 of Shen et al. 2023a). Interestingly, based on our literature 223 

review, none of Lorenz's five studies from 1969 were cited in the 1993 book that presented a 224 

historical perspective for choosing two weeks as the basis for the predictability limit. Additionally, 225 

the fact that the Lorenz 1969 model is not chaotic has been overlooked. As a result, our study 226 

sought to provide insight on whether and how Lorenz's or Lilly's formula could quantitively 227 

determine an intrinsic limit of two weeks for the atmosphere. Our study was specifically designed 228 

to understand the relationship of the two formulas and, thus, to examine their validity in 229 

quantitatively or qualitatively revealing the role of small processes in contributing predictability.   230 

 231 

2.1 A Brief Review of 2D and 3D Turbulence 232 

 233 

In contrast to finite-dimensional chaotic systems, high-dimensional irregular turbulent systems 234 

also appear within the atmosphere. Both 3D turbulence (Kolmogorov, 1941, 1962) and 2D 235 

turbulence (Kraichnan 1967; Kraichnan and Montgomery 1980) have been applied for decades in 236 

order to understand atmospheric dynamics and predictability (e.g., Lilly and Petersen, 1983; 237 

Nastrom and Gage 1983; Lindborg 1999; Lindborg and Alvelius 2000). A focus has been on 238 

nonlinear multiscale interactions (or transfer across scales) within inertial ranges (e.g., Tribbia and 239 

Baumhefner 2004), where nonlinear processes dominate (as compared to dissipation). Major 240 

features in 2D and 3D turbulence include the following: (1) 3D turbulence has a kinetic energy 241 

(KE) -5/3 power law for its inertia range, where a direct cascade of KE occurs (Figure 2a); and (2) 242 

2D turbulence possesses two inertia ranges (Figure 2b) - one inertial range with an inverse cascade 243 

of energy possesses a KE -5/3 power law and the other inertia range with a direct cascade of 244 
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enstrophy possesses a KE -3 power law. The direct and inverse cascades, respectively, indicate 245 

transfers to smaller and larger scale processes. Enstrophy is proportional to vorticity squared. Here, 246 

in both Figures 2a and 2b, as discussed in Section 3.7, we draw the readers’ attention to the 247 

existence of a dissipation layer range.  248 

 249 

Based on theoretical turbulence and observation studies, Figure 2c (e.g., the Figure of Larsen 250 

et al. 1982; Gage and Nastrom 1986) displays a composite picture for the spectra of atmospheric 251 

turbulence. Region (I), with a -3 power law, indicates 2D turbulence at synoptic scales. Region 252 

(II), with a -5/3 power law, suggests 2D turbulence within the mesoscale (Gage 1979). While both 253 

Regions (I) and (II) are associated with 2D turbulence, Figure 2c suggests different energy sources 254 

for these two regions. Region (III) in Figure 2c indicates either a -5/3 power law associated with 255 

3D turbulence or a -3 power law associated with 2D turbulence. We additionally added Region 256 

(IV) for a dissipation layer. For scales larger than those in Region (I), a power law of -5/3 was 257 

reported by Lilly (1969) and cited by Pedlosky (1987).   258 

 259 

Since vertically propagating gravity waves (Lilly 1983) and vertical convection also appear in 260 

the atmosphere, whether (or not) the theory of 2D turbulence may be applicable to the atmosphere 261 

has been discussed (e.g., Lilly 1983; Zilitinkevich et al. 2021) and “new” types of turbulence (e.g., 262 

stratified turbulence and convective turbulence) have been suggested. Recent studies (e.g., Pouquet 263 

and Marino, 2013; De Wit et al., 2022; Boffetta, 2023) that explored the bistability of coexistence 264 

between 2D and 3D flows, the duality of both direct and inverse cascades, and dimensional 265 

transitions between 2D and 3D turbulence, have illuminated the intricacies of turbulence, weather, 266 

and climate. These studies warrant a cautious interpretation of the findings from earlier studies 267 

conducted in the 1960s and 1970s. 268 

 269 

However, Ssince our focus is on the relationship between Lorenz’s and Lilly’s formulas, 270 

discussions regarding stratified and convective turbulence as well as bistability and duality are 271 

omitted. We simply emphasize that while weather possesses both turbulent and non-turbulent 272 

components, predictability in Lorenz’s and Lilly’s studies is associated with stationary turbulence 273 

(e.g., Lorenz 1969d; Leith 1971; Leith and Kranchnan 1972; Lilly 1972, 1973, 1990) instead of 274 

decaying turbulence (Metais and Lesieur 1986).  275 
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 276 

 277 
 278 

3. Discussion 279 

 280 

In this section, we first provide definitions for various time scales and introduce two types of 281 

numerical discretization, document major features of the L69 model, provide equations that define 282 

Lorenz’s and Lilly’s predictability formulas, reanalyze Table 3 of Lorenz (1969d), compare the 283 

discrete and continuous versions of Lilly’s formula, and extend Lilly’s formula for a different data 284 

grid. We briefly discuss differences in energy transfer across scales and spaces near the end of the 285 

section.  Detailed mathematical discussions of the Lilly integral are presented in Appendix B.  286 

 287 

3.1 Definitions of Various Time Scales  288 
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 289 

To date, various types of time scales have been used for determining predictability horizons 290 

(e.g., Lorenz 1996; Rotunno and Snyder 2008; Shen et al. 2022a, b). For example, in Lorenz 291 

(1969d), the predictability horizon was estimated using the saturation time (as well as saturation 292 

time difference). To facilitate discussions, major assumptions from Lorenz (1969d) are listed in 293 

Figure 1. Definitions for the various time scales are provided below. In this study, 𝑘 represents the 294 

wavenumber of the Fourier mode for the background or the perturbation KE, which is consistent 295 

with turbulence theory. As listed in Table 1 from Lorenz (1969d), the original discretization 296 

scheme, 𝑘 = 2%"#𝑘$ ,	is applicable to a non-uniform grid. Here,	𝑛 is an integer and 𝑘$ represents 297 

the smallest wavenumber. For comparison, we also applied a different discretization scheme, 298 

𝑘 = 𝑛𝑘$ ,	 for a uniform grid. 299 

 300 

Time scales related to predictability estimates include:   301 

 302 
1. The saturation time (𝑡%), which is defined as the time for the perturbation at a particular 303 

wavenumber to become saturated (i.e., reaching the value of background KE).  304 

2. The saturation time difference (𝑆𝐷𝑇%), which is computed by subtracting saturation 305 

times for perturbations at two successive wave number indices (i.e., 𝑆𝐷𝑇% 	= 𝑡% −306 

𝑡%&#, as discussed in Table 1).  307 

3. The turnover time (𝜏'), which is the time for a parcel with velocity 𝑣'  to move a 308 

distance of 1/𝑘, with 𝑣' being the velocity associated with wavenumber 𝑘 (e.g., Vallis 309 

2006). The turnover time is further used to indicate the time that an error at one 310 

wavenumber spreads to another wavenumber, a movement within the spectral space 311 

(e.g., LTD22).  312 

4. The e-folding time or doubling time which represents the time for a specific mode with 313 

a growth rate (that depends on wavenumber 𝑘) to increase by a factor of 𝑒	(≈ 2.71828) 314 

or two.  315 

Based on the above, we can describe the turnover time as the time for perturbation transfer across 316 

scales, and saturation time as the maximal time interval for the growth of a perturbation at a 317 

specific scale. Thus, the turnover time and saturation time are physically different. In addition, the 318 
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concepts of energy transfer across scales and spatial spaces are different, suggested by the 319 

following overlooked feature (Castelvecchi 2017): 320 

Kolmogorov’s picture implies that energy spreads from large swirls to smaller eddies 321 

nearby, rather than spreading to farther distances 322 

 323 

In Charney et al. (1966), a doubling time (e.g., e-folding time) was applied to estimate the 324 

predictability horizon in a general circulation model. In literature, by comparison, Recently, the 325 

sum of e-folding times associated with various growth rates at different scales has been suggested 326 

for qualitatively illustrating a system predictability horizon within the L69 model (Shen et al. 327 

2022a). Mathematically, error growth that involves e-folding time (or doubling time) and 328 

saturation time can be illustrated using a linear ordinary differential equation (ODE) and the 329 

Logistic ODE with a quadratic term, respectively (See a concise review by Shen 2024b).  330 

 331 

By comparison, in chaotic systems, Lyapunov exponents were computed to measure the long-332 

term averaged rate of divergence of nearby trajectories. Therefore, the largest Lyapunov exponent 333 

can be roughly interpreted as the long-term averaged growth rates of errors. It has been applied to 334 

predictability horizons. However, the time-averaged properties caution against the proper 335 

interpretation of the estimated predictability (e.g., Shen 2024b). Furthermore, it has been 336 

demonstrated that the largest Lyapunov exponent is related to the turnover time at the smallest 337 

scale within the system (Ruelle 1979; Aurell, Boffetta et al. 1996). However, it has never been 338 

proven that a sequence of turnover times (within a range of wavenumbers) and a “sequence” of 339 

Lyapunov exponents are proportional.  340 

In Lorenz (1969d), the saturation time ( 𝑡% ) determines the predictability horizon at 341 

wavenumber 𝑘 = 2%"#𝑘$ within a non-uniform grid. As shown in the third column of Table 1, the 342 

saturation time at the smallest wavelength of 38 m for	𝑘 = 2()𝑘$ (i.e., 𝑛 = 21) is 2.9 minutes.  As 343 

indicated in Figure 1 (i.e., from Lorenz 1969d), the sum of (estimated) saturation time differences 344 

over 21 selected wavenumbers on a non-uniform grid is applied in order to represent a 345 

predictability horizon at the largest scale. Such a concept has effectively promoted research to 346 

estimate the impact of unresolved scales and to address questions of whether (or not) predictability 347 

is finite. New insights on this approach are provided in this study. 348 

 349 



 13 

In contrast, based on the turbulence theory, Lilly (1972, 1973) computed the sum of turnover 350 

times over a set of wavenumbers on the same non-uniform grid used for estimating the 351 

predictability horizon. As discussed, turnover time and saturation time are physically different. 352 

Turnover time represents the time for energy transfer across scales rather than energy growth.  353 

More importantly, an implicit assumption for Lilly's approach is that once a specific scale is 354 

influenced (or contaminated), it immediately loses predictability. Thus, Lilly's and Lorenz's 355 

approaches are compared below.  356 

 357 

In literature, by comparison, the sum of e-folding times associated with various growth rates 358 

has been suggested for qualitatively illustrating a system predictability horizon within the L69 359 

model (Shen et al. 2022a). Mathematically, error growth that involves e-folding time (or doubling 360 

time) and saturation time can be illustrated using a linear ordinary differential equation (ODE) and 361 

the Logistic ODE with a quadratic term, respectively (See a concise review by Shen 2024).  362 

As outlined in the Introduction, Lorenz (1969d) first introduced a sequence to estimate the 363 

impact of unresolved scales on system predictability. In the early 1970s, Lilly further developed 364 

Lorenz’s concept by providing a mathematical formulation, making it more verifiable. 365 

Accordingly, this study begins by exploring the mathematical foundations of these formulations, 366 

focusing on the convergent properties of Lilly’s formula and its dependence on different grid 367 

discretization methods. Following this, Lorenz’s formula is reexamined by analyzing his original 368 

tables and comparing them with Lilly’s formulation to evaluate its validity.   369 

 370 

3.2 Two Types of Discretization and Their Impact 371 

 372 

The aforementioned two discretization schemes generate grid points using exponential and 373 

linear functions of the wavenumber index, denoted as: 374 

𝑘! = 2!"#𝑘$ ,					(1𝑎)      and                𝑘! = (𝑗)𝑘$ .									(1𝑏) 375 

In this study, these schemes are referred to as non-uniform and uniform discretization. Here, 𝑗 is 376 

an integer for a sequence or series within this section and represents a real number for an integral 377 

in Section 3.6 and Appendix B.  As briefly mentioned earlier, the choice in Eq. (1a) is the same as 378 

