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Abstract 30 

Exceedances of critical loads for deposition of sulphur (S) and nitrogen (N) to different ecosystems were 31 

estimated using European and North American ensembles of air quality models, under Phase 4 of the Air 32 
Quality Model Evaluation International Initiative (AQMEII4), to identify where risk of ecosystem harm is 33 
expected to occur based on model deposition estimates.  The ensembles were driven by common 34 
emissions and lateral boundary condition inputs.  Model output was regridded to common North 35 
American and Europe 0.125o resolution domains, which were then used to calculate critical load 36 

exceedances.  New, targeted deposition diagnostics implemented in AQMEII4 allowed an unprecedented 37 
level of post-simulation analysis to be carried out and facilitated the identification of specific causes of 38 
model-to-model variability in critical load exceedance estimates.   39 

New datasets for North American critical loads for acidity for forest soil water and aquatic ecosystems 40 
were combined with the ensemble deposition predictions to show a substantial decrease in the area and 41 
number of locations in exceedance between 2010 and 2016 (forest soils: 13.2% to 6.1%; aquatic 42 
ecosystems: 21.2% to 11.4%).  All models agreed in the direction of the ensemble exceedance change 43 
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between 2010 and 2016.  The North American ensemble also predicted a decrease in both severity and 44 
total area in exceedance between the years 2010 and 2016 for eutrophication-impacted ecosystems in the 45 
USA (sensitive epiphytic lichen: 81.5% to 75.8%).  The exceedances for herbaceous community richness 46 

also decreased between 2010 and 2016, from 13.9% to 3.9%.  The uncertainty associated with the North 47 
American eutrophication results is high; there were sharp differences between the models in both 48 
predictions of total N deposition and the change in N deposition, and hence in the predicted 49 
eutrophication exceedances between the two years.  The European ensemble was used to predict 50 
relatively static exceedances of critical loads with respect to acidification (4.48% to 4.32% from 2009 to 51 

2010) while eutrophication exceedance increased slightly (60.2% to 62.2%).   52 

While most models showed the same changes in critical load exceedances as the ensemble between the 53 

two years, the spatial extent and magnitude of exceedances varied significantly between the models. The 54 
reasons for this variation were examined in detail by first ranking the relative contribution of different 55 
sources of sulphur and nitrogen deposition in terms of deposited mass and model-to-model variability in 56 
that deposited mass, followed by their analysis using AQMEII4 diagnostics, along with evaluation of the 57 
most recent literature.  58 

All models in both the North American and European ensembles had net annual negative biases with 59 

respect to observed wet deposition of sulphate, nitrate and ammonium.  Diagnostics and recent literature 60 
suggest that this bias may stem from insufficient cloud scavenging of aerosols and gases, and may be 61 
improved through the incorporation of multiphase hydrometeor scavenging within the modelling 62 
frameworks.  The inability of North American models to predict the timing of the seasonal peak in wet 63 
ammonium ion deposition (observed maximum was in April, while all models predicted a June 64 

maximum) may also relate to the need for multiphase hydrometeor scavenging (absence of snow 65 
scavenging in all models employed here).  High variability in the relative importance of particulate 66 
sulphate, nitrate and ammonium deposition fluxes between models was linked to the use of updated 67 
particle dry deposition parameterizations in some models.  However, recent literature and further 68 
development of some of the models within the ensemble suggests these particulate biases may also be 69 

ameliorated via the incorporation of multiphase hydrometeor scavenging.  Annual sulphur and nitrogen 70 
deposition prediction variability was linked to SO2 and HNO3 dry deposition parameterizations, and 71 
diagnostic analysis showed that the cuticle and soil deposition pathways dominate the deposition mass 72 
flux of these species.  Further work improving parameterizations for these deposition pathways should 73 
reduce variability in model acidifying gas deposition estimates.  The absence of base cation chemistry in 74 

some models was shown to be a major factor in positive biases in fine mode particulate ammonium and 75 
particle nitrate concentrations.  Models employing ammonia bidirectional fluxes had both the largest and 76 
the smallest magnitude biases, depending on the model and bidirectional flux algorithm employed.  A 77 
careful analysis of bidirectional flux models suggests that those with poor NH3 performance may 78 
underestimate the extent of NH3 emissions fluxes from forested areas.   79 

Based on these results, an increased process-research focus is therefore recommended for the following 80 
model processes and on observations which may assist in model evaluation and improvement:  81 

multiphase hydrometeor scavenging combined with updated particle dry deposition, cuticle and soil 82 
deposition pathway algorithms for acidifying gases, base cation chemistry and emissions, and NH3 83 
bidirectional fluxes.  Comparisons with satellite observations suggest that oceanic NH3 emissions sources 84 
should be included in regional chemical transport models.  The choice of land use database employed 85 
within any given model was shown to significantly influence deposition totals in several instances, and 86 

employing a common land use database across chemical transport models and critical load calculations is 87 
recommended for future work 88 
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Introduction 89 

The concept of a Critical load (CL) was first proposed as a means for evaluating the ecosystem impacts of 90 
the deposition of sulphur and nitrogen in response to the Convention on Long-Range Transboundary Air 91 

Pollution (CLRTAP), an international agreement for mitigation and control of acidifying pollution, which 92 
entered into force in 1983 (CLRTAP, 2023).  The Convention provided some of the initial impetus for the 93 
development of comprehensive air-quality models.  The models provide a means of estimating the 94 
deposition fluxes of sulphur- and nitrogen-containing chemicals of anthropogenic origin, which may then 95 
be used to estimate the corresponding ecosystem impacts.  Critical load exceedance estimates are the 96 

broadly accepted methodology for estimating the potential for ecosystem harm related to acidification and 97 
eutrophication.  A a critical load in this context was defined (Nilsson and Grennfelt, 1988) as “A 98 
quantitative estimate of an exposure to one or more pollutants below which significant harmful effects on 99 
specified sensitive elements of the environment do not occur, according to present knowledge”.   This 100 
definition is parsed in detail for readers unfamiliar with the Critical Load concept, in the Supplemental 101 

Information (SI).  102 

The creation of critical loads for acidification, and the calculation of their exceedances is based on the 103 

concept of chemical charge balance steady-state within soil water or aquatic ecosystems.  The fluxes of 104 
anions and cations entering or leaving an ecosystem are used to determine whether an excess cation flux 105 
is available to the ecosystem, which could balance anion fluxes associated with acidifying deposition.  106 
Anion fluxes added to the system from anthropogenic sources include forms of deposited sulphur and 107 
nitrogen noted above.  The S-containing forms of deposition (Sdep) are assumed to rapidly oxidize and are 108 

treated within critical load calculations as the sulphate ion.  Every mole of deposited sulphur is assumed 109 
to be associated with two negative charges as the sulphate ion, SO4

2-(aq), hence the deposition flux is 110 
tracked as charge equivalents per hectare per year; eq ha-1 yr-1.  N-containing forms of deposition (Ndep) 111 
are assumed to rapidly oxidize and are treated as the nitrate ion - every mole of deposited nitrogen 112 
(including those of ammonia and ammonium) is assumed to be associated with one negative charge of 113 

nitrate ion deposition, NO3
-(aq)).  Base cations and their deposition (Ca2+, Mg2+, K+, and Na+) are 114 

included in critical load calculations (collectively, BCdep), and may incorporate anthropogenic base cation 115 
fluxes.  The anthropogenic deposition fluxes to the ecosystem from the atmosphere are used in 116 
calculations of critical load exceedances.  The critical loads themselves include estimates of natural 117 
atmospheric fluxes as well as other terms for fluxes of anions and cations.  For example, in the steady-118 

state or simple mass balance model (SMB) often used to define surface water critical loads for terrestrial 119 
ecosystems (Sverdrup and DeVries, 1994), BCdep includes the release of soil base cations due to 120 
weathering, non-marine chloride deposition, harvesting of base cation and/or nitrogen-containing 121 
biomass, denitrification, nitrogen immobilization in the rooting zone, run-off volume, and a critical value 122 
of the non-sodium base cation to aluminum ion ratio.  Aquatic ecosystem critical loads with respect to 123 

acidity are usually calculated using the steady-state water chemistry (SSWC) or the first-order acidity 124 
balance (FAB) methodologies (Henriksen and Posch, 2001; CLRTAP 2023, de Vries et al., 2015), or other 125 
similar approaches (McDonnell et al., 2014).  The SSWC makes use of the difference between an 126 
estimate of the sea-salt corrected pre-acidification concentration of base cations in the surface water, and 127 
a specified biological indicator species’ acid neutralizing capacity limit above which no significant 128 

damage is expected to occur.  The FAB methodology assumes the runoff fluxes at a lake outlet are charge-129 
balanced, relates these runoff terms to fluxes of ions entering the lake and dimensionless retention factors 130 
and to terms for nitrogen immobilization, nitrogen growth uptake into vegetation, denitrification, 131 
atmospheric deposition, and weathering.  An overview of the above methods for critical load (CL) 132 
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estimation, and how they are used in estimating exceedances, may be found in CLRTAP (2023), Makar et 133 
al. (2018) and the references therein.   134 

Critical loads of nutrient nitrogen and their exceedances are used to address the issue of  the influx of 135 
airborne nitrogen resulting in changes in soil-based processes, plant growth and inter-species 136 
relationships.   Nitrogen-containing gases and aerosol components may be directly toxic to sensitive 137 

individual plant and animal species, while the accumulation of nitrogen (increased nitrogen availability) 138 
may also change species composition or relative abundance.  Soil-mediated effects of acidification may 139 
include eutrophication, and species may have increased susceptibility to secondary stressors such as 140 
drought, frost, pathogens or herbivores (CLRTAP, 2023).  Critical loads for the eutrophication processes 141 
associated with nutrient nitrogen in terrestrial ecosystems may also make use of a version of the SMB 142 

model.  This critical load model balances the input fluxes of all forms of nitrogen deposition plus 143 
biological fixation and soil nitrogen adsorption against ecosystem nitrogen losses (immobilization in soil 144 
organic matter, removal via harvesting of vegetation and animals, fluxes to the atmosphere 145 
(denitrification), erosion, combustion, ammonia volatilization, and leaching below the root zone).   146 
Biological fixation, soil adsorption, combustion, erosion and ammonium leaching are usually considered 147 

negligible, and denitrification is assumed to be linearly dependent on the net input of nitrogen, leading to 148 
critical loads of nutrient nitrogen dependent only on immobilization, harvesting removal, a sensitive plant 149 
or animal species acceptable limit for nitrogen leaching (nitrogen in soil water), and an ecosystem-150 
dependent denitrification fraction (CLRTAP, 2023).  The acceptable limits for nitrogen concentrations in 151 
soil can range from 6.5 down to 0.2 mg N l-1, depending on vegetation type (CLRTAP, 2023).  A further 152 

means of estimating eutrophication is via comparison of measured nitrogen deposition with observed 153 
ecosystem damage over a large number of sites (Geiser et al. 2019; Simkin et al. 2016).  Exceedances for 154 
eutrophication in this case may be estimated as the differences between the estimated nitrogen deposition 155 
and the observation-based critical load. 156 

As noted in the Supplement, critical load exceedance calculations are carried out on an ongoing basis due 157 
to the ongoing cycle of chemical transport model (CTM) process improvement.  The results of our 158 

analyses should thus be considered a “snapshot” of the state of both CTM science and critical load (CL) 159 
knowledge at the time the simulations and critical load data collection took place.  CTMs numerically 160 
integrate the system of time-dependent differential equations describing the rates of change of chemical 161 
species in the atmosphere, in order to predict the changes in chemical concentrations and deposition over 162 
time.  This is usually done by breaking the net differential equation for the rates of change into component 163 

processes (e.g. advection, diffusion, gas-phase chemistry, inorganic particle chemistry, dry deposition, 164 
particle microphysics treating the nucleation, condensation of gases, coagulation of particles, cloud 165 
processing of gases and aerosols including wet deposition), with the processes being solved in sequence 166 
to determine the future state of the atmosphere (Marchuk, 1990).  However, there is usually not a 167 
complete scientific consensus on the best numerical methods to carry out the time-stepping for each of 168 

these processes, and the level of detail in process representation in the models may also vary considerably, 169 
depending at times on external constraints such as the processing time available for CTM simulations.  170 
The individual processes are usually evaluated based on laboratory or other process-specific data 171 
wherever possible, but often the selection of a specific process representation within a CTM is often 172 
based on comparisons of the output of entire CTM relative to surface or satellite monitoring data.  This 173 

latter approach may allow compensating errors in process representation to take place (c.f. Makar et al., 174 
2014; Hyder et al., 2018; Huang et al., 2021; Vizuete et al., 2022).  These considerations may contribute 175 
to the resulting variability in deposition estimates from the different modelling frameworks.  The work 176 
conducted here, through process analysis, attempts to determine the key causes of these model deposition 177 
estimate differences. 178 
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The ongoing reevaluation and improvement of CTMs is aided by ensemble model comparisons, where 179 
models driven by the same lateral boundary and emissions inputs are cross-compared and evaluated 180 
against observations.  The Air-Quality Model Evaluation International Initiative (AQMEII) has comprised  181 

model CTM ensemble evaluation studies, to date in four phases.  The initial phase of AQMEII utilized 182 
largely off-line regional models used for research and public policy support to simulate a common year, 183 
2006, with common emissions inputs, in both North America and Europe, with 22 modelling groups 184 
participating (Galmarini et al., 2012).  Subsequent phases of AQMEII examined specific issues within the 185 
CTM community:  AQMEII-2 had as its focus the evaluation of both weather and air-quality predictions 186 

for fully coupled, on-line air-quality models, where the particulate matter generated by the models on any 187 
given timestep feeds back into the coupled models’ weather forecast radiative transfer and cloud 188 
formation processes (Galmarini et al., 2015).  AQMEII-3 addressed questions of hemispheric transport of 189 
air pollutants – the relative contributions of local versus long-range transport towards predicted pollutant 190 
concentrations, and their impacts on ecosystem and human health (Galmarini et al., 2017).   191 

The variety in underlying scientific theory encapsulated within CTMs and their process representation 192 
implies the need for cross-comparison of critical load exceedance predictions from a variety of models.  193 

As part of AQMEII-3, 14 air-quality models were used to calculate oxidized sulphur and oxidized and 194 
reduced nitrogen deposition, and hence EU critical load exceedances (Vivanco et al., 2018).  This 195 
comparison revealed a high degree of variability in simulated wet and dry deposition fluxes.  The models 196 
with the best performance relative to observations were used to provide ensemble critical loads – 197 
however, even within this reduced ensemble, local variations of over a factor of four in both sulphur and 198 

nitrogen deposition could be seen between the ensemble members, and the  predicted percent area in 199 
exceedance for sensitive ecosystems varied by more than a factor of two for the best performing models.  200 
(Vivanco et al., 2018).  These results highlighted the large range of model-dependent variability possible 201 
in critical load exceedance estimates – but the causes for that variability, and how it might be reduced, 202 
were not investigated to any significant extent.   203 

The study protocols of AQMEII phase four (AQMEII4) were designed partly in response to the large 204 

variation in model sulphur and nitrogen deposition estimates noted in Vivanco et al. (2018), Solazzo et al.  205 
(2018) and Hogrefe et al. (2020).  AQMEII4 protocols were also motivated by a similarly large variation 206 
in simulated ozone deposition velocities (Hardacre et al., 2015; Zhiyong Wu et al., 2018), and renewed 207 
emphasis on the importance of specific ozone deposition pathways (Clifton et al., 2017, 2020a,b).   208 

AQMEII4 has two main activities:  a regional model intercomparison with enhanced diagnostics for gas-209 
phase dry deposition (Galmarini et al., 2021), and an observation-driven single-point model 210 
intercomparison study for ozone dry deposition at sites with ozone flux records (Clifton et al., 2023).  The 211 

current work continues the regional model intercomparison driven by common boundary conditions, with 212 
a focus here on critical load exceedances for acidity and eutrophication, and the use of additional 213 
diagnostics to determine the underlying causes for the model-to-model variability in these exceedance 214 
estimates.   215 

As described later in our analysis, two processes account for much of the variability in CTM predictions 216 
of the total deposition of sulphur and nitrogen (Sdep and Ndep):  particle dry deposition and the scavenging 217 
of particles by depositing hydrometeors.  We note that subsequent to the construction and application of 218 

the model versions applied in AQMEII4, new parameterizations for particle dry deposition became 219 
available.   Emerson et al.  (2020) compiled multiple particle dry deposition velocity observations and 220 
compared these to the predictions of the commonly used Zhang et al.  (2001) algorithm.  Relative to these 221 
observations, the Zhang et al.  (2001) algorithm tended to overestimate deposition velocity on vegetated 222 

surfaces at smaller particle sizes  (< 0.4 m diameter), while underestimating the deposition velocity for 223 
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particles between 1 and 10 m). The accumulation mode of atmospheric particles tend to poorly capture 224 
the relationship between particle deposition velocity and particle size in the accumulation mode (Clifton 225 

et al., 2024).   Emerson et al.  (2020) also noted a substantial overestimate of the Zhang et al.  (2001) 226 
particle deposition velocity over water surfaces relative to observations.  Emerson et al.  (2020) proposed 227 
a modified version of the Zhang et al.  (2001) algorithm, demonstrating a better fit to the ensemble of 228 
deposition velocity observations.  The differences between the two parameterizations were substantial, 229 

with decreases in particle deposition velocities in the sub-m range of one to two orders of magnitude 230 

relative to Zhang et al.  (2001) across multiple land use types, and increases over vegetated surfaces of up 231 

to an order of magnitude for particle diameters from 1 to 10 m. The decrease in sub-m deposition 232 
velocities might be expected to result in increases in air concentrations of Aitken to mid-Accumulation 233 

mode particles, and decreases in those of mid-Accumulation mode to Coarse-mode particles.  Ryu and 234 
Min (2022) applied the Emerson et al.  (2020) parameterization to the WRF-Chem model, and found that 235 
PM2.5 positive biases increased in magnitude, while PM10 negative biases were partially offset with the 236 
use of the new algorithm.  Pleim et al.  (2022) also re-examined aerosol dry deposition velocities in the 237 
context of the CMAQ model, noting an increase in accumulation mode dry deposition velocities of almost 238 

an order of magnitude in forested areas, an overall reduction in PM2.5 concentrations, and an 239 
improvement in PM2.5 prediction accuracy.  The latter work does not necessarily contradict the Emerson 240 
et al.  (2020) results, which imply possible increases in PM mass within the Aitken and Accumulation 241 
modes.  The increase in the removal of mass between the mid-Accumulation mode to larger sizes may 242 
dominate over the particle deposition velocity decreases between the Aitken to mid-Accumulation mode 243 

noted in the observations collected by Emerson et al.  (2020).    244 

Studies using sectional aerosol size representations have recently found that improved aerosol deposition 245 

velocity algorithms need to be combined with improved wet hydrometeor scavenging, to result in net 246 
improvements of regional model performance.  Ryu and Min (2022) found that the best overall WRF-247 
Chem performance resulted from a combination of updates (when the new dry deposition algorithm was 248 
combined with updates for cloud scavenging employing cloud fractions for rainout and a revised 249 
parameterization for below-cloud scavenging incorporating separate terms for rain and snow removal 250 

rates).  Ghahreman et al.  (2024), in updating the cloud scavenging parameterization of the GEM-MACH 251 
model, noted differences in rain and snow below-cloud scavenging rates of up to two orders of magnitude 252 
between the previously applied, temperature-based parameterization Slinn (1984) and the newly 253 
implemented parameterization of multiphase scavenging (from both the underlying meteorological model 254 
and the empirical scavenging parameterization of Wang et al.  (2014)).  Differences in scavenging rates 255 

were found to be strongly dependent on temperature, aerosol size, and the precipitation rate.  The revised 256 
parameterizations resulted in an overall improvement in performance for wet SO4

2- deposition, where the 257 
Emerson et al.  (2020) algorithm was employed for the particle dry deposition simulation in all the model 258 
runs. 259 

A large part of the model-to-model variability and uncertainty resides in the above two processes, as 260 
demonstrated in our analysis.  We next describe our methodology (including an overview of the two 261 

AQMEII4 model domains, descriptions of the construction of the critical load data employed herein, and 262 
descriptions of the models, their inputs and boundary conditions).  Our analysis follows, first presenting 263 
estimates of critical load exceedances for two different simulation years in each domain, and the 264 
exceedances estimated using ensembles of model deposition predictions.   The bulk of the analysis then 265 
examines individual contributions of different sulphur and nitrogen species towards their total deposition, 266 

for each model, and for the ensemble.  The causes of the differences between the models are determined 267 
through process analysis. Our concluding section includes research recommendations based on the 268 
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analysis in order to improve the performance of individual models, and to reduce the variability between 269 
their estimates of critical load exceedances. 270 

Methodology 271 

1.0 Critical Load Data  272 

Six critical load (CL) datasets were used in conjunction with our ensembles of CTM deposition 273 
estimates.  North American CL datasets included terrestrial (forest) ecosystem acidity critical loads for the 274 
continent, aquatic ecosystem acidity critical loads combining data from Canada and the USA, and USA-275 
specific sensitive epiphytic lichen species and herbaceous plant species eutrophication critical loads.  276 

European CL datasets combined CL information from multiple countries for terrestrial and aquatic 277 
ecosystem acidity and terrestrial ecosystem eutrophication.  Each CL dataset is described in this section. 278 

1.1 North American Forest Soil Critical Loads of Acidity using the Steady-State Mass Balance Model 279 

Forest soil critical loads maps were assembled from several studies within the U.S. and Canada (Figure 1 280 

and Table 1).  Critical loads were (in all but one study) calculated using the Steady-State (or Simple) Mass 281 
Balance (SMB) model (Sverdrup & Warfvinge, 1990; Sverdrup & De Vries, 1994) which has simple input 282 
parameter requirements and assumes the ecosystem is at long-term equilibrium.  The SMB model defines 283 
the critical load as a line connecting three points in (Sdep, Ndep) space, CLmaxS (the maximum sulphur 284 
critical load), CLmaxN (the maximum nitrogen critical load) and the CLminN (the minimum nitrogen critical 285 

load).  The regions above the (Sdep, Ndep) line connecting the points (CLmaxS,0), (CLmaxS,CLminN) and 286 
(0,CLmaxN) are said to be in exceedance of the critical load (see Figure 1).  CLmaxS is determined by 287 
alkaline inputs to the ecosystem such as base cation deposition (BCdep) and base cation weathering (BCw) 288 
minus acidic inputs (chloride deposition, Cldep), losses through (non-sodium) base cation uptake through 289 
harvesting or grazing (BCu) (Equation 1), and the critical leaching of the acid neutralizing capacity 290 

(ANCle,crit, Equation 2).   291 

𝐶𝐿𝑚𝑎𝑥𝑆 =  𝐵𝐶𝑑𝑒𝑝 + 𝐵𝐶𝑤 − 𝐶𝑙𝑑𝑒𝑝 − 𝐵𝐶𝑢 −  𝐴𝑁𝐶𝑙𝑒,𝑐𝑟𝑖𝑡                            (1) 292 

𝐴𝑁𝐶𝑙𝑒,𝑐𝑟𝑖𝑡 = −𝑄2/3 ∙ (1.5 ∙
𝐵𝑐𝑑𝑒𝑝+ 𝐵𝑐𝑤−𝐵𝐶𝑢

𝐾𝑔𝑖𝑏𝑏 ∙(𝐵𝑐/𝐴𝑙)𝑐𝑟𝑖𝑡
)                                             (2) 293 

The Acid Neutralizing Capacity refers to the soil’s ability to neutralize input fluxes of acidifying ions 294 
through the release of cations from the soil into the soil water.  The addition of these neutralizing ions to 295 
soil water is a process known as leaching.  However, the removal of base cations from soil water may also 296 
result in damage to plants via reductions in root growth, stem growth and crops, with the extent of 297 

damage dependent on the plant species.  The plant-species-specific critical base cation to aluminum soil 298 

water ratio in equation (2), (𝐵𝑐/𝐴𝑙)𝑐𝑟𝑖𝑡, is linked to corresponding precent reductions of plant growth.  If 299 
a larger percent reduction is deemed acceptable, the value of (Bc/Al)crit will be smaller, the magnitude of 300 

𝐴𝑁𝐶𝑙𝑒,𝑐𝑟𝑖𝑡 will be larger, and the value of 𝐶𝐿𝑚𝑎𝑥𝑆 will be larger, and larger amounts of deposition will be 301 
required to exceed the critical load.  Conversely, if a smaller impact is deemed acceptable, the value of 302 

(Bc/Al)crit will be larger, the magnitude of 𝐴𝑁𝐶𝑙𝑒,𝑐𝑟𝑖𝑡 will be smaller, the value of 𝐶𝐿𝑚𝑎𝑥𝑆  will be smaller, 303 
and smaller amounts of deposition will be required to exceed the critical load.   Examples of 304 

(𝐵𝑐/𝐴𝑙)𝑐𝑟𝑖𝑡values for different tree types and ground vegetation may be found in CLRTAP (2023), 305 
Chapter V, Table V.8).   The critical base cation to aluminum ratio, (Bc/Al)crit (multiplied by the gibbsite 306 
equilibrium constant Kgibb) is thus the chemical criterion usually used to define the acceptable level of 307 
potential damage to biota, specifically via the definition of ANCle,crit, which includes the effect of soil 308 

runoff (Q).   309 
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The CLminN represents the long-term removal of N from the ecosystem as defined by nitrogen 310 
immobilization (Ni) and uptake (Nu) (Equation 3).  The CLmaxN value is determined using CLminN and 311 
CLmaxS, which is divided by unity minus the denitrification fraction (fde) (Equation 4).  Deposition points 312 

of Sdep and Ndep which fall outside (above) the critical load exceedance line defined by ClminN, CLmaxN, 313 
and CLmaxS are considered to be in exceedance of their critical loads (see Figure 1, Regions 1 through 4).    314 
Note that these critical loads may be specific to a political jurisdiction, and hence caution should be 315 
applied when considering the critical loads and exceedance maps where there are cross-border 316 
discontinuities in data sources, parameterization and methodology, and resolution.  317 

𝐶𝐿𝑚𝑖𝑛𝑁 =  𝑁𝑖 +  𝑁𝑢                                                                     (3)   318 

𝐶𝐿𝑚𝑎𝑥𝑁 = 𝐶𝐿𝑚𝑖𝑛𝑁 + (
𝐶𝐿𝑚𝑎𝑥𝑆

(1−𝑓𝑑𝑒)
)                                                            (4) 319 

Figure 1 illustrates the manner in which critical loads with respect to acidity are calculated using the SMB 320 
methodology. Based on the sulphur and nitrogen deposition amounts (Sdep, Ndep), the Region in which  321 
exceedance is occurring is first defined.  The amount of exceedance is defined as the shortest possible 322 
path (in eq of deposition) to the shaded “no-exceedance” Region 0 of Figure 1, bordered by the line 323 
described above.  Deposition amounts which fall above the critical load function defined by Region 0 are 324 

considered to be in exceedance of their critical loads.  The shape of the critical load function is defined by 325 
CLmaxS, CLminN and CLmaxN, which in turn are functions of the ecosystems and at-risk species under 326 
consideration.  327 

 328 

Figure 1.  SMB Critical Load Function for acidification, showing exceedance regions 1 through 4 and “below exceedance” region 329 
0.  Deposition in exceedance of critical loads correspond to regions 1 through 4, while the grey region encompasses deposition 330 
below critical loads.  The change in sulphur and nitrogen deposition required to bring a given ecosystem in exceedance to below 331 
exceedance is described by ExS, ExN, and the amount in exceedance is the dotted line linking Ei to Zi.  After CLRTAP, 2023, 332 
Figure 7.3 333 

 334 
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Table 1: Data sources, model types and major parameters for North American forest soil critical loads maps.  A database of maps 335 
within the U.S.A was provided in National Atmospheric Deposition Program (NADP, 2022).  Table adapted from Lynch et al.  336 
(2022). 337 

Source Model Resolution Extent Chemical criteria BCw approach Uptake 

(McNulty et 

al. , 2007, 

2013) 

SMB 1 km2 U.S.A-wide 

Bc/Al, Coniferous 

forest: 1, deciduous 

forest: 10  

Clay correlation -

substrate method 
Bcu, Nu 

(Duarte et al., 

2011, 2013) 
SMB 5 km2 New England Bc/Al = 10 

Clay correlation -

substrate method 
Bcu, Nu 

(Phelan et al., 

2014; data 

corrected 

2016) 

SMB 1 m2 Pennsylvania  Bc/Al =10 PROFILE Bcu, Nu 

(Sullivan, 

2011; Sullivan 

et al., 2012) 

MAGIC Watershed 
Virginia and 

New York 

Bc/Al, Ca/Al = 1 and 

10, Bsat = 5 and 10 
MAGIC Bcu 

Cathcart et al. 

