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Abstract

Exceedances of critical loads for deposition of sulphur (S) and nitrogen (N) to different ecosystems were
estimated using European and North American ensembles of air quality models, under Phase 4 of the Air
Quality Model Evaluation International Initiative (AQMEII4), to identify where risk of ecosystem harm is
expected to occur based on model deposition estimates. The ensembles were driven by common
emissions and lateral boundary condition inputs. Model output was regridded to common North
American and Europe 0.125° resolution domains, which were then used to calculate critical load
exceedances. Targeted deposition diagnostics implemented in AQMEII4 allowed an unprecedented level
of post-simulation analysis to be carried out and facilitated the identification of specific causes of model-
to-model variability in critical load exceedance estimates.

Datasets for North American critical loads for acidity for forest soil water and aquatic ecosystems were
created for this analysis. These were combined with the ensemble deposition predictions to show a
substantial decrease in the area and number of locations in exceedance between 2010 and 2016 (forest
soils: 13.2% to 6.1%; aquatic ecosystems: 21.2% to 11.4%). All models agreed in the direction of the
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ensemble exceedance change between 2010 and 2016. The North American ensemble also predicted a
decrease in both severity and total area in exceedance between the years 2010 and 2016 for
eutrophication-impacted ecosystems in the USA (sensitive epiphytic lichen: 81.5% to 75.8%). The
exceedances for herbaceous community richness also decreased between 2010 and 2016, from 13.9% to
3.9%. The uncertainty associated with the North American eutrophication results is high; there were
sharp differences between the models in both predictions of total N deposition and the change in N
deposition, and hence in the predicted eutrophication exceedances between the two years. The European
ensemble was used to predict relatively static exceedances of critical loads with respect to acidification
(4.48% to 4.32% from 2009 to 2010) while eutrophication exceedance increased slightly (60.2% to
62.2%).

While most models showed the same changes in critical load exceedances as the ensemble between the
two years, the spatial extent and magnitude of exceedances varied significantly between the models. The
reasons for this variation were examined in detail by first ranking the relative contribution of different
sources of sulphur and nitrogen deposition in terms of deposited mass and model-to-model variability in
that deposited mass, followed by their analysis using AQMEII4 diagnostics, along with evaluation of the
most recent literature.

All models in both the North American and European ensembles had net annual negative biases with
respect to observed wet deposition of sulphate, nitrate and ammonium. Diagnostics and recent literature
suggest that this bias may stem from insufficient cloud scavenging of aerosols and gases, and may be
improved through the incorporation of multiphase hydrometeor scavenging within the modelling
frameworks. The inability of North American models to predict the timing of the seasonal peak in wet
ammonium ion deposition (observed maximum was in April, while all models predicted a June
maximum) may also relate to the need for multiphase hydrometeor scavenging (absence of snow
scavenging in all models employed here). High variability in the relative importance of particulate
sulphate, nitrate and ammonium deposition fluxes between models was linked to the use of updated
particle dry deposition parameterizations in some models. However, recent literature and further
development of some of the models within the ensemble suggests these particulate biases may also be
ameliorated via the incorporation of multiphase hydrometeor scavenging. Annual sulphur and nitrogen
deposition prediction variability was linked to SO, and HNO; dry deposition parameterizations, and
diagnostic analysis showed that the cuticle and soil deposition pathways dominate the deposition mass
flux of these species. Further work improving parameterizations for these deposition pathways should
reduce variability in model acidifying gas deposition estimates. The absence of base cation chemistry in
some models was shown to be a major factor in positive biases in fine mode particulate ammonium and
particle nitrate concentrations. Models employing ammonia bidirectional fluxes had both the largest and
the smallest magnitude biases, depending on the model and bidirectional flux algorithm employed. A
careful analysis of bidirectional flux models suggests that those with poor NH; performance may
underestimate the extent of NH3 emissions fluxes from forested areas.

Model-measurement fusion in the form of a simple bias correction was applied to the 2016 critical loads.
This generally reduced variability between models. However, the bias correction exercise illustrated the
need for observations which close the sulphur and nitrogen budgets in carrying out model-measurement
fusion. Chemical transformations between different forms of sulphur and nitrogen in the atmosphere
sometimes result in compensating biases in the resulting total sulphure and nitrogen deposition flux fields.
If model-measurement fusion is only applied to some but not all of the fields contributing to total
deposition of sulphur or nitrogen, the corrections may result in greater variability between models, or less
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accurate results for an ensemble of models, for those cases where an unobserved or unused observed
component contributes significantly to predicted total deposition.