Lorenz’s choice in Table 1. The specific, non-uniform grid, covering a wide range of scales from 379 
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38 m to 40,000 km, has been also utilized in other studies (e.g., Lorenz 1969d; Lilly 1972, 1973; 380 

Palmer et al. 2014; LTD22). By comparison, in this study, we additionally consider a different set 381 

of wavenumbers in Eq. (1b) for a uniform grid. While the set of wavenumbers for a uniform grid 382 

does not always represent a superset of wavenumbers for a stretching, non-uniform grid, Eq. (1b), 383 

indeed, is a superset of Eq. (1a).  384 

 385 

The choice in Eq. (1) possesses the following features. First, within the chosen set of 21 wave 386 

modes (Lorenz 1969d; Shen et al. 2022a), each mode can interact with all selected wave modes, 387 

resulting in a coefficient matrix with 21 x 21 elements for the L69 model. As a result, the notation 388 

“𝑘$ → 2𝑘$ → 4𝑘$ → ⋯2%"#𝑘$ … 	", which signifies sequential cascade and, consequently, may 389 

provides lead to misleading information aboutregarding scale interactions,  is no longer applied 390 

for designating the selected wave modes.   391 

 392 

Secondly, regarding the new discretization, we argue that adopting a linear function 𝑘 = 𝑛𝑘$ 393 

for a uniform grid is more realistic, especially for large scales. This is the case because the 394 

nonlinear function, 𝑘 = 2%"#𝑘$, which excludes certain wavenumbers such as 3, 5, 7, 9, 10, 11, 395 

12, etc., cannot accurately resolve baroclinic waves with a dominant wavelength of approximately 396 

4,000 km (i.e., 𝑘 = 10). Below, we compare differences between uniform and non-uniform grids. 397 

Detailed results can be found in Sections 3.3 and 3.6. 398 

 399 

Before we examine the impact of different discretization on the integral of the turnover time. 400 

Here, we consider the function 𝑓(𝑘) = 1/𝑘 for a simple illustration. The function is representative 401 

as discussed in Section 3.3. First, we compute the sum of the function 𝑓(𝑘)	over non-uniform and 402 

unform grids in Eqs. (1a) and (1b), written as follows: 403 

1
𝑘$

lim
*→,

EF
1

2!"#G
*

!-#

							(2𝑎)									𝑎𝑛𝑑										
1
𝑘$

lim
*→,

EF
1
𝑗G

*

!-#

, (2𝑏) 404 

respectively. Both can be expressed as follows: 405 

1
𝑘$

lim
*→,

E𝑓I𝑘!JΔ𝑗
*

!-#

. 406 

 407 
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Equation (2a) is a geometric series. As discussed in Appendix A, Eqs. (2a) and (2b) represent a 408 

convergent and divergent series, respectively. This simple case illustrates the dependence of 409 

divergence and convergence on discretization. For the choice in Eqs. (1a) and (1b), we can 410 

additionally point out that when the sum over a subset of wave modes in Eq. (1a) is convergent, 411 

the sum over a superset of wave modes can be divergent. Below, we further consider integrals.  412 

 413 

Here, we apply Riemann sums in order to "construct" (or approximate) integrals of the function 414 

1/𝑘. The following discussions illustrate that the non-uniform grid could potentially yield a series 415 

with different convergent properties, as compared to the uniform grid. From Eq. (1a), we compute 416 

the derivative of 𝑘 with respect to 𝑗: 417 

𝑑𝑘
𝑑𝑗 = ln(2) 𝑘,									 418 

yielding: 419 

Δ𝑗 =
1

l n(2)
Δ𝑘
𝑘 .							 420 

Thus, a fixed value of Δ𝑗	(𝑒. 𝑔. , Δ𝑗 = 1) in the above equation requires a constant of  .'
'

. Thus, as 421 

𝑘  changes, Δ𝑘  varies. As a result, the expression 𝑓I𝑘!JΔ𝑗	in Eq. (1) is now approximated by 422 

𝑓(𝑘)𝛥𝑘/𝑘/𝑙𝑛(2).  Thus, the integral of the function 1/𝑘  over the non-uniform grid becomes 423 

∫ #
'
	 /'
0%(()'

. In a similar manner, we can show that the integral of the function 1/𝑘 over the uniform 424 

grid is ∫ #
'
𝑑𝑘. After computing both integrals, we know that they produce different convergent 425 

properties. 426 

 427 

In fact, the above scaling factor of 1/𝑘 for a non-uniform grid can be easily illustrated using 428 

well-established calculus. Below, we first review the concept of the Jacobian. A well-known 429 

example is given by a double integral that can be evaluated in Cartesian or Polar Coordinates. 430 

Considering an area within a grid box, we have 𝑑𝐴 = 𝑑𝑥𝑑𝑦	in Cartesian coordinates and 𝑑𝐴 =431 

𝑟𝑑𝑟𝑑𝜃, where 𝑟 is the Jacobian. For a single variable function, a Jacobian simply represents a 432 

derivative, representing a ratio of increments between old and new variables.  Given an integral 433 

∫𝐹(𝑗)𝑑(𝑗),	 after a variable transformation 𝑗 = 𝑔(𝑘), the integral can be evaluated in the new 434 

coordinate, as follows: 435 
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W𝐹(𝑘)|	𝐽	|𝑑𝑘 .							(3) 436 

Here, the scale factor 𝐽 = /3
/'

 is called the Jacobian. Given the non-uniform grid 𝑘 = 2!"#𝑘$, we 437 

have 𝑗 = 1 +	 	𝑙𝑜𝑔(	(𝑘/𝑘$) = 𝑔(𝑘) and the Jacobian  438 

𝐽 =
𝑑𝑔(𝑘)
𝑑𝑘 =

𝑑
𝑑𝑘

ln ] 𝑘𝑘$
^

ln(2) =
1

ln(2)

𝑑( 𝑘𝑘$
)/𝑑𝑘

𝑘/𝑘$
= 1/(𝑙𝑛(2)𝑘). 439 

A factor of 1/𝑘 appears. Thus, Eq. (3) becomes: 440 

W𝐹(𝑘)	
1

𝑙𝑛(2)𝑘 𝑑𝑘 = 	W𝐹
(𝑘)𝑑	𝑙𝑜𝑔((𝑘).			(4𝑎)		 441 

In contrast, for the uniform grid, 𝑘 = 𝑗	𝑘$ , we have 𝑗	 = 𝑘/𝑘$  and the Jacobian 𝐽 = 1/𝑘$. 442 

Here, the scale factor is 1/𝑘$ . With the Jacobian, Equation (3) becomes:  443 

W𝐹(𝑘)	
1
𝑘$
𝑑𝑘.				(4𝑏)	 444 

 445 
As a brief summary, the above discussions suggest that the sum of a function 𝐹(𝑗) over a 446 

uniform grid	can be approximated using an integral with respect to 𝑘 for the linear function 𝑘 =447 

𝑗	𝑘$ . In comparison, the sum of the function 𝐹(𝑗) over the non-uniform grid can be approximated 448 

using an integral with respect to 	𝑙𝑜𝑔((𝑘) for an exponential function 𝑘 = 2!"#𝑘$ .	The convergent 449 

properties of the integrals in Eqs. (4a) and (4b) are mathematically consistent with those of the 450 

series in Eqs. (2a) and (2b), respectively.  The appearance of a scale factor of 1/k  (i.e., the 451 

Jacobian) suggests that the specific non-uniform grid could potentially change the power-law 452 

properties of the sum of a function, as compared to the sum over a uniform grid. In Supplementary 453 

Materials (e.g., Eqs. S10a and S10b), we additionally analyze the integral over a non-uniform grid 454 

in Leith and Kraichhan (1972) to demonstrate that a scaling factor in the form of a Jacobian should 455 

be taken into account. 456 

 457 

Considering the exponential function 𝑘 = 𝑒!"#𝑘$ , which is similar to Eq. (1a) with 𝑘 =458 

2!"#𝑘$,  the corresponding sum is approximated using an integral with respect to 𝑙𝑛(𝑘) for. The 459 

two nonlinear transformations differ by their bases (i.e., 2 vs. 𝑒) for exponential functions, as well 460 

as logarithm functions (i.e., 	𝑙𝑜𝑔((𝑘) vs. 𝑙𝑛(𝑘)). See details in the Supplementary Materials. 461 

 462 
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Table 2: An illustration of a series for the function 1/k over a non-uniform grid and uniform grids 463 
(e.g., in the 5th column.) The corresponding integrals (in the 2nd column) contain different scale 464 

factors, yielding convergent and divergent integrals,	∫ #
'!
𝑑𝑘,

#  and ∫ #
'
𝑑𝑘,

# . The former integral 465 

can be re-written as ∫ #
'
𝑑𝑙𝑛(𝑘,

# ).	Based on the integrals, we can construct a Series using a different 466 

Transformation (TR) and 𝛥𝑗 = 1. The original table is prepared as a simpler illustration in Table 467 
4.  468 

Discretization Integral TR Integral Series Convergent 

Uniform 
W
1
𝑘

,

#

𝑑𝑘 
𝑘 = 𝑗	 

 W
1
𝑗

,

)

𝑑𝑗 1 +
1
2 +

1
3 +

1
4⋯ 

 

No 

Non-uniform 
W
1
𝑘

,

#

𝑑𝑙𝑜𝑔((𝑘) 
𝑘 = 2! 

 W
1
2!

,

)

𝑑𝑗 1 +
1
2 +

1
2( +

1
25⋯ Yes 

Non-uniform 
W
1
𝑘

,

#

𝑑𝑙𝑛(𝑘) 
𝑘 = 𝑒! 

W
1
𝑒!

,

)

𝑑𝑗 1 +
1
𝑒 +

1
𝑒( +

1
𝑒5⋯ Yes 

 469 

3.3 Lilly’s Formula for Predictability Estimates 470 

 471 

One of the major differences in Eqs. (1a) and (1b) is: only the linear transformation in Eq. (1b) 472 

possesses the original power law properties of 𝑓(𝑘) = 1/𝑘. Below, we illustrate how such a 473 

difference yields different divergent/convergent properties for the “sum” of turnover times 474 

associated with the KE -5/3 power law. Here, we first provide a review in order to construct Lilly’s 475 

mathematical formula.   476 

 477 

In turbulence theory, an eddy turnover time is given by the following formula (e.g., Vallis 478 

2006): 479 

          𝜏(𝑘)~𝑘"
"
!𝐸(𝑘)"

#
!,					(5)       480 

where 𝐸(𝑘) is the background KE density. Although Figure 2c suggested different KE power laws 481 

at different scales, the KE -5/3 power law is generally analyzed in predictability studies. By 482 

plugging 𝐸(𝑘)~𝑘"
$
"  into Eq. (5), we obtain the following: 483 
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𝜏(𝑘) = 𝐶)𝑘
"(5.											(6) 484 

Here, to simplify the expression, a constant 𝐶) is introduced.  The constant 𝐶) is a function of the 485 

viscous coefficient. Equation (6) implies a -2/3 power law for the turnover times that correspond 486 

to the -5/3 kinetic energy power law. Below, we mainly show that the features of the integral of 487 

𝑓(𝑘) = 1/𝑘  appear in the integral of Eq. (6). (In fact, this can be also illustrated using the p-series, 488 

which is provided in the supplementary materials.)  489 

 490 

 491 
 492 

 493 

 494 

 495 

 496 
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To illustrate the impact of different spectral discretization, we consider both the non-uniform 497 

and a uniform grids. Plugging Equations (1a) - (1b) into Eq. (6) yields the following turnover 498 

times: 499 

𝜏I𝑘!J = 𝜏(𝑘$) ]2
"!"^

!
(7𝑎)    and      𝜏I𝑘!J = 𝜏(𝑘$)(𝑗)