(in prep.) 
SMB 

250 m x 

250 m 
Canada-wide Bc/Al = site specific 

Soil texture 

approximation 
Bcu, Nu 

 338 

1.2 North American Aquatic Ecosystems Acidity Critical Loads 339 

The North American Aquatic Ecosystem acidity critical load dataset constructed here combined 340 
individual datasets from the Canada and the USA. 341 

1.2.1  Canadian Aquatic Ecosystem Data   342 
Environment and Climate Change Canada data corresponding to the subset of 2,997 lake surveys which 343 

reside within the common AQMEII4 North American grid were used in conjunction with the Steady-State 344 
Water Chemistry (SSWC) critical load model (Sverdrup et al., 1990) as described in Aherne and Jeffries 345 
(2015).  The SSWC model has been widely used in regional lake critical load assessments across Europe 346 
(e.g. Posch et al., 2001), Canada (e.g. Cathcart et al., 2016; Henriksen et al., 2002; Jeffries et al., 2010; 347 
Scott et al., 2010; Whitfield et al., 2006; Williston et al., 2016), and the United States (e.g. Dupont et al., 348 

2005; Miller, 2011).  Briefly, the critical load exceedance is defined as the difference between the total 349 
sulphur deposition Sdep and the acidity critical load value CL(A).  The latter is determined from the non-350 

marine, pre-acidification base cation flux ([𝐵𝐶∗]0) minus the Acid Neutralizing Capacity limit 351 
(ANClimit)for protecting aquatic biota from damage, scaled by the catchment runoff (Q): 352 

𝐶𝐿(𝐴) =  𝑄([𝐵𝐶∗]0 − 𝐴𝑁𝐶𝑙𝑖𝑚𝑖𝑡)                                                       (5) 353 

Where available, a site-specific modelled isotope mass balance estimate of Q (Gibson et al., 2010) was 354 
used (n=684) in preference to a Q value derived from a GIS-modelled map approach using regional 355 
datasets (Reinds et al., 2015).  When Dissolved Organic Carbon (DOC, mgC L-1) values were available 356 
(n=2,875) the organic acid adjusted ANClimit ([ANC]oaa) was used to include the influence of organic acids 357 

in the lake as 1/3 the charge density (m, here set to 10.2 μeq mgC-1) (Lydersen et al., 2004; Hruska et al., 358 
2001), 359 

[𝐴𝑁𝐶]𝑜𝑎𝑎 =  [𝐴𝑁𝐶]𝑙𝑖𝑚𝑖𝑡 −
𝑚 

3
𝐷𝑂𝐶                                                         (6) 360 

Where the lake acid neutralizing capacity [𝐴𝑁𝐶]𝑙𝑖𝑚𝑖𝑡 is defined as the excess equivalents of cations – 361 
anions in lakewater:   362 

[𝐴𝑁𝐶]𝑙𝑖𝑚𝑖𝑡 = 𝐵𝐶𝑙𝑒 + 𝑁𝐻4𝑙𝑒 − 𝑆𝑂4𝑙𝑒 − 𝑁𝑂3𝑙𝑒 − 𝐶𝑙 𝑙𝑒                                (7) 363 
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𝐵𝐶𝑙𝑒, 𝑁𝐻4𝑙𝑒, 𝑆𝑂4𝑙𝑒, 𝑁𝑂3𝑙𝑒, 𝐶𝑙𝑙𝑒 are the charge equivalents (µeq L-1) of ionic base cations, ammonium, 364 

sulphate, nitrate, and chloride in lakewater. 365 

For lakes lacking DOC samples, an ANClimit of 40 µeq L-1 was chosen as a conservative value, previously 366 
used in regional Canadian assessments (e.g. Henriksen et al., 2002), and based on the response of brown 367 
trout (Lien et al., 1996).  Since the SSWC model does not consider non-acidifying nitrogen, only sulphur 368 
was used to determine exceedance (i.e. exceedance is defined as the total S deposition minus the critical 369 
load of Equation (5)). 370 

1.2.2 USA Aquatic Ecosystem Data 371 

Aquatic critical loads for the USA were taken from the National Critical Loads Database Version 3.2.1 372 
(NCLDv3.2.1, Lynch et al., 2022), which contains both the critical load data used here and supporting 373 

information.  A total of 21,667 critical loads were used for 14,334 unique lakes and streams across the 374 
USA (a combination of different methods for determining the critical loads were included in the USA 375 
values, sometimes resulting in more than one CL estimate for the same water body).  Most critical loads 376 
(78%) were determined using the SSWC model as described above and by equations 5 and 7 (Lynch et 377 
al., 2022; Scheffe et al., 2014; Dupont et al., 2005, Miller 2011, VDEC (2003, 2004, 2012)). Site-specific 378 

catchment Q estimates for these values were based on 30-year Normals that are included as a catchment 379 
parameter in the National Hydrography Dataset Plus (NHD+2, US EPA, 2023). The other 22% of critical 380 
loads were determined by a dynamic modelling approach (e.g., MAGIC and PnET-BGC models)  381 
(Sullivan et al., 2005; Fakhraei et al., 2014; Lawrence et al., 2015) and a combination of dynamic 382 
modeling with a regionalization approach (e.g. hurdle/regional regression modeling) to determine the 383 

critical load across the landscape (McDonnell et al., 2012, 2014; Sullivan et al., 2012; and McDonnell et 384 
al., 2021). Site-specific catchment Q estimates were also used; these were based on the specific research 385 
project.  An ANClimit of 50 µeq L-1 was used for the Eastern USA, with the exception of streams in the 386 
Adirondacks Mountain, NY, which used 20 µeq L-1  (McDonnell et al. 2021) and 20 µeq L-1 for the 387 
western USA.  Organic acid-adjusted ANClimit values were not used in generating the USA CL(A) datasets.  388 

In many cases, multiple studies estimated CL(A) for the same lake or stream, leading to multiple CL(A) 389 
estimates for a single water body.  An average critical load value was therefore used for these waterbodies 390 
with more than one critical load.  A more detailed description of the USA aquatic critical loads used here 391 
can be found in Lynch et al., (2022). 392 

1.3 USA Sensitive Epiphytic Lichen 393 

Critical loads for sensitive epiphytic lichen species richness made use of 9,000 community 394 
surveys across the USA from 1990-2012 (Geiser et al. 2019), where a 90% quantile regression was used 395 
to model relationships between deposition levels and observed species richness in order to estimate 396 

critical loads.  Here, Geiser et al.  (2019) sets a -20% decline in species richness (their “Low ecological 397 
risk” critical load) as the level of ecosystem damage that can occur before the loss of species impacts the 398 
presence of plentiful forage, nesting materials or insect habitat; hence determining the critical load.  The 399 
models show that there is a consistent relative response of lichen communities across climates, which 400 
results in a single critical load of 3.1 kg-N ha-1 yr-1 for sensitive epiphytic lichen, which can be applied 401 

across all ecosystems in which the lichen can be found.  This value was applied to all broadleaf, conifer, 402 
or mixed forest landcover types as designated by the National Land Cover Database (NLCD, Dewitz 403 
2021). The original 30m resolution NLCD dataset was aggregated to a 240m resolution grid including all 404 
cells with greater than 10% forest cover. Exceedances of the above critical load were calculated for each 405 
240m resolution cell based on the annual deposition of the overlapping 0.125o resolution AQMEII4 CTM 406 

model cell. 407 
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1.4 USA Herbaceous Plants   408 

The USA herbaceous plants dataset uses the critical load of total nitrogen for a decline in 409 
herbaceous species community richness, developed using over 14,000 vegetation survey plots across 410 
nitrogen deposition gradients (Simkin et al., 2016).  An observation-based approach using median 411 
quantile regressions for herbaceous species richness response to deposition was employed, to generate 412 

critical loads with respect to nitrogen deposition linked to various atmospheric and soil conditions.  A 413 
model was developed for open canopy ecosystems where the critical load varies with  observed soil pH, 414 
precipitation, and mean temperature.  A second model was developed for closed canopy ecosystems 415 
where the critical load varies with observed soil pH alone. The pant level critical loads were mapped 416 
across the continental U.S. using land cover from the NLCD.  Open canopy systems were defined as the 417 

combination of the NLCD grassland and shrubland landcover types, while closed canopy ecosystems 418 
were defined as the combination of the NLCD’s broadleaf, conifer, or mixed forest landcover classes.  419 
The resulting critical loads were aggregated to a 240m grid including all cells with greater than 10% 420 
cover.  Using the United States Department of Agriculture gridded National Soil Survey Geographic 421 
Database ( gNATSGO) soil pH dataset (https://www.nrcs.usda.gov/resources/data-and-reports/gridded-422 

national-soil-survey-geographic-database-gnatsgo, last access July 12, 2024), and PRISM temperature 423 
and precipitation models (Daly et al., 2008), the CL of N for open canopy systems ranged from 6.2 to 424 
12.3 kg-N ha-1yr-1 and the CLs of N for closed canopy systems ranged from 6.1 to 23.7 kg-N ha-1yr-1.  The 425 
two datasets were then merged into a single CL raster using the minimum CL when cells overlapped.   426 
Exceedances of the resulting critical loads for nitrogen deposition were then generated using the annual 427 

deposition of the overlapping 0.125o resolution AQMEII4 CTM model cell.   428 

1.5 EU:  Acidification of Terrestrial Ecosystems 429 

The critical load database and the exceedance calculation for Europe were provided by the Coordination 430 

Centre for Effects (CCE) under the United Nations Economic Commission for Europe Convention on 431 
Long-range Transboundary Air Pollution (UNECE LRTAP Convention), hosted by the Umweltbundesamt 432 
(UBA) in Germany, which develops and maintains the European critical loads database (Geupel et al., 433 
2022). The most recent database available was used here and was also used within the review process of 434 
the Gothenburg protocol. It typically contains critical load values for acidification and eutrophication, and 435 

has two different components. The first component is data delivered by the member countries of the 436 
International Cooperative Programme on Modelling and Mapping. This data is collected within an 437 
officiated “Call for Data” (CfD) process within the framework of the Working Group on Effects (WGE). 438 
The most recent CfD was finalized in the year 2021.  The methods used to determine acidification loads 439 
are country-dependent, but all make use of the Simple Mass Balance as described above (Sverdrup & De 440 

Vries, 1994; CLRTAP, 2023).  The country-specific detailed methods and participating countries may be 441 
found in Geupel et al. (2022). If countries do not deliver their own CL data, the CCE fills these data gaps 442 
with its own background database (Reinds et al., 2021). 443 

The decision of the chemical criterion used to define exceedance (e.g., critical aluminium concentration, 444 
critical pH, and critical base saturation) and the chosen critical limit value is usually country-specific.  445 
The background CCE database makes use of a fixed value based on a critical pH value of 4.2.   446 

1.6 EU:  Eutrophication of Terrestrial Ecosystems 447 

Critical loads for EU eutrophication (𝐶𝐿𝑛𝑢𝑡𝑁) are also based on the SMB method applied to nitrogen 448 
deposition – (Equation 8). Generally, the methods to derive the parameters of this equation are similar for 449 
national datasets and the CCE dataset (e.g. the estimation of the nitrogen uptake (Nu) is linked to growth 450 
potential of the vegetation, the fraction of the nitrogen which is denitrified (fde) is connected to the soil 451 
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type). One major difference occurs when it comes to the derivation of the accepted nitrogen leaching 452 
(Nle(acc)) term. There are two ways to estimate the Nle(acc).  One way is to simply assign how much nitrogen 453 
is allowed to leave the ecosystem based on observations.  Another way is to calculate the Nle(acc) by using 454 

the amount of soil runoff (Q) and multiply it with a critical limit for nitrogen concentration. The latter 455 
limits can be linked to negative effects for the related ecosystems (such as fine root damage). The choice 456 
of the values for the critical limit for nitrogen is one of the main sources for differences in the modelled 457 
EC SMB eutrophication CL (see also CLRTAP, 2023). Another main source for differences in the CL 458 
values between countries is the integration of so-called empirical critical loads. These empirical values 459 

can be used as upper and lower boundaries for the SMB modelling results in order to avoid rather extreme 460 
results in ecosystems where the SMB model predicts very high or very low eutrophication CL values. 461 
Empirical CL were updated recently and are well documented in Bobbink et al. (2022).   462 

𝐶𝐿𝑛𝑢𝑡𝑁 = 𝑁𝑖 + 𝑁𝑢 + (
𝑁𝑙𝑒 (𝑎𝑐𝑐)

1−𝑓𝑑𝑒
)                                                            (8) 463 

The CL exceedance was calculated for every available critical load value in the integrated CL database of 464 
the CCE (about 4 million EU data points) and later aggregated on the basis of the AQMEII4 deposition 465 

grid cells. The resulting EU CLE are summarized as the share of the receptor area with critical load 466 
exceedance (bar charts) and the magnitude of the exceedance within each analysis grid  cell (maps). The 467 
exceedance in a grid cell is defined as the so-called ’average accumulated exceedance’ (AAE), which is 468 
calculated as the area-weighted average of the exceedances of the critical loads of all ecosystems in this 469 
grid cell. The units for critical loads and their exceedances are equivalents per hectare and year, making S 470 

and N deposition comparable on their impacts, which is important for acidity CLs.  471 

2.0 AQMEII4 Overview Description 472 

The setup of the AQMEII4 regional model comparison is described in detail in Galmarini et al.  (2021); a 473 
brief overview is provided here.  The models within this analysis are a “snapshot” of regional chemical 474 
transport model development as of the time simulations were completed (2021).  475 

Model simulations were carried out for the years 2009 and 2010 for the European region, and 2010 and 476 
2016 for North America.  North American years were chosen due to policy relevance, with a significant 477 

change in SO2 emissions controls enacted between the two years.  European years were chosen due to a 478 
large difference in meteorology between 2009 and 2010, hence allowing the effects of potential 479 
meteorological on deposition to be estimated.  Simulations were carried out by making use of the 480 
individual models’ grid projection and resolution.  Mass-conserving interpolation (for concentrations and 481 
fluxes) and nearest neighbour interpolation (for diagnostics) were then used to map these “native grid” 482 

outputs to corresponding North American and European AQMEII4 grids.  The latter have 0.125o x 0.125o 483 
resolution (North America: 23.5 o N to 58.5 o N, 130 o W to 59.5 o W; Europe 25 o N to 70 o N, 30 o W to 60 484 
o E).    Values extracted from the AQMEII4 grid locations were used for comparison to observations.   485 
Models made use of their own meteorological drivers or on-line meteorological components for 486 
meteorological field predictions.  Models shared common inputs for emissions and chemical lateral 487 

boundary conditions.  The latter provide a uniform chemical forcing and prevent input variations not 488 
associated with the models themselves from influencing simulations results.  489 

North American anthropogenic emissions were generated using emissions modelling platforms which 490 
included the anthropogenic inventories, temporal and spatial allocation from county or state/province 491 
level to native model grids, for each of the two model years, as well as adjustments for specific 492 
inventories by year.  Emissions processing was carried out by the United States Environmental Protection 493 
Agency for the Carbon Bond 6 (revision 3; CB6r3)) and Statewide Air Pollution Research Center -07 494 

https://doi.org/10.5194/egusphere-2024-2226
Preprint. Discussion started: 30 July 2024
c© Author(s) 2024. CC BY 4.0 License.



13 
 

(SAPRC07) chemical mechanisms (Yarwood et al., 2010; Carter, 2010), and by Environment and Climate 495 
Change Canada  for the Acid Deposition and Oxidant Mechanism version II (ADOM-II; Stockwell et al., 496 
1989).  Note that while none of the modelling groups made use of the SAPRC07 mechanism itself within 497 

their simulations, this mechanism was sometimes used as a starting point for lumping individual models’ 498 
VOC species, due to the greater level of detail available within the SAPRC07 speciation.  European 499 
anthropogenic emissions were prepared for the participating models’ chemical mechanisms by the 500 
Netherlands Organization for Applied Scientific Research (TNO)  as part of the Monitoring Atmospheric 501 
Composition and Climate, part 3 (MACC-III) project (Kuenen et al., 2015), with individual groups using 502 

their own emissions data for the portion of their native model grids extending beyond the range of 503 
MACC-III emissions grid if necessary. 504 

North American forest fire emissions were generated by combining the US emissions modelling platform 505 
values with Canadian data for 2010, while both USA and Canadian data were based on the 2016 506 
emissions modelling platform estimates.   These forest fire emissions included criteria air contaminant 507 
emission mass, heat flux, and acres burned. Fire plume rise calculations were carried out by individual 508 
modeling groups, typically based on large stack plume rise formulae (Briggs, 1971, 1972).  European 509 

forest fire emissions were provided by the Finnish Meteorological Institute using eight layers from 50 to 510 
6200m.  Both North American and European forest fire emissions were chemically disaggregated by the 511 
participating modelling groups and mapped on a nearest grid cell basis to their native model grids.  512 

Lightning NO emissions were also prescribed in both domains, based  on GEIA monthly climatology 513 
values (Price et al., 1997), diurnally disaggregated following Blakeslee et al. (2014) and allocated 514 
vertically following Ott et al. (2010) by individual modelling groups.   515 

Chemical lateral boundary conditions for both EU and NA simulations were taken from 3 hourly, 0.75o x 516 
0.75o, 54 vertical level ECMWF CAMS EAC4 reanalysis products (Inness et al., 2019), interpolated by 517 

participants to their own vertical and horizontal grid structures, and chemically disaggregated to their own 518 
chemical speciation.   519 

2.1 Common Model Diagnostics 520 

The AQMEII4 protocol for ensemble participants included the reporting of gas-phase species’ 521 
aerodynamic, bulk surface, stomatal, mesophyll, quasi-laminar sub-layer and within-canopy buoyant 522 
resistances (when present in the reporting model).  Effective conductances (Paulot et al., 2018; Clifton et 523 
al., 2020) and effective fluxes (Galmarini et al., 2021) were also reported.  These latter two diagnostic 524 
terms provide the relative contribution of the four main pathways associated with gas-phase deposition 525 

towards the deposition velocity and the deposition flux, respectively.  The four main pathways include 526 
soil, the lower canopy, leaf cuticles, and stomata.  Note that not all models specify a separate lower 527 
canopy pathway (the conductance associated with this pathway tends to be relatively small, providing 528 
justification for its absence).  Effective fluxes are of particular interest to criticalload exceedance analysis, 529 
since they provide information on the charge equivalents deposited to different component surface types.  530 

Effective fluxes include the impact of other processes in addition to deposition on the concentrations and 531 
hence on the net flux of the deposited gases, via the net flux term (F).  For example, the soil, lower 532 
canopy, cuticle and stomatal effective fluxes in the Wesely (1989) dry deposition parameterization are 533 
given by: 534 

𝐷𝐹𝐿𝑋𝑆𝑂𝐼𝐿 = (
(𝒓𝒂𝒄+𝒓𝒈𝒔)

−𝟏

(𝒓𝒔+𝒓𝒎)−𝟏+(𝒓𝒍𝒖)−𝟏+(𝒓𝒅𝒄+𝒓𝒄𝒍)−𝟏+(𝒓𝒂𝒄+𝒓𝒈𝒔)
−𝟏)𝐹                                              (9) 535 
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𝐷𝐹𝐿𝑋𝐿𝐶𝐴𝑁 =  (
(𝒓𝒅𝒄+𝒓𝒄𝒍)

−𝟏

(𝒓𝒔+𝒓𝒎)−𝟏+(𝒓𝒍𝒖)−𝟏+(𝒓𝒅𝒄+𝒓𝒄𝒍)−𝟏+(𝒓𝒂𝒄+𝒓𝒈𝒔)
−𝟏) 𝐹                                             (10) 536 

𝐷𝐹𝐿𝑋𝐶𝑈𝑇 = (
(𝑟𝑙𝑢)−1

(𝑟𝑠+𝑟𝑚)−1+(𝑟𝑙𝑢)−1+(𝑟𝑑𝑐+𝑟𝑐𝑙)−1+(𝑟𝑎𝑐+𝑟𝑔𝑠)
−1)𝐹                                               (11) 537 

𝐷𝐹𝐿𝑋𝑠𝑡𝑜𝑚 = (
(𝑟𝑠+𝑟𝑚)−1

(𝑟𝑠+𝑟𝑚)−1+(𝑟𝑙𝑢)−1+(𝑟𝑑𝑐+𝑟𝑐𝑙)−1+(𝑟𝑎𝑐+𝑟𝑔𝑠)
−1)𝐹                                             (12) 538 

Where F is the net flux to the surface, and the r terms are resistances associated with different pathways 539 

of gas mass transfer to the four surface components (rac: aerodynamic mass transfer within canopy,  540 
dependent on canopy height and density, rgs: the soil and leaf litter resistance, rdc : canopy buoyant 541 
convection resistance, rcl:  resistance associated with leaves, twigs, bark and other exposed surface in the 542 
lower canopy, rlu: resistance of leaf cuticles in healthy vegetation and other outer surfaces, rs: leaf 543 
stomata, rm: leaf mesophyll).  The effective conductances can be generated from similar formulae, with 544 

the F term in equations (9) through (12) being replaced by the deposition velocity of the gas Vd.  Note that 545 
the formulae for individual models vary from the Wesely (1984) example shown above; see Galmarini et 546 
al. (2021) for details on the formulae for each of the gas-phase deposition algorithms used in the 547 
AQMEII4 regional model ensembles analyzed here.   548 

2.2 Model Parameterization Descriptions 549 

2.2.1 CMAQ-M3Dry, CMAQ-STAGE, CMAQ (Hertfordshire) – WRF-CMAQ Implementations 550 

These three models make use of the WRF-CMAQ off-line modelling framework (CMAQ v5.3.2, US EPA 551 
(2020)), with the North American implementations (CMAQ-M3Dry, CMAQ-STAGE) employing 12 km 552 
cell resolution, and the EU implementation employing 10km cell resolution (Lambert Conformal Conic 553 
projection, 459x299 and 500x681 grid cells, respectively).  The CMAQ implementations employed 35 554 

model layers with the lowest layer thickness of ~20m.  Both NA models operate in an off-line 555 
configuration using the same driving weather forecast model output (NA: WRF4.1.1, EU: WRF 4.2.1, 556 
Skamarock et al., 2019).  All three CMAQ model implementations use the same gas-phase chemical 557 
mechanism (Carbon Bond 6; Luecken et al., 2018)), a modal aerosol size distribution representation with 558 
three modes (Binkowski and Roselle, 2003), aerosol microphysics through the AERO7 module (Appel et 559 

al., 2021; Binkowski and Shankar, 1995; Vehkamaki et al., 2002), and thermodynamic equilibrium 560 
partitioning for semivolatile inorganic species between gas and aerosol phases species  (involving the 561 
components K+-Ca2+-Mg2+-NH4

+-Na+-SO4
2--NO3

-- Cl- - H2O) using the ISORROPIA II algorithm 562 
(Fountoukis and Nenes, 2007).  Organic aerosol formation and monoterpene oxidation are modelled as 563 
described in AERO7 (Appel et al., 2021, Xu et al., 2018).   564 

For all three model implementations, the impact scavenging of aerosols by cloud droplets is carried out 565 

for the Aitken mode particles, while accumulation and coarse mode particles may form cloud 566 
condensation nuclei, resulting in their scavenging via cloud droplet nucleation (Binkowski and Roselle, 567 
2003; Chaumerliac, 1984, Fahey et al., 2017).  Aerosol scavenging in the Aitken mode is carried out as a 568 
simple exponential decay for number, surface area and mass concentration assuming a cloud droplet 569 
settling velocity based on Pruppacher and Klett (1978), and an assumed cloud droplet size distribution.  570 

Only Aitken mode particles (roughly 0.01 to 0.1 m diameter) are impact scavenged, for which only 571 
cloud liquid water is included as a scavenging hydrometeor.  Wet deposition of all aqueous species is 572 
represented as a first-order loss rate based on the precipitation rate and total liquid water content (Fahey et 573 

https://doi.org/10.5194/egusphere-2024-2226
Preprint. Discussion started: 30 July 2024
c© Author(s) 2024. CC BY 4.0 License.