Based on these results, an increased process-research focus is therefore recommended for the following
model processes and on observations which may assist in model evaluation and improvement:
multiphase hydrometeor scavenging combined with updated particle dry deposition, cuticle and soil
deposition pathway algorithms for acidifying gases, base cation chemistry and emissions, and NH3
bidirectional fluxes. Comparisons with satellite observations suggest that oceanic NH3 emissions sources
should be included in regional chemical transport models. The choice of land use database employed
within any given model was shown to significantly influence deposition totals in several instances, and
employing a common land use database across chemical transport models and critical load calculations is
recommended for future work

Introduction

The concept of a Critical load (CL) was first proposed as a means for evaluating the ecosystem impacts of
the deposition of sulphur and nitrogen in response to the Convention on Long-Range Transboundary Air
Pollution (CLRTAP), an international agreement for mitigation and control of acidifying pollution, which
entered into force in 1983 (CLRTAP, 2023). The Convention provided some of the initial impetus for the
development of comprehensive air-quality models. The models provide a means of estimating the
deposition fluxes of sulphur- and nitrogen-containing chemicals of anthropogenic origin, which may then
be used to estimate the corresponding ecosystem impacts. Critical load exceedance estimates are the
broadly accepted methodology for estimating the potential for ecosystem harm related to acidification and
eutrophication. A critical load in this context was defined (Nilsson and Grennfelt, 1988) as “A
quantitative estimate of an exposure to one or more pollutants below which significant harmful effects on
specified sensitive elements of the environment do not occur, according to present knowledge”. This
definition is parsed in detail for readers unfamiliar with the Critical Load concept, in the Supplemental
Information (SI).

The creation of critical loads for acidification, and the calculation of their exceedances is based on the
concept of chemical charge balance steady-state within soil water or aquatic ecosystems. The fluxes of
anions and cations entering or leaving an ecosystem are used to determine whether an excess cation flux
is available to the ecosystem, which could balance anion fluxes associated with acidifying deposition.
Anion fluxes added to the system from anthropogenic sources include forms of deposited sulphur and
nitrogen noted above. The S-containing forms of deposition (Saep) are assumed to rapidly oxidize and are
treated within critical load calculations as the sulphate ion. Every mole of deposited sulphur is assumed
to be associated with two negative charges as the sulphate ion, SO4*(aq), hence the deposition flux is
tracked as charge equivalents per hectare per year; eq ha™ yr!. N-containing forms of deposition (Ngep)
are assumed to rapidly oxidize and are treated as the nitrate ion - every mole of deposited nitrogen
(including those of ammonia and ammonium) is assumed to be associated with one negative charge of
nitrate ion deposition, NOs(aq)). Base cations and their deposition (Ca**, Mg?*, K*, and Na") are
included in critical load calculations (collectively, BCqcp), and may incorporate anthropogenic base cation
fluxes. The anthropogenic deposition fluxes to the ecosystem from the atmosphere are used in
calculations of critical load exceedances. The critical loads themselves include estimates of natural
atmospheric fluxes as well as other terms for fluxes of anions and cations. For example, in the steady-
state or simple mass balance (SMB) model often used to define surface water critical loads for terrestrial
ecosystems (Sverdrup and DeVries, 1994), BCqep, includes the release of soil base cations due to
weathering, non-marine chloride deposition, harvesting of base cation and/or nitrogen-containing



132
133
134
135
136
137
138
139
140
141
142
143
144

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

167
168
169
170
171
172
173
174
175
176
177

biomass, denitrification, nitrogen immobilization in the rooting zone, run-off volume, and a critical value
of the non-sodium base cation to aluminum ion ratio. Aquatic ecosystem critical loads with respect to
acidity are usually calculated using the steady-state water chemistry (SSWC) or the first-order acidity
balance (FAB) methodologies (Henriksen and Posch, 2001; CLRTAP 2023, de Vries et al., 2015), or other
similar approaches (McDonnell et al., 2014). The SSWC makes use of the difference between an
estimate of the sea-salt corrected pre-acidification concentration of base cations in the surface water, and
a specified biological indicator species’ acid neutralizing capacity limit above which no significant
damage is expected to occur. The FAB methodology assumes the runoff fluxes at a lake outlet are charge-
balanced, relates these runoff terms to fluxes of ions entering the lake and dimensionless retention factors
and to terms for nitrogen immobilization, nitrogen growth uptake into vegetation, denitrification,
atmospheric deposition, and weathering. An overview of the above methods for critical load (CL)
estimation, and how they are used in estimating exceedances, may be found in CLRTAP (2023), Makar et
al. (2018) and the references therein.