"!",    (7b)                      500 

on grid points, respectively. Here, 𝜏(𝑘$) = 𝐶)𝑘$
"!" ≡ 𝜏6 is the turnover time for the largest scale. 501 

The formula in Eq. (7a), as shown, for example, in Figure 3, has been used in predictability studies 502 

(e.g., Lilly 1972, 1973; LTD22; Palmer et al. 2014). Note that  𝑗 can be viewed as a new variable. 503 

Thus, Eq. (7a), for a non-uniform grid, does not maintain the original power law and only Eq. 504 

(7b), for a uniform grid with a linear variable transformation, still possesses the same -2/3 power 505 

law as Eq. (6). Details are provided below.  506 

 507 

Similarly to. Section 3.2, we now consider the sum of turnover times 𝜏I𝑘!J over the selected 508 

data points in Eq. (7), as follows: 509 

lim
*→,

fE𝜏I𝑘!J
*

!-)

Δ𝑗g.					(8) 510 

Below, Δ𝑗 = 1,  which was implicitly assumed in earlier studies, is explicitly added for a 511 

comparison of Lilly's series to his integrals in Section 3.6.  The above formula in Eq. (8) is referred 512 

to as Lilly’s formula.  513 

 514 

Plugging the turnover times 𝜏I𝑘!J in Eqs. (7a) - (7b), for both grids, into Eq. (8) yields: 515 

𝜏(𝑘$) ]
#

#"(%!/"
^ = 2.7 ∗ 	𝜏(𝑘$)				(9𝑎)	  and   𝜏(𝑘$) lim*→,

∑ ] #
!!/"

	^*
!-) = ∞,			(9𝑏) 516 

respectively. Thus, Eqs. (9a) and (9b) represent Lilly’s formula that applies the KE (−5/3) 517 

spectrum over a non-uniform and uniform grid, respectively, representing different complexities 518 

of multiscale interactions. As originally derived by Lilly (1973), Eq. (9a) that yields a convergent 519 

series was applied to suggest a finite predictability horizon of 2.7 𝜏(𝑘$). This same equation was 520 

applied by LTD22 and Palmer et al. (2014). The validity of Eq. (9a) in determining the 521 

predictability horizon is examined below.  522 

 523 
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In comparison, as discussed, the choice of the uniform grid in Eq. (1b) includes wavenumbers 524 

3, 5, 6, 7, 9, 10, etc., and, thus, is more realistic than the choice of the non-uniform grid in Eq. (1a). 525 

When the uniform grid in Eq. (1b) is considered, the corresponding sum of turnover times 𝜏I𝑘!J 526 

in Eq. (9b) produces a divergent series. Thus, Eqs. (9a) and (9b) collectively indicate the 527 

dependence of convergence (or "finite predictability") on spectral discretization. Additional 528 

details regarding the different discretization areis discussed in Section 3.6.  529 

 530 

As mentioned in Section 3.2, the original Lorenz 1969 model was constructed by computing the 531 

mode-mode interactions, where each selected mode interacts with all the other selected modes. 532 

Consequently, when the two discretization schemes were applied, the resulting models could have 533 

vastly different complexities. While the validity of the findings obtained using the non-uniform 534 

discretization is being re-examined, the effectiveness of incorporating a wider range of scales using 535 

a non-uniform grid (i.e., a stretching grid) is acknowledged.  From a broader perspective of 536 

applications, as the self-attention mechanism in the AI transformer technology for ChatGPT (e.g., 537 

Shen 2024a, c) computes the attention scores between any pair of words, similar to the mode-mode 538 

interactions in the L69 model, it is worth introducing the concept of a stretching grid to save 539 

computing costs for very long sequences of words, which is beyond the scope of this study.  540 

When the non-uniform discretization in Eq. (1a) is applied, a “the magic factor” of 2"
!
"  appears 541 

in Eq. (7a).  Such a factor was first documented by Lorenz (e.g., in Figure 1 from Lorenz (1969d) 542 

and is discussed in Section 3.4. 543 
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 544 

Figure 3: The evolution of Lilly's formulas for determining a predictability horizon. All the 545 

above formulas are consistent. Notably, the presence of the factor 1/k in the integral simplifies 546 

the understanding of the effect of the non-uniform discretization.  547 

 548 
3.4 A Re-examination of Lorenz’s Empirical Formulas  549 

 550 

Lilly’s formula in Section 3.3 was constructed based on turnover time within the specific 551 

spectral grid. In Eq. (9a), the appearance of a common factor of 2"(/5 has been viewed as evidence 552 

for the relationship between Lilly’s and Lorenz’s formulas. Below, we reanalyze Table 1 in order 553 

to determine the condition under which a common factor of 2"(/5  may appear within the 554 

successive saturation time differences.  555 

 556 

3.4.1 The Reconstruction of Lorenz's Formula 557 

 558 

Table 1, derived from Table 3 of Lorenz (1969d), lists saturation time and saturation time 559 

differences (𝑆𝑇𝐷%) in the 3rd and 5th columns, respectively. As discussed in Figure 1, Lorenz 560 
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(1969d) “observed” that saturation time differences differ by a common factor (2"8) and 𝑚 =561 

2/3, namelyas follows: 562 
𝑆𝑇𝐷%&#
𝑆𝑇𝐷%

= 2"8.					𝑎𝑛𝑑					𝑚 = .													 (10) 563 

Lorenz	explicitly	suggested	the	value	of	𝑚 = 2/3.	The above common factor makes it feasible 564 

to construct an infinite series for predictability estimates over an infinite set of wavenumbers 565 

(Lorenz 1969d). However, it should be noted we will first show that such an infinite series is 566 

convergent for all positive 𝑚.	 Here, to maintain flexibility within Additionally, to examine the 567 

validity of Eq. (10), we apply Lorenz’s formula the left-hand side of Eq. (10) to recompute, m can 568 

be empirically re-estimated from data in(e.g., Table 1).  569 

 570 

From Lorenz’s “observation” for saturation time differences in Eq. (10), we first assume that two 571 

successive “estimated” saturation time differences, denoted as 𝐸𝑆𝑇'&#and 𝐸𝑆𝑇',  also hold the 572 

same ratio. Given a common factor (2"8) , as shown in Table 3, the estimated saturation time 573 

differences 𝐸𝑆𝑇%, denoted as 𝐸𝑆, are can be computed, as follows: 574 

𝐸𝑆𝑇% = 2"8𝐸𝑆𝑇%"# = (2"8)%"#𝐸𝑆𝑇# = (2"8)%"#𝑆𝑇𝐷#.											(11) 575 

Here, the first estimated saturation time difference is 𝐸𝑆𝑇# = 𝑆𝑇𝐷# = 𝑡# − 𝑡(.	 576 

 577 

Based on the above formula in Eq. (11), the sum of estimated saturation time differences (i.e., 578 

𝐸𝑆𝑇%) produces an estimated predictability horizon at the largest scale: 579 

𝑇9:; = lim
*→,

�E𝐸𝑆𝑇%	Δ𝑛
*

%-#

� = lim
*→,

E𝑆𝑇𝐷#((2"<)%"#)
*

%-#

.						(12) 580 

For a comparison with Lilly’s formula in Eq. (8), Eq. (12) is referred to as Lorenz’s formula. 581 

Both formulas represent geometric series. Overall, Eq. (12) is convergent for 2"< < 1	𝑎𝑠	𝑚	 >582 

0 (i.e., any positive 𝑚) and divergent for 2"< ≥ 1	𝑎𝑠	𝑚	 ≤ 0. 583 

 584 
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. 585 

As suggested by Lorenz (1969d), plugging a special value of m = 2/3 into the above leads to: 586 

𝑇9:; = lim
*→,

E𝑆𝑇𝐷# ]I2"(/5J
%"#^Δ𝑛

*

%-#

= 𝑆𝑇𝐷# F
1

1 − 2"(/5G = 2.7 ∗ (𝑆𝑇𝐷#).					(13) 587 

The above Lorenz predictability series appears to be the same as Lilly’s formula in Eq. (9a) within 588 

the same non-uniform grid except for the factor of 𝑆𝑇𝐷#. For scientific accuracy, whether 𝑆𝑇𝐷# is 589 

the same as 𝜏(𝑘$)		𝑖𝑛		(9𝑎) remains physical justifications.  590 

 591 

The infinite series (both in Lorenz's and Lilly’s formulas) has been applied in order to project the 592 

contribution of unresolved scales to predictability and to determine whether (or not) predictability 593 

is finite. Due to 𝑆𝑇𝐷# = 9,648, as listed in the 4th column of Table 1, we obtained 𝑇9:; = 2.7 * 9648 594 

(minutes) ~ 18.1 (days) using Eq. (13), which is very close to 𝑡# = 16.8		days at the largest time 595 

scale. From Eq. (13), the contribution of unresolved scales (for 𝑛 ≥ 22) to the predictability 596 

horizon becomes:  597 

lim
*→,

E 𝑆𝑇𝐷# ]I2"(/5J
%"#^

*

%-((

= I2"(/5J(#𝑆𝑇𝐷# F
1

1 − 2"(/5G = 1.65 ∗ 10"= ∗ 𝑆𝑇𝐷#, (14) 598 

which is 1.65*10"= ∗ 9648 (minutes) = 1.59 (minutes), which is negligible.  As a result of Eq. 599 

(14), Eq. (13) with the 21 selected modes (i.e., the original 1969 study) largely represents a 600 

predictability limit in Eq. (13) with infinitely many modes.  601 

 602 
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The above reproduced Lorenz's findings.  Here, we emphasize that the assumption in Eq. (10) 603 

always produces a convergent geometric series that yields a finite value and, thus, a finite 604 

predictability. Additionally, although the Lorenz's and Lilly's formulas display “mathematical” 605 

similarity for the common factor of 2-2/3, no physical foundation has been rigorously provided for 606 

establishing the linear relationship between saturation time differences and turnover times. For 607 

example, a quick, “physical” check is, as follows: while Lilly's equation of turnover time contains 608 

a constant coefficient “𝐴"	(e.g., Figure 3) proportional to the rate of the viscous dissipation of 609 

enstrophy, the L69 model does not include viscous dissipation.  610 

 611 

More importantly, below, a mathematical reanalysis challenges the existence of the common 612 

factor of 2-2/3 in the sequence of the saturation time difference and suggests that the linear 613 

relationship between the sequences of two physical times (e.g., turnover times and saturation time 614 

differences) cannot be accurately established.  615 

 616 

3.4.2 Reexamination of the Common Factor of 𝟐"𝟐/𝟑 617 

 618 

To examine Lorenz’s discovery for the common factor of 2"(/5 (i.e., m =2/3) in the sequence 619 

of saturation time differences, as suggested in Figure 1, we computed 𝑚 = 𝑚(𝑛)  using the 620 

following formula, which is derived from Eq. (10): 621 

𝑚(𝑛) = −
𝑙𝑛 ]𝑆𝑇𝐷%&#𝑆𝑇𝐷%

^

ln(2) ,											(15) 622 

and data from Table 1. Computed values for (𝑚(𝑛)) are provided in the 6th column of Table 1.  623 

The computed values that vary between 0.502 and 2.170 are not exactly the same as the common 624 

factor of m = 2/3 = 0.667, as discovered and reported by Lorenz (1969d). To illustrate the 625 

discrepancies, relative errors, defined as �<'"(/5
(/5

�,	are displayed in the 8th column of Table 1. 626 

Amongst 19 relative errors for different wavenumbers, nine are larger than 15%.  627 

 628 

To further illustrate the deviations of computed 𝑚% from the “hypothetical” value of m = 2/3, 629 

we applied a least squares method in order to fit the computed values of 𝑚% to the curve: 𝑚(𝑛) =630 