15 
 

al., 2017). The number of cloud droplets is parameterized following Bower and Choularton (1992) from 574 
the cloud liquid water content provided by the meteorological model.  575 

The three CMAQ implementations differ in the algorithms employed for aerosol and gas-phase dry 576 
deposition algorithms. 577 

CMAQ-M3Dry’s aerosol dry deposition methodology was based on Binkowski and Shankar (1995), with 578 
updates as described in Venkatram and Pleim (1999),  Giorgi (1986), and subsequent corrections to 579 

include the effect of mode width in the Stokes number (reducing previous large overpredictions in coarse 580 
mode deposition velocities).  Further modifications included changes to the Stoke’s number for vegetated 581 
surfaces, modification of the impaction term, scaling of diffusion layer resistance by LAI for the 582 
vegetated fraction of each grid cell, and improved mass conservation for the process of gravitational 583 
settling (Appel et al., 2021).     584 

CMAQ-STAGE and CMAQ (Hertfordshire)’s aerosol dry deposition methodology followed that of 585 
CMAQ-M3Dry, but made use of Slinn (1982) and Zhang et al.  (2001) for impaction on vegetated 586 

surfaces, and Georgi (1986) for water and soil surfaces, with the resulting deposition velocities for 587 
smooth and vegetated surfaces weighted by the area of vegetated surface (Appel et al., 2021).    588 

The gas-phase dry deposition algorithms and diagnostic equations of CMAQ-M3Dry, CMAQ-STAGE 589 
and CMAQ (Hertfordshire) are described in detail elsewhere (Galmarini et al., 2021, Table B2, with other 590 
implementation details in Hogrefe et al., 2023).  The algorithms follow the original approach of Wesely et 591 
al. (1989), but with separate resistance branches for the vegetated and non-vegetated fractions, dry versus 592 
wet fractions, and snow-covered versus non-snow covered fractions.   593 

Bidirectional fluxes of ammonia were found in the analysis which follows to be a major source of model-594 

to-model variability, hence will be described here in more detail. 595 

CMAQ-M3Dry simulated bidirectional fluxes of ammonia by first calculating soil ammonia 596 

concentrations using the Environmental Policy Integrated Climate (EPIC) agricultural ecosystem model 597 
(Williams, 1995; Ran et al., 2018), prior to the CTM simulations being carried out.  Typically, the EPIC 598 
model simulation requires a model spin-up period of 25 years or more, and requires a prior simulation of 599 
N deposition as input information.    The soil NH3 concentrations from this coupled system were then 600 
used as inputs for the AQMEII4 run (Pleim et al., 2019).   While all dry deposition diagnostics reported to 601 

AQMEII4 for CMAQ-M3Dry were computed making use of a post-processor, the post-processing did not 602 
include the generation of bidirectional flux calculations, and hence diagnostics such as the net 603 
compensation point concentration and the ground compensation point calculation were not provided from 604 
CMAQ-M3Dry for AQMEII4.   605 

CMAQ-STAGE (Massad et al., 2010; Bash et al., 2013) also simulated bidirectional fluxes following 606 
Williams, (1995), using a previous coupled EPIC simulation only for initial conditions,  porting 607 
methodology and information on daily fertilization and nitrification from EPIC into the CMAQ-STAGE 608 

framework while estimating evasion and deposition locally within the chemical transport model.  This 609 
methodology, which operates on a land-use specific basis and then aggregates to a grid-cell basis, allowed 610 
additional AQMEII4 diagnostic to be incorporated into the CMAQ-STAGE simulations. This allows a 611 
greater consistency between the CTM and the resulting soil NH3 calculations (and allows for the output of 612 
all of the diagnostics as specified under the AQMEII4 protocol see Hogrefe et al., 2023).  However, these 613 

calculations do not include other terms in EPIC dealing with N fixation, mineralization, denitrification, 614 
runoff, percolation and plant uptake, and hence will diverge from the EPIC simulated soil ammonia 615 
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concentrations due to the differences in evasion and deposition parameterizations between CMAQ-616 
STAGE and EPIC.   617 

2.2.2  NA WRF-Chem (IASS)/ EU WRF-Chem (IASS), NA WRF-Chem (UPM)/EU WRF-Chem (UPM) , 618 
NA WRF-Chem (UCAR):  WRF-Chem implementations 619 

All three of these models made use of the WRF-Chem chemical transport modelling framework (Grell et 620 
al., 2005), employing a 12km Lambert Conformal Conic projection (400x360 grid cells in the European  621 

domain, 480x290 grid cells in the North American domain),  2-way coupling between air-quality and 622 
meteorology, a sectional aerosol size distribution representation (4 bins), aerosol microphysics and 623 
chemistry via the MOSAIC model (Zaveri et al., 2008), organic aerosol formation following Knote et al., 624 
(2014, 2015), cloud microphysics following Morrison et al.  (2009), the Noah land surface model (Noah-625 
MP, Niu et al., 2011), the Rapid Radiative Transfer Model for radiative transfer calculations (RRTM, 626 

Iacono et al., 2008), biogenic emissions using the MEGAN model (Guenther et al., 2006, Wiedenmyer et 627 
al., 2007), and the FAST-J algorithm for photolysis rate calculation (Fast et al., 2009).  All three code 628 
versions also make use of the Wesely (1989) parameterization for gas dry deposition and the Binkowski 629 
and Shankar (1995) approach for aerosol deposition.   However, WRF-Chem has a large variety of 630 
configurations available for other model processes, allowing the impact of those configurations on 631 

deposition results to be studied under AQMEII4.  The differences between the model configurations are 632 
summarized in Table 2.  It should also be noted that WRF-Chem is an on-line modelling framework – 633 
differences in the model parameterizations can influence the meteorological predictions through the 634 
aerosol direct and indirect effects, and consequently the meteorology generated by the implementations 635 
may also differ. 636 

Not all of the WRF-Chem model implementations were able to report all of the information required to 637 
calculate exceedances:  the WRF-Chem (IASS) implementation did not report all of the species 638 

contributing to Sdep and Ndep totals, and also did not report several diagnostics requested under the 639 
AQMEII4 protocol.  Consequently, the WRF-Chem (IASS) results were not included in ensemble 640 
deposition generation and the model ensembles are referred to hereafter as “reduced ensembles”.  Our 641 
analysis is therefore based on these reduced ensembles, though WRF-Chem (IASS) values for deposition 642 
totals have been provided when available in Figures and Tables for comparison purposes. 643 

  644 
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Table 2.  AQMEII4 WRF-Chem Configuration Differences 645 

Parameterization WRF-Chem (IASS) WRF-Chem (UPM) WRF-Chem (UCAR) 

WRF-Chem version 
number 

3.9.1 4.0.3 4.1.2 

Wet Deposition Convective : via Grell 
and Devenyi (2002); 
grid-scale following 
Neu and Prather (2012) 
for gases, Chapman et 
al.  (2009) for aerosols 

Grid scale wet 
deposition following 
Easter et al. (2004). 
 

Below cloud:  Slinn 
(1984); in-cloud: Easter 
et al. (2004) 

Land Use/Land Cover 
Classification 

Europe:  CORINE 33 
classes.  North 
America:  USGS-24 
(Anderson et al., 1976), 
24 classes 

USGS-24 classes, 
(Anderson et al., 1976), 
24 classes 

Modified IGBP 
MODIS NOAH, 21 
classes including 
oceans and inland 
water, Friedl et al.  
(2010);  

Cumulus cloud 
parameterization 

Grell and Devenyi, 
2002. 

Grell and Devenyi, 
2002 

Grell and Freitas, 2014 

Windblown Dust On-line, Shao-et al.  
2011 

MOSAIC (Zaveri et al., 
2008) 

GOCART, with AFWA 
modifications Gong et 
al. (1997), Ginoux et 
al. (2001). 

Gas-Phase Chemistry 
Mechanism 

MOZART, Emmons et 
al. (2010) 

CMBZ, Zaveri and 
Peters, 1999 

MOZART, Emmons et 
al. (2010) 

Vertical resolution 38 levels up to 50 hPa 35 vertical levels 41 vertical levels 
PBL Scheme Mellor–Yamada–Janjic, 

Janic (2001) 
Yonsei University 
(YSU) Hong et al. 

(2006), Hong (2010) 

Mellor-Yamada 
Nakahasi Niino, level 
2.5 Nakanishi and 
Niino (2006) 

 646 

2.2.3 LOTOS-EUROS (TNO):  LOTOS-EUROS 647 

LOTOS-EUROS (TNO) used in the AQMEII4 EU simulations is an open-source 3D chemistry transport 648 

model used extensively for air-quality forecasts and scenarios for European domains (Timmermans et al., 649 
2022; Manders et al., 2017).  Gas dry deposition fluxes made use of the Wesely (1989)-based approach 650 
(DEPosition of Acidifying Compounds; DEPAC, Van Zanten et al., 2010).  Particle dry deposition was 651 
carried out using the approach of Zhang (2001).  Wet deposition followed the droplet saturation approach, 652 
and cloud chemistry with sulphate formation dependent on cloud liquid water and droplet pH (Banzhaf et 653 

al., 2012).  The dry deposition of ammonia makes use of a bidirectional flux approach (Wichink Kruit et 654 
al., 2012).  Gas-phase chemistry was carried out using a modified form of the CBM-IV scheme (Gery et 655 
al., 1989; Whitten et al., 1980).  N2O5 hydrolysis was included following Schaap et al. (2004), and 656 
inorganic thermodynamic particle chemistry was solved using the ISORROPIA II module (Fountoukis 657 

and Nenes, 2007).  The model operated using 12 layers in the vertical in a hybrid coordinate system, with 658 
the near surface layer having a thickness of ~20m and a model top of approximately 8 km.  The 659 
simulations carried out here made use of a 20x20km grid cell size over Europe.   Driving meteorology for 660 
the model was from 3-hourly ECMWF short-term forecasts.   Land use data for the model comes from the 661 
Corine2000 Land Cover database (EEA, 2000, 2007).  662 
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2.2.4 GEM-MACH (Base), GEM-MACH (Zhang), GEM-MACH (Ops):  GEM-MACH 663 

All three of these NA models are variations on the Environment and Climate Change Canada GEM-664 
MACH model. The first two configurations (GEM-MACH (Base), GEM-MACH (Zhang)) are based on 665 
the “research” version of the model, which has more detailed physical parameterizations, whereas GEM-666 
MACH (Ops) is based on the “operational forecast” configuration, where more simplified 667 

parameterizations have been employed in order to reduce processing time for operational air -quality 668 
forecast simulations.  Common elements across all three implementations include a horizontal grid cell 669 
size of 0.09o in a rotated latitude-longitude domain (~10km), 83 model levels, biogenic VOCs from 670 
BEIS3.09, 3.1.3 (Vukovich and Pierce, 2002; Stroud et al., 2010), a sectional aerosol size distribution (12 671 
bins, Gong et al.  (2003), the ADOM-II gas-phase mechanism (Stockwell et al., 1989), a modified Odum 672 

approach for SOA formation (Stroud et al., 2018), and an inorganic aerosol chemistry module solving the 673 
thermodynamic equilibrium for the SO4

2--NO3
--NH4

+- H2O system (Makar et al., 2003).  The GEM-674 
MACH implementations also all make use of the GEM weather forecast model v4.9.8 for driving 675 
meteorology (Côté et al., 1998, Girard et al., 2014)), with the ISBA land surface scheme (Belair et al., 676 
2003a,b), and the CCMA Rad2 radiative transfer algorithm (Li and Barker, 2005).  As was the case for the 677 

WRF-Chem implementations described above, GEM-MACH has several optional process representations 678 
used in operational forecast versus research versions of the model, hence the relative importance of model 679 
configurations versus deposition parameterizations may be studied.  The differences between the 680 
configurations are summarized in Table 3  Key differences between the models include:   681 

(1) Similar to CMAQ-M3Dry and CMAQ-STAGE above, the only difference between GEM-MACH 682 
(Base) and GEM-MACH (Zhang) is the gas-phase dry deposition scheme employed (GEM-MACH 683 

(Base): Makar et al., 2018; GEM-MACH (Zhang): Zhang et al., 2003), though both models employ 684 
the Zhang et al. (2010) parameterization for ammonia bi-directional fluxes;  685 

(2) GEM-MACH (Base) and GEM-MACH (Zhang) make use of the Emerson et al. (2020) dry deposition 686 
velocity correction to the approach of Zhang et al., 2001) as well as semi-Lagrangian advection rather 687 
than a diffusion equation lower flux boundary condition for particle settling and deposition;   688 

(3) GEM-MACH (Base) and GEM-MACH (Zhang) employ aerosol direct and indirect effect feedbacks 689 
between meteorology and chemistry, while GEM-MACH (Ops) does not.  This requires the use of an 690 
explicit hydrometeor scheme in the former two model configurations and resulting in different 691 
meteorology between GEM-MACH (Base), GEM-MACH (Zhang) and GEM-MACH (Ops);   692 

(4) GEM-MACH (Base) and GEM-MACH (Ops) make use of 15 land use categories aggregated from the 693 

26 land use categories employed in GEM-MACH (Ops);  694 

(5) Leaf Area Index values and seasonality for deposition for GEM-MACH (Base) and GEM-MACH 695 

(Zhang) are based on satellite retrieval data rather than the BEIS-based approach used in GEM-MACH 696 
(Ops)  - the latter uses fixed LAI values for 232 land-use types and area-weights them to determine 697 
grid cell LAI;  698 

(6) GEM-MACH (Base) and GEM-MACH (Zhang) make use of six additional physical parameterizations 699 
not present in GEM-MACH (Ops) (see Table 3).   700 

Differences between GEM-MACH (Base) and GEM-MACH (Zhang) thus provide an estimate of the 701 
relative importance of the gas-phase deposition parameterization towards simulation results, while 702 
comparisons between GEM-MACH (Base or Zhang) and GEM-MACH (Ops) show the relative impact of 703 
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the combination of ammonia bidirectional fluxes and the suite of more complex physical 704 
parameterizations used in the former model configurations compared to the operational framework.   705 

Table 3.  AQMEII4 GEM-MACH Configuration Differences 706 

Parameterization GEM-MACH (Base) GEM-MACH (Zhang) GEM-MACH (Ops) 

Gas dry deposition Makar et al.(2018) Zhang et al. (2003) Makar et al.(2018) 

Ammonia bidirectional 
fluxes 

Zhang et al. (2010) As in GEM-MACH 
(Base) 

None 

Particulate matter dry 
deposition 

1-D semi-Lagrangian 
mass transfer (Makar et 
al., 2018), using 
Emerson et al.  (2020) 
correction to Zhang et 
al.  (2001) coefficients 

As in GEM-MACH 
(Base) 

Zhang et al.  (2001), 
applied as flux lower 
boundary condition in 
the diffusion equation. 

Vertical resolution 83 levels plus 3 
additional levels for 
forest canopy processes 
(Makar et al., 2017) 

As in GEM-MACH 
(Base) 

83 levels 

Meteorological model 
cloud parameterization 

P3 explicit 
hydrometeor scheme 
(Morrison and 
Milbrandt, 2015; 
Milbrandt and 
Morrison, 2016). 

As in GEM-MACH 
(Base) 

Convective:  Kain-
Fritsch convective 
parameterization (Kain 
and Fritsch, 1990, 
Kain, 2004).  
Stratiform:  Sundqvist 
et al. (1989) 

Land Use/Land Cover 
Classification 

GEM-MACH 15 Land 
use scheme (Makar et 
al., 2018), aggregated 
from Zhang et al., 
(2002, 2003) 26 land 
use categories. 

Zhang et al. (2002, 
2003), 26 land-use 
categories  

 As in GEM-MACH 
(Base) 

Leaf Area Index data 
source 

Satellite-derived 
(Zhang et al., 2020) 

As in GEM-MACH 
(Base) 

BEIS-based (Vukovich 
and Pierces, 2002) 

Seasonality for 
emissions 

Based on satellite LAI 
(Zhang et al., 2020) 

As in GEM-MACH 
(Base) 

Fixed function of 
latitude and Julian day 

Major point source 
plumerise algorithm  

Akingunola et al., 2018 As in GEM-MACH 
(Base) 

Briggs (1984) 

Gas-phase chemistry 
solver 

KPP2.1 (Sandu and 
Sander, 2006) 

As in GEM-MACH 
(Base) 

Young and Boris 
(1977) 

Vehicle Induced 
Turbulence 

Makar et al.  (2021) As in GEM-MACH 
(Base) 

None 

Forest Canopy shading 
and turbulence 

Makar et al. (2017) As in GEM-MACH 
(Base) 

None 

CH4 as chemically 
active tracer 

Yes As in GEM-MACH 
(Base) 

No 

Aerosol direct and 
indirect effect feedback 

Yes (Makar et al., 
2015a,b) 

As in GEM-MACH 
(Base) 

No 

Floor (minimum) PBL 
height imposed 

No As in GEM-MACH 
(Base) 

Yes (100m) 
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Area source emissions 
treatment 

Flux lower boundary 
condition on diffusion 
equation 

As in GEM-MACH 
(Base) 

Mass injection into two 
lowest model layers 

Advection mass 
conservation 

ILMC, 3 sweeps 
(Sorensen et al., 2013) 

As in GEM-MACH 
(Base) 

ILMC, 2 sweeps, 
followed by Bermejo-
Conde (2002) global 
mass correction 

 707 

 3.0 Results 708 

3.1 Critical Load Exceedances 709 

3.1.1  Europe, Acidification 710 

Critical load exceedances for acidification for each of the four European (EU) models are shown in Figure 711 
2 for 2010 and in Figure S1 (SI) for 2009.  Figure 3 shows the reduced ensemble values for 2009 and 712 
2010 (a,b) as well as common AQMEII4 domain total bar charts for all models and the ensembles (c).  713 

The EU exceedances for acidity are similar between the two years (compare Figures 2 and S1, and values 714 
for each year in Figure 3).   However, differences between models within a given year are larger 715 
(especially in an absolute sense; WRF-Chem (IASS) <0.4% in exceedance, WRF-Chem (UPM): ~6.5%).  716 

Low WRF-Chem (IASS) exceedance levels are in part due to unreported deposition data (see section 717 
2.2.2); the reduced ensemble maps in Figure 3 show the ensemble average for LOTOS-EUROS (TNO), 718 
WRF-Chem (UPM) and CMAQ (Hertfordshire).  The EU reduced ensemble shows the greatest extent of 719 
exceedance in the Netherlands along the Netherlands/Belgium border, north-western Germany, southern 720 
Norway, and along the border between Poland and Germany (Figure 3(a,b)).  Individual models in Figure 721 

2 show additional acidity “hotspots” that may appear in one model and not in another (e.g. LOTOS-722 
EUROS (TNO): near Lucerne and Bonn; WRF-Chem (UPM): westernmost Switzerland, south-central 723 
Germany, and Belgrade; CMAQ (Hertfordshire): south-west Switzerland, south-central Germany, and 724 
south-west Romania).   725 

The percent area of EU acidification CLE over the region for which CL data was available, for the 726 
reduced ensemble, was 4.48% (range 2.37% to 6.85%) in 2009 and 4.32% (2.06 to 6.52%) in 2010.  727 

Average reduced ensemble accumulated exceedance for EU acidity was 13.8 (9.7 to 27.1) eq ha-1 yr-1 in 728 
2009, and 12.6 (7.8 to 23.7) eq ha-1 yr-1 in 2010.  The quoted range is from the highest and lowest 729 
members in the 3-member reduced ensemble. 730 

3.1.2 Europe, Eutrophication 731 

Critical load exceedances for eutrophication for each of the four EU models are shown in Figure 4 for 732 
2010 and in Figure S2 (SI) for 2009.  Figure 5 shows the reduced ensemble values for 2009 and 2010 733 
(a,b) as well as common AQMEII4 domain summaries for all models and the ensembles  (c).  734 

As for EU Acidity CLE’s, the Eutrophication CLE’s are very similar between the two model years 735 
(compare Figures 4 and S2, and the values for each year in Figure 5).  The spatial distribution of the 736 
greatest levels of exceedance also varies more strongly between models.  All members in the 3 -member 737 

reduced ensemble identify the Po river valley as reaching the greatest level of exceedance, but LOTOS-738 
EUROS (TNO) also shows high levels of exceedance in Benelux to northern Germany and in the 739 
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Barcelona area, while WRF-Chem (UPM) shows high levels of exceedance > 800 eq ha -1 yr-1 in multiple 740 
hotspots throughout the region.   741 

The percentage of the area in exceedance for eutrophication is much higher than that of acidification 742 
(reduced ensemble CLE 60.2% (47.3 to 73.3%) in 2009, and  62.2% 51.2 to 74.4%)  in 2010).   The 743 
average accumulated exceedance was 156.9 (89.4 to 265.5/) eq ha-1 yr-1 in 2009 and 161.4 (109.4 to 744 

261.8) eq ha-1 yr-1 in 2010 (Figure 5, the range is from lowest and  highest members in the 3-member 745 
reduced ensemble). 746 

Figure 2.  CLEs for Acidity, EU AQMEII4 common domain, 2010, eq ha -1yr-1. (a) WRF-Chem (IASS), (b) LOTOS-747 
EUROS (TNO), (c) WRF-Chem (UPM), (d) CMAQ (Hertfordshire).  Grey areas indicate regions for which critical 748 
load data are available but are not in exceedance of critical loads.  Coloured areas indicate exceedance regions.   749 

 750 

https://doi.org/10.5194/egusphere-2024-2226
Preprint. Discussion started: 30 July 2024
c© Author(s) 2024. CC BY 4.0 License.



22 
 

Figure 3. Summary CLEs for Acidity, EU AQMEII4 common domain, eq ha -1yr-1.  (a), (b) Spatial distribution of 751 
CLEs for the reduced ensemble for the years 2009 and 2010, respectively. (c) Percentage of ecosystems for which 752 
CL data are available that are in exceedance by model and year (left axis and colour bar) and average accumulated 753 
exceedance (eq ha-1 yr-1) (right axis and black diamond symbols). 754 

 755 

  756 
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Figure 4.  CLEs for Eutrophication, EU AQMEII4 common domain, 2010, eq ha -1yr-1. (a) WRF-Chem (IASS), (b) 757 
LOTOS-EUROS (TNO), (c) WRF-Chem (UPM), (d) CMAQ (Hertfordshire).  Grey areas indicate regions for which 758 
critical load data are available but are not in exceedance of critical loads.  Coloured areas indicate exceedance 759 
regions.   760 

 761 
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Figure 5. Summary CLEs for Eutrophication, EU AQMEII4 common domain, eq ha -1yr-1.  (a), (b) Spatial 762 
distribution of CLEs for the reduced ensemble for the years 2009 and 2010, respectively. (c) Percentage of 763 
ecosystems for which CL data are available that are in exceedance by model and year (left axis and colour bar) and 764 
average accumulated exceedance (eq ha-1 yr-1) (right axis and black diamond symbols).765 

 766 

 767 

 768 

 769 

  770 
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3.1.3  North America, Forest Ecosystems Simple Mass Balance Critical Load 771 

Critical load exceedances with respect to the North American (NA) forest soil acidity for the years 2016 772 
and 2010 are shown in Figures 6 and S3, respectively, with the reduced ensemble maps for both years, 773 
and the domain summaries shown in Figure 7.   774 

Unlike the EU domain comparison, the NA CLEs depicted in Figure 6 show a large difference in the 775 
extent of regions in exceedance for the different models.  While all models with the exception of WRF-776 

Chem (IASS) identified the regions to the south and west of the Great Lakes, the U.S. east coast, and 777 
Florida as being in exceedance, the magnitude of the exceedances varied greatly between the models, 778 
with the GEM-MACH models (Figure 6(d-f)) showing large regions with exceedances above 800 eq ha-1 779 
yr-1, followed by, in descending order, WRF-Chem (UPM), CMAQ-M3Dry, CMAQ-STAGE, WRF-Chem 780 
(UCAR), and WRF-Chem (IASS).   781 

The summary reduced ensemble CLE values (Figure 7) show the improvement in CLEs between the 782 
years 2010 and 2016, which occurred in response to the legislated reduction in SO2 emissions during this 783 

time period.  The summary chart (Figure 7 (c)) however shows that the magnitude of the response to the 784 
SO2 reduction was model dependent:  the change between 2010 and 2016  was the greatest for GEM-785 
MACH (Base) in an absolute sense, and the greatest for WRF-Chem (UCAR) in a relative sense.  786 
Similarly, the average accumulated exceedance (right-hand vertical axis and black diamonds, Figure 7(c)) 787 
showed decreases in exceedance between 2010 and 2016 for all models, but the extent of these decreases 788 

differed, with WRF-Chem (UCAR) showing the smallest decrease in AAE from 2010 to 2016, followed 789 
in increasing order of the magnitude of change byCMAQ-STAGE, CMAQ-M3Dry WRF-Chem (UPM), 790 
GEM-MACH-Ops, GEM-MACH-Base, and GEM-MACH-Zhang.   791 

The percentage of the NA forested area in exceedance for acidification for the reduced ensemble was 792 
13.2% (2.8 to 22.2%) in 2010, and 6.1% (1.0 to 12.9%) in 2016.   The ensemble thus shows a 793 
considerable improvement in exceedances with respect to acidification between the two years.   794 

3.1.4 North America, Aquatic Ecosystems CL(A) 795 

Exceedances with respect to the North American aquatic ecosystem CL dataset for the years 2016 and 796 
2010 are shown in Figures 8 and S4, respectively, with the reduced ensemble maps for both years and 797 
domain summaries shown in Figure 9.   798 

Comparison of Figures 6 and 8 shows a similarity in the CLE response of the individual models between 799 
forest soil and aquatic ecosystems, with the GEM-MACH models predicting the highest number and 800 

magnitude of exceedances, followed by WRF-Chem (UPM), WRF-Chem (UCAR) and the two CMAQ 801 
implementations.  Figure 9 (a,b) shows the expected decrease of the reduced ensemble’s CLE between 802 
2010 and 2016, as well as the higher levels of exceedance associated with the GEM-MACH and WRF-803 
CHEM (UPM) models,  followed in descending order by the two CMAQ implementations and WRF-804 
CHEM (UCAR) (Figure 9 (c)).   805 