𝛼	𝑛 + 𝛽. Parameters 𝛼 and 𝛽 are often called the slope and the intercept, respectively. Two fitted 631 
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curves are provided in the top and bottom panels of Figure 4. The first curve applied all 19 data 632 

points, while the second curve used the first 18 data points without the “outlier” 𝑚(20) =	2.170. 633 

For the first case, a positive slope of 𝛼 = 0.02 and an average of the predicted values of 0.819 634 

(denoted as 𝑚� = 0.819) were obtained. For the second case that excluded the outlier of 𝑚(20), a 635 

negative slope of 𝛼 = −0.002 and an average 𝑚� = 0.744 were determined. As shown in Figure 636 

4, the above results indicate that Table 1 (from Lorenz 1969d) does not support the idea of a 637 

common factor of 2"
!
" that requires m = 2/3 = 0.667, raising a concern as to whether (or not) 638 

Lorenz’s findings can be explained using the Lilly’s formula that is based on the turnover times in 639 

turbulence theory.   640 

 641 

As a result, tThe above results invalidate the assumption that the saturation time difference for 642 

a given wavenumber, k, is proportional to the eddy turnover time. Our results complement the 643 

findings of LTD22. Consequently, by applying the concept of turnover time (which is based on 644 

turbulence theory) for analyzing saturation time differences and illustrating scale interactions 645 

within the L69 model (which is not a turbulence model) becomes questionable. Without such a 646 

common factor for constructing an infinite (geometric) series, estimating the contribution of new 647 

modes (or unresolved modes) to the predictability horizon within the L69 study becomes 648 

challenging. When the sum of infinitely many terms is considered, strict accuracy is required in 649 

order to determine whether (or not) such a sum is a finite number.  650 

 651 

 652 
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 653 
 654 

3.4.3 The Impact of Different Common Factors in Eq. (10) 655 

 656 

Under the assumption in Eq. (10), Eq. (12) indicates the existence of a geometric series with a 657 

common ratio 2"8 between adjacent terms.	Eq. (12) is convergent when the common ratio is less 658 

than one (i.e., m > 0). Thus, the assumption in Eq. (10) with a positive m > 0 guarantees a 659 

convergent series, producing a finite predictability. Furthermore, by applying any common factor 660 

with m > 0, different from a factor of 2"(/5, simply produces a different rate of convergence, 661 

yielding a different degree of contribution from smaller scales to a predictability limit. For 662 

example, based on Figure 4, a common factor may be 2").@#A or 2").B==, both of which are smaller 663 

than 2"(/5.   A geometric series with a smaller common factor produces a smaller value for the 664 

sum.  As a result, Table 3 of Lorenz (1969d) could still suggest a convergent series and, thus, a 665 

finite predictability, as long as a common factor 2"8	with a positive 𝑚	is assumed.  666 

 667 

However, a series with a value of 𝑚 ≠ 	2/3 is not the same as the one suggested by turbulence 668 

theory,. Namely, the revised Lorenz formula (with the updated 𝑚�) is different from Lilly’s formula 669 

over the 21 selected wavenumbers. Without such similarity, we do not have a foundation for 670 
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applying the turbulence theory (i.e., with turnover times) to understand the features of the Lorenz 671 

1969 model (e.g., for saturation times) over the selected or unresolved wave modes.  672 

 673 

3.5 An Illustration for Unrealistic Features 674 

 675 

In addition to the above inconsistency between the Lorenz's findings and Lilly's formulation, 676 

we report another issue using a (-3) KE spectrum. We can consider the following discussions as 677 

illustrative of issues between the concepts of turnover time and saturation time differences (e.g., 678 

Eq. 9a and Eq. 13). When a (-3) KE spectrum is applied, Eqs. (5) and (6) collectively yield a 679 

constant turnover time for all wavenumbers. "Assuming" that saturation time differences (𝑆𝑇𝐷%) 680 

are proportional to the turnover time,  𝑆𝑇𝐷% are constants and we have the ratio of two consecutive 681 

saturation time differences as follows:: 682 

 683 
𝑆𝑇𝐷%
𝑆𝑇𝐷%&#

=
𝑡% − 𝑡%&#
𝑡%&# − 𝑡%&(

= 1.														(16) 684 

 685 
 686 

Here, again, 𝑡% represents a saturation time. Equation (16) suggests that the saturation time for 687 

a specific scale is written as 𝑡%&# = (𝑡% + 𝑡%&()/2, yielding the following general solution:  688 

𝑡% = 𝐶# + 𝐶(𝑛.																													(17) 689 

Both 𝐶# and 𝐶( are constants. Applying 𝑡# = 𝐶)	 and 𝑡( = 𝑟	𝑡#, and 𝑟 < 1,	we can determine 𝐶# =690 

(2 − 𝑟)𝐶) and 𝐶( = (𝑟 − 1)𝐶).  However, the presented sequence becomes 691 

𝑡% = 𝐶)(2 − 𝑟) − 𝐶)(1 − 𝑟)𝑛.							(18)							 692 

in Eq. (1)which is not realistic. For example, when 𝑟 = 2/3, we have 𝑡= = 0,	 which results in the 693 

saturation time being zero at n = 4 . Therefore, we believe that Eq. (16) falsifies the assumption 694 

that the saturation time difference is proportional to the turnover time for all wavenumbers.  695 

 696 

In addition to physical justifications between the saturation time differences and turnover times, 697 

below, we present a mathematical issue of the continuous version of Lilly’s formula (i.e., the 698 

integral form of the formula) over continuous wavenumbers) regarding the dependence on spectral 699 

discretization below.  700 

 701 
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3.6 The Continuous Version of Lilly’s Empirical Formula  (Note that the original version 702 

was moved into Appendix B) 703 

 704 

As discussed above, if discrepancies reported in Figure 4 can be ignored, Lorenz's and Lilly's 705 

formulas can be mathematically comparable. Nevertheless, the problems arising from the uniform 706 

and non-uniform grid discretization persist. These issues are further reiterated using the integral 707 

form of Lilly’s formula. The mathematical concepts underlying the discrete and continuous forms 708 

of Lilly’s formulas are similar, and the discrete forms have already been discussed. Thus, while a 709 

detailed mathematical analysis of Lilly’s integrals for both discretization methods is presented in 710 

Appendix B, a brief summary is provided in this section. 711 

In Appendix B,  based on the Lilly’s work in 1990, we first extend the concept of “summation 712 

of turnover times over selected wavenumbers” in Lilly's formula is consistently extended to the 713 

concept of “an integral of the turnover time with respect to rescaled wavenumbers". Here, the term 714 

"with respect to rescaled wavenumbers" means "with respect to 𝑙𝑛(𝑘) and 𝑘/𝑘$ (i.e., 𝑑𝑘/𝑘 and 715 

𝑑𝑘/𝑘$)	 for non-uniform and uniform discretization, respectively. We show that Lilly’s series over 716 

a non-uniform grid (𝑘 = 2%𝑘$)	and Lilly’s integral with respect to ln(k) (i.e., a varying scale factor 717 

of 1/k) are consistent.  Then, Lilly’s integral formulas for the two discretization methods are 718 

compared to emphasize their distinct characteristics.  719 

 720 

As summarized in Table 2, the integrals of 1/𝑘	with respect to the above two rescaled 721 

wavenumbers can be illustrated using ∫ #
'!
𝑑𝑘,

# 	and ∫ #
'
𝑑𝑘,

# . In Appendix BBelow, we present a 722 

continuous version of Lilly’s empirical formula and show that it is consistent with the discrete 723 

form in Eq. (9a) for a non-uniform grid. Based on Lilly's original integral, we further then 724 

generalize the integral for the uniform grid, consistent with the discrete form in Eq. (9b). By 725 

applying Lilly's two integral formulas, we reiterate address the dependence of the integral's 726 

convergence on the two spectral discretization methods for the KE -5/3 spectrum.  727 

 728 

In fact, after helpful discussions with reviewers, the following mathematical analysis can better 729 

illustrate the impact of the Jacobian scale factor and, thus, provide additional support to our 730 
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findings. To facilitate discussions, we use the turnover time 𝜏(𝑘) = 𝐶)𝑘
"!"	in Eq. (6) and compute 731 

the derivative and integral of the turnover time with respect to (ln(k)), as follows: 732 
𝑑𝜏(𝑘)
𝑑𝑙𝑛(𝑘) =

𝑑𝜏(𝑘)
1
𝑘 𝑑𝑘

= 𝑘
𝑑𝜏(𝑘)
𝑑𝑘 ∼ 𝑘𝐶) F−

2
3G 𝑘

"C5 = −
2
3 𝜏(𝑘)			(19)		 733 

W 𝜏𝑑l n(𝑘)

'#

'(

= 𝐶6 fW 𝑘"C/5𝑑k

'#

'(

g = −
3
2 I(𝜏'

(𝑘#) −		𝜏'(𝑘))J			(20)	 734 

The equations above suggest that “the derivative and integral of turnover time with respect to the 735 
natural logarithm of x (i.e., ln (x)) are proportional to the turnover time itself.” They follow the 736 
same power laws. In fact, this property in the quote remains valid as long as the turnover time 737 
follows a power function of wavenumber k, with the exception of constant functions.  738 

 739 

As a result, for the KE -5/3 power law in Eq. (20), the convergent property of the integral is 740 
determined by the turnover time at the highest wavenumber, leading to a finite value of 741 

∫ 𝜏𝑑l n(𝑘)'#
'(

= 5
(
𝜏'(𝑘)) as 𝑘# → ∞. 742 

  743 

 744 

3.7 The Validity of Lilly's Formula in Determining the Predictability Limit  745 

 746 

Although Lorenz's and Lilly's approaches have effectively promoted related investigations, 747 

misunderstandings and misinterpretations appear and cause some issues that explicitly or 748 

implicitly inhibit research. Important issues concerning the validity of Lilly's formulas in 749 

determining the predictability limit are summarized as follows: 750 

 751 

1. Saturation and turnover times are physically different.  752 

2. The convergence of the Lilly's formula depends on both spectral slopes and spectral 753 

discretization. Over the uniform grid, the integral of turnover times for both -5/3 and -754 

3 power laws are divergent when the largest wavenumber approaches infinity.  755 

3. When a frictional layer appears over the largest wavenumbers, the interval of the inertia 756 

subranges should be finite. As a result, the integral of turnover times over the finite 757 



 30 

interval should be finite, suggesting convergent integrals for both -5/3 and -3 power 758 

laws. 759 

Additional details are provided below.  760 

First, whether (or not) saturation time differences in the Lorenz's formula and turnover times 761 

in the Lilly's formula can have a linear relationship for each wavenumber is not clear. Each 762 

sequence of “saturation time differences” and “turnover times” at various wavenumbers can be 763 

viewed as a “vector” with infinitely many components. From a mathematical perspective, showing 764 

that the two vectors are “parallel” is challenging. Recently, a study by LTD22, who applied a real-765 

world model in order to perform a predictability study, indicated that it is not appropriate to assume 766 

that the error-growth time scale for a given wavenumber 𝑘 is proportional to the eddy turnover 767 

time.  768 

 769 

Secondly, a uniform spectral discretization in Eq. (1b) is more general than the non-uniform 770 

discretization in Eq. (1a). However, as discussed in Section 3.3, Section 3.6, and Appendix B, the 771 

convergence of the Lilly's formula displays dependence on discretization.  772 

 773 

Thirdly, the above turnover-time-based discussions within inertia range(s) implicitly indicate 774 

how the impact of a dissipation layer should be considered. Namely, the above discussions are 775 

valid within inertia ranges where nonlinear interactions dominate, as compared to dissipations. If 776 

a dissipation layer exists, as indicated in Figure 2c, the upper bound of the wavenumber for the 777 

inertia range is finite, thus, the integral of turnover time with respect to 𝑘/𝑘$ or ln(𝑘) within the 778 

inertia ranges should be finite. Can such a result be applied in order to determine finite intrinsic 779 

predictability for the atmosphere?  780 

 781 

Lastly, the assumption of homogeneity and isotropy, as often applied in turbulence theory, 782 

cannot be universally applied to weather in all places for all time scales. When applying findings 783 

from classical turbulence theory, one must take into consideration the fact that real weather 784 

contains both fully turbulent and non-turbulent components, thus providing different environments 785 

for perturbations to grow and transfer across space and time. In contrast, as briefly discussed in 786 