The percentage of the NA aquatic ecosystems in exceedance for the reduced ensemble was 21.2% (12.8 to 806 

28.9%) in 2010 and 11.4% (7.3 to 15.8%) in 2016.   The reduced ensemble thus shows a considerable 807 
improvement in exceedances with respect to exceedance of aquatic critical loads between the two years, 808 
again by almost a factor of two.   809 
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Figure 6.  CLEs for Forest Soils, NA AQMEII4 common domain, 2016, eq ha-1yr-1.  (a) CMAQ-M3Dry, 811 
(b) CMAQ-STAGE, (c) WRF-Chem (IASS), (d) GEM-MACH (Base), (e) GEM-MACH (Zhang), (f) 812 
GEM-MACH (Ops), (g) WRF-Chem (UPM), (h) WRF-Chem (UCAR).  Grey areas indicate regions for 813 

which critical load data are available but are not in exceedance of critical loads.  Coloured areas indicate 814 
exceedance regions.   815 

 816 
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Figure 7. Summary CLEs for Forest Soils, NA AQMEII4 common domain, eq ha-1 yr-1.  (a), (b) Spatial 818 
distribution of CLEs for the reduced ensemble for the years 2010 and 2016, respectively. (c) Percentage 819 
of ecosystems for which CL data are available that are in exceedance by model and year (left axis and 820 

colour bar) and average accumulated exceedance (eq ha -1 yr-1) (right axis and black diamond symbols). 821 

 822 

 823 
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Figure 8.  CLEs for Aquatic Ecosystems, NA AQMEII4 common domain, 2016, eq ha-1 yr-1.  Panels 825 
arranged by Model as in Figure 6; individual sites are shown as pixels.  Dark grey pixels indicate regions 826 
for which critical load data were available but were not in exceedance of critical loads.  Coloured areas 827 

indicate exceedance regions; overplotting in precedence by the extent of exceedance was carried out for 828 
overlapping pixels.  Areas of no CL data are shown in lighter grey. 829 

 830 
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Figure 9. Summary CLEs for Aquatic Ecosystems, NA AQMEII4 common domain.  (a), (b) Spatial 832 
distribution of CLEs for the reduced ensemble for the years 2010 and 2016, respectively. (c) Percentage 833 
of lakes for which CL data are available that are in exceedance by model and year (left axis and colour 834 

bar) and number of lakes in exceedance (right axis and black diamond symbols). 835 

 836 

 837 
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3.1.5  U.S. N Deposition to Lichen 839 

Exceedances with respect to the USA CL of N for a 20% decline in sensitive epiphytic lichen species 840 
richness (221 eq-N ha-1 yr-1) dataset for the years 2016 and 2010 are shown in Figures 10 and S5, 841 
respectively, with the reduced ensemble maps for both years and domain summaries shown in Figure 11.   842 

The overall pattern of exceedances and their magnitude across models (Figure 10) is similar to that of the 843 
Forest Soil exceedances (Figure 6), with the largest magnitudes in the north-eastern continental USA and 844 

in North Carolina, though the lichen exceedances are more continuous across the region than for forest 845 
soil water acidity impacted ecosystems.  GEM-MACH (Base), GEM-MACH (Zhang), and GEM-MACH 846 
(Ops) have maximum exceedances usually between 800 and 1,200 eq ha-1 yr-1, and the exceedances 847 
predicted by other models are less than 800 eq ha-1 yr-1 aside from a North Carolina exceedance hotspot 848 
which is predicted by all models.The reduced ensemble overall magnitude of exceedances decreased 849 

significantly between 2010 and 2016 (Figure 11(a,b), less black and red regions in the more recent year).  850 
The reduced ensemble total area in exceedance has decreased slightly (Figure 11(c), “reduced ensemble” 851 
columns).  All models show a decreasing levels of exceedance between the two years, and slightly 852 
decreasing total area of exceedance.  The magnitude of exceedances differs significantly between the 853 
models, with the highest magnitude exceedances predicted by the GEM-MACH group of models, 854 

followed by WRF-Chem (UPM).   855 

The percentage of the NA sensitive epiphytic lichen ecosystems in exceedance for the reduced ensemble 856 

was 81.5% (69.3 to 95.0%) in 2010 and 75.8% (63.7 to 90.7%) in 2016. 857 

 858 

3.1.6  U.S. N Deposition to Herbaceous Plants 859 

Exceedances with respect to the USA CL of N for a decline in herbaceous species richness (436 to 1693 860 
eq-N ha-1 yr-1) dataset for the years 2016 and 2010 are shown in Figures 12 and S6, respectively, with the 861 

reduced ensemble maps for both years and domain summaries shown in Figure 13.   862 

The spatial distribution of the regions of highest exceedance shares some common features with that of 863 

sensitive epiphytic lichen (compare Figure 12 with Figure 10), such as maximum exceedances in NE 864 
USA, North Carolina, and extending along a region north of Texas.  However, both the magnitude and 865 
extent of exceedance is much more varied for herbaceous species richness than for lichen  species 866 
richness, with the GEM-MACH suite of models (Figure 12 d-f and Figure 13c) predicting the highest 867 
exceedance levels and up to 18.4% of the area in exceedance in 2016, the CMAQ implementations 868 

varying between 0.6% and 0.8%, and WRF-Chem (UCAR) predicting 0.1%. 869 

The percentage of the NA herbaceous plant ecosystems in exceedance for the reduced ensemble was 870 
13.9% (0.4 to 39.5%) in 2010, and 3.9% (0.1 to 18.4%) in 2016, with the higher exceedance levels in the 871 
range resulting from the GEM-MACH suite of models.  Reduced ensemble herbaceous species richness 872 
exceedances have decreased considerably between the two years in all models.  873 

3.1.7  Critical Load Exceedances, Key Results 874 

The percent exceedance for the reduced ensemble and ranges from the reduced ensembles for the 875 
ecosystems examined here are summarized in Table 4.  The values suggest acidification in EU will 876 
happen over a smaller region than eutrophication at 2009/2010 emissions levels, with a slight decrease in 877 
acidification and a slight increase in eutrophication between the two years.  About 60% of EU ecosystems 878 

would be subject to eutrophication at some point in the future at 2010/2009 emissions levels.  One 879 
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striking difference between the different model estimates of CLE is in the magnitude of exceedances (as 880 
opposed to the total area in exceedance).  WRF-Chem (UPM) for example in Figures 2 and 4 predicts 881 
more severe levels of exceedance across Europe than the other models.   The North America results 882 

suggest that reductions in SO2 and NOx emissions between 2010 and 2016 resulted in a substantial 883 
reduction in the number of forest soil and aquatic ecosystem acidification exceedances (by nearly a factor 884 
of two). The impacts of nitrogen deposition on herbaceous species also improved (by nearly a factor of 885 
three), while impacts of nitrogen deposition on sensitive lichen had more modest improvement (from 81.5 886 
to 75.8% in exceedance).  The magnitude and spatial extent of these eutrophication exceedances were 887 

highly dependent on the model, and on the variations in the representation of sub-processes within each 888 
model, used for predictions.  Understanding the large range of model predictions is one of the main aims 889 
of the current work.  The next section discusses the underlying causes driving the model-to-model 890 
differences, using the AQMEII4 deposition diagnostics.  891 

Table 4.  Summary of reduced ensemble percent exceedance mean values and their range in EU and NA 892 
domains. 893 

EU Ecosystem Year 2009 Percent Exceedance 
(lower to upper bound) 

Year 2010 Percent Exceedance (lower 
to upper bound) 

Acidification 4.48 (2.37 to 6.85) 4.32 (2.06 to 6.52) 

Eutrophication 60.2 (47.3 to 73.3) 62.2 (51.2 to 74.4) 
 

NA Ecosystem Year 2010 Percent Exceedance 
(lower to upper bound) 

Year 2016 Percent Exceedance (lower 
to upper bound) 

Forest Soils Acidification 13.2 (2.8 to 22.2) 6.1 (1.0 to 12.9) 

Lake Ecosystems 21.2 (12.8 to 28.9) 11.4 (7.3 to 15.8) 
USA N Deposition Lichen 81.5 (69.3 to 95.0) 75.8 (63.7 to 90.7) 

USA N Deposition 
Herbaceous 

13.9 (0.4 to 39.5) 3.9 (0.1 to 18.4) 

 894 

 895 

  896 
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Figure 10.  CLEs for Sensitive Epiphytic Lichen Species, NA AQMEII4 common domain, 2016, eq ha-1 897 
yr-1.  Panels arranged by model as in Figure 6.  Light grey areas indicate regions for which critical load 898 
data were available but were not in exceedance of critical loads.  Coloured areas indicate exceedance 899 

regions. 900 
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Figure 11. Summary CLEs, Sensitive Epiphytic Lichen Species, NA AQMEII4 common domain, eq ha-1 902 
yr-1.  (a), (b) Spatial distribution of CLEs for the reduced ensemble for the years 2010 and 2016, 903 
respectively. (c) Percentage of sensitive epiphytic lichen ecosystems for which CL data are available that 904 

are also are in exceedance, by model and year (left axis and colour bar) and number of sites in exceedance 905 
(right axis and white diamond symbols). 906 

 907 
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Figure 12.  CLEs for a decline in Herbaceous Species Community Richness, NA common domain, 2016, 909 
eq ha-1yr-1.  Panels arranged by model as in Figure 6.  Light grey areas indicate regions for which critical 910 
load data were available but were not in exceedance of critical loads.  Coloured areas indicate exceedance 911 

regions. 912 

 913 
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Figure 13. Summary CLEs for a decline in Herbaceous Species Community Richness, AQMEII4 NA 915 
common domain, eq ha-1yr-1.  (a), (b) Spatial distribution of CLEs for the reduced ensemble for the years 916 
2010 and 2016, respectively. (c) Percentage of herbaceous species communities for which CL data are 917 

available that are also are in exceedance, by model and year (left axis and colour bar) and number of sites 918 
in exceedance (right axis and white diamond symbols).  919 

 920 
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3.2 Analysis of Model Deposition Predictions   922 

3.2.1  Causes of S Deposition Variability in North America Domain Simulations 923 

The AQMEII4 common grid average, and percent contribution of each depositing species towards total S 924 
deposition in 2016, are given in Table 5.  The averages and standard deviation for the reduced ensemble 925 
show that wet deposition of the sum of the sulphate and bisulphite ions (SO4

(2-) and HSO3
(-)) contributes 926 

more to total S deposition than particulate sulphate dry deposition, which is in turn contributes more than 927 
SO2 (g) dry deposition.  However, the model-to-model variability is also large, particularly for the 928 
contribution of particulate sulphate, which varies by nearly two orders of magnitude between GEM-929 
MACH (Base, Zhang Ops) and WRF-Chem (UPM).  The contributions to the average reduced ensemble 930 

total S deposition are 62.0 ±19.3, 44.8 ± 39.0, and 28.8 ± 9.9 eq ha-1 yr-1 for wet, particle dry and gas dry 931 

deposition respectively (± ranges in Table 5 are the standard deviation of the component).  The greatest 932 
cause of model variability in absolute total deposition is associated with the contribution of particulate 933 
sulphate dry deposition, followed by sulphur wet deposition and then gaseous SO2 dry deposition.   934 

Table 5.  Average S deposition contributions in common AQMEII4 NA grid area (eq ha-1 yr-1) and percent 935 
contribution to average total S deposition, 2016.  n/d = no data submitted or insufficient data to calculate percentage. 936 

 
Average Deposition (eq ha-1 yr-1) Percent of total S deposition 

Model 

Number 

SO4
(2-) + 

HSO3
(-) 

Wet 

Deposition 

Particle 

Sulphate 

Dry 

Deposition 

SO2(g) Dry 

Deposition 

Total S 

Deposition 

SO4
(2-) + 

HSO3
(-) 

Wet 

Deposition 

Particle 

Sulphate 

Dry 

Deposition 

SO2(g) Dry 

Deposition 

CMAQ-

M3Dry 79.0 19.0 24.9 122.9 64.3 15.4 20.2 

CMAQ-

STAGE 79.2 21.0 23.3 123.4 64.2 17.0 18.8 

WRF-Chem 

(IASS) 0.9 nd 26.7 n/d n/d n/d n/d 

GEM-

MACH 

(Base) 52.4 90.7 23.0 166.1 31.5 54.6 13.9 

GEM-

MACH 

(Zhang) 51.4 88.8 25.1 165.3 31.1 53.7 15.2 

GEM-

MACH 

(Ops) 81.3 88.2 23.9 193.4 42.0 45.6 12.4 

WRF-Chem 

(UPM) 66.3 2.8 52.8 121.9 54.4 2.3 43.3 

WRF-Chem 

(UCAR) 24.4 3.0 28.7 56.1 43.5 5.3 51.2 

Reduced 

ensemble 

average 62.0 44.8 28.8 135.6 45.7 33.0 21.2 

Reduced 

ensemble 

standard 

deviation 19.3 39.0 9.9 41.3 13.0 21.2 14.5 

 937 
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The spatial distributions of the two largest components of the total S deposition variability (wet S and dry 938 
particle S) are shown in Figure 14.  The WRF-Chem (IASS) values did not represent the expected sources 939 
of S deposition over the continent and some deposition fields such as the total particulate sulphate dry 940 

deposition were not submitted. The wet S deposition maps are qualitatively similar between the other 941 
models (note that the colour scale is logarithmic), with WRF-Chem (UCAR) having the lowest values 942 
(Figure 14(a)).  As shown in Table 5, the greatest degree of variability between the different modelling 943 
platforms is in the particle deposition fluxes (Figure 14(b)).  This variability extends over orders of 944 
magnitude.  WRF-Chem (UPM) and WRF-Chem (UCAR) predict the lowest deposition fluxes of dry 945 

particulate sulphate over both land and ocean.  CMAQ-STAGE and CMAQ-M3Dry predict higher values 946 
over parts of the ocean, but relatively low values over land.  GEM-MACH (Base), GEM-MACH (Zhang) 947 
and GEM-MACH (Ops) have the highest particulate sulphate dry deposition fluxes, roughly equivalent to 948 
the wet deposition fluxes.   949 

We next evaluate each of the models’ predictions  against North American network observations for 950 
concentrations of SO2 and particulate sulphate, and wet sulphur deposition for the year 2016.  The 951 
monitoring network databases employed included the U.S. Environmental Protection Agency’s Air 952 

Quality System (AQS; https://www.epa.gov/aqs , last access: 7 July 2024), the National Atmospheric 953 
Deposition Program’s National Trend Network (NADP NTN; 954 
https://nadp.slh.wisc.edu/networks/national-trends-network/  , last access 7 July 2024), the Canadian 955 
National Air Pollution Surveillance (NAPS) program (https://www.canada.ca/en/environment-climate-956 
change/services/air-pollution/monitoring-networks-data/national-air-pollution-program.html , last access: 957 

7 July 2024), and the Canadian National atmospheric chemistry database ( 958 
https://www.canada.ca/en/environment-climate-change/services/air-pollution/monitoring-networks-959 
data/national-atmospheric-chemistry-database.html, last access 7 July 2024). 960 

Figure 14.  2016 total annual deposition flux (eq ha-1 yr-1) of (a) wet S, and (b) dry particulate sulphate.   961 

 962 

 963 
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The NA models’ monthly average values of hourly near-surface SO2 (g) concentrations and daily 964 
particulate sulphate concentrations are compared to observations in Figure 15.  The monthly averages of 965 
daily (CAPMoN) and weekly (NADP) wet S deposition are shown in Figure 16.  Model-observation 966 

evaluation statistics are compared in Table 6.  Station locations for the observations are shown in SI 967 
Figures S7, S8, and S9.    968 

Table 6 shows that CMAQ-M3Dry and CMAQ-STAGE had the best values for most metrics, for the 969 
concentrations of SO2 and PM2.5 sulphate, and daily wet sulphur deposition.  The CMAQ-M3Dry, 970 
CMAQ-STAGE and WRF-Chem (IASS) had predominantly negative biases, and all other models had 971 
positive biases.  The same tendency can be seen in Figure 15(a), where CMAQ-M3Dry and CMAQ-972 
STAGE negative biases can be seen to occur in the warmer months, WRF-Chem (IASS) negative biases 973 

in the spring.  Despite these differences, the net contribution of SO2 dry deposition flux towards total 974 
sulphur deposition on an annual basis is relatively similar across the models (Table 5), with the standard 975 
deviation being relatively small, mostly driven by the SO2 deposition flux for WRF-Chem (UPM) being 976 
higher than for the other models. 977 

Particle sulphate (Figure 15(b), and Table 6) values were also closest to monthly observed values for 978 
CMAQ-M3Dry and CMAQ-STAGE, while being biased negative for WRF-Chem (IASS) and biased 979 

positive for the remaining models.  The evaluation of total S wet deposition (Figure 16(a), Table 6) 980 
showed that all models with the exception of GEM-MACH (Ops) had negative biases relative to the 981 
Canadian daily wet S deposition observations.  Weekly wet S deposition biases are also negative for most 982 
models (Table 6, Figure 16(b)), with only GEM-MACH-Ops having a positive bias in the ensemble.   983 

Figure 15.  Comparison of model (blue line) and observed (red line) monthly average surface 984 
concentrations of (a) hourly SO2 (ppbv)) and (b) daily PM2.5 sulphate (ug m-3), for the year 2016 (AQS, 985 
NAPS data). 986 

 987 
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Figure 16.  Comparison of model (blue line) and observed (red line) monthly average values of wet 989 
sulphur deposition for (a) daily CAPMoN data (eq ha-1 day-1), (b) weekly NADP data (eq ha-1 week-1), for 990 
the year 2016. 991 

 992 

Factors aside from emissions which affect the SO2 concentrations within the models are the loss processes 993 
of gas oxidation, uptake into hydrometeor water (and subsequent in-cloud oxidation), and dry deposition.  994 

Both the gas oxidation and hydrometeor uptake pathways may lead to particulate sulphate formation 995 
(through nucleation/condensation of sulphuric acid into particles and through evaporation of 996 
hydrometeors).  An underestimate of chemical conversion of SO2 within hydrometeors may thus be 997 
expected to result in underestimates of particulate sulphate and in sulphate ion wet deposition.  However, 998 
Table 16 shows relatively little bias for PM2.5 sulphate relative to observations for CMAQ-M3Dry and 999 

CMAQ-STAGE, and positive biases for the GEM-MACH models and WRF-Chem (UPM); these positive 1000 
biases in predicted particulate sulphate would argue against an insufficient conversion of SO2 to 1001 
particulate sulphate in the latter group of models.  Rather, the general tendency of negative biases in wet 1002 
sulphur deposition may indicate insufficient hydrometeor scavenging and subsequent aqueous-phase 1003 
oxidation of aerosols across all models.  We also note that the mean bias of SO2 concentrations for GEM-1004 

MACH (Ops) is more positive than those of GEM-MACH (Base) and GEM-MACH (Zhang), while the 1005 
particulate sulphate bias was lower, and the wet sulphate deposition bias was higher.  GEM-MACH (Ops) 1006 
makes use of an operational weather forecast for cloud fields, while GEM-MACH(Base) and GEM-1007 
MACH(Zhang) make use of an explicit cloud microphysics scheme, which allows weather/air quality 1008 
feedbacks to be simulated, but tends to underestimate the cloud amounts when used at lower resolution 1009 

such as the 10km grid cell size used in the simulations for these three models  in this study.   The 1010 
differences between {GEM-MACH (Base), GEM-MACH (Zhang)} and GEM-MACH (Ops) may thus 1011 
reflect weaker scavenging of aerosols into clouds in the Base and Zhang implementations.  1012 

  1013 
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Table 6.   Model Performance Metrics for SO2, PM2.5 SO4, Wet deposition of S, AQMEII4 North 1014 
American domain, 2016.  Bold-face letters show the highest scoring model.  1015 

Hourly SO2 (units ppbv where applicable) 

Performance 

Measure 

CMAQ-

M3Dry 

CMAQ-

STAGE 

WRF-

Chem 

(IASS) 

GEM-

MACH 

(Base) 

GEM-

MACH 

(Zhang) 

GEM-

MACH 

(Ops) 

WRF-

Chem 

(UPM) 

WRF-

Chem 

(UCAR) 

FAC2 0.27 0.28 0.26 0.28 0.28 0.28 0.26 0.29 

MB -0.18 -0.17 -0.03 0.11 0.14 0.24 0.61 0.17 

MGE 0.91 0.91 1.02 1.08 1.09 1.17 1.43 1.09 

NMGE 1.02 1.02 1.15 1.21 1.22 1.32 1.60 1.22 

RMSE 3.14 3.14 3.29 3.33 3.34 3.51 3.75 3.21 

R 0.15 0.15 0.12 0.14 0.14 0.13 0.13 0.13 

COE 0.04 0.03 -0.08 -0.14 -0.16 -0.24 -0.51 -0.15 

IOA 0.52 0.52 0.46 0.43 0.42 0.38 0.25 0.43 

PM2.5 SO4 (units g m-3, where applicable) 

FAC2 0.77 0.76 0.33 0.65 0.66 0.63 0.67 0.59 

MB -0.04 0.00 -0.41 0.28 0.26 0.10 0.10 0.32 

MGE 0.31 0.32 0.45 0.50 0.50 0.46 0.43 0.55 

NMGE 0.43 0.43 0.60 0.68 0.67 0.62 0.58 0.75 

RMSE 0.89 0.89 1.00 1.10 1.09 1.06 1.00 1.12 

R 0.45 0.46 0.40 0.40 0.40 0.38 0.39 0.40 

COE 0.37 0.36 0.10 -0.02 0.00 0.07 0.13 -0.12 

IOA 0.68 0.68 0.55 0.49 0.50 0.54 0.57 0.44 

Daily Total Wet S Deposition (units eq ha-1 d-1, where applicable) 

FAC2 0.35 0.36 0.00 0.40 0.40 0.41 0.39 0.19 

MB -0.19 -0.17 -0.57 -0.07 -0.08 0.09 -0.06 -0.31 

MGE 0.37 0.37 0.57 0.42 0.42 0.48 0.45 0.46 

NMGE 0.65 0.65 1.00 0.74 0.74 0.85 0.79 0.81 

RMSE 0.71 0.71 1.02 0.81 0.81 0.88 0.90 0.89 

R 0.61 0.61 0.06 0.52 0.52 0.54 0.47 0.44 

COE 0.31 0.31 -0.06 0.21 0.22 0.10 0.16 0.14 

IOA 0.65 0.65 0.47 0.60 0.61 0.55 0.58 0.57 

Weekly Total Wet S Deposition (units eq ha-1 week-1, where applicable) 

FAC2 0.46 0.47 0.00 0.41 0.41 0.41 0.45 0.21 

MB -0.21 -0.17 -1.78 -0.41 -0.42 0.30 -0.03 -1.18 

MGE 1.12 1.12 1.81 1.18 1.18 1.40 1.28 1.38 

NMGE 0.62 0.62 1.00 0.65 0.66 0.78 0.71 0.76 

RMSE 2.30 2.30 3.26 2.30 2.30 2.54 2.48 2.64 

R 0.63 0.63 0.03 0.55 0.55 0.57 0.53 0.46 

COE 0.34 0.34 -0.07 0.30 0.30 0.17 0.24 0.18 

IOA 0.67 0.67 0.46 0.65 0.65 0.58 0.62 0.59 

 1016 

GEM-MACH (Base), GEM-MACH (Zhang) and WRF-Chem (UCAR) have the most positive biases for 1017 
particulate sulphate.  As noted above, GEM-MACH (Base) and GEM-MACH (Zhang) share a common 1018 

framework, and unlike other models in the ensemble, they also share an implementation of the updated 1019 
particle deposition parameters of Emerson et al. (2020).  The Emerson et al.  (2020) makes use of 1020 
extensive measurement data, and compared to earlier parameterizations such as Zhang et al.  (2001), 1021 
results in decreased dry deposition velocities for sub-micrometer particles and increased dry deposition 1022 
velocities for particles larger than 0.2 to 0.8 um, depending on land use type.  The increased PM2.5 SO 4 1023 

values in GEM-MACH (Base) and GEM-MACH (Zhang) in Figure 15(b) may thus reflect decreases in 1024 
the deposition removal flux in the sub-micrometer portion of the bins in these 12-bin sectional model 1025 
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framework.  WRF-Chem (UPM) and WRF-Chem (UCAR) are also both sectional models making use of a 1026 
common modelling framework, with WRF-Chem (UPM) being a slightly earlier release than WRF-Chem 1027 
(UCAR).  Neither model made use of the Emerson et al.  (2020) update at the time the AQMEII4 1028 

simulations took place.  However, this option was later examined for the WRF-Chem (UCAR) 1029 
configuration by Ryu and Min (2022), who found that the Emerson et al.  (2020) dry deposition 1030 
parameterization, applied subsequent to the runs carried out here, resulted in an increase in the positive 1031 
PM2.5 bias from +4.5 to +6.7 ug m-3 and a shift towards less negative biases in PM10, from -19.7 to -1.77 1032 
ug m-3, similar to the biases in particulate sulphate and ammonium observed in Figure 15(b) between 1033 

{GEM-MACH (Base), GEM-MACH(Zhang)} and GEM-MACH (Ops).    Ryu and Min (2022) further 1034 
found that the additional update of replacing the default Slinn (1984) aerosol cloud scavenging 1035 
parameterization by the Wang (2014) parameterization offset the increase in PM2.5 SO4 biases associated 1036 
with the new particle dry deposition scheme, illustrating the extent to which combinations of 1037 
parameterizations are sometimes needed to improve model performance.  More recent versions of GEM-1038 

MACH also make use of multiphase hydrometeor partitioning, with and without the Wang (2014) semi-1039 
empirical scavenging scheme, with a significant increase in the uptake of particulate sulphate depending 1040 
on precipitation rate, and improvements in the wet sulphate performance relative to previous model 1041 
versions (Ghahreman et al., 2024).  Implementation of both updated particle dry deposition velocities and 1042 
wet scavenging methodology have thus resulted in reduced biases for these fields, for several of the 1043 

models examined here, in work subsequent to the simulations for AQMEII4. 1044 

With regards to wet sulphur deposition, Figure 16(a) and Table 6 shows a tendency of most models 1045 

towards negative biases for total daily wet S deposition.  However, this negative bias is much less 1046 
pronounced or even positive in comparison to the weekly wet S deposition data.  Other metrics of model 1047 
performance differed sharply between the two wet deposition observation datasets for some metrics, with 1048 
the weekly wet SO4