Section 2.1, recent advancements in turbulence research have enabled the application of novel 787 
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concepts, such as bistability, to effectively illustrate the complexities of weather and climate. 788 

These new concepts should be taken into account when determining the predictability limits.    789 

 790 

3.8 The Validity of Lorenz's Formula in Determining the Predictability Limit  791 

 792 

 While the concept of turnover time appears within systems that contain dissipations, the L69 793 

model was originally derived from a conservative partial differential equation that conserves 794 

vorticity. Additionally, a recent study (Shen et al. 2022a) suggested that the L69 model is a closure-795 

based, physically multiscale, mathematically linear, and numerically ill-conditioned system. The 796 

linear feature of the L69 model is also recognized by Saiki and Yorke (2023). Thus, the L69 is not 797 

a turbulence model nor a chaos model. The concept of turnover time cannot be directly applied to 798 

examine the findings from the L69 models. 799 

 800 

Other than the above, the following common ground shared by one of the reviewers, provides 801 

additional support to our analysis: 802 
The reviewer appreciates these efforts and would like to highlight some common ground that both the authors 803 
and the reviewer agree upon in the revision. 804 

1) L69 is not a model for the real atmosphere, and it is not "chaotic" under the author's definition of 805 
chaos. However, it could still provide valuable insights into the error growth for a multi-scale system. 806 

2) L69 proposed the two-week predictability limit, which was a revolutionary insight. While the 807 
predictability limit of the real atmosphere remains unknown, this limit has been verified by many 808 
complex global cloud-resolving systems, especially for mid-latitudes. It is also acknowledged that the 809 
predictability limit could differ for different regions, for example, it could be longer in the tropics, 810 
where the circulation scale (MJO) is much larger. 811 

3) It is important to keep in mind that any results obtained from L69 may not always hold true for the 812 
real atmosphere. Thus, showing that L69 is inappropriate or based on strong assumptions does not 813 
necessarily mean that the real atmosphere has a longer predictability limit. 814 

In response to the above third comment, we simply point out that the appearance of the Madden-815 

Julia Oscillation (MJO) in the 2nd comment suggests the potential for longer predictability. In a 816 

recent study using an AI-powered model, remarkable 30-day ensemble simulations of MJO were 817 

presented (e.g., Figure 11 of Lang et al. 2024) 818 

 819 
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Although predictability estimates within Lorenz (1969d) have been highly cited, the role of a 820 

spectral gap in extending predictability horizons was also illustrated by Lorenz himself during the 821 

1970s and 1980s (e.g., Lorenz 1970; 1972c; 1984; 1985), which have been overlooked. Thus, the 822 

two-week predictability limit was not robustly determined by the Lorenz 1969 model. The findings 823 

of estimated predictability within the Lorenz's formula were not robustly supported by the Lilly's 824 

formulas.  Readers with interest in features of the L69 model and Lorenz's updated view on the 825 

predictability limit are referred to Lorenz (1993), Reeves (2014), and our recent studies (Shen et 826 

al. 2022a, 2023a, b, 2024)  827 

 828 

3.9 Differences in Energy Transfer Across Scales and Spaces  829 

 830 

As discussed above, the saturation time and the turnover time are different. The first is 831 

associated with perturbation growth, while the second is associated with the energy transfer of 832 

perturbation across scales. Here, we emphasize that energy transfers across scales and spaces are 833 

different, as also suggested Castelvecchi (2017). In Exp-A of Lorenz (1969d), which focuses on 834 

the impact of an initial perturbation at a small scale, a perturbation is provided at a specific, small 835 

wavelength (i.e., a large wavenumber) within the spectral (or wavenumber) space. As a result, the 836 

perturbation, indeed, represents a periodic signal for the entire physical world, yielding spatially 837 

periodic “butterfly flaps”. Here, energy transfer across physical space is automatically complete. 838 

However, to have a non-negligible impact on the real world at larger spatial scales and distances, 839 

such a perturbation must grow, requiring an energy source. 840 

 841 

In comparison, when a perturbation is prescribed as a Dirac delta function (or as a localized 842 

signal) within the physical space, the initial perturbation automatically appears to have the same 843 

amplitude for all selected wavelengths (or for a wide range of wavelengths). Energy transfer 844 

across all (or many) scales is automatically completed, and perturbations at all scales can 845 

immediately grow. A future study will address how perturbations at different scales can grow at 846 

different growth/decay rates to form or impact spatially-coherent weather systems. In fact, the 847 

dependence of predictability horizons on different types of initial errors (i.e., periodic or local type) 848 

was documented as early as the 1960s (e.g., Charney et al. 1966).  849 

 850 
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4.  Concluding Remarks 851 

 852 

In his 1969 studies, Lorenz utilized the Lorenz 1969 (L69) model alongside the saturation time to 853 

illustrate how predictability depends on different scales, estimating a predictability of 16.8 days 854 

for the largest wavelength. He also proposed a geometric series based on the sequence of saturation 855 

times at different scales to estimate the contribution of small-scale processes to predictability 856 

enhancement, known as Lorenz's 1969 formula. Inspired by the factor of 2"(/5 in Lorenz's formula, 857 

Lilly applied turbulence theory in the early 1970s to develop a series summing turnover times to 858 

reconstruct Lorenz's series. Although Lorenz's and Lilly's formulas appear similar (e.g., Eq. 9a and 859 

Eq. 13), our study revisited their consistency and found that they differ both physically and 860 

mathematically. 861 

 862 

Based on our analysis and a literature review, the major discrepancies and inconsistencies are as 863 

follows: 864 

1. Different Physical Time Scales: Lorenz’s and Lilly’s empirical formulas were derived 865 

using different physical time scales, including saturation time differences and turnover 866 

times over the 21 selected wave modes. Saturation time is the scale for the growth of energy, 867 

while turnover time is the scale for energy transfer across scales. 868 

2. No Common Factor of 2"(/5  in Saturation Time Differences: Our revisit of Lorenz's 869 

results indicates that successive saturation time differences do not follow a common factor 870 

(i.e., 2"(/5). Consistent with LTD22’s findings, our results do not support the assumption 871 

that saturation time difference is linearly proportional to turnover time for each selected 872 

mode. 873 

3. Geometric Series Assumption: Lorenz’s formula's assumption in Eq. (10), involving 2"<, 874 

produces a geometric series that guarantees a convergent series for any positive m. This 875 

assumption should be applied with caution. 876 

4. Convergent Properties and Discretization: Ignoring the discrepancy between the two 877 

formulas, we demonstrate that the "same" formula displays dependence of convergent 878 

properties on spectral discretization for the KE -5/3 power law. The new uniform grid 879 

discretization is more realistic compared to the original non-uniform discretization that 880 

misses certain wavenumbers (3, 5, 6, 7, 9, 10, etc.). Our results, summarized in Tables 4 881 
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and 5, imply that whether or not the predictability horizon is finite cannot be robustly 882 

determined based on the integral's convergent property of turnover time. 883 

5. Unrealistic Saturation Time Sequence: Assuming both formulas are the same, they produce 884 

an unrealistic sequence of saturation time differences for the KE -3 power law. 885 

 886 

Furthermore, our recent review of Lorenz's 1969 model and Lorenz's updated view on 887 

predictability reveals the following: 888 

• The L69 model is closure-based, physically multiscale, mathematically linear, and 889 

numerically ill-conditioned. It is not a turbulence model or chaotic system as it lacks 890 

dissipative terms. 891 

• Although the L69 model suggested a predictability of 16.8 days, Lorenz’s later studies in 892 

the 1970s and 1980s indicated that the presence of a spectral gap could extend 893 

predictability up to three weeks (e.g., Lorenz 1972, 1985). 894 

• The two-week predictability limit was not robustly established by the L69 model and 895 

Lorenz's formula. Instead, it was estimated using a doubling time of 5 days from the Mintz-896 

Arakawa model in the 1960s (Charney et al. 1996; GARP 1969; Shen et al. 2023a, 2024). 897 

This history is documented in Lorenz's book "The Essence of Chaos" and a review titled 898 

"Edward Lorenz Revisiting the Limits of Predictability and Their Implications" (Lorenz 899 

1993; Reeves 2014). 900 

• Lorenz's 1993 book attributes the two-week predictability limit to Charney's 1966 report 901 

but does not discuss any of his five studies from 1969 or Lilly's studies from 1972 and 902 

1973. 903 

• The differences in physical processes between the L69 model (without thermodynamic 904 

feedback) and real-world models make direct comparisons challenging. 905 
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Appendix A: Dependence of Convergence Property on Discretization  921 
 922 

To simplify discussions, the following is provided in order to illustrate the series over a superset and a 923 

subset. Considering the integral ∫ !
"
𝑑𝑥, we can construct the following two series:  924 

$
1
𝑛

#$!

						𝑎𝑛𝑑						$
1
2%

%$!

. 925 

As shown in Table A1 below, the first represents a divergent series over a uniform grid with a superset 926 

(𝑥 = 𝑛),	while the second is a convergent series over a non-uniform grid with a subset ((𝑥 = 2%). On the 927 
other hand, please note that a different subset may also lead to a divergent series. This is an interesting 928 
feature of a divergent series. (Thus, within the main text, a specific “subset” and “superset” were chosen 929 
for facilitating discussions.) Please see details in the Supplementary Materials. 930 
 931 
Table A1: Three series derived from the integral of !

"
, labeled as S-A, S-B, and S-C, respectively. 932 

S-A 1 #
(
   #

5
  #

=
  #

C
  #

D
  #

B
  #

@
  #

A
  #

#)
  #

##
  #

#(
  #

#5
   ⋯ E

1
𝑛

%-#

 divergent 

S-B 	1 #
(
    #

=
     #

@
       ⋯ E

1
2!

!-)

 convergent 

S-C   #
(
   #

5
   #

C
   #

B
     #

##
   #

#5
  ⋯ E

1
𝑝

E	EGH<9

 divergent 

 933 
Stated alternatively, within the revised draft and in the Supplementary Materials, based on both the 934 

discrete and continuous versions of Lilly’s formulas (e.g., series and integral), we show that a specific 935 
discretization (𝑘 = 2#&!𝑘') was applied by both Lorenz (1969d) and Lilly (1972, 1973, 1990) in order to 936 
obtain a convergent series for the KE -5/3 power law. 937 
  938 
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Appendix B: Lilly’s Integrals for The Non-Uniform and Uniform Discretization  939 

 940 

In this section, we extend Lilly’s formula from a non-uniform grid to a uniform grid and 941 

examine how the convergence of Lilly’s formula depends on the two discretization methods. 942 

 943 

B1. Lilly's Integral for the Non-uniform Discretization 944 

  945 

Since a non-uniform discretization (𝑘 = 2%"#𝑘$) was applied, Lorenz's formula was built on 946 

the sum of saturation time differences over a non-uniform grid. Thus, Lilly’s series and integral 947 

were originally proposed based on the same grid system (e.g., Lilly 1972, 1973, 1990). In this 948 

subsection, we first present Lilly’s original integral, which is an integral of turnover time with 949 

respect to 𝑙𝑛(𝑘) (e.g., Lilly 1990; Vallis 2006). We then show that the scale factor of 1/𝑘 is, 950 

indeed, a Jacobian associated with a variable transformation and that Lilly's integral is consistent 951 

with the discrete version in Eq. (9a) over a non-uniform grid. In the next subsection, we extend 952 

Lilly's original integral to the integral of turnover time with respect to 𝑘, consistent with the 953 

discrete version in Eq. (9b) for the uniform grid. 954 

 955 

Below, we begin with Eq. (8.80) of Vallis (2006), consistent with Lilly's equation in Figure 3, 956 

as follows: 957 

𝑇 = fW 𝜏𝑑l n(𝑘)

'#

'(

g.												(𝐵1) 958 

The above formula that represents the integral of turnover time with respect to 𝑙𝑛(𝑘)	is referred to 959 

as Lilly’s (integral) formula. By plugging the turnover time in Eq. (6), with the 𝑘"C/5	KE spectrum, 960 

into Eq. (B1), we obtain the following: 961 

𝑇 = 𝐶6 fW 𝑘"(/5𝑑l n(𝑘)

'#

'(

g.							(𝐵2𝑎) 962 

The above can be rewritten, by introducing a new variable, 𝑦 = l n(𝑘), as follows: 963 

𝑇 = 𝐶6 fW 𝑒"((/5)I	𝑑𝑦

I#

I(

g,									(𝐵2𝑏) 964 
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where its lower and upper bounds are  𝑦6 = ln(𝑘6)	 and  𝑦# = l n(𝑘#). The derivations from Eq. 965 

(B2a) to Eq. (B2b) only introduce a new variable  𝑦  and do not pose any assumption.   966 

 967 

The above discussions can be illustrated using a Jacobian and Eq. (3). Now, from Eq. (B2b), 968 

we derive Eq. (B2a). Considering the integral in Eq. (B2b) with a variable transformation 𝑦 =969 

𝑙 𝑛(𝑘), the corresponding integral in the new variable 𝑘 space is written, as follows: 970 

𝑇 = 𝐶6 fW 𝑒"((/5)I(')𝐽	𝑑𝑘

'#

'(

g . (𝐵3) 971 

Here, 𝑘6 = 𝑒I(  and  𝑘# = 𝑒I# .	  𝐽  represents a Jacobian. The integrand of 972 

𝑒"((/5)I(')	is	indeed	𝑘"(/5, and the Jacobian is 𝐽 = |𝑑𝑦/𝑑𝑘| = 1/𝑘. By plugging the integrand 973 

and the Jacobian into Eq. (B3), we obtain Eq. (B2a). Once again, the scale factor 1/𝑘 appears in 974 

the integral for a non-uniform grid.  975 

 976 

To be directly compared to the discrete version in Eq. (9a) for a non-uniform grid, we replaced 977 

𝑙 𝑛(𝑘) in Eq. (B2a) by 𝑙𝑜𝑔((𝑘) to obtain: 978 

𝑇 = 𝐶6 fW 𝑘"(/5𝑑log((𝑘)

'#

'(

g.		(𝐵4𝑎) 979 

We now introduce a new variable 𝑦 = log((k) and turn Eq. (B4a) into the following: 980 

𝑇 = 𝐶6 fW 2"((/5)I	𝑑𝑦

I#

I(

g.															(𝐵4𝑏) 981 

Eq. (B4b) can be applied in order to construct a series for a constant value of ∆𝑦, producing a series 982 

consistent with the one shown in Eq. (9a).  983 

 984 

B2. Lilly's Integral for the Uniform Discretization 985 

 986 

Below, motivated by Eq. (B1), we define a time scale as “the integral of turnover time with  987 

respect to wavenumber” divided by the reference wavenumber 𝑘$, as follows: 988 
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𝑇J%HK6G< =
1
𝑘$
fW 𝜏	𝑑	𝑘

'#

'(

g . (𝐵5) 989 

As discussed below, 𝑇J%HK6G<	 represents the sum of turnover times over the entire set of 990 

wavenumbers for a uniform grid. For comparison, Eq. (B5) and Eq. (B1) are rewritten, 991 

respectively, as follows:  992 

𝑇J%HK6G< = fW 𝜏
𝑑𝑘
𝑘$

'#

'(

g,				(𝐵6𝑎) 993 

and 994 

𝑇 = fW 𝜏	
𝑑𝑘
𝑘

'#

'(

g.						(𝐵6𝑏) 995 

Both integrals have the same unit. Thus, both can be viewed as integrals of turnover time with 996 

respect to the “rescaled” wavenumbers. The difference between the two integrals is that the first 997 

integral has a constant rescaling factor while the second integral contains a k-dependent rescaling 998 

factor. As discussed below, the constant rescaling factor for the uniform grid can also be illustrated 999 

using the Jacobian.  1000 

 1001 

As compared to Lilly’s series in Eq. (1b) for a uniform grid, the following expression is 1002 

considered: 1003 

𝑘 = (𝑗)𝑘$ .						(𝐵7) 1004 

In general, the new variable 𝑗 is a real number. By plugging Eq. (B7) into Eq. (6), we obtain the 1005 

following turnover time: 1006 

𝜏(𝑗) = 𝐶) F𝑗
"(5G 𝑘$

"(5 = 𝜏(𝑘$) F𝑗
"(5G,							(𝐵8) 1007 

where 𝜏(𝑘$) = 𝐶)	𝑘$
"!". Using Eq. (B8), Eq. (B5) yields: 1008 

𝑇J%HK6G< = 𝜏(𝑘$) fW F𝑗"
(
5G 𝑑(𝑗)

!!

!#

g.																							(𝐵9) 1009 

In Eq. (B9), since the quantity within the parentheses is dimensionless, 𝑇J%HK6G< has the same unit 1010 

as the turnover time, 𝜏(𝑘$). Similar to the previous subsection, from Eq. (B9) with a variable 1011 
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transformation of 𝑗 = 𝑘/𝑘$ , we can convert the integral in Eq. (B9) to Eq. (B5), where 1/𝑘$ 1012 

represents a Jacobian, 𝐽 = |𝑑𝑗/𝑑𝑘| = 1/𝑘$ . Since Eq. (B9) is equivalent to Eq. (9b), the integral 1013 

in Eq. (B7) that applies a uniform discretization in Eq. (B7) is consistent with the series in Eq. (9b)  1014 

B3. The Dependence of Convergence on Discretization 1015 

 1016 

Discussions in the previous subsections suggested that the continuous version of Lilly’s 1017 

formulas for different grids, Eq. (B1) for a non-uniform grid and Eq. (B5) for a uniform grid, 1018 

produce different convergent properties. Such findings are consistent with those obtained using 1019 

the corresponding discrete version, Eq. (9a) for the non-uniform grid and Eq. (9b) for the uniform 1020 

grid.  1021 

 1022 

While the discrete version in Eqs. (9a) and (9b) is based on “a sum of turnover times” over all 1023 

data points, the continuous version in Eqs. (B5) and (B7) represents the integral of turnover time 1024 

with respect to rescaled wavenumbers. Rescaled wavenumbers that can be determined by the 1025 

Jacobian are 𝑙 𝑛(𝑘) and 𝑘/𝑘$ for the non-uniform and uniform discretization, respectively.  Table 1026 

4 provides a summary for the discrete and continuous versions of Lilly’s formulas for the two 1027 

discretization.  1028 

 1029 

Table B1: A comparison of the continuous (Column 2) and discrete (Column 4) versions of Lilly’s 1030 

formulas for non-uniform and uniform grids. Eq. (B4a) is the original Lilly’s integral with 1031 

respect to log((𝑘) , and Eq. (B5) is Lilly’s integral with respect to 𝑘 . This table can be 1032 

compared to Table 3.  1033 

Grid Integral Transformation Series Convergent 

 

Non-uniform Eq. (B4a)  Eq. (9a) Yes 
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 1034 

If we agree that the sum of turnover times over the non-uniform grid (𝑘 = 2!𝑘$) can represent 1035 

the predictability of the atmosphere, the sum over the uniform grid (𝑘 = 𝑗	𝑘$) , including 1036 

wavenumbers 3, 5, 6, 7, 9, 10 etc., should better represent atmospheric predictability. As discussed 1037 

above, given the same KE -5/3 power spectrum, integrals of turnover time two different grids are 1038 

either convergent or divergent, respectively. Lilly's formula cannot definitely determine whether 1039 

(or not) atmospheric predictability with a KE -5/3 power spectrum is finite. 1040 

 1041 

Below, we consider a general case in order to support the claim that the given KE -5/3 power 1042 

law, the convergent property for integrals of turnover time over non-uniform and uniform grids, 1043 

can be illustrated using the integrals of 1/𝑘 over the two grids as discussed in Section 3.2. For the 1044 

general KE −𝑠 power laws, the background KE energy and the corresponding turnover time are 1045 

written: 1046 

𝐸(𝑘) = 𝐶6𝑘":	and 𝜏(𝑘) = 𝜏6𝑘"(5":)/(, 1047 

respectively. 𝜏6  is defined in Section 3.3 and −𝑠  indicates the power of KE energy Table 5 1048 

provides convergent properties for Lilly’s integral with respect to (𝑘/𝑘$ ) or 𝑙𝑛(𝑘).  The two 1049 

integrals with respect to 𝑘/𝑘$ and 𝑙𝑛(𝑘) are divergent when s ≥ 1	and s ≥ 3,	respectively. Thus, 1050 

based on Lilly's integral for a non-uniform grid, the integral of turnover time is convergent for KE 1051 

-5/3 power law but divergent for the KE -3 power law. These were reported in Lilly's studies. 1052 

However, based on the Lilly’s integral formula for a uniform grid, the integrals of turnover time 1053 

are divergent for both the KE -3 and -5/3 power laws. As a result, our analysis indicates the 1054 

dependence of convergence on not only the slopes of the KE spectra but also on spectral 1055 

discretization.  1056 

 1057 

Table B2: A summary of two integrals, representing different discretization, for the turnover time 1058 

𝜏(𝑘) = 𝜏6𝑘"(5":)/(. Here, −𝑠 represents the power of the KE spectrum, namely 𝐸(𝑘) = 𝐶6𝑘": 1059 

“CON” and “DIV” represent convergent and divergent, respectively.  1060 

 1061 

 integral 𝑝 =
3 − 𝑠
2  𝑠 remarks 

uniform  CON if 𝑝 > 1 CON if 𝑠 < 1 divergent for 
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grid 1
𝑘$
W 𝜏(𝑘)	𝑑𝑘
,

#
 

DIV if 𝑝 ≤ 1 DIV if 𝒔 ≥ 𝟏 both 𝑠 = 5/3 

and 𝑠 = 3 

non-uniform 

grid 
W 𝜏(𝑘)𝑑𝑙𝑛(𝑘)
,

#
 

COV if 𝑝 > 0 COV if 𝑠𝑠 < 3 convergent for 

𝑠 = 5/3 but 

divergent for 

𝑠 = 3 

DIV if 𝑝 ≤ 0 DIV if 𝒔 ≥ 𝟑 

 1062 

 1063 
 1064 
 1065 
  1066 
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 2 

1. Introduction 26 
 27 

These supplementary materials were prepared to help examine the convergence of the infinite 28 

series and the integrals proposed by Lilly (1972, 1990), and to provide an illustration for the 29 

different impact of spectral discretization (that produces different “subsets” of wave modes). 30 

Within the supplementary materials, to facilitate discussions, since we focus on the convergent 31 

properties of integrals and series, variables are “non-dimensional”. For example, while "𝑘" and 32 

“𝐾" represent non-dimensional and dimensional variables, respectively, in this supplementary 33 

document, "𝑘" is a dimensional variable in the main text.  34 

 35 

Section 2 provides a brief review of materials for the integral test, as well as the so-called p-36 

series and differences between the two integrals ∫ !
"	
	dx and ∫ !

"	
 dln(x). The latter is the same as 37 

∫ !
"!	

 dx. Based on Section 2, Section 3 discusses differences for the integrals of turnover time 38 

𝜏(𝑘)	with respect to k and ln(k). Given the specific KE -5/3 spectra that yields 𝜏(𝐾) = 𝐶$𝐾
%!" (i.e., 39 

Eq. 6 in the main text), we show that the different convergent properties between ∫ (𝑘%
!
")𝑑(𝑘)&

!  40 

and ∫ (𝑘%
!
")𝑑𝑙𝑛(𝑘)&

!  can be illustrated by revealing the different properties of ∫ !
"	
	dx and ∫ !