2- deposition data comparison having higher MGE, NMGE, and RMSE values than the 1049 
daily wet SO4

2- deposition data comparison.  The overall tendency of the performance was similar for 1050 

both datasets, with the CMAQ models having the best scores for metrics other than mean bias.  We note 1051 
that the daily and weekly NA wet deposition values correspond to monitoring networks in two different 1052 
locations (see Figure SI7(a)).  The daily values are from the Canadian CAPMoN network (stations in the 1053 
common AQMEII4 domain are located mostly in south-eastern Canada), while the weekly data from the 1054 
US NADP network are distributed throughout the USA.  The differences in model performance may thus 1055 

reflect regional differences in predicted meteorological and/or emissions fields. 1056 

One possible cause for the negative biases in wet deposition common to most models could be 1057 
underestimates in the amount of model-predicted precipitation, which in turn would reduce the wet flux. 1058 
The net precipitation totals converted to liquid water for the eight NA models and observations are shown 1059 
in Figure SI10, for both daily (CAPMoN) and weekly(NADP)  monthly averages.  While the monthly 1060 
averages of daily precipitation (Figure SI10(b)) suggest a tendency towards negative biases in the summer 1061 

months for some models, the time series of the precipitation biases does not follow that of the wet 1062 
sulphate deposition biases (for example, the difference relative to wet sulphate observations in Figure 1063 
06(a) remains relatively constant for CMAQ-M3Dry and CMAQ-STAGE, while the predicted 1064 
precipitation difference relative to observations for the same models in Figure SI10(a) shows more 1065 
negative biases in the summer than wintertime.  Model total precipitation biases thus do not appear to be a 1066 

major contributing factor to the sulphur flux biases found in this workT.   1067 

We also note the potential for the lower magnitude biases in the daily wet wet SO4
2-  evaluation, 1068 

compared to the weekly evaluation, to be the result of the region represented by the two monitoring 1069 
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networks.  Figure SI7 shows that the daily data are derived from a smaller geographic area than the 1070 
weekly data, hence regional performance differences may be affecting the two evaluation results.   1071 

Summary, North American S Deposition variability 1072 

Sulphur deposition results from a complex balance between SO2 oxidation, particulate sulphate formation, 1073 
scavenging and release of particles within clouds, in addition to the processes governing deposition of 1074 
each of the components.  The largest contributing pathways to North American sulphur deposition, in 1075 

descending order of importance, were wet deposition (SO4
2- + HSO3

-), particulate sulphate dry deposition, 1076 
and dry SO2(g) deposition in the reduced ensemble of mnodel runs.  The largest contributors to model-to-1077 
model variability in sulphur deposition, in descending order of importance, were particulate sulphate dry 1078 
deposition, wet deposition (SO4

2- + HSO3
-), and dry SO2(g) deposition.   1079 

CMAQ-M3Dry, CMAQ-STAGE, and GEM-MACH (Ops) had both the highest levels of wet deposition 1080 
and also the best scores relative to wet deposition observations.  Models with higher PM2.5 sulphate 1081 
positive biases relative to observations also had stronger negative biases for wet sulphate deposition, 1082 

indicating that the magnitude of particle scavenging into hydrometeors may play a role in both biases in 1083 
the models.  Comparisons between {GEM-MACH (Base), GEM-MACH (Zhang)} and {GEM-MACH 1084 
(Ops)} provide some evidence for this effect.  WRF-Chem (UPM) and WRF-Chem (UCAR) have very 1085 
low particulate sulphate deposition fluxes relative to the other models, and substantial positive biases in 1086 
PM2.5 sulphate and negative biases in wet sulphate deposition, relative to observations, likely related to 1087 

insufficient wet scavenging of sulphate particles into hydrometeors (Ryu and Min, 2022) 1088 

3.2.2 Causes of N Deposition Variability in North America Domain Simulations  1089 

The common grid spatial average and percent contribution of each of the species contributing to total 1090 

annual N deposition for 2016 are given in Table 7. The columns in the Table are arranged in descending 1091 
order from left to right of contribution to the reduced ensemble total nitrogen deposition for each 1092 
contributing chemical (“Red. Ens. Avg” row).  The impact of variability on the model deposition from 1093 
each component for each model is once again shown as the standard deviation across the models used for 1094 
the reduced ensemble (“Red. Ens. Std. Dev” row).  From the standard deviation row, it can be seen that 1095 

the variation (standard deviation) between models for the contributions towards total N deposition are 1096 
driven, in descending order, by particle ammonium (DAM column, where the standard deviation for 1097 
particle ammonium deposition is larger than the reduced ensemble mean value), followed by wet 1098 
ammonium ion (WNH4), wet nitrate ion (WNO3), dry HNO3 (DHNO3), dry particle nitrate (DNI), dry 1099 
NO2 (DNO2), dry ammonia gas (DNH3), with the remaining species contributing a small percentage of 1100 

the total variability.    Both the particle ammonium and wet ammonium variability between the models is 1101 
largely driven by the GEM-MACH group of models, which have average dry particle ammonium and wet 1102 
ammonium fluxes which are respectively 17.4x and 1.76x  higher than the other models   1103 

We next evaluate the models’ nitrogen performance using the available concentration and wet deposition 1104 
flux data to determine the impact of the parameterization differences on model performance, and hence 1105 
identify which components in which models might be improved.  1106 

 1107 

 1108 

https://doi.org/10.5194/egusphere-2024-2226
Preprint. Discussion started: 30 July 2024
c© Author(s) 2024. CC BY 4.0 License.



43 
 

Table 7.  Contributions of N species towards total deposition (eq ha -1 yr-1) and percent of total N deposited, over the 1109 
common AQMEII4 NA grid, arranged in descending order of importance to the reduced ensemble average. WNH4:   1110 
wet deposition of NH4

+(aq). DHNO3: dry deposition of HNO3(g).  WNO3: wet deposition of NO3
-(aq).  DAM: dry 1111 

deposition of particulate ammonium.  DNH3: dry deposition of NH3(g).  DNI: dry deposition of particulate nitrate.  1112 
DNO2: dry deposition of NO2(g).  DPAN: dry deposition of peroxyactylnitrate gas.  DRN3: dry deposition of 1113 
gaseous organic nitrate gases.  DN2O5: dry deposition of N2O5(g).  DHNO4: dry deposition of pernitric acid gas.  1114 
DNO: dry deposition of NO(g).  WRF-Chem (IASS) did not report dry particle fluxes.  The GEM-MACH 1115 
models and WRF-CHEM(UPM) do not include dry deposition of N2O5(g), and the GEM-MACH models 1116 

do not dry deposit HNO4(g). 1117 

Average (eq ha-1 yr-1) 

 Model 

 Species 
CMAQ-

M3Dry 
CMAQ-

STAGE 

WRF-

Chem  

(IASS) 

GEM-

MACH 

(Base) 

GEM-

MACH 

(Zhang) 

GEM-

MACH 

(Ops) 

WRF-

Chem 

(UPM) 

WRF-

CHEM 

(UCAR) 

Red. 

Ens 

Avg 

Red. 

Ens. 

Std 

Dev 
WNH4  51 60.4 0.2 129 129 114.2 64.3 29.4 82.5 37.7 
DHNO3  52.5 51.9 0 66.9 56.2 62.4 75.1 46.8 58.8 9.1 
WNO3  65.6 66.9 0.2 45 51.3 71.9 73.1 33.6 58.2 14 
DAM  8.5 8.4 nd 98.5 100.7 82.6 2.7 2 43.3 44.2 
DNH3  33.2 29.5 36.3 26.9 26.6 40 40.3 47.2 34.8 7.3 
DNI  18.3 18.9 nd 26.8 32.7 19 7.6 7.1 18.6 8.6 
DNO2  7.9 7.3 7.7 23.8 21.9 26.7 10.9 10.8 15.6 7.6 
DPAN  4.9 4.7 2 7.7 7.4 10 2.7 2 5.6 2.7 
DRN3  6.6 4.9 0.4 1.8 2.4 3.1 0.7 3.1 3.2 1.8 
DN2O5  1.2 1.1 2.2 nd nd nd nd nd 1.2 0.1 
DHNO4  0.4 0.1 0 nd nd nd 0.8 0.4 0.3 0.1 
DNO  0.5 0.5 0 0.1 1.2 0.2 0 0 0.4 0.4 
Total N 250.7 254.7 49 426.5 429.4 430 278.2 182.4 321.7 96.5 
Percent Contribution 

 Model 

Species 
CMAQ-

M3Dry 

CMAQ-

STAGE 

WRF-

Chem 

(IASS) 

GEM-

MACH 

(Base) 

GEM-

MACH 

(Zhang) 

GEM-

MACH 

(Ops) 

WRF-

Chem 

(UPM) 

WRF-

CHEM 

(UCAR) 

Red. 

Ens 

Avg 

Red. 

Ens. 

Std 

Dev 

WNH4  20.4 23.7 0.4 30.2 30 26.5 23.1 16.1 25.6 4.7 

DHNO3  21 20.4 0 15.7 13.1 14.5 27 25.7 18.3 5 

WNO3  26.2 26.3 0.3 10.6 11.9 16.7 26.3 18.4 18.1 6.4 

DAM  3.4 3.3 nd 23.1 23.5 19.2 1 1.1 13.5 9.9 

DNH3 13.2 11.6 74.2 6.3 6.2 9.3 14.5 25.9 10.8 7.6 

DNI  7.3 7.4 nd 6.3 7.6 4.4 2.7 3.9 5.8 1.8 

DNO2  3.2 2.9 15.8 5.6 5.1 6.2 3.9 5.9 4.9 1.3 

DPAN  1.9 1.9 4.1 1.8 1.7 2.3 1 1.1 1.7 0.5 

DRN3  2.6 1.9 0.7 0.4 0.6 0.7 0.2 1.7 1 0.8 

DN2O5  0.5 0.4 4.4 nd nd nd nd nd 0.4 0 

DHNO4  0.2 0 0 nd nd nd 0.3 0.2 0.1 0.1 

DNO  0.2 0.2 0.1 0 0.3 0 0 0 0.1 0.1 

WNH4  20.4 23.7 0.4 30.2 30 26.5 23.1 16.1 25.6 4.7 

1118 
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Dry deposition of particle ammonium 1119 

The largest source of variability between North America models’ total N predictions resides in the dry 1120 
particle ammonium deposition fluxes, with Table 7 showing that the standard deviation of this deposition 1121 
flux across models was essentially as large as the reduced ensemble average.  Particle dry ammonium 1122 
deposition contributes a disproportionately high contribution to total N variability across the North 1123 

American ensemble, despite the magnitude of the ensemble average particle ammonium dry deposition 1124 
flux being less than the deposition of wet ammonium ion, dry nitric acid gas, or wet nitrate ion,   1125 

Figure 17 compares the monthly average PM2.5 ammonium concentrations with observations (station 1126 
locations appear in Figure S7(b)), and Table 8 provides detailed statistics.  From the latter, CMAQ-1127 
M3Dry and CMAQ-STAGE have the best overall performance for particulate ammonium, and GEM-1128 
MACH (Base), GEM-MACH (Zhang) and GEM-MACH (Ops) have the worst performance by the 1129 

statistical measures used here.  This latter group of models also have the largest magnitude of positive 1130 
biases relative to observed PM2.5 ammonium concentrations, while the CMAQ implementations have the 1131 
negative biases, and the remaining models have smaller magnitude positive biases.  Figure 17 shows that 1132 
CMAQ-M3Dry, CMAQ-STAGE, WRF-Chem (IASS) and to a lesser extent WRF-Chem (UPM) have a 1133 
greater seasonal variability in model particle ammonium (blue line) than observed (red line), with the 1134 

difference between summer and winter (months 1 and 12 versus months 5 through 9) being higher in the 1135 
models than in observations.   1136 

The GEM-MACH contributions to model N variability in critical load exceedances are thus linked to poor 1137 
model performance for PM2.5 ammonium.  This poor performance is likely due to two factors, which can 1138 
be deduced from comparing the process representations implemented in the models (section 2.2).   1139 

The first factor, which differentiates GEM-MACH (Base), GEM-MACH (Zhang) and GEM-MACH 1140 
(Ops) from the other ensemble members relates to how inorganic aerosol thermodynamic partitioning  1141 
chemistry has been implemented: while all this process representation in the models of the ensemble is 1142 
derived from the ISORROPIA module (Nenes et al., 1998; Fountoukis et al., 2007), the GEM-MACH 1143 

implementations in AQMEII-4 employ a partial speciation of SO4
2-, NH4

+ and NO3
- (Makar et al., 2003), 1144 

and do not include the reactions involving particulate base cations (Ca2+, Mg2+, Na+, K+).  The other 1145 
models in the ensemble do include these additional reactions. In the absence of base cation chemistry, the 1146 
formation of particle ammonium will be controlled by the availability of ammonia gas in excess of that 1147 
required to charge balance particulate sulphate, as well as by the availability of nitric acid gas.  In the 1148 

presence of base cations, nitric acid gas will preferentially associate with base cations rather than 1149 
ammonia, leaving less HNO3 available for particle ammonium nitrate formation.  Several observational 1150 
studies have shown that when base cations are present, their peak mass occurs in the coarse particle size 1151 

mode (> 2.5 m diameter), where they will have higher deposition velocities (e.g. inland, agricultural dust 1152 

sources, Makar et al., 1998; ocean sources of sea-salt, Anlauf et al., 2006).   Base cation inorganic 1153 
heterogeneous chemistry thus provides a competing pathway for uptake of nitrate into particles, and when 1154 
present, will also reduce the amount of NH3 that may be taken up by particles, especially in the fine mode.  1155 
The positive bias of PM2.5 ammonium in Figure 17 for GEM-MACH relative to the other models likely 1156 
represents the impact of simplified inorganic aerosol chemistry. 1157 

The second factor influencing the GEM-MACH models positive particulate ammonium biases may be 1158 

reflected in the biases for GEM-MACH (Base) and GEM-MACH (Zhang), which are 50% to a factor of 1159 
two, respectively, higher than that of GEM-MACH (Ops):  that is, an additional source of bias resides in 1160 
the former two model implementations that is not present in the latter implementation.  The likely source 1161 
of this additional bias is their use of Emerson et al.  (2020) particle deposition velocities in these 1162 

https://doi.org/10.5194/egusphere-2024-2226
Preprint. Discussion started: 30 July 2024
c© Author(s) 2024. CC BY 4.0 License.



45 
 

implementations, in the absence of enhanced wet scavenging of aerosols, as discussed above for PM2.5 1163 
sulphate, and described in Ryu and Min (2022) and Ghahreman et al.  (2024).  Ryu and Min (2022) 1164 
showed that the use of the updated particle deposition velocity as per Emerson et al.  (2020), when 1165 

implemented in the absence of concurrent multiphase wet scavenging updates led to positive biases in 1166 
PM2.5 concentrations in the WRF-Chem model.      1167 

We note that the manner in which inorganic heterogeneous chemistry is simulated also differs between the 1168 
models. CMAQ-M3Dry and CMAQ-STAGE calculate local equilibrium concentrations at different 1169 
modes of the size distribution, and WRF-Chem (UPM) and WRF-Chem (UCAR) also calculate the 1170 
equilibrium with respect to specific size bins, while GEM-MACH (Base), GEM-MACH (Zhang) and 1171 
GEM-MACH (Ops) carry out a single bulk calculation across all size bins.  The use of a bulk calculation 1172 

is a third simplification for the latter group of models, and may also affect the particulate ammonium 1173 
performance of these models.   1174 

Figure 17.  PM2.5 Ammonium compared to observations, North American Model Ensemble, 2016.  Red line:  1175 
monthly observed average.  Blue line:  monthly model average. 1176 

 1177 

1178 
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Table 8.   Model Performance Metrics for PM2.5 ammonium, wet deposition of ammonium ion, wet 1179 
deposition of nitrate ion, AQMEII4 North American domain, 2016.  Bold-face letters show the highest 1180 
scoring model. 1181 

PM2.5 NH4 (units g m-3, where applicable) 

Performance 

Measure 

CMAQ-

M3Dry 

CMAQ-

STAGE 

WRF-

Chem 

(IASS) 

GEM-

MACH 

(Base) 

GEM-

MACH 

(Zhang) 

GEM-

MACH 

(Ops) 

WRF-

Chem 

(UPM) 

WRF-

Chem 

(UCAR) 

FAC2 0.48 0.49 0.31 0.45 0.42 0.46 0.51 0.46 

MB -0.07 -0.04 0.03 0.32 0.41 0.20 0.10 0.06 

MGE 0.23 0.24 0.33 0.45 0.52 0.38 0.31 0.31 

NMGE 0.68 0.70 0.96 1.31 1.53 1.10 0.91 0.91 

RMSE 0.59 0.60 0.75 0.81 0.93 0.75 0.69 0.69 

R 0.37 0.37 0.30 0.33 0.32 0.32 0.30 0.23 

COE 0.19 0.17 -0.13 -0.55 -0.80 -0.30 -0.08 -0.08 

IOA 0.60 0.58 0.43 0.23 0.10 0.35 0.46 0.46 

Daily Total Wet NH4 Deposition (units eq ha-1 d-1, where applicable) 

FAC2 0.26 0.29 0.00 0.39 0.38 0.43 0.28 0.14 

MB -0.49 -0.44 -0.94 -0.01 0.00 -0.10 -0.39 -0.59 

MGE 0.67 0.65 0.94 0.76 0.78 0.68 0.71 0.80 

NMGE 0.72 0.69 1.00 0.81 0.83 0.73 0.76 0.86 

RMSE 1.46 1.43 1.90 1.66 1.71 1.45 1.54 1.73 

R 0.55 0.57 0.26 0.52 0.51 0.59 0.49 0.37 

COE 0.32 0.34 0.05 0.23 0.21 0.31 0.28 0.19 

IOA 0.66 0.67 0.53 0.61 0.61 0.65 0.64 0.59 

Weekly Total Wet NH4 Deposition (units eq ha-1 week-1, where applicable) 

FAC2 0.28 0.33 0.00 0.41 0.42 0.44 0.31 0.14 

MB -1.51 -1.29 -2.97 0.39 0.38 0.08 -1.19 -2.18 

MGE 2.13 2.03 2.97 2.46 2.44 2.18 2.12 2.43 

NMGE 0.72 0.68 1.00 0.82 0.82 0.73 0.71 0.82 

RMSE 4.29 4.13 5.49 5.06 5.02 4.42 4.25 4.78 

R 0.50 0.53 0.29 0.51 0.51 0.54 0.50 0.40 

COE 0.25 0.28 -0.05 0.13 0.14 0.23 0.25 0.14 

IOA 0.62 0.64 0.47 0.57 0.57 0.62 0.63 0.57 

Daily Total Wet NO3 Deposition (units eq ha-1 d-1, where applicable) 
FAC2 0.39 0.39 0.00 0.38 0.39 0.49 0.43 0.28 

MB -0.18 -0.16 -0.68 -0.26 -0.19 -0.07 -0.05 -0.34 

MGE 0.44 0.44 0.68 0.45 0.46 0.44 0.48 0.52 

NMGE 0.65 0.65 1.00 0.66 0.68 0.64 0.71 0.76 

RMSE 0.80 0.80 1.16 0.84 0.85 0.83 0.89 0.97 

R 0.61 0.62 0.22 0.56 0.56 0.59 0.55 0.44 

COE 0.28 0.28 -0.11 0.27 0.25 0.29 0.22 0.15 

IOA 0.64 0.64 0.45 0.63 0.63 0.64 0.61 0.58 

Weekly Total Wet NO3 Deposition (units eq ha-1 week-1, where applicable) 

FAC2 0.50 0.50 0.00 0.42 0.45 0.49 0.43 0.33 

MB -0.10 -0.06 -1.86 -0.64 -0.41 0.06 0.10 -0.87 

MGE 1.09 1.09 1.86 1.12 1.12 1.17 1.34 1.26 

NMGE 0.58 0.59 1.00 0.60 0.60 0.63 0.72 0.68 

RMSE 1.86 1.88 2.93 1.96 1.95 1.93 2.23 2.19 

R 0.65 0.65 0.35 0.58 0.58 0.60 0.53 0.48 

COE 0.32 0.32 -0.16 0.30 0.30 0.27 0.16 0.21 

IOA 0.66 0.66 0.42 0.65 0.65 0.64 0.58 0.61 

 1182 
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The spatial distribution of PM2.5 ammonia biases was examined in Figure 18, for the month of July, 2016 1183 
(July was chosen due to the expectation that bidirectional fluxes would have a higher impact in the 1184 
summer months). The region with the highest positive biases (dark red circles, Figure 18) are in the same 1185 

station locations for all models, in the agricultural region to south of the Great Lakes.  Positive PM2.5 1186 
ammonium MB also occur near urban regions in western USA (Seattle/Tacoma, Yakima, Portland, 1187 
Sacramento, San Jose, Boise, Butte, Helena, Denver, Boulder, and Albuquerque) and at one eastern site 1188 
Miami.  A re-examination of ammonia gas deposition and emissions parameters and primary particle 1189 
ammonium emissions inventories are recommended for these locations, given that they are likely having a 1190 

large impact on model performance statistics.  The CMAQ models and WRF-Chem (IASS) have negative 1191 
to minimal biases along the coastlines and SW USA (regions of sea-spray NaCl and wind-blown base 1192 
cation containing dust, respectively), while WRF-Chem (UPM) and WRF-Chem (UCAR) have small 1193 
negative to positive biases in these regions, and the GEM-MACH models are uniformly biased positive in 1194 
these regions.  This provides support to the possibility that the GEM-MACH positive bias in particulate 1195 

ammonium concentrations is due to missing particulate base cation chemistry; the regions where 1196 
particulate base cations would be expected to contribute significantly to total particulate mass are also the 1197 
regions where the GEM-MACH models have positive biases, and the biases in the other model biases are 1198 
not as significant. 1199 

Figure 18.  Mean Biases, PM2.5 NH4, July, 2016, by station (g m-3).  Negative values given in blue, positive biases 1200 
given in red.  Note that colour scale is logarithmic.   1201 

 1202 
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Wet deposition of ammonium and nitrate ions. 1203 

Wet deposition of ammonium ion is the largest contributor to the North America reduced ensemble Ndep, 1204 
and the second largest contributor to model-to-model variability in N deposition (Table 7).  Wet 1205 
deposition of nitrate ion is the third largest contributor to both the NA ensemble total N deposition and 1206 
model-to-model variability in N deposition.  Time series of the monthly averages of observed and 1207 

modelled daily (CAPMoN) and weekly (NADP) wet NH4
+ deposition fluxes are shown in Figure 19.  The 1208 

monthly mean of modelled daily values (Figure 19(a)) are generally biased negative, with the exceptions 1209 
of the months of July and August for GEM-MACH (Base) and GEM-MACH (Zhang).  The observed 1210 
maximum in NH4

+ wet deposition occurs in April (Figure 19(a), red line, month 4) – this seasonal 1211 
variation is captured only by GEM-MACH (Ops) and WRF-Chem (UCAR), with the other models 1212 

predicting peak deposition in between June through August.   The monthly average of the weekly wet 1213 
NH4

+ deposition fluxes (Figure 19(b)) shows a similar pattern, with the observed values (red lines, Figure 1214 
19(b)) peaking in April, and all of the models except for WRF-Chem (UCAR) peaking in June.  As was 1215 
the case for wet sulphate deposition, the observed seasonal variation is apparently not connected with 1216 
biases in precipitation predictions (see Figure S10(a,b), supplemental information), with the possible 1217 

exception of WRF-Chem (UCAR), for which total precipitation is biased substantially negative 1218 
throughout the year.   1219 

Figure 19.  Time series of monthly average observed (red line) and modelled (blue line) wet ammonium deposition 1220 
fluxes, for (a) Daily CAPMoN data (eq ha-1 day-1), and (b) Weekly NADP data (eq ha-1 week-1). 1221 

 1222 

As noted above, the models taking part in this ensemble did not make use of multiphase hydrometeor 1223 
scavenging in precipitation.  The maximum wet NH4

+ deposition negative bias in April featuring for 1224 
several models may reflect the absence of this level of detail in hydrometeor scavenging, with the absence 1225 
of snow scavenging potentially impacting early spring deposition.   We note that the weekly and daily 1226 

monitoring networks cover different geographical regions, hence the differences in model performance 1227 
relative to the two observation datasets (compare the CAPMoN and NADP station locations in yellow and 1228 
green circles respectively, Figure S7(a).   1229 
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The mean biases in average daily and weekly wet NH4
+ deposition for the month of April are shown in 1230 

Figure 20.  WRF-Chem (IASS), CMAQ-M3Dry, and CMAQ-STAGE have predominantly negative biases 1231 
throughout the region, WRF-Chem (UCAR) and WRF-Chem (UPM) have a few stations with more 1232 

positive biases, and the GEM-MACH models have both positive and negative biases throughout the 1233 
domain.  Insight into the differences in model performance can be gained through reviewing the manner 1234 
in which each model parameterizes aerosol activation and scavenging: 1235 

(1)  GEM-MACH (Base), GEM-MACH (Zhang), GEM-MACH (Ops), WRF-Chem (UPM), and 1236 
WRF-Chem (UCAR) make use of the aerosol activation scheme of Abdul-Razzak and Ghan 1237 
(2000), and the Slinn (1984) approach to aerosol scavenging.   1238 

(2) In GEM-MACH (Ops), the aerosol activation and scavenging schemes are decoupled from 1239 

meteorological feedbacks, while GEM-MACH (Base), GEM-MACH (Zhang), WRF-Chem 1240 
(UPM) and WRF-Chem (UCAR) are “aerosol-aware”/full feedback models incorporating 1241 
parameterizations for the aerosol direct and indirect effects. The latter will result in cloud 1242 
formation from model-produced aerosols acting as cloud-condensation nuclei; clouds are more 1243 
likely to form where aerosol concentrations are high (and thus more likely to scavenge aerosols 1244 

below the clouds as well), compared to offline models.  Very high aerosol concentrations may 1245 
also reduce cloud droplet size and cloud to precipitation conversion, potentially making clouds 1246 
more persistent, while reducing precipitation. 1247 

(3) WRF-Chem (IASS) also makes use of aerosol direct and indirect effect feedbacks, but employs 1248 
the approach of Chapman et al. (2009) for aerosol scavenging. 1249 

(4) CMAQ-M3Dry and CMAQ-STAGE are off-line models (no feedbacks between aerosols, cloud 1250 
formation and radiative transfer takes place), where interstitial and nucleation aerosol scavenging 1251 
by cloud droplets is modelled following Binkowski and Roselle (2003), and the wet deposition 1252 
rate is a simple parameterization dependent on the cloud total liquid water content, cloud 1253 
thickness, and cloud precipitation rate (Fahey et al., 2017). 1254 

The Slinn (1984) aerosol scavenging approach makes use of different observation-based aerosol 1255 

collection efficiency formulae for rain and snow, respectively, where temperature dependence in the 1256 
collection efficiency such as a 0 C  may be used to distinguish between liquid and solid hydrometeor 1257 
collection efficiencies. Subsequent to the AQMEII-4 simulations carried out here, parameterizations that 1258 
utilize multiphase precipitation data with multiple hydrometeor classes, such as that of Wang et al. 1259 
(2014), have been tested within the modelling framework of GEM-MACH (Ghahreman et al., 2024).(.  1260 

Similarly, Ryu and Min (2022) describes the impact of multiphase hydrometeor scavenging as 1261 
implemented in the WRF-Chem modelling framework.  These tests resulted in significant improvements 1262 
in particulate concentrations and wet deposition compared to previous implementations employing the 1263 
approach of Slinn (1984).   The approach for scavenging in Binkowski and Roselle (2003) assumes 1264 
scavenging only occurs to cloud droplets; snow scavenging is not considered.  However, snow scavenging 1265 

at higher precipitation rates is known to be one to two orders of magnitude more efficient than scavenging 1266 
by rain.  Hence the use of the  (Slinn (1984) parameterization instead of multiphase hydrometeor 1267 
scavenging and the ;  Wang, (2014) parameterization in GEM-MACH, and the omission of multiphase 1268 
hydrometeor scavenging in CMAQ, may account for the springtime bias in all models noted here.  1269 

The causes for the differences in wet deposition of NH4 between WRF-Chem (IASS), WRF-Chem (UPM) 1270 
and WRF-Chem (UCAR) may result from the use of the Chapman et al.  (2009) wet scavenging approach 1271 
in the first model, and the implementation of Abdul-Razzak and Ghan (2000), and the Slinn (1984) 1272 

approaches in the latter two models.  All three models make use of the Morrison Two-Moment cloud 1273 
microphysics scheme and (Morrison et al., 2009), though WRF-Chem (IASS and WRF-Chem (UPM) 1274 
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differ from WRF-Chem (UCAR) in the parameterization of convective clouds (See Table 2).  Differences 1275 
in aerosol scavenging implementations may account for some of the differences in wet ammonium 1276 
deposition between these models, as may the manner in which convective clouds identify cloud 1277 

condensation nuclei from aerosol size distribution and speciation within the ir convective 1278 
parameterizations. 1279 

Wet nitrate ion deposition is the third largest source of N deposition in the North American ensemble as 1280 
well as the third largest source of model-to-model variability (Table 7).  CMAQ-M3Dry, CMAQ-STAGE 1281 
and GEM-MACH (Ops) have the best performance scores for wet nitrate deposition (Table 8).  GEM-1282 
MACH (Base) and GEM-MACH (Zhang) have larger magnitude and more negative biases than GEM-1283 
MACH (Ops), despite all three models making use of the same modelling framework.  The only 1284 

difference between GEM-MACH (Base) and GEM-MACH (Zhang) is the gas-phase dry deposition 1285 
algorithm employed (see Table 3).  The increase in wet deposition negative bias magnitude going from 1286 
GEM-MACH (Zhang) to GEM-MACH (Base) in Table 8 (from -0.19 to -0.26 eq ha-1 d-1 for daily 1287 
CAPMoN data, and from -0.41 to -0.64 for weekly NADP data) is therefore attributable to gas-phase 1288 
deposition differences.  This is also reflected in the HNO3 dry deposition flux for the two models in Table 1289 

7, with the deposition flux for GEM-MACH (Base) at 66.9 eq ha-1 yr-1 being 19% higher than the GEM-1290 
MACH (Zhang) value of 56.2 eq ha-1 yr-1. 1291 

The remainder of the difference in wet nitrate deposition bias between (GEM-MACH (Base, Zhang) and  1292 
GEM-MACH (Ops) must be due to other factors in the model configuration as described in Table 3.  1293 
Based on the PM2.5 sulphate and PM2.5 nitrate evaluations (Table 6, Table 8), as well as the work of 1294 
Ghahreman et al.  (2024) and Ryu and Min (2022), we believe that the cause of the additional wet nitrate 1295 

negative bias resides in the use of the new particle deposition velocity algorithm in the absence of a 1296 
simultaneous update in the wet deposition algorithm to make use of multiphase hydrometeor scavenging 1297 
of aerosols.  For example, the particulate matter scavenging coefficients for snow are one to two orders of 1298 
magnitude more efficient than for rain – including snow scavenging (which may occur at higher 1299 
elevations even in the summer) will lead to greater uptake of particles (Ghahreman et al., 2024).  The 1300 

Emerson et al. 2020 parameterization will lead to less particle deposition in sub-micrometer particle sizes 1301 
(and hence would otherwise increase PM2.5 concentrations – the increased scavenging associated with 1302 
multiphase hydrometeors will offset this effect. 1303 

Dry Deposition of HNO3 1304 

Dry deposition of HNO3 is the 2nd largest source of Ndep in the reduced ensemble, and the 4 th largest 1305 
source of model-to-model variability.   1306 

The spatial variation of the annual sum of the effective deposition fluxes for HNO3 dry deposition are 1307 
shown in Figure S11, Figure S12, Figure S13 and Figure S14, representing the mass of HNO3 transferred 1308 
to the surface via the cuticle, soil, stomatal and lower canopy pathways respectively, and are summarized 1309 
as common grid totals in Figure 21.  Effective fluxes build on the concept of effective conductance: the 1310 

product of the hourly deposition flux with the ratio of specific pathway conductance to total deposition 1311 
velocity, for each of the four pathways (Galmarini et al., 2021).  The Figures thus depict the contributions 1312 
of each pathway towards the HNO3 dry deposition mass flux for each model1.  Effective fluxes 1313 
incorporate changes in the flux resulting from changes in chemical concentration associated with factors 1314 
in addition to deposition.  However, comparison of the effective flux values of Figure 21 to effective 1315 

 
1 Note that the CMAQ-M3dry and CMAQ-STAGE models incorporate the lower canopy pathway into the soil 

pathway; the lower canopy effects are not absent in these models, but form part of the soil pathway, and hence are 

reported here as part of the soil pathway. 
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conductances (not shown) has a similar pattern, implying that the deposition velocity is the dominating 1316 
factor in the HNO3 deposition flux.   The HNO3 mass flux is dominated by the cuticle pathway (Figures 1317 
S11, 21), followed by the soil pathway (Figures S12, 21).  All models show a similar pattern in HNO3 1318 

annual cuticle flux (largest fluxes in the south-eastern USA, lowest fluxes over the western mountain 1319 
ranges and the Canadian boreal forest), though the magnitudes of the fluxes vary, with WRF-Chem 1320 
(UPM) having the highest flux, GEM-MACH (Zhang) showing much lower fluxes for specific land use 1321 
types over the western mountains compared to the other models.   1322 

The HNO3 dry deposition velocity parameterizations in the GEM-MACH models depends in part on 1323 
deposition pathway parameterizations employing functions of the ozone and sulphur dioxide pathway 1324 
values (Makar et al., 2018; Zhang et al., 2003).  Other recent AQMEII4 work for ozone dry deposition 1325 

using an observation-driven single-point modeling framework (Clifton et al., 2023) found that the ozone 1326 
deposition velocity for GEM-MACH (Base) has positive biases in the summer months (average across 8 1327 
sites +73%), negative in the winter months (8 site average of -33%), while GEM-MACH (Zhang) has 1328 
smaller summer biases (+3%) and high winter biases (+50%).   This is consistent with the increase in dry 1329 
HNO3 deposition flux going from GEM-MACH (Zhang) to GEM-MACH (Base) though HNO also 1330 

deposits via dissociation (sulphur dioxide pathway); not all of the observed effects can be attributed to the 1331 
use of O3 as a proxy in part of the deposition algorithm..  A portion of the increase in the negative bias in 1332 
wet nitrate deposition going from GEM-MACH (Zhang) to GEM-MACH (Base) is thus the result of 1333 
higher HNO3 dry deposition removal of the available nitrate which would otherwise be taken up into 1334 
clouds.   1335 

  1336 
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Figure 20.  Model mean biases in wet ammonium deposition for the month of April, 2016, North America  (eq ha-1 1337 
yr-1).  Daily station values of the mean bias (CAPMoN network) shown as diamond symbols, weekly station values 1338 
(NADP network) as circles.  Positive biases shown in red, negative biases shown in blue; note that colour scale 1339 
intervals are logarithmic. 1340 

 1341 

  1342 
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Figure 21.  Averages of flux pathway contributions to HNO3 dry deposition, AQMEII4 common NA grid, 1343 
2016 (eq ha-1 yr-1). 1344 

 1345 

NH3 and the role of bidirectional flux algorithms 1346 

NH3 deposition fluxes were the fifth largest driver of ensemble nitrogen deposition, and the 7th largest 1347 
driver of Ndep variability in North America.  Two different observation datasets for the year 2016 were 1348 
used to evaluate model NH3 concentration performance, Cross-track Infrared Sounding (CrIS) satellite 1349 

retrievals of NH3 (see SI for retrieval procedure and references) and AMoN (Chen et al., 2014; AMoN, 1350 
2024) surface monitoring network observations (see SI Figure S8(b) for AMoN measurement locations).  1351 
The two datasets evaluate model NH3 performance in different ways.  The CrIS observations (and model 1352 
values extracted for evaluation) correspond to the specific time-of-day of the satellite overpass, for the 1353 
polar orbiting platform upon which the CrIS instrument is based.  The evaluation against CrIS data is thus 1354 

a measure of the model performance at early afternoon local time.  The AMoN observations in contrast 1355 
are two-week integrated average concentrations; the AMoN comparison evaluates average model 1356 
performance on this integrated time scale, and hence includes into that average diurnal variations in NH3 1357 
concentrations not available in the CrIS observations.   1358 

The evaluation of the models’ NH3 against CrIS observations at overpass time is shown in Table 9 and 1359 
Figure 22.  The general trend for the models is one of negative biases in NH3 concentrations. CMAQ-1360 
M3Dry and CMAQ-STAGE, have the largest negative NH3 biases, lowest FAC2, highest MGE, lowest R, 1361 

lowest COE and lowest IOA scores in Table 9.  This suggests that the magnitude of the fluxes and/or the 1362 
balance between positive (downward; deposition) and negative (upward; emission) fluxes for CMAQ-1363 
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M3Dry and CMAQ-STAGE are the cause of the model’s relatively poor performance for NH3.  GEM-1364 
MACH (Base) and GEM-MACH (Zhang) have the smallest (and positive) baises compared to the other 1365 
models, and these two models as well as WRF-Chem (UPM) and WRF-Chem (UCAR) have the best 1366 

overall scores for NH3 against satellite data. 1367 

The satellite data comparison of Figure 22 also shows some significant differences between observed 1368 

ammonia and all models’ predicted ammonia, particularly over water bodies (oceans, Great Lakes), with 1369 
observed NH3 in the range 1-3 ppbv in the Atlantic and near Baja California, while the models all show 1370 
NH3 over the oceans always below 0.3 to 0.5 ppbv, and decreasing with increasing distance from the 1371 
shoreline.  All models reach 0.0 – 0.01 ppbv at the greatest distances from the shoreline, while the satellite 1372 
observations are above 0.5 ppbv (lower detection limit ~0.3 ppbv) throughout the common AQMEII4 1373 

domain.   1374 

NH3 emissions from natural sources has been a source of ongoing interest in the global modelling 1375 
community due to its properties as a greenhouse gas.  Paulot et al. (2015) reviewed estimates of global 1376 
oceanic NH3 emissions, with a range of 7 – 23 Tg N yr-1 and their own estimate being lower at 2.5 Tg N 1377 
yr-1.  Their estimated maps of NH3 emissions showed relatively lower values on the western shoreline of 1378 
North America (Pacific coast) than on eastern shoreline (Atlantic coast), and high emissions in three out 1379 

of the four oceanic NH3 flux models tested, in the Gulf of Mexico and along the Gulf stream between 1380 
North America and Europe (their Figure 4).  Subsequent simulations of oceanic outgassing (Paulot et al., 1381 
2020) showed oceanic outgassing in the Gulf of Mexico in excess of 0.03 g N m -2 yr-1 (17.6 eq ha-1 yr-1), 1382 
and between 0.01 and 0.02 g N m -2 yr-1 (5.9 to 11.8 eq ha-1 yr-1) in the Gulf Stream.  The oceanic 1383 
emissions model of Paulot et al. (2020) would be relatively straightforward to implement in a regional 1384 

modelling context; our work suggests that a considerable deficit in oceanic NH3 may be occurring in the 1385 
current regional air-quality models. 1386 

The evaluation of the models’ NH3 against biweekly surface observations at the AMoN sites is shown in 1387 
Table 10, where biweekly values have been used to create annual averages from both model and observed 1388 
values at observation sites.  GEM-MACH (Base) and GEM-MACH (Zhang) once again have the lowest 1389 
magnitude (and positive) biases relative to observations, CMAQ-M3Dry and CMAQ-STAGE have the 1390 
most negative biases, though CMAQ-STAGE has the best correlation coefficient score, and WRF-Chem 1391 

(UPM) has the best scores overall aside from mean bias and correlation coefficient.    1392 

Table 9.  Evaluation of model predictions of NH3 against retrieved CrIS NH3 concentrations at overpass time, 1393 
AQMEII4 common NA grid, 2016. Units ppbv where required. 1394 

Evaluation 

Metric 

CMAQ-

M3Dry 

CMAQ-

STAGE 

GEM-

MACH 

(Base) 

GEM-

MACH 

(Zhang) 

GEM-

MACH 

(Ops) 

WRF-

Chem 

(UPM) 

WRF-

Chem 

(UCAR) 

FAC2 0.28 0.38 0.68 0.68 0.40 0.38 0.58 

MB -0.68 -0.57 0.09 0.09 -0.54 -0.54 -0.27 

MGE 0.83 0.76 0.63 0.63 0.72 0.72 0.61 

NMGE 0.64 0.58 0.48 0.48 0.55 0.56 0.47 

RMSE 1.16 1.03 1.07 1.06 1.00 0.94 1.00 

R 0.66 0.72 0.77 0.78 0.70 0.76 0.74 

COE -0.63 -0.50 -0.24 -0.24 -0.41 -0.43 -0.21 

IOA 0.18 0.25 0.38 0.38 0.29 0.29 0.40 

 1395 

  1396 
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Figure 22.  Comparison of annual average surface NH3 concentrations at CrIS overpass times, participating models, 1397 
reduced ensemble, and corresponding CrIS observed average NH3 at overpass time. 1398 

 1399 

  1400 
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Table 10.   Evaluation of model predictions of NH3 against annual average AMoN biweekly NH3 concentrations 1401 
model-observation pairs, 2016. Units ppbv where required. 1402 

Evaluation 

Metric 

CMAQ-

M3Dry 

CMAQ-

STAGE 

GEM-

MACH 

(Base) 

GEM-

MACH 

(Zhang) 

GEM-

MACH 

(Ops) 

WRF-

Chem 

(UPM) 

WRF-

Chem 

(UCAR) 

FAC2 0.66 0.62 0.67 0.67 0.72 0.76 0.66 

MB -0.82 -0.88 0.09 0.02 -0.80 -0.61 0.27 

MGE 1.24 1.12 1.21 1.18 1.12 1.08 1.28 

NMGE 0.60 0.54 0.59 0.57 0.54 0.52 0.62 

RMSE 2.71 2.53 2.72 2.72 2.65 2.57 2.95 

R 0.37 0.45 0.39 0.39 0.39 0.40 0.38 

COE 0.21 0.29 0.23 0.25 0.29 0.32 0.19 

IOA 0.61 0.65 0.61 0.62 0.64 0.66 0.59 

 1403 

Figure 23 shows the contributions to total N deposition flux from dry deposition of NH 3(g), and the 1404 
difference in overall deposition patterns between the models employing bidirectional NH3 flux 1405 
parameterizations (CMAQ-M3Dry, CMAQ-STAGE, GEM-MACH (Base), and GEM-MACH (Zhang)) 1406 

and the models which do not employ such a parameterization (WRF-Chem (IASS), GEM-MACH (Ops), 1407 
WRF-Chem (UPM), WRF-Chem (UCAR)).  The models utilizing bidirectional fluxes have large regions 1408 
where the net downward flux is given as zero in the panels of Figure 23 (dark blue regions, CMAQ-1409 
M3Dry, CMAQ-STAGE, GEM-MACH-Base, GEM-MACH Zhang models) – these are locations where 1410 
the annual total NH3 flux is upward; net emissions of NH3 when summed over the course of the year.  The 1411 

size of these regions differs between CMAQ-M3Dry and CMAQ-STAGE, indicating differences in the 1412 
bidirectional flux parameterizations between these models.  GEM-MACH (Base) and GEM-MACH 1413 
(Zhang) also use a bidirectional flux parameterization, which differs from those of CMAQ-M3Dry and 1414 
CMAQ-STAGE, and consequently have relatively similar patterns of net NH3 dry deposition versus 1415 
emissions.  Differences in land-use data as well as country-specific differences in the level of details 1416 

utilized in the bidirectional flux schemes also are resulting in differences between the two modelling 1417 
platforms (e.g. the north-western USA/south-western Canada border shows up as a sharp contrast in the 1418 
CMAQ models NH3 fluxes that utilize information from EPIC over the US and less detailed information 1419 
outside the US while this differences is much less pronounced in the GEM-MACH models).   1420 

  1421 
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Figure 23.  2016 N dry deposition fluxes (eq ha-1 yr-1) for NH3(g) (eq ha-1 yr-1)  1422 

 1423 

 1424 

The AQMEII4 diagnostics for NH3 deposition provide further insight into the causes of the differences 1425 
between the models employing NH3 bidirectional fluxes.  The most generic formula for NH3 bidirectional 1426 
fluxes is: 1427 

𝐹𝑇 =
𝑐𝑎−𝑐𝑐

𝑟𝑠𝑢𝑚
                                                                                      (13) 1428 

Where FT is the net flux ca  is the atmospheric concentration of ammonia gas,  and rsum is a sum of 1429 
resistances associated with turbulent eddies and molecular diffusion of gaseous NH3 across the reference 1430 
height of air and the vegetation canopy.  cc  is the  is the canopy compensation point concentrations of 1431 

ammonia gas at the top of the canopy, and may be expressed as a function of the atmospheric 1432 
concentration as well as compensation point concentrations near stomata and the ground (cs, cg), and of 1433 
the aerodynamic resistance of ammonia gas (ra).  As can be seen from equation (13), if the atmospheric 1434 
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concentration is greater than the compensation point concentration, the flux will be positive (downward).  1435 
If the atmospheric concentration is less than the compensation point concentration, the flux will be 1436 
negative (upward).   Galmarini et al. (2021, Appendix C) gives the detailed formulae for the terms in 1437 

equation (13), for the bidirectional flux models participating in AQMEII4  A comparison of ra, rsum, ca, cc, 1438 
cg, and cs may thus provide insight into the differences in the between the predicted NH3 dry deposition 1439 
fluxes for the models employing bidirectional flux parameterizations for the AQMEII4 North American 1440 
ensemble.  These terms were reported by AQMEII4 participants as the diurnal median (50th percentile) at 1441 
each UT hour within each month.  The median values for 16UT (noon EDT) for July 2016 are shown in 1442 

Figure 24. It is important to note that the median values for a given UT hour may correspond to different 1443 
days within a given month.  For example, the median values of rsum and ra at 16 UT in July may not occur 1444 
on the same day, and hence  the median value of rsum  will not necessarily be greater than the median 1445 
value of  ra, as might be expected from the equations governing the resistances as given in Appendix C of 1446 
Galmarini et al.  (2021).  Also, not all models were able to report all variables (as noted above, for 1447 

CMAQ-M3Dry, the net and ground compensation point concentrations were calculated off-line of the 1448 
model simulation, and could not be included as AQMEII4 diagnostic parameters).  However, substantial 1449 
differences between the panels of Figure 24 provide a useful indication of relative importance of different 1450 
pathways in the participating models.  1451 

From Figure 24, we note:  1452 

(1) The 2016 July, 16 UT median aerodynamic resistance ra is similar for all four models (Figure 1453 
24(a)) – consequently, differences in ra are unlikely to be the cause of the model flux differences. 1454 

(2) The 2016 July, 16 UT median rsum values (Figure 24(b)) for CMAQ-M3Dry is considerably 1455 

smaller than for other models – at least some relatively high fluxes for CMAQ-M3Dry are due to 1456 
these smaller rsum values (which, appearing in the denominator for equation (13), will increase the 1457 
magnitude of the fluxes).  et al.  1458 

(3) The 2016 July, 16 UT median rsum values for CMAQ-STAGE over land are equal to those for ra 1459 
for this model.  This is expected (rsum = ra for this model, Galmarini et al., 2021); other terms 1460 

influence the magnitude and direction of the fluxes.  1461 
(4) The 2016 July, 16 UT median values of the air concentrations of NH3, ca (Figure 24(c)) are lower 1462 

for CMAQ-M3Dry and CMAQ-STAGE than for GEM-MACH (Base) and GEM-MACH 1463 
(Zhang), as might be expected from the above-mentioned bias calculations relative to CrIS and 1464 
AMoN data. 1465 

(5) The 2016 July, 16 UT median net compensation point concentration cc (Figure 24(d)) for CMAQ-1466 
STAGE is an order of magnitude smaller than for GEM-MACH (Base) and GEM-MACH 1467 
(Zhang).  From equation (13), this likely drives much of the large NH3 flux for this model and its 1468 
negative bias values; smaller cc values will result in larger positive (downward) net fluxes FT.   1469 

(6) Some of the locations where CMAQ-STAGE’s 2016 July, 16 UT median ground compensation 1470 

point concentration (cg) has maximized are where GEM-MACH (Base) and GEM-MACH 1471 
(Zhang) have zero to near-zero ground compensation point values (Figure 24(e) – e.g. Rocky 1472 
mountains, north-central USA agricultural region – dark blue areas in the GEM-MACH results 1473 
compared to much lighter values in the CMAQ-STAGE results).  The larger CMAQ-STAGE cg 1474 
values (local values were up to 1E4 ppbv for this model), if dominant, would be expected to 1475 

result in larger cc values in equation (13) (see Galmarini et al. 2021) and hence a tendency 1476 
towards smaller downward fluxes.  This is not the case from the above analysis (DNH3 values in 1477 
Table 7 for CMAQ-STAGE are greater than those of the GEM-MACH models, and CMAQ-1478 
STAGE NH3 concentrations have more negative biases than the two GEM-MACH models), 1479 
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suggesting that the ground pathway is not the main term affecting the differences in model NH 3 1480 
dry deposition fluxes.   1481 

(7) For much of the AQMEII4 common domain (aside from SW USA), CMAQ-M3Dry and CMAQ-1482 

STAGE have lower 2016 July, 16 UT median stomatal compensation point concentrations than 1483 
either GEM-MACH (Base) or GEM-MACH (Zhang) (Figure 24(f)).  This in turn implies that the 1484 
difference in model dry deposition fluxes is via the stomatal pathway.   1485 

The main factors resulting in higher magnitude downward fluxes in CMAQ-M3Dry and CMAQ-STAGE 1486 
relative to GEM-MACH (Base) and GEM-MACH (Zhang) are thus lower net compensation point 1487 
concentrations (CMAQ-STAGE), lower stomatal compensation point concentrations (CMAQ-M3Dry, 1488 
CMAQ-STAGE), and lower rsum values (CMAQ-M3Dry).    1489 

Figure 24.  2016 Spatial distribution of 2016 July, 16 UT median n values for key bidirectional flux diagnostic 1490 
variables.  (a) Aerodynamic resistance (s cm-1), ra.  (b) Sum resistance (s cm-1), rsum.  (c) Air Concentration of NH3 1491 
(ppbv), ca.  (d) Net compensation point concentration (ppbv), cc.  (e) Ground compensation point concentration 1492 
(ppbv), cg.  (f) Stomatal compensation point concentration (ppbv), c s.   1493 

 1494 

All four bidirectional flux models calculate fluxes on specific land use types within each grid cell and use 1495 
some form of land use fraction weighting to generate the values of the key parameters in the bidirectional 1496 
flux equations. The native land-use types used by each modelling platform were converted to a common 1497 
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set of 16 AQMEII4 land use types (see Galmarini et al., 2021).   We investigated the CMAQ and GEM-1498 
MACH spatial and temporal patterns of ammonia bidirectional fluxes in the context of the AQMEII4 1499 
land-use types, along with the relationship to the highest regions of nitrogen CLE.   This is shown in 1500 

Figures 25 and 26, where Figure 25 panels (a and b) are the sum of AQMEII4 land use types 11 and 12 1501 
(i.e. the sum of “planted/cultivated” and “grassland” land use types) used in CMAQ and GEM-MACH 1502 
respectively.  Figure 25 panels (c and) are the sum of AQMEII4 land use fractions for land use types 6,7,8 1503 
and 13 (evergreen broadleaf forest, deciduous broadleaf forest, mixed forest, and savanna, respectively), 1504 
for CMAQ and GEM-MACH respectively.  We note that these forested areas are the ecosystems of 1505 

interest for many of the CLE values calculated earlier in this work.  The land use summations of Figure 1506 
25 are also worth noting in the context of the typical timing of the direction of NH3 fluxes during the 1507 
course of a day.   Figure 26 shows an example of this diurnal behaviour of the NH3 bidirectional fluxes 1508 
for the CMAQ and GEM-MACH models, at (a) 15:00 CDT and (b) 7:00 CDT.  Mid-afternoon fluxes 1509 
(Figure 26(a)) tended to be largely negative (upward; emissions; blue colours).  However, the spatial 1510 

location of the fluxes differs between the models even within a given model framework.  CMAQ-M3Dry 1511 
predicts afternoon emissions (blue colours) largely restricted to the combined grassland and agricultural 1512 
land use types, with deposition (red colours) to the forested areas in south-east Canada and south-east 1513 
USA.  CMAQ-STAGE predicts mid-afternoon emissions throughout western North America, though a 1514 
similar pattern of deposition as CMAQ-M3Dry in south-east Canada and south-east USA.  The GEM-1515 