"	
 dln(x) 41 

that are, respectively, divergent and convergent.  42 

 43 

Finally, we  suggest that (1) the discrete and continuous forms of Lilly’s formulas are consistent 44 

and (2) a proper discretization is crucial for determining whether or not the integral of turnover 45 

time is convergent, yielding a finite or infinite predictability limit. To help readers, a page break 46 

is added at the end of each subsection in Section 3. In Section 4, a succinct approach using a 47 

Jacobian is provided to obtain scale factors of 1/𝑘 in Eq. (18) and 1/𝑘' in Eq. (22) for the non-48 

uniform and uniform discretization, respectively, in the manuscript.  49 

2. The Integral Test and Properties of the p-series 50 
 51 

For the specific type of series in this study, an integral test, which is an effective way to test 52 

whether a series is convergent, is first reviewed (e.g., Stewart, 2014), as follows: 53 



 3 

 54 
 55 

The above theorem can be stated as follows: if the integral is convergent (or divergent), the 56 

corresponding series is convergent (or divergent). Next, we consider the integral of 1/𝑥(	with 57 

respect to x. After performing the integral and plugging in the lower and upper bounds, the 58 

following properties can be obtained: 59 

 60 
 61 
 62 
 63 

Below, we first illustrate the properties of	∫ !
"!
𝑑𝑥 and ∫ !

"
𝑑𝑥 in order to understand the differences 64 

between integrals with respect to ln(x) and (x). The two integrals, which are convergent and 65 

divergent, respectively, are compared in the following excerpt from Steward (2014). Thus, one 66 

may state that the integrals of 1/x with respect to ln(x) and (x) are convergent and divergent, 67 

respectively. 68 

(S1) 
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 69 

Figure S1: Convergent ∫ !
"!
𝑑𝑥&

!  and Divergent ∫ !
"
𝑑𝑥&

! . The former can be written as 70 

∫ !
"
𝑑(ln(𝑥)).&

!   71 

 72 

Equation S1 suggests that if an integral is performed with respect to 𝑑 ln(𝑥) (i.e., 𝑑x/x), we 73 

obtain the following: 74 

5
1
𝑥( 𝑑(ln

(𝑥))
&

!

	is	convergent	if	𝑝 > 0	and	divergent	if	𝑝 ≤ 0. 75 

 76 
A comparison between Eqs. (S1) and (S2) is provided below. The original integrand (𝑥%() has 77 

a power of −𝑝.	When its integral is performed with respect to dln(k), the power of the “effective” 78 

integrand becomes −(𝑝 + 1). Thus, the effective integrand (𝑥%((*!)) approaches zero faster than 79 

the original integrand (𝑥%().	Now, the KE -5/3 power law is considered and the turnover time is 80 

given in Eq. 6 of the manuscript (i.e., 𝜏(𝑘) = 𝐶,𝑘
%!"). After a straightforward computation, we 81 

(S2) 

Figure S1a Figure S1b 

in Figure S1a) 
in Figure S1b 
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know that two integrals with respect to (k) and ln(k) (i.e., ∫ (𝑘%
!
")𝑑(𝑘)&

! , and ∫ I𝑘%
!
"J 𝑑𝑙𝑛(𝑘)),&

!  82 

are divergent and convergent, respectively. In fact, differences between the two integrals can be 83 

illustrated using the above two cases (i.e., ∫ !
"
𝑑𝑥	and ∫ !

"!
𝑑𝑥). Namely, while the integral of 𝜏(𝑘) 84 

with respective to k is divergent (as shown in the right panel of list S1), the integral with respect 85 

to ln(k), where the effective integrand approaches 0 faster, may be convergent (as shown in the 86 

left panel of Figure S1). The above statement is true for 𝜏(𝐾) = 𝐶,𝐾
%!". Table S1 provides Eqs. 87 

(S1) and (S2) for integrals of turnover time (𝜏(𝐾))	with KE 𝐸(𝐾) = 𝐶$𝐾%-. 88 

 89 

Table S1: A summary of Eqs. (S1) and (S2) for integrals of turnover time (𝜏(𝐾))	with a KE 90 

𝐸(𝐾) = 𝐶$𝐾%., yielding 𝜏(𝑘) = 𝜏$𝑘%(/%.)/1. Since scale invariance is one attribute of power 91 

laws, one can rescale the wavenumber to have a non-dimensional wavenumber 𝑘, and 𝜏$ is a 92 

reference value for turnover time. “CON” and “DIV” represent convergent and divergent, 93 

respectively.  94 

  𝑝 =
3 − 𝑠
2  

𝑠 remarks 

Eq. (S1) 
5 𝜏(𝑘)	𝑑𝑘
&

!
 

CON if 𝑝 > 1 CON if 𝑠 < 1 divergent for 

𝑠 = 5/3 and  

𝑠 = 3 

DIV if 𝑝 ≤ 1 DIV if 𝒔 ≥ 𝟏 

Eq. (S2) 
5 𝜏(𝑘)	𝑑𝑙𝑛(𝑘)
&

!
 

COV if 𝑝 > 0 COV if 𝑠 < 3 convergent for 

𝑠 = 5/3 but  

divergent for 𝑠 = 3 
DIV if 𝑝 ≤ 0 DIV if 𝒔 ≥ 𝟑 

 95 

Based on the integral test and properties of the integral of 1/𝑥(	with respect to x, we have the 96 

following properties for the p-series: 97 

 98 
 99 
 100 
 101 
 102 

(S3) 
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 103 
 104 
 105 
 106 
 107 
 108 
 109 
 110 
 111 
 112 
 113 
 114 
 115 
 116 
 117 
 118 
 119 
 120 
 121 
 122 
 123 
 124 
 125 
 126 
 127 
 128 
  129 
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3. An Illustration on the impact of “discretization” ( i.e., the choice of 130 

the subset of wave modes) 131 
 132 
3.1 A Discrete Form (for a Series ∑𝟏/𝒏	) 133 
 134 

 Based on discussions within the previous section, the integral of !
"
 with respect to x (i.e., 135 

∫ !
"
𝑑&

! 𝑥)	and the series ∑ !
2
 share the same divergent/convergent properties. Below, we first apply 136 

this series to illustrate the “impact” of the (grid) discretization (that yields a different subset) and 137 

then illustrate that an integral with respect to ln(x) represents an integral with respect to x over a 138 

different subset.  The sum of the series ( ∑ !
2
 ) on the uniform grid (i.e., 𝑥 = 𝑛;	referred to as a full 139 

set) is expressed in the 1st row of Table A1 in Appendix A  (e.g., case S-A).  140 

 141 

Compared to the above sequence, we apply a non-uniform grid (i.e., 𝑥 = 	22	) to construct a 142 

sequence containing 1, 1/2, 1/4 , 1/8, etc. to form a new series, which is listed in the 2nd row (e.g., 143 

case S-B in Appendix A). Since the new series represents a geometric series, it is convergent. 144 

Thus, the new convergent series (with a specific subset of numbers for the non-uniform grid) 145 

cannot possess divergent properties of the original series over the entire set (for the uniform grid). 146 

Namely, the properties of the two series S-A and S-B are different. As discussed in Section 3.2 in 147 

the main text, the series in case S-B can be constructed from the convergent integral 148 

∫ !
"
𝑑W𝑙𝑜𝑔(𝑥)Z&

!  with 𝑥 = 23 . 149 

On the other hand, since the original series in case S-A (i.e., the original integral ∫ !
"
𝑑&

! 𝑥 is 150 

divergent), it is possible to construct a new divergent series by selecting a different subset of 151 

elements. The 3rd row provides such a choice for a new divergent series (e.g., case S-C in Appendix 152 

A). 153 

 154 

 155 
  156 
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3.2 A Discrete Form (For an Integral of a Simple Function 𝟏/𝒌 With Respect To 157 
𝐥𝐨𝐠	(𝒌)) 158 
 159 

In Sections 3.2 and 3.3 of the main text, we discuss the properties of an integral of 𝑓(𝑘) with 160 

respect to ln(k) (or log(k)). Here, the function “ln” indicates a natural logrithm function, while 161 

“log” represents a logrithm function with a base of 2. As a simple illustration, we begin with the 162 

following integral with respect to log(k): 163 

5
1
𝑘 𝑑W𝑙𝑜𝑔

(𝑘)Z.
&

14#
																				(𝑆4) 164 

The answer to the above integral is: 165 

1
ln	(2)

1
2𝑘5

≈
1.442
2𝑘5

.													(𝑆5) 166 

Below, as listed in Table S3, Riemann sums are constructed in order to compare the integral 167 

∫ !
4
𝑑𝑘		and the above integral ∫ !

4
𝑑W𝑙𝑜𝑔(𝑘)Z	in Eq. (S4). To approximate an integral using a 168 

Riemann sum, we need to (1) first build a grid system by performing discretization for an  169 

“independent” variable; (2) evaluate the integrand (i.e., the function) at each of the grid points; (3) 170 

multiply the functions by the interval of two neighboring grid points, yielding an area for each grid 171 

interval; and (4) sum areas for all of the grid integrals. As indicated in Table S3, we use a constant 172 

increment of 𝑙𝑜𝑔(𝑘)	in Eq. (S4).. A constant of 𝑑𝑙𝑜𝑔(𝑘) indicates a fixed 67
7

. That indeed yields a 173 

non-uniform grid (for 𝑘), as follows: 174 

𝑘 = 2𝑘528.																						(𝑆6) 175 

The above is consistent with the choice in Lilly’s formula (e.g., Eq. 1a in the main text) and 176 

Lorenz’s formula (e.g., the 2nd column of Table 1 in the main text). Here, 𝑘5 just represents a 177 

reference wavenumber. By plugging Eq. (S6) into Eq. (S4), we have: 178 

5
1
2𝑘5

𝑑𝑦
29 	 ,

&

,
																				𝑆(7) 179 

which yields !
:;	(1)

!
14#

= !.==
14#

 (which is the same as the above answer in Eq. S5).  Next, we discretize 180 

𝑦 into 𝑦 = 𝑛Δ𝑦, where 𝑛 is an integer. Thus, we have: 181 

𝑘2 = 2𝑘52;68.															(𝑆8) 182 
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The above leads to Δ𝑘2 = 𝑘2*! − 𝑘2 = 𝑘2, yielding 64$
4$

= 1 (i.e., a constant of 1 for 𝑑W𝑙𝑜𝑔(𝑘)Z 183 

in Eq. S4), as shown in Figure S2. Thus, when Eq. S(8) with Δy = 1	is applied, Eq. S(4) is 184 

approximated by:  185 

1
2𝑘5

e
1
22

&

2>,

,																				(𝑆9) 186 

which is approximately 1
14#

, which is close to Eq. (S5). More importantly, it is a finite number. 187 

Note that when Δy = 3/2 (which is larger than Δy = 1) we are able to obtain a better solution 188 

with a smaller error.  However, for the integral with respect to log(k), convergent properties of the 189 

Riemann sum with different “resolutions” (i.e., different values of Δy) are beyond the scope of this 190 

study.  191 

 192 

Table S3: Integrals of 1/𝑘 with respect to 𝑘 and log(𝑘), which are, respectively, proportional to 	193 

∑ !
22>! 	and	∑ !