MACH bidirectional fluxes in afternoon are mostly negative (emissions; blue).  All three models show 1516 
midafternoon NH3 deposition in the north-central USA, corresponding to a known region of high NH3 1517 
concentrations (Figure 22, CrIS NH3 retrieval maximum).  In contrast, early morning fluxes (Figure 1518 
26(b)) predicted by both CMAQ implementations are largely positive (downward; deposition; red 1519 
colours), across all land use types., while GEM-MACH predicts deposition in agricultural areas, and 1520 

emissions further downwind in south-east Canada and south-east USA.     1521 

The generic diurnal sign changes in the direction of the ammonia flux across all four models is easily 1522 

explained with reference to equation (13):  in mid-afternoon (Figure 26(a)), both the height of the 1523 
planetary boundary layer and the magnitude of thermal coefficients of diffusivity are relatively high, 1524 
reducing the ambient air concentration of ammonia gas (ca in eqn 13), resulting in negative fluxes 1525 
(emissions; blue colours).  In the early morning (Figure 26(b)), both the boundary layer height and the 1526 
magnitude of thermal coefficients of diffusivity are lower, hence increasing the ambient air concentrations 1527 

of ammonia gas, resulting in more positive fluxes and prevalent deposition.  However, the different 1528 
bidirectional flux models show differences in diurnal behaviour by land use type.  CMAQ-M3Dry and 1529 
CMAQ-STAGE show a diurnal pattern of afternoon emissions from agricultural and grassland areas, and 1530 
deposition in forested regions downwind, and early morning deposition irrespective of land -use type.    1531 
GEM-MACH shows stronger afternoon emissions regardless of land-use type, and morning lower 1532 

magnitude emissions in forested areas and deposition only in agricultural areas and the western USA.   1533 

We note that Table 9 measures model performance specifically at satellite overpass time in the afternoon – 1534 
i.e. at close to the time shown in Figure 26(a), and that the performance of CMAQ-M3Dry and CMAQ-1535 
STAGE is lower than the other models at this time, while the differences between the models aside from 1536 
magnitude of the bias is less pronounced in the integrated surface observations of Table 9.  Th is analysis 1537 
thus suggests that the CMAQ negative biases may be reduced in magnitude by re-examining the factors 1538 

contributing to compensation point concentrations in forested areas in the day; cc values (eqn. 13) are 1539 
probably too low in these regions at these times, leading to excessive positive (downward) fluxes.  That 1540 
is, the analysis suggests that the CMAQ negative NH3 biases may be the result of excessive deposition 1541 
and/or insufficient emissions, in forested areas, in both the daytime and early morning , with the effect 1542 
most noticeable in the afternoon.  The bulk of the differences likely resides in the stomatal deposition 1543 
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pathway.  Conversely, we note that the GEM-MACH bidirectional flux algorithm is overestimating 1544 
midafternoon ammonia in the SE USA relative to satellite observations (Figure 22), indicating that 1545 
compensation point concentrations may be overestimated in this region.   1546 

While NH3 fluxes are only the 5 th largest source of N deposition in the North American reduced ensemble, 1547 
we also note that the manner in which NH3 bidirectional fluxes are treated in the context of critical load 1548 

exceedance calculations may be open to interpretation.  Exceedances with respect to critical loads are 1549 
calculated with respect to annual total deposition of N and S, but what constitutes total N deposition in 1550 
the context of bidirectional fluxes is less clear.  Here, we have taken the approach of assuming that 1551 
negative fluxes (emissions) of NH3 during the course of a year constitute a loss of N from the ecosystem, 1552 
but that NH3 contained within the ecosystem cannot be converted to other forms of N.  Consequently, the 1553 

approach taken here was to sum the hourly NH3 fluxes (positive downward and negative upward) for the 1554 
year simulated, with only those grid cells with net positive summations (i.e. net annual deposition fluxes) 1555 
adding towards total N deposition.  However, other interpretations are possible.  For example, only the 1556 
positive contributions on an hourly basis could be accumulated, and any losses of N from the same 1557 
ecosystems associated with NH3 emissions could be ignored/excluded from the N balance of the 1558 

ecosystem.   A third interpretation would be to assume that deposited NH3 within the ecosystem may be 1559 
converted to other forms of N, and hence the net NH3 flux (which may be positive or negative in different 1560 
parts of the region simulated) is added to Ndep, with Ndep being set to zero only when the NH3 emissions 1561 
flux exceeds the deposition flux of all other forms of N.   Here, we have taken the first of these 1562 
approaches.  We note that the second approach would lead to higher estimates of total Ndep than generated 1563 

here, while the third approach would result in lower estimates of total Ndep.  Although NH3 is the 5th 1564 
largest contributor to total Ndep across North America, these differences in approach may affect critical 1565 
load exceedance estimates in regions of high NH3 fluxes. 1566 

Figure 25. Comparison of AQMEII4 land use type fractions with locations of highest CLE for forest ecosystems, 1567 
CMAQ versus GEM-MACH.  Upper row:  grid cell fractional area composed of sum of AQMEII4 land use types 1568 
11+12 (planted/cultivated and grassland), for: (a) CMAQ-M3Dry and CMAQ-STAGE, (b) GEM-MACH (Base) and 1569 
GEM-MACH (Zhang).  Lower row:  grid cell fractional area composed of sum of AQMEII4 land use types 1570 
6+7+8+13 (evergreen broadleaf forest, deciduous broadleaf forest, mixed forest, and savanna), for (c) CMAQ-1571 
M3Dry and CMAQ-STAGE, (d) GEM-MACH (Base) and GEM-MACH (Zhang). 1572 

 1573 

1574 

https://doi.org/10.5194/egusphere-2024-2226
Preprint. Discussion started: 30 July 2024
c© Author(s) 2024. CC BY 4.0 License.



62 
 

Figure 26.  NH3(g) flux (eq ha-1 hr-1) at (a) 15:00 CDT August 4, 2016 and (b) 7:00 CDT August 5, 2016.  Blue lines 1575 
in the CMAQ and GEM-MACH models (horizontal row)  panels encloses areas which are predominantly 1576 
agricultural and grassland, red line encloses areas which are predominantly evergreen broadleaf forest, deciduous 1577 
broadleaf forest, mixed forest and savanna, in each model’s respective land use databases (se Figure 25). Blue 1578 
shaded regions indicate negative (upward; emissions) NH3 fluxes, red shaded regions indicate positive (downward; 1579 
deposition) NH3 fluxes. 1580 

 1581 

 1582 
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3.2.3 Causes of S Deposition Variability in European Domain Simulations  1583 

The relative contributions of the different sources of S deposition in the AQMEII4 EU common domain 1584 
for the year 2010 are shown in Table 11 and Figure 27. 1585 

The European ensemble contributions to total S deposition contrasted with those in North America; both 1586 
the contribution to total S deposition and the magnitude of variability between the models follow the 1587 
same descending order of importance:  SO2 dry deposition followed by wet (SO4

2- + HSO3
-) deposition, 1588 

followed by particulate sulphate dry deposition (see Table 11). The relatively higher importance of SO2 1589 
dry deposition towards total sulphur deposition, compared to North America, may reflect a denser spatial 1590 
distribution of SO2 emissions in the EU domain compared to the North American domain, as well as 1591 
higher EU emissions in 2010 compared to the NA 2016 year focused on here for model variability 1592 
analysis.  Another potential cause of differences between the two domains may reflect differences in the 1593 

quality of the emissions data (and emissions reporting requirements) between the two jurisdictions.  SO 2 1594 
emissions are largely from industrial stacks in both locations.  In North America, regulations require that 1595 
facility operators for large stack sources report their emissions and stack parameters making use of 1596 
Continuous Emissions Monitoring, on an hourly basis (USA) or as annual reports (Canada).  Plume rise 1597 
algorithms may then be used to distribute the emissions in the vertical within air-quality models.  In the 1598 

EU, stack sources are reported as annual totals without stack parameters which could be used for more 1599 
accurate plume rise estimates (e.g. volume flow rates, effluent temperatures); the lack of this more 1600 
detailed data necessitates approximations (either making use of “typical” plume rise rates or treating stack 1601 
sources as surface emissions without plume rise).  The larger variation in SO2 performance in the 1602 
simulations may thus reflect differences in the level of detail available within SO2 emissions inventories 1603 

in the two regions.     1604 

European observation data for model evaluation were taken from the European Monitoring and 1605 

Evaluation Programme (EMEP; https://www.emep.int/ , last accessed July 11, 2024), and the European 1606 
Air Quality Database (AIRBASE; https://data.europa.eu/data/datasets/data_airbase-the-european-air-1607 
quality-database-1?locale=en , last accessed July 11, 2024). 1608 

Table 11.  Average S deposition contributions in common AQMEII4 EU grid area (eq ha-1 yr-1) and percent 1609 
contribution to average total S deposition, 2010. 1610 

 
Average Deposition (eq ha-1 yr-1) Percent of total S deposition 

Model Number SO2(g) 

Dry 

Deposition 

SO4
(2-) + 

HSO3
(-) 

Wet 

Deposition 

Particle 

Sulphate 

Dry 

Deposition 

Total S 

Deposition 

SO2(g) 

Dry 

Deposition 

SO4
(2-) + 

HSO3
(-) 

Wet 

Deposition 

Particle 

Sulphate 

Dry 

Deposition 

WRF-Chem (IASS) 92.1 42.1 n.r. 134.2 68.6 31.4 n/d 

LOTOS-EUROS 

(TNO) 
38.3 37.9 5.4 81.5 47.0 46.4 6.6 

WRF-Chem (UPM) 105.6 63.2 3.2 172.0 61.4 36.7 1.9 

CMAQ 

(Hertfordshire) 
125.7 75.9 20.1 221.6 56.7 34.3 9.0 

Reduced ensemble 

average 
89.9 59.0 9.5 158.4 56.7 37.2 6.0 

Reduced ensemble 

standard deviation 
37.3 15.8 7.5 58.0 23.6 10.0 4.7 

 1611 
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Dry deposition of SO2 1612 

The model SO2 performance relative to observations at stations closer to urban centers (AIRBASE 1613 
network), and more broadly distributed over the EU region (EMEP network), as well as comparisons 1614 
towet (SO4

2- + HSO3
-) deposition (EMEP wet deposition network), are shown in Table 12. Observation 1615 

station locations are shown in Figure S9.   WRF-Chem (IASS) had the best SO2 performance relative to 1616 

both networks for most statistics, with the exceptions of a slightly smaller FAC2 score compared to other 1617 
models for both AIRBASE and EMEP, and the largest negative bias for SO2 relative to AIRBASE 1618 
observations.  The proximity of AIRBASE station locations to SO2 sources can also be seen in Figure 28, 1619 
where the AIRBASE monthly concentration y-axis (Figure 29(a)) is almost twice that of the EMEP 1620 
monthly concentration y-axis (Figure 28(b)).  Observed SO2 close to sources (Figure 28(a), red lines) 1621 

shows a strong seasonal variability, with concentrations in the winter being a factor of two higher than 1622 
HNO3summer than summer, likely showing the effect of increased winter stability on plume rise. This 1623 
tendency is greatly reduced at regional stations (Figure 28(b), red lines).   LOTOS-EUROS (TNO) 1624 
matches the near-source SO2 time series the most closely, while CMAQ (Hertfordshire) overestimates the 1625 
impact of seasonal variability (Figure 28(a)).  At regional stations, LOTOS-EUROS (TNO) and CMAQ 1626 

(Hertfordshire) overestimate seasonal variation, while WRF-Chem (IASS) most closely matches 1627 
observations.  At least some of the variation in simulated SO2 performance relative to observations and 1628 
hence in SO2 deposition fluxes and critical load exceedance estimates is due to some models 1629 
overestimating the seasonal variation in SO2 at regional locations further from cities.  This may reflect 1630 
differences in atmospheric stability, the seasonal response of the deposition algorithms, or the manner in 1631 

which plume rise is simulated between the models. 1632 

WRF-Chem (IASS) has the best overall performance for SO2; while this model’s mean bias is the most 1633 
negative for observation sites close to the sources (AIRBASE comparison), the remaining statistics are 1634 
the best of the ensemble, and the model bias performance is also better than the other models as the 1635 
distance from the sources increases (EMEP comparison).    The large negative biases in WRF-Chem 1636 
(IASS) model values may indicate an overestimate of SO2 deposition, though other model processes may 1637 

also play a role. 1638 

Wet Deposition of Sulphur 1639 

As was the case for most models on the North American domain, all EU domain models underestimated 1640 
wet deposition relative to observations (note negative biases in Table 12 and monthly time series 1641 

comparison versus observations in Figure 28(c)). CMAQ (Hertfordshire) outperforms the other models 1642 
relative to observations, though we note that the wet sulphur deposition bias for this model is nevertheless 1643 
-0.39 eq ha-1 yr-1, with a correlation coefficient of 0.15.  In contrast to the North American wet sulphur 1644 
deposition comparison time series (Figure 16, Table 6), the European wet deposition observations do not 1645 
show a spring-time peak in values, rather a seasonality centered around the month of June, with higher 1646 

values extending from March to September. 1647 

  1648 
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Table 12.  Model performance statistics for EU domain SO2 concentrations and total wet S deposition, g 1649 
m-3 and eq ha-1 yr-1, respectively.   1650 

 SO2 (Airbase)  SO2 (EMEP) 

 WRF-

Chem 

(IASS) 

LOTOS-

EUROS 

(TNO) 

WRF-

Chem 

(UPM) 

CMAQ 

(Hertford

shire) 

 WRF-

Chem 

(IASS) 

LOTOS-

EUROS 

(TNO) 

WRF-

Chem 

(UPM) 

CMAQ 

(Hertfords

hire) 

FAC2 0.35 0.36 0.38 0.35  0.35 0.36 0.34 0.29 

MB -1.42 0.04 0.06 1.89  0.32 0.48 0.58 1.76 

MGE 4.60 5.32 5.29 6.35  1.48 1.66 1.63 2.57 

NMGE 0.85 0.98 0.97 1.17  1.07 1.20 1.18 1.87 

RMSE 14.47 15.64 15.27 17.60  2.92 3.58 2.98 5.80 

R 0.28 0.26 0.24 0.26  0.38 0.33 0.34 0.35 

COE 0.12 -0.01 -0.01 -0.21  -0.08 -0.21 -0.19 -0.88 

IOA 0.56 0.49 0.50 0.40  0.46 0.40 0.40 0.06 

 Total Wet S deposition  
 WRF-

Chem 

(IASS) 

LOTOS-

EUROS 

(TNO) 

WRF-

Chem 

(UPM) 

CMAQ 

(Hertford

shire) 
FAC2 0.00 0.19 0.28 0.31 

MB -1.51 -1.22 -1.08 -0.39 

MGE 1.53 1.34 1.29 1.42 

NMGE 1.00 0.87 0.84 0.92 

RMSE 6.61 6.50 6.48 6.46 

R 0.02 0.11 0.11 0.15 

COE 0.04 0.16 0.19 0.11 

IOA 0.52 0.58 0.60 0.56 

 1651 

None of the EU models made use of updated particle dry deposition velocities available in more recent 1652 

literature; as a result, the relative contribution of particle dry deposition towards EU model-to-model 1653 
variability is small.  Speciated PM observations were not available for comparison to model predictions in 1654 
the EU region.    1655 

The spatial distribution of the relative contributions of the three forms of sulphur deposition for the year 1656 
2010 is shown in Figure 27.  CMAQ (Hertfordshire), with the highest SO2 deposition flux (Figure 27(a), 1657 
see also Table 11, Table 12) also has the most positive SO2 concentration mean bias.  With increasing 1658 

distance from the sources, the SO2 loss or conversion processes of all four models are likely 1659 
underestimated (EMEP SO2 biases are positive for all models, Table 12).  In contrast, all models have 1660 
significant negative biases in wet sulphur deposition (Table 12), hence at least one reason for this 1661 
underestimate may be insufficient conversion of SO2 to ionic sulphate and bisulphite in simulated cloud 1662 
water, through uptake of SO2 and scavenging of particulate sulphate.  The wet deposition of sulphur in 1663 

WRF-Chem (IASS) in particular seems anomalously low (Figure 27(c), Figure 28 (b)), with much of 1664 
Europe having little to no wet sulphate deposition in this model.   1665 
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 1666 

Figure 27.  Spatial distribution and magnitude of contributions to annual S deposition, AQMEII4 common EU 1667 
domain, 2010 (eq ha-1 yr-1).  (a) SO2(g) dry deposition.  (b) Total wet S deposition.  (c) Particle sulphate dry 1668 
deposition. 1669 

 1670 
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Figure 28.  Comparison of observed and modelled S, AQMEII4 EU common domain, 2010.  (a) AIRBASE SO2 (ug 1671 
m-3).  (b) EMEP SO2 (ug m-3). (c) Wet flux of total S deposition (eq ha-1 week-1).  Red: observations.  Blue: model. 1672 

 1673 

  1674 
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A comparison of the relative differences in the deposition pathway strength for the models may help shed 1675 
light on the causes of SO2 deposition flux variability between the models.  However, no effective fluxes 1676 
were reported by LOTOS-EUROS (TNO).  Figures S15 and S16 show the spatial distribution of the 1677 

summed annual effective fluxes for the reporting models, with the results in the common AQMEII4 EU 1678 
domain summarized in Figure 29.  1679 

Figure 29.  Averages of effective flux pathway contributions to SO2 dry deposition, AQMEII4 common EU grid, 1680 
2010 (eq ha-1 yr-1). 1681 

 1682 

Despite having the highest average SO2 deposition flux (Table 11), CMAQ (Hertfordshire) also has the 1683 

highest positive biases for SO2 ambient concentrations (Table 12). From Figures S15, S16 and 29, the 1684 
CMAQ (Hertfordshire) positive biases may be the result of spatial variations in deposition, specifically, to 1685 
low contributions to the cuticle effective fluxes in Northern Europe for this model (Figure S15(a)).  1686 
Despite these relatively low values, the SO2 net dry deposition flux for this model (Table 11) is higher 1687 
than that of the other models, implying that the low northern EU fluxes are being offset by higher values 1688 

elsewhere (eg. via the soil flux, compare soil and cuticle values in Figure 29).  We note that the effective 1689 
flux analysis is restricted to grid cells that do not have water as a dominant land use type (a maximum of 1690 
1% water land fraction was used as an exclusion criterion); for grid cells held in common (mostly land), 1691 
the CMAQ (Hertfordshire) the cuticle effective flux pathway specifically is lower than that of the other 1692 
models, while the differences are less noticeable for the other terms, as reflected by the summary values 1693 

in Figure 29.  Other than Northern Europe, CMAQ (Hertfordshire) has higher soil fluxes than WRF-1694 
Chem (IASS).  Similar to AQMEII4 analyses for ozone (Hogrefe et al., 2024, under preparation), the 1695 
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relative importance of the different pathways towards total deposition varies between the models.  For 1696 
example, WRF-Chem (IASS), with the best overall performance for SO2 concentrations aside from bias 1697 
and factor of 2, has flux contributions in descending order of importance: cuticle, stomatal, soil and lower 1698 

canopy. For CMAQ (Hertfordshire), with relatively poor performance and high positive biases (Table 12), 1699 
the flux contributions in descending order of importance are soil, cuticle, and stomatal (with lower canopy 1700 
being incorporated as part of soil flux, for this model), and the cuticle pathway contributes less to 1701 
deposition in northern Europe than the other models.  1702 

3.2.4 Causes of N Deposition Variability in European Domain Simulations  1703 

The common AQMEII4 EU domain relative contributions for each model’s deposited species towards 1704 
total nitrogen deposition and its variability are shown in Table 13.  The contributions towards total N 1705 
deposition for the reduced ensemble, in descending order of importance, were wet NO3

-, dry HNO3, wet 1706 

NH4
+, dry NH3, dry particulate nitrate, dry NO2, and dry particle ammonium, with relatively small 1707 

contributions from the other depositing N species.   The spatial distributions of the four largest 1708 
contributions to total N deposition are shown in Figure 30.   The largest contributions to model-to-model 1709 
variability, in descending order, were wet NO3

-, dry HNO3, dry NH3, wet NH4
+, and dry NO2, with smaller 1710 

contributions towards variability from the other species.   1711 

Wet deposition fluxes of NO3
- and NH4

+ and the ground-level concentration of NO2 are evaluated in Table 1712 
14; monthly average time series comparisons wet deposition to the observations are provided in Figure 1713 

31.  From Figure 30, WRF-Chem (IASS) predicted much lower magnitude wet NO3
- and wet NH4

+ 1714 
deposition fluxes than the other three models, and from Table 14, these result in larger negative biases and 1715 
poor overall performance relative to observations for WRF-Chem (IASS) in comparison to the other 1716 
models. LOTOS-EUROS (TNO) had the best overall performance for NH4

+ and NO3
- wet deposition 1717 

fluxes.  However, similar to the case for wet S deposition, all models have significant negative biases for 1718 

both nitrogen ion wet fluxes, as can be seen from Table 14 and Figure 31.  LOTOS-EUROS (TNO) has 1719 
the best performance for statistics relating to the spatial and temporal distribution of wet deposition, while 1720 
WRF-Chem (UPM) has the lowest bias for wet NO3

- deposition.  A common feature of the AQMEII4 1721 
ensemble of models for both EU and NA domains are these negative biases for wet deposition of both 1722 
sulphate and nitrogen species.  Also, we note that the observed wet NH4

+ deposition (Figure 31(b), red 1723 

line) peaks in June, while the model values (blue lines) peak earlier, in March.  This in in contrast to the 1724 
North American NH4

+ comparison (Figure 19), where observed peaks occur in April and model peaks 1725 
occur in June.   1726 

 1727 

  1728 

https://doi.org/10.5194/egusphere-2024-2226
Preprint. Discussion started: 30 July 2024
c© Author(s) 2024. CC BY 4.0 License.