1$2>! .		 194 

Integral 5
1
𝑘 𝑑𝑘

&

14#
 5

1
𝑘 𝑑W𝑙𝑜𝑔

(𝑘)Z
&

14#
 

Riemann sum eℎ𝑒𝑖𝑔ℎ𝑡 × 𝑤𝑖𝑑𝑡ℎ eℎ𝑒𝑖𝑔ℎ𝑡 × 𝑤𝑖𝑑𝑡ℎ 

(ℎ𝑒𝑖𝑔ℎ𝑡, 𝑤𝑖𝑑𝑡ℎ) (
1
𝑘 , 𝑑𝑘) (

1
𝑘 , 𝑑𝑙𝑜𝑔(𝑘)) 

discretization 𝑑𝑘 =constant 𝑑𝑙𝑜𝑔(𝑘) =constant 

Property divergent convergent 

 195 

 196 

 197 

 198 

 199 

 200 

 201 

 202 

 203 
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 204 

 205 

 206 

 207 

 208 

 209 

 210 

 211 

 212 

 213 

 214 

 215 

 216 

Figure S2: A grid system for an integral of 𝑓(𝑘)	with respect to 𝑙𝑜𝑔(𝑘).	To have a uniform 217 

grid with 𝑑W𝑙𝑜𝑔(𝑘)Z = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, we may choose 𝑘2 = 𝑘$22. Here, 𝑘$ = 2𝑘5 .	Such a choice 218 

yields Δ𝑘2 = 𝑘2*! − 𝑘2 = 𝑘2 and, thus, 64$
4$

= 1. Please note that Δ𝑘2 is not a constant. 219 

 220 
Below, we provided an example of the “non-unform” grids from the study by Leith and 221 
Kraichhan (1972). 222 
 223 
 224 
 225 
 226 
 227 
 228 
 229 

230 
 231 
 232 
 233 

234 
 235 
 236 
 237 
 238 
 239 
 240 
 241 
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 242 
Here, we first provide derivations for the last formula in the above image. Then, we show that 243 
𝛽𝑘? represents the Jacobian.  244 
 245 
Consider: 246 

𝑑𝑘 ≈ Δ𝑘 = 𝑘?*%!
− 𝑘?%%!

= 2(?*
%
!)/@ − 2(?%

%
!)/@ = 2?/@(2(

%
!)/@ −	2(

&%
! )/@) = 𝛽𝑘?, 247 

 248 

here 𝛽 = (2(
%
!)/@ −	2(

&%
! )/@).  Thus, we have: 249 

∫ 𝑓(𝑘)𝑑𝑘 ≈e 𝑓(𝑘?)𝛥𝑘 =e 𝑓(𝑘?)𝛽𝑘?
??

.																		(𝑆10𝑎) 250 

Equation (S10a) is the same as that in the image. Secondly, we consider the change of variables, 251 

𝑘? = 2?/@ ,  and compute its Jacobian (𝐽) as follows: 252 

𝐽 =
𝑑𝑘?
𝑑𝑙 = 	

𝑙𝑛(2)
𝐹 𝑘? . 253 

Then, we have the integral for the new variable as follows: 254 

∫ 𝑓(𝑘)𝑑𝑘 ≈ ∫ 𝑓(𝑙)	|	𝐽	|𝑑𝑙 = ∫ 𝑓(𝑙)
𝑙𝑛(2)
𝐹 𝑘? 	𝑑𝑙						(𝑆10𝑏). 255 

Equation (S10b) and (S10a) are the same, as discissed using the Jacobian below. Lastly, we show  256 

𝛽	𝑘? ≈	 |	𝐽	| as follows. Consdier the following Taylor series approximation:   257 

2(
!
1@) ≈ 	1	 + 	𝑙𝑛(2)/2𝐹,	 258 

and 259 

2(
%!
1@) ≈ 	1 − 	𝑙𝑛(2)/2𝐹, 260 

yielding 261 

𝛽 ≈ 2(
!
1@) − 2(

%!
1@) 	≈ 	𝑙𝑛(2)/𝐹 = 𝐽/𝑘? . 262 

The above demonstrates that, as a result of the variable change, a scaling factor in the form of a 263 

Jacobian should be taken into account. Specifically, for the integral with respect to 𝑘,  a scaling 264 

factor of 𝑘 (i.e., 𝑘?) appears on the right-hand side in Eqs. (S10a, b). In contrast, when 265 

considering an integral with respect to 𝑙𝑛(𝑘) (e.g., in Lilly's formula), the factor of 1/𝑘 266 

associated with 𝑙𝑛(𝑘) is cancelled out by the Jacobian 𝑘 following the variable change.  267 

 268 
3.3 A Discrete Form (For an Integral of a General Function 𝒇(𝒌)	With Respect To 269 
𝒍𝒐𝒈(𝒌)) 270 
 271 
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Below, we consider the integral of 𝑓(𝑘) with respect to 𝑙𝑛(𝑘)	and 𝑙𝑜𝑔(𝑘). In Table S4, the 272 

case "I-base" represents a Rieman sum of an integral with respect to 𝑘	(i.e.,  ∫ 𝑓(𝑘)𝑑𝑘).	 When 273 

Δ𝑘 = 1, the case I-base yields the series in case I-A in Table S4 that represents a Rieman sum of 274 

the integral with respect to 𝑘 within a “full” set for discrete k.  Below, we first show that the two 275 

series in cases I-B and I-C, respectively, represent integrals with respect to log(k) and ln(k). From 276 

cases I-A and I-B,  we then show that the series in case I-B represents a Rieman sum within a 277 

“subset” of k as compared to the series in case I-A.  278 

 279 

As a result of relatively simplicity, we first begin with case I-C. Let’s consider an integral with 280 

respect to ln(k):	 281 

	282 
∫ 𝑓(𝑘)𝑑W𝑙𝑛(𝑘)Z,									(𝑆11𝑎)	283 

yielding: 284 
 285 

5
𝑓(𝑘)
𝑘 𝑑𝑘.																	(𝑆11𝑏) 286 

 287 
We now consider the following subset to have a fixed	𝑑W𝑙𝑛(𝑘)Z,	which is shown in case I-C in 288 
Table S4: 289 
 290 

𝑘 = 𝑒-𝑘$ .																		(𝑆12) 291 
 292 
Here, 𝑘$ is a reference wavenumber and can be the smallest wavenumber. Note that the integral 293 

with respect to ln(k) in Eq. (S11a) was applied in Lilly (1990). The integral is (mathematically) 294 

consistent with the discrete form in Lilly (1972). The choice in Eq. (S12) yields a collection of 295 

selected wavenumbers 𝑘$ , 𝑒𝑘$ , 𝑒1𝑘$ , ⋯ 𝑒2𝑘$ , 𝑒𝑡𝑐.,	which may not be “physically” intuitive. Here, 296 

no attempt is made to discuss the impact of fractal dimensions. A “physically” intuitive choice of 297 

𝑘 = 2-𝑘$	is later discussed. From the above, we have:  298 

  299 
𝑑𝑘
𝑑𝑚 = 𝑒-𝑘$ ,											300 

and, thus, 301 
𝑑𝑘 = 𝑒-𝑘$𝑑𝑚.										(𝑆13) 302 

 303 
Plugging Eqs. (S12) and S(13) into Eq. (S11), we obtain: 304 
 305 
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5𝑓(𝑒-𝑘$)𝑑𝑚.																	(𝑆14) 306 

When we select 𝑚 = 𝑛 and when n presents an integer, we obtain the series for case I-C.  Namely, 307 

the series in case I-C represents an integral with respect to ln(k) (e.g., Eq. S11a). 308 

 309 

Table S4: Integrals of 𝑓(𝑘) with respect to 𝑘, log	(𝑘), or ln(𝑘)	(i.e., over a full or a subset of 𝑘).  310 

             
I-base Δ𝑘 2Δ𝑘 3Δ𝑘  4Δ𝑘 5Δ𝑘 6Δ𝑘 7Δ𝑘  8Δ𝑘 ⋯ nΔ𝑘   ⋯ e𝑓(𝑛Δ𝑘)

2>!

Δ𝑘 

I-A 
(Δ𝑘 = 1) 

1 2 3 4 5 6 7 8 ⋯ n ⋯ e𝑓(𝑛)
2>!

 

I-B 	 2    4    8 ⋯  ⋯ e𝑓(22)
2>!

 

 
I-C  e𝑘$    e1𝑘$ ⋯   e𝑓(𝑒2𝑘$)

2>!

 

 311 

We can similarly show that the series in case I-B with the specific subset of wave modes 312 

represents an integral with respect to log(k). Mathematical details are provided below. We first 313 

consider the following integral with respect to log(k): 314 

	315 
∫ 𝑓(𝑘)𝑑W𝑙𝑜𝑔(𝑘)Z,									(𝑆15)	316 

yielding: 317 
 318 

5
𝑓(𝑘)
𝑘𝑙𝑛(2) 𝑑𝑘 .																	(𝑆16) 319 

 320 
We now consider the following subset, listed in case I-B of Table S4: 321 
 322 

𝑘 = 2-𝑘$ .																							(𝑆17) 323 
 324 
From the above, we have:  325 

𝑑𝑘
𝑑𝑚 = ln	(2)2-𝑘$ ,											326 

and, thus, 327 
 328 

𝑑𝑘 = ln	(2)2-𝑘$𝑑𝑚.										(𝑆18) 329 
 330 
Plugging Eqs. (S17) and (S18) into Eq. (S16), we obtain: 331 
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 332 

5𝑓(2-𝑘$)𝑑𝑚.																	(𝑆19) 333 

 334 

When we select 𝑚 = 𝑛 and when n represents an integer, Eq. (S19) yields the series in case I-B.  335 

Namely, the series in case I-B with a specific subset of wave modes represents an integral with 336 

respect to log(k) (e.g., Eq. S15). The series in case I-B represents the sum over a subset of k as 337 

compared to the series in case I-A.  338 

 339 

From the above two cases in Eqs. (S11a) and (S15), we may consider a more general case, as 340 

follows:  341 

∫ 𝑓(𝑘)𝑑(logA(𝑘)).									(𝑆20) 342 

Here, the logrithm function has a base of 𝑏. To constrcut a  grid for a constant increment of 343 

logA(𝑘), we may choose: 344 

𝑘 = 𝑏-𝑘$ .																							(𝑆21). 345 

The general convergent properties of Eq. (S20), with the choice of Eq. (S21), is beyond the scope 346 

of this study.  347 

  348 
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4. Change of Variables in Single and Double Integrals  349 
 350 

In fact, the scale factors of 1/𝑘 in Eq. (18) and 1/𝑘' in Eq. (22) can be simply obtained using 351 

the concept of Jacobian for changes of variables. Below, we first review the concept of changes of 352 

variables in single and double integrals and then apply the concept to obtain the scale factors of 353 

1/𝑘 and 1/𝑘' . 354 

 355 

For a change of variable in a single integral, Formula 2 indicates a scale factor of 𝑑𝑥/𝑑𝑢, as 356 

shown below (Stewart, 2014).  357 

 358 

To provide an additional illustration, the change of variables in a double integral is listed below. 359 

 360 

A scale factor is indicated by the Jacobian which is defined as follows: 361 

 362 
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 363 

Based on the above Formula 2, Table S5 is constructed as follows: 364 

Step 1 

Series 

Step 2 Step 3 

(Jacobian) 

Step 4 

Integral 

lim
B→&

eW𝐹(𝑒3𝑘')ZΔ𝑗
B

3>,

 

𝑘 = 𝑒3𝑘' 

 

5 𝐹W𝑒3𝑘'Z𝑑𝑗
⬚

⬚

 
𝑘 = 𝑒3𝑘' 

𝑗 = ln	(
𝑘
𝑘'
) 

𝑑𝑗
𝑑𝑘 =

1
𝑘 

5 𝐹(𝑘)
1
𝑘 𝑑𝑘

⬚

⬚

 

lim
B→&

e(𝐹(𝑗𝑘'))Δ𝑗
B

3>,

 

𝑘 = 𝑗𝑘' 

 

5 𝐹(𝑗𝑘')𝑑𝑗
⬚

⬚

 
𝑘 = 𝑗𝑘' 

𝑗 =
𝑘
𝑘'

 

𝑑𝑗
𝑑𝑘 =

1
𝑘'

 

5 𝐹(𝑘)
1
𝑘'
𝑑𝑘

⬚

⬚

 

 365 
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