70 
 

Table 13.  Contributions of N species towards total deposition (eq ha -1 yr-1 and percent of total N deposited, common 1729 
AQMEII4 EU grid, 2010, arranged in descending order of importance to the reduced ensemble average. DNH3: dry 1730 
deposition of NH3(g).  WNH4:   wet deposition of NH4

+(aq). DHNO3: dry deposition of HNO3(g).  WNO3: wet 1731 
deposition of NO3

-(aq).  DAM: dry deposition of particulate ammonium.  DNI: dry deposition of particulate nitrate.  1732 
DNO2: dry deposition of NO2(g).  DPAN: dry deposition of peroxyactylnitrate gas.  DRN3: dry deposition of 1733 
organic nitrate gases.  DN2O5: dry deposition of N2O5(g).  DHNO4: dry deposition of pernitric acid gas.  DNO: dry 1734 
deposition of NO(g).  nr = not reported.  ndd = no dry deposition  1735 

 1736 

Average (eq ha-1 yr-1) 

 Model 

Species 
WRF-Chem 
(IASS) 

LOTOS-
EUROS 

WRF-Chem 
(UPM) 

CMAQ 
(Hertfordshire) 

Red. Ens Avg 
Red. Ens. Std 
Dev 

WNO3  1.8 77.8 174.8 96.2 116.2 42 
DHNO3  50.2 38.4 120.5 78.6 79.2 33.5 
WNH4  4.3 90.3 74.6 64.1 76.3 10.8 
DNH3  60.5 76.8 47.9 29.6 51.5 19.4 
DNI  nr 18.2 25.9 13.5 19.2 5.1 
DNO2  11.6 23.6 27.5 6.3 19.2 9.2 
DAM  nr 14.2 6.2 6.6 9 3.7 
DPAN  2.3 ndd 2.7 5.2 4 1.2 
DN2O5  5.3 1.2 ndd 1 1.1 0.1 
DRN3  0.3 ndd 0.6 3.2 1.9 1.3 
DHNO4  1.4 ndd 0.9 0.2 0.5 0.4 
DNO  0.1 2 0.2 0.4 0.9 0.8 
Total N 137.6 342.7 481.9 304.8 376.5 76.1 

Percent Contribution 

 Model 

Species 
WRF-Chem 
(IASS) 

LOTOS-
EUROS 

WRF-Chem 
(UPM) 

CMAQ 
(Hertfordshire) 

Red. Ens Avg 
Red. Ens. Std 
Dev 

WNO3  1.3 22.7 36.3 31.5 30.9 5.6 
DHNO3  36.5 11.2 25 25.8 21 6.7 
WNH4  3.1 26.4 15.5 21 20.3 4.4 
DNH3  43.9 22.4 9.9 9.7 13.7 5.9 
DNI  nr 5.3 5.4 4.4 5.1 0.4 
DNO2  8.4 6.9 5.7 2.1 5.1 2.1 
DAM  nr 4.1 1.3 2.2 2.4 1.2 
DPAN  1.7 nd 0.6 1.7 1.1 0.6 
DN2O5  3.8 0.3 nd 0.3 0.3 0 
DRN3  0.2 nd 0.1 1.1 0.5 0.5 
DHNO4  1 nd 0.2 0.1 0.1 0.1 
DNO  0 0.6 0 0.1 0.2 0.2 

 1737 

 1738 

  1739 
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Figure 30.  Spatial distribution of contributions of (a) wet nitrate ion deposition, (b) dry gaseous HNO3 1740 
deposition, (c) wet ammonium ion deposition, and (d) dry gaseous ammonia deposition towards total N 1741 
deposition in the common AQMEII4 EU domain, 2010 (eq ha -1 yr-1). 1742 

 1743 

Dry deposition of HNO3 was the second largest source of modelled EU nitrogen deposition variability.  1744 
The spatial distribution of the relative contributions of the four pathways towards the mass flux of HNO3 1745 
is shown in Figures S17 and S18 and are summarized for the entire grid in Figure 32.  There is more 1746 

heterogeneity between the EU models regarding the relative importance of the HNO3 deposition pathways 1747 
than was observed for the North American simulations (compare Figures 21 and 32).  In the North 1748 
American simulations, the cuticle deposition pathway also dominated for all models, followed by the soil 1749 
pathways.  In the EU simulations, the reported soil pathway for WRF-Chem (UPM) is was several orders 1750 
of magnitude smaller than the same pathway for CMAQ (Hertfordshire).  The cuticle pathway dominates 1751 

for WRF-Chem (IASS) (not shown) and CMAQ (Hertfordshire).  The stomatal pathway magnitude is less 1752 
than the cuticle pathway for the EU models, but greater in general than for the North American models, 1753 
where the stomatal pathway had a smaller contribution to HNO3 dry deposition than the lower canopy 1754 
pathway.     1755 

Observations of 2010 HNO3(g), NH3(g), and dry particle nitrate were not available for comparison to the 1756 
model predictions.  However, observations of the NO2 concentrations, the 6th largest contributor to total N 1757 
deposition and the 5 th largest contributor to model-to-model variability, were available at near-source 1758 

AIRBASE and regionally distributed EMEP stations (Table 14).  Aside from having the 2nd largest 1759 
magnitude mean bias, LOTOS-EUROS (TNO) had the best performance for NO2 relative to stations 1760 
positioned close to emissions sources (AIRBASE), while WRF-Chem (IASS) and CMAQ (Hertfordshire) 1761 
had the best performance for NO2 for stations distributed more widely across the region (EMEP).   1762 

  1763 
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Table 14.  Model performance statistics for wet deposition of nitrate and ammonium ions, and ground level 1764 
concentrations of NO2, AQMEII4 EU domain, 2010 1765 

 Wet NO3
- deposition (eq ha-1 yr-1)  Wet NH4

+ deposition (eq ha-1 yr-1) 
WRF-

Chem 

(IASS) 

LOTOS

-

EUROS 

(TNO) 

WRF-

Chem 

(UPM) 

CMAQ 

(Hertfor

dshire) 

WRF-

Chem 

(IASS) 

LOTOS

-

EUROS 

(TNO) 

WRF-

Chem 

(UPM) 

CMAQ 

(Hertfor

dshire) 

FAC2 0.00 0.32 0.35 0.31 FAC2 0.02 0.32 0.28 0.24 
MB -1.38 -0.75 -0.04 -0.58 MB -1.80 -0.80 -1.01 -1.13 
MGE 1.38 1.04 1.33 1.11 MGE 1.81 1.52 1.55 1.53 
NMGE 0.99 0.75 0.96 0.80 NMGE 0.98 0.82 0.84 0.83 
RMSE 2.66 2.19 2.53 2.25 RMSE 3.83 3.37 3.45 3.42 
R 0.16 0.43 0.36 0.38 R 0.18 0.33 0.32 0.33 
COE -0.10 0.17 -0.06 0.11 COE 0.00 0.15 0.14 0.15 
IOA 0.45 0.59 0.47 0.56 IOA 0.50 0.58 0.57 0.58 
 AIRBASE NO2 concentrations (g m-3)  EMEP NO2 concentrations (g m-3) 

WRF-

Chem 

(IASS) 

LOTOS

-

EUROS 

(TNO) 

WRF-

Chem 

(UPM) 

CMAQ 

(Hertfor

dshire) 

WRF-

Chem 

(IASS) 

LOTOS

-

EUROS 

(TNO) 

WRF-

Chem 

(UPM) 

CMAQ 

(Hertfor

dshire) 

FAC2 0.45 0.56 0.55 0.35 FAC2 0.57 0.53 0.39 0.50 
MB -10.00 -5.68 2.38 -12.40 MB 0.36 2.35 9.54 -2.02 
MGE 12.67 11.22 13.61 13.84 MGE 5.01 6.18 11.49 4.90 
NMGE 0.60 0.53 0.65 0.66 NMGE 0.57 0.70 1.31 0.56 
RMSE 19.25 16.76 19.19 20.41 RMSE 8.17 10.01 17.28 8.29 
R 0.49 0.56 0.47 0.50 R 0.71 0.64 0.61 0.67 
COE 0.10 0.20 0.03 0.02 COE 0.31 0.15 -0.59 0.32 
IOA 0.55 0.60 0.52 0.51 IOA 0.65 0.57 0.21 0.66 

 1766 

 1767 

  1768 

https://doi.org/10.5194/egusphere-2024-2226
Preprint. Discussion started: 30 July 2024
c© Author(s) 2024. CC BY 4.0 License.



73 
 

Figure 31.  Monthly average comparison of wet nitrogen deposition, AQMEII4 common EU grid, 2010.  (a) Average 1769 
flux of NO3

-(aq).  (b) Average flux of NH4
+(aq).  (eq ha-1 day-1) 1770 

 1771 

 1772 

 1773 
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Figure 32.  Averages of flux pathway contributions to HNO3 dry deposition, AQMEII4 common EU grid, 1775 
2010 (eq ha-1 yr-1).   1776 

 1777 

 1778 

Conclusions 1779 

We have used the AQMEII4 North American and European ensembles to calculate net Sulphur and 1780 
Nitrogen deposition from individual models and a reduced ensemble of all models.  These deposition 1781 
estimates were used to calculate exceedances of critical loads for these two regions, using several critical 1782 
load datasets.   An in-depth analysis of the causes of model-to-model variability followed, using 1783 

diagnostics designed for AQMEII4.  We therefore subdivide these conclusions by the domain simulated, 1784 
and the critical load exceedance and causes of model variability, within each domain.  1785 

North America, Critical Load Exceedances 1786 

All simulations showed a decrease in the size of the area in exceedance and the severity of exceedances 1787 
with respect to acidification of forest ecosystems between the years 2010 and 2016.  The percentage of 1788 
North American forest area in exceedance of acidification critical loads was 13.2% (range 2.8% to 22.2%) 1789 
in 2010, and 6.1% (1.0% to 12.9%) in 2016.   Similarly, the percent exceedance with respect to acidity for 1790 
aquatic ecosystems and the number of water bodies in exceedance decreased between 2010 and 2016 1791 

from 21.2% (12.8 to 28.9%) in 2010 to 11.4% (7.3% to 15.8%) in 2016).  The decrease in SO2 emissions 1792 
between these two years, and the resulting decreases in S deposition for all models, as well as decreases in 1793 
N deposition for all models, drive these reductions in potential ecosystem damage.   1794 
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For sensitive epiphytic lichen species richness, all models also showed an improvement in the 1795 
exceedances between 2010 and 2016.  The improvement in the total area in exceedance predicted by 1796 
most models was relatively small, but the severity of exceedance was greatly reduced.  Given that the 1797 

lichen community has a dose-response relationship with increasing deposition, this indicates reduced 1798 
harm to forest health, even when the CL is still in exceedance.  The reduced ensemble predicted a 1799 
decrease in both severity and total area in exceedance from 2010 to 2016 from 81.5% (range 69.3 to 95%)  1800 
in 2010 to 75.8% (range 63.7% to 90.7%) in 2016. 1801 

For herbaceous species community richness, most models showed an improvement, often substantial, in 1802 
both the total area in exceedance and the severity of exceedances between 2010 and 2016 (13.9%, range 1803 
0.4 to 39.5%, in 2010 to 3.9%, range 0.1% to 18.4% in 2016).   1804 

All models and the reduced ensemble thus showed improvements in the extent of potential ecosystem 1805 

damage due to acidifying and eutrophying deposition between 2010 and 2016, in accordance with 1806 
legislated emissions reductions policies coming into force between the two years.  However, the amount 1807 
of exceedance in any given year and the extent of reduction between the two years varied considerably 1808 
between the models.  Any individual model provides a similar direction of the change between the two 1809 
years; the range of estimates suggests the utility of model ensembles where possible in estimating critical 1810 

load exceedances. 1811 

North America, Causes of Model S Deposition Variability 1812 

The total mass of North American Sulphur deposition followed, in decreasing order of importance, wet 1813 
deposition of S (SO4

2- + HSO3
-) , dry deposition of particulate sulphate, and dry deposition of SO2.  Dry 1814 

deposition of particulate sulphate contributed the most to model-to-model variability in total Sulphur 1815 
deposition, followed by wet deposition, and dry SO2 deposition. The models with the highest wet S 1816 
deposition levels had the best performance relative to monitoring network observations (CMAQ-M3Dry, 1817 
CMAQ-STAGE, GEM-MACH (Ops)), though all models’ wet S deposition was biased low relative to 1818 
observations.  A subgroup of models (GEM-MACH (Base), GEM-MACH (Zhang), GEM-MACH (Ops)) 1819 

had the highest positive biases in observed PM2.5 sulphate concentrations relative to monitoring network 1820 
observations, contributing to the model-to-model variability.  Recent work by Ryu and Min (2022) and 1821 
Ghahreman et al.  (2024) suggests that model negative biases for wet deposition may be improved 1822 
through incorporation of multiphase hydrometeor scavenging, and this may also reduce positive biases in 1823 
particulate mass resulting from the implementation of the Emerson et al.  (2020) particle dry deposition 1824 

algorithm (GEM-MACH (Base) and GEM-MACH (Zhang)).  Most North American reduced ensemble 1825 
models were in relatively good agreement with regards to their predictions for the total dry deposition 1826 
flux of SO2(g). 1827 

North America, Causes of N Deposition Variability  1828 

The largest contributors to the average total nitrogen deposition fluxes across North America in 2016 were 1829 
wet ammonium ion, dry HNO3, wet nitrate ion, dry particle ammonium, dry ammonia gas, dry particle 1830 
nitrate and dry NO2, with relatively minor contributions from the other depositing gases.   The largest 1831 
contributors to the average total N deposition flux variability across models in descending order of 1832 

importance were the deposition of dry particulate ammonium, wet ammonium ion, wet nitrate ion, dry 1833 
nitric acid, dry particle nitrate, dry NO2 and dry NH3.   1834 

The first and second contributions to model-to-model variability between the members of the reduced 1835 
North American ensemble were due to the three GEM-MACH implementations (Base, Zhang, and Ops) 1836 
all having much higher dry particle ammonium and wet ammonium ion deposition fluxes than the other 1837 
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models.  These models also had zero to positive biases in wet ammonium ion deposition relative to 1838 
observations during the summer (all other models had negative biases throughout the year), and the 1839 
largest positive biases for PM2.5 ammonium concentrations relative to observations.  These three models 1840 

employed an inorganic aerosol thermodynamics algorithm solving only the sulphate-ammonium-nitrate-1841 
water system, while the other models in the ensemble employed a solver which incorporated base cation 1842 
chemistry.  The presence of base cations is known to be a limiting factor on the formation of particle 1843 
ammonium nitrate, with the available nitric acid preferentially partitioning to the base cations over 1844 
forming particle ammonium nitrate.  The positive biases in fine mode particle ammonium concentrations 1845 

and positive biases in wet ammonium ion deposition for this subgroup of models are thus likely caused by 1846 
the absence of this alternative sink of nitric acid, leaving only the particle ammonium formation pathway.  1847 
This in turn led to higher predicted concentrations of particle ammonium, subsequent particle ammonium 1848 
scavenging in clouds, and greater wet ammonium deposition in these models.  Updates to these model 1849 
implementations making use of a new, highly efficient solver for inorganic heterogeneous chemistry 1850 

which includes the base cation reactions (Miller et al., 2024) should reduce these positive biases.  The 1851 
absence of multiphase hydrometeor scavenging of particle mass may also play a role in the particle 1852 
ammonium positive biases for these models, with improved performance associated with the 1853 
incorporation of this more detailed wet scavenging approach (Ghahreman et al. , 2024).   We note that all 1854 
North American models had negative biases in wet ammonium and wet nitrate deposition, indicating 1855 

insufficient uptake of gas and particle precursors into cloud and precipitation water, possibly due to the 1856 
absence of multiphase hydrometeor scavenging in all models participating in the ensemble. 1857 

Dry deposition of nitric acid was the second largest contributor to total nitrogen deposition fluxes in 1858 
North America, and the fourth largest contributor to model-to-model variability.  The cuticle deposition 1859 
pathway followed by the soil pathway were shown to dominate the HNO3 mass flux, usually by more than 1860 
an order of magnitude.  While effective fluxes include potential changes due to other terms such as 1861 
chemical production, cuticle values also dominate for the effective conductances – deposition velocity is a 1862 

key term affecting HNO3 concentrations near the surface.    1863 

Comparisons of model-predicted 2016 concentrations of NH3(g) to both CrIS satellite-based observations 1864 
(in the afternoon, at overpass time) and ground-based AMON monitoring network values (biweekly 1865 
averages) showed that CMAQ-M3Dry and CMAQ-STAGE had the most negative biases in NH3.  These 1866 
models, employ two different bidirectional flux algorithms for NH3 emissions and deposition.  The GEM-1867 
MACH (Base) and GEM-MACH (Zhang) models (both of which employed a common bidirectional flux 1868 

algorithm) had the smallest magnitude NH3 biases.  A detailed analysis of the magnitude and direction of 1869 
the bidirectional flux models showed a common diurnal behaviour of daytime emissions from agricultural 1870 
and grassland areas and deposition in downwind forested areas, and nighttime deposition in all regions .  1871 
However, the GEM-MACH models predicted low magnitude net emissions from forested areas 1872 
downwind of agricultural areas in the early morning, while the CMAQ models predicted net deposition at 1873 

all locations.  Differences in the relative magnitudes of compensation point concentrations and the 1874 
strength of the daytime stomatal deposition pathway were shown to be the cause for these differences.     1875 

Europe, Critical Load Exceedances 1876 

The AQMEII4 ensemble for Europe predicted similar exceedances with respect to acidity and 1877 

eutrophication in 2009 and 2010, with the 3-member reduced ensemble showing slightly reduced 1878 
exceedance levels for acidity, and slightly increased exceedance levels for eutrophication, in 2010.  The 1879 
EU percent reduced ensemble acidification exceedance and its range was 4.48% (range 2.37% to 6.85%) 1880 
in 2009, and 4.32% (range 2.06% to 6.52%) in 2010.  EU eutrophication exceedance areas were higher, at 1881 
60.2% (range 47.3% to 73.3%) in 2009, and 62.2% (range 51.2% to 74) in 2010 .   1882 
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We note that the models used made use of inorganic aerosol thermodynamics algorithms which included 1883 
reactions of base cations, and none made use of more recent updates to the particle dry deposition 1884 
parameterization (Emerson et al., 2020, Pleim et al., 2022).  Consequently, the magnitude of differences 1885 

between the models varied from the North American models, as well as the order of importance of 1886 
different forms of Sulphur towards total deposition differed from the North American ensemble. 1887 

Europe, Causes of Model S Deposition Variability  1888 

The common domain average reduced ensemble sulphur dry deposition contributions and their variability 1889 
followed the same order (SO2: 56.7%; range 47.0% to 61.4%, Wet S: 37.2%; range 34.3% to 46.4%, dry 1890 
particulate sulphate: 6.0%; range 1.9 to 9.0%).  WRF-Chem (IASS) had the best overall performance 1891 
relative to observations for SO2 concentrations, while CMAQ (Hertfordshire) had the best performance 1892 
for wet S deposition.  LOTOS-EUROS (TNO) and CMAQ (Hertfordshire) tended to overestimate 1893 

regional SO2 seasonality, with much higher concentrations in winter than summer compared to 1894 
observations in the EMEP SO2 network.  Near-source observations (AIRBASE network) had higher 1895 
winter than summer values, though this seasonal variation was largely absent in the observations for 1896 
stations more representative of regional conditions (EMEP).  The positive biases in modelled regional 1897 
SO2 concentrations for LOTOS-EUROS (TNO) and CMAQ (Hertfordshire) (the latter relative to both 1898 

EMEP and AIRBASE stations) may reflect differences in plume rise distribution between the models, or 1899 
in their driving meteorology’s vertical stability (e.g. the modelled wintertime atmosphere may be more 1900 
stable than is observed, for these models).  As was the case in the North America ensemble, all models 1901 
had negative biases for wet S deposition.  CMAQ (Hertfordshire), with the best overall wet S deposition 1902 
performance, nevertheless had a 2010 bias of -0.39 eq ha-1 yr-1.  This may be compared to the monthly 1903 

observed values which ranged from 1.0 to 1.95 eq ha -1 yr-1).  As in North America, the manner in which 1904 
cloud scavenging of particulate sulphate and SO2 was implemented in these models may be the cause of 1905 
the wet deposition negative biases.  Unlike North America, speciated PM measurements were unavailable 1906 
for model evaluation. 1907 

EU SO2 deposition pathways were investigated with AQMEII4 diagnostics; the soil and cuticle pathways 1908 
dominated, though their relative importance varied between reporting models.  The stomatal pathway was 1909 
relatively unimportant (e.g., the cuticle pathway flux was approximately an order of magnitude higher 1910 

than the stomatal pathway for the three models reporting these data).   This order of importance may 1911 
reflect diurnal and seasonal SO2 concentration variations. SO2 concentrations are more likely to be high 1912 
under more stable atmospheric conditions (these inhibit the rise of buoyant SO2 plumes from large stack 1913 
sources); these conditions are more likely to occur more frequently at night and in the winter, when the 1914 
influence of the stomatal pathway is at its minimum.   1915 

Europe, Causes of Model N Deposition Variability 1916 

The relative contributions towards total N deposition and the range in the EU domain were: wet nitrate 1917 
ion (30.9%; range 22.7% to 31.5%), dry HNO3 (21.0%; range 11.2 to 25.8%), wet ammonium ion 1918 

(20.3%; range 15.5% to 26.4%), dry ammonia gas (13.7%; range 9.7% to 22.4%), dry particle nitrate 1919 
(5.1%; range 4.4% to 5.4%), and dry NO2 (5.1%; range 2.1% to 6.9%).  The variations in the N deposition 1920 
values between models were smaller than in North America, likely due to the use of base cation-inclusive 1921 
inorganic aerosol thermodynamic algorithms in all models, and the use of older implementations of wet 1922 
scavenging and particle dry deposition than in the North American models.  We note that dry NH3 1923 

deposition was the 4 th largest contributor to European N deposition model-to-model variability, with the 1924 
model employing a bidirectional flux algorithm (LOTOS-EUROS) having the highest NH3 deposition.  1925 
While monitoring network and satellite NH3 observations for the time periods simulated were not 1926 
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available for Europe, the latter data source should be used in simulations in subsequent years for 1927 
evaluation of European model NH3 performance.  1928 

LOTOS-EUROS (TNO) had the best overall performance for wet nitrate deposition, wet ammonium 1929 
deposition, and near source NO2 concentrations compared to the other models.  However, wet nitrate and 1930 
ammonium deposition had substantial negative biases for all models, in common with the North 1931 

American models. The seasonality of wet N deposition was poorly simulated, with most models failing to 1932 
predict the observed summertime maximum of wet ammonium deposition.  Given that this negative bias 1933 
has its maximum in the summer, when agricultural NH3 emissions are also likely to maximize, evaluation 1934 
in more recent years of NH3 predictions against satellite data is recommended.     1935 

Two models for the EU comparison (WRF-Chem (UPM) and CMAQ (Hertfordshire)) reported effective 1936 
flux diagnostics for all four HNO3 dry deposition effective flux pathways:  these models showed a similar 1937 

result to North America, with cuticle and soil pathways being approximately an order of magnitude higher 1938 
than the stomatal and (when present) the lower canopy pathways.   1939 

We also note that the importance of the details of the underlying land-use database may be seen in the 1940 
HNO3 deposition flux diagnostics (Figures S17 and S18).  The effective flux values are with respect to 1941 
land (vegetated) regions (i.e. the relative importance of stomatal, cuticle, lower canopy and soil pathways 1942 
is only relevant on land).  Here, a >1% water was used as an exclusion criterion to allow a comparison 1943 
between grid cells that were “mostly land”.  In these Figures, the regions which do not meet this exclusion 1944 

criterion are represented as grey areas.  Some models clearly have a greater fraction of inland water 1945 
(possibly at low land use fractions) than others in boreal forest areas, from the relative proportion of grey 1946 
“no land” grid cells in these Figures (NA: (CMAQ-M3Dry, CMAQ-STAGE, GEM-MACH (Base), GEM-1947 
MACH (Zhang), GEM-MACH (Ops)) have more grey regions than (WRF-Chem (IASS), WRF-Chem 1948 
(UPM), WRF-Chem (UCAR)); EU: CMAQ (Hertfordshire) has more grey regions than the other three 1949 

models).  Furthermore, we note that the land-use databases employed in critical load exceedance 1950 
calculations may also differ from those used in individual models.  Such mismatches are another source 1951 
of uncertainty in the estimation the critical load exceedances for the dry deposition portions of total S and 1952 
N deposition. The effect of land-use type classifications on model deposition fluxes for ozone will be 1953 
examined in more detail in a companion paper (Hogrefe et al., 2024, ACPD, in preparation). 1954 

Recommendations:  Air-Quality Modelling Needs Identified by the Analysis 1955 

Our analysis suggests that model biases and model-to-model variability may be reduced through targeted 1956 
research into specific model process components. These include: 1957 

Multiphase hydrometeor scavenging of gases and aerosols into clouds:  Wet deposition was usually the 1958 
largest or second largest source of total S and N deposition in both ensembles  for Europe and North 1959 

America, however, every model in the two ensembles had negative biases for wet deposition.  The portion 1960 
of critical load exceedances associated with wet deposition has been underestimated, due to this model 1961 
bias.  Improvements in the process representation of cloud processing of S- and N-containing particles 1962 
and gases is thus a priority for research.  Recent papers indicate that multiphase hydrometeor scavenging 1963 
implementations may reduce this bias. 1964 

Incorporation of improved particle deposition velocity algorithms – but only in combination with 1965 
multiphase wet scavenging.  Most of the models and model simulations employed in the AQMEII4 1966 

ensemble did not make use of the more recent algorithms for particle dry deposition based on an 1967 
exhaustive review of available deposition observations in a variety of land use types  (Emerson et al., 1968 
2020).  However, the models which did incorporate these algorithms (GEM-MACH (Base), GEM-MACH 1969 
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(Zhang)) had substantially increased positive biases in fine mode particulate matter concentrations.  An 1970 
algorithm known to result in a better fit to observed deposition velocities thus resulted in worse regional 1971 
model performance – suggesting that other factors and compensating errors in the modelling platforms 1972 

may be influencing performance in the model implementations examined here.   1973 

Recent work by Ryu and Min (2022) and Ghahreman et al. (2024) suggest that the above two issues 1974 

(positive particle concentration biases and negative wet deposition flux biases) are related, and that a 1975 
combination of particle dry deposition updates and multiphase hydrometeor wet scavenging may be 1976 
required to generate a net improvement in model performance.  Ryu and Min (2022) demonstrated using 1977 
the WRF-Chem model that when the dry deposition updates are implemented alone, a similar effect on 1978 
particulate concentrations was seen as for GEM-MACH in the current study – an increase in positive 1979 

PM2.5 biases relative to observations.  They also showed that the implementation of multiphase 1980 
scavenging alone also decreased WRF-Chem performance, while simultaneously implementing both 1981 
particle dry deposition velocity updates and multiphase scavenging resulted in a net improvement in 1982 
performance of that model.  Ghahreman et al. (2024) added multiphase hydrometeor scavenging to a 1983 
GEM-MACH implementation incorporating the Emerson et al.  (2020) particle dry deposition velocity 1984 

updates, and showed significant improvements in sulphate fluxes relative to earlier model 1985 
implementations.  The need for a combined approach for these process updates is supported by the current 1986 
work. 1987 

Base cation inorganic chemistry and improved base cation emissions inventory development.   A striking 1988 
cause of differences between NA GEM-MACH (Base), GEM-MACH (Zhang), and GEM-MACH (Ops) 1989 
in comparison to the other models were their positive biases for fine model particle nitrate and ammonium 1990 

concentrations relative to observations.  Unlike the other models in both ensembles, these models 1991 
employed an inorganic aerosol thermodynamics algorithm which did not include base cation chemistry, 1992 
and hence some of the excess fine mode particle nitrate and ammonium concentrations and fluxes may be 1993 
due to the absence of coarse mode formation of base cation nitrates, allowing excessive fine mode particle 1994 
ammonium and nitrate formation.  Updating these models to include base cation chemistry using more 1995 

recent (Fountoukis and Nenes, 2007) and highly computationally efficient/accurate algorithms now 1996 
incorporated into GEM-MACH and GEOS-Chem (Miller et al., 2024) should reduce these biases and 1997 
overall ensemble variability. 1998 

NH3 bidirectional fluxes.  The comparison to both surface and satellite observations for the North 1999 
American ensemble models showed the potential of these algorithms to improve nitrogen deposition 2000 
performance.  However, the comparison also suggested that the compensation point concentrations and 2001 
stomatal pathway parameterization choices for forested areas in the models compared here may have led 2002 

to reduced performance in these CMAQ implementations.  The balance between NH3 emissions and 2003 
deposition for this group of models in forested regions may overestimate the relative importance of 2004 
deposition fluxes; a reexamination of forest stomatal pathway algorithms and compensation point 2005 
concentrations for forested regions may improve the performance of this group of models.   We also note 2006 
that ambiguities exist in the methodology for accounting for the influence of bidirectional NH 3 fluxes 2007 

towards net nitrogen deposition – this is a task for resolution by both the atmospheric modelling and 2008 
critical load data communities.  Furthermore, comparisons of North America regional model simulations 2009 
of NH3 with satellite data suggest that oceanic NH3 emissions, which are included in global chemical 2010 
transport modelling platforms, should also be considered for regional modelling platforms, due to 2011 
negative biases observed over oceans in the simulations taking place here.   2012 

Land use type harmonization.  We note here that the databases used for land use classification may differ 2013 
between models, and between the land use databases used for air-quality model simulations and those 2014 
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used for critical load data generation; these factors influenced the simulated NH3 fluxes shown above, and 2015 
are the subject of a separate AQMEII4 paper analyzing model O3 deposition performance (Hogrefe et al. , 2016 
2024, in preparation).  Future work centered on harmonizing the land use classification data used for 2017 

models, and between models and those used in critical load estimates, is therefore recommended. 2018 
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