Critical loads of nutrient nitrogen and their exceedances are used to address the issue of the influx of
airborne nitrogen resulting in changes in soil-based processes, plant growth and inter-species
relationships. Nitrogen-containing gases and aerosol components may be directly toxic to sensitive
individual plant and animal species, while the accumulation of nitrogen (increased nitrogen availability)
may also change species composition or relative abundance. Soil-mediated effects of acidification may
include eutrophication, and species may have increased susceptibility to secondary stressors such as
drought, frost, pathogens or herbivores (CLRTAP, 2023). Critical loads for the eutrophication processes
associated with nutrient nitrogen in terrestrial ecosystems may also make use of a version of the SMB
model. This critical load model balances the input fluxes of all forms of nitrogen deposition plus
biological fixation and soil nitrogen adsorption against ecosystem nitrogen losses (immobilization in soil
organic matter, removal via harvesting of vegetation and animals, fluxes to the atmosphere
(denitrification), erosion, combustion, ammonia volatilization, and leaching below the root zone).
Biological fixation, soil adsorption, combustion, erosion and ammonium leaching are usually considered
negligible, and denitrification is assumed to be linearly dependent on the net input of nitrogen, leading to
critical loads of nutrient nitrogen dependent only on immobilization, harvesting removal, a sensitive plant
or animal species acceptable limit for nitrogen leaching (nitrogen in soil water), and an ecosystem-
dependent denitrification fraction (CLRTAP, 2023). The acceptable limits for nitrogen concentrations in
soil can range from 6.5 down to 0.2 mg N /!, depending on vegetation type (CLRTAP, 2023). A further
means of estimating eutrophication is via comparison of measured nitrogen deposition with observed
ecosystem damage over a large number of sites (Geiser ef al. 2019; Simkin ef al. 2016). Exceedances for
eutrophication in this case may be estimated as the differences between the estimated nitrogen deposition
and the observation-based critical load.

As noted in the Supplement, critical load exceedance calculations are carried out on an ongoing basis due
to the ongoing cycle of chemical transport model (CTM) process improvement. The results of our
analyses should thus be considered a “snapshot” of the state of both CTM science and critical load (CL)
knowledge at the time the simulations and critical load data collection took place (2021). CTMs
numerically integrate the system of time-dependent differential equations describing the rates of change
of chemical species in the atmosphere, in order to predict the changes in chemical concentrations and
deposition over time. This is usually done by breaking the net differential equation for the rates of change
into component processes (e.g. advection, diffusion, gas-phase chemistry, inorganic particle chemistry,
dry deposition, particle microphysics treating the nucleation, condensation of gases, coagulation of
particles, cloud processing of gases and aerosols including wet deposition), with the processes being
solved in sequence to determine the future state of the atmosphere (Marchuk, 1990). However, there is
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usually not a complete scientific consensus on the best numerical methods to carry out the time-stepping
for each of these processes, and the level of detail in process representation in the models may also vary
considerably, depending at times on external constraints such as the processing time available for CTM
simulations. The individual processes are usually evaluated based on laboratory or other process-specific
data wherever possible, but often the selection of a specific process representation within a CTM is often
based on comparisons of the output of entire CTM relative to surface or satellite monitoring data. This
latter approach may allow compensating errors in process representation to take place (c.f. Makar ef al.,
2014; Hyder et al., 2018; Huang et al., 2021; Vizuete et al., 2022). These considerations may contribute
to the resulting variability in deposition estimates from the different modelling frameworks. The work
conducted here uses analysis of new model diagnostic outputs added for AQMEII-4to attempt to
determine the key causes of these model deposition estimate differences.

The ongoing reevaluation and improvement of CTMs is aided by ensemble model comparisons, where
models driven by the same lateral boundary and emissions inputs are cross-compared and evaluated
against observations. The Air-Quality Model Evaluation International Initiative (AQMEII) has comprised
model CTM ensemble evaluation studies, to date in four phases. The initial phase of AQMEII utilized
largely off-line regional models used for research and public policy support to simulate a common year,
2006, with common emissions inputs, in both North America and Europe, with 22 modelling groups
participating (Galmarini et al., 2012). Subsequent phases of AQMEII examined specific issues within the
CTM community: AQMEII-2 had as its focus the evaluation of both weather and air-quality predictions
for fully coupled, on-line air-quality models, where the particulate matter generated by the models on any
given timestep feeds back into the coupled models’ weather forecast radiative transfer and cloud
formation processes (Galmarini ef al., 2015). AQMEII-3 addressed questions of hemispheric transport of
air pollutants — the relative contributions of local versus long-range transport towards predicted pollutant
concentrations, and their impacts on ecosystem and human health (Galmarini et al., 2017).

The variety in underlying scientific theory encapsulated within CTMs and their process representation
implies the need for cross-comparison of critical load exceedance predictions from a variety of models.
As part of AQMEII-3, 14 air-quality models were used to calculate oxidized sulphur and oxidized and
reduced nitrogen deposition, and hence EU critical load exceedances (Vivanco et al., 2018). This
comparison revealed a high degree of variability in simulated wet and dry deposition fluxes. The models
with the best performance relative to observations were used to provide ensemble critical loads — a
“reduced ensemble” in that not all models submitting output for the study were used in generating
ensemble critical loads. However, even within this reduced ensemble, local variations of over a factor of
four in both sulphur and nitrogen deposition could be seen between the ensemble members, and the
predicted percent area in exceedance for sensitive ecosystems varied by more than a factor of two for the
best performing models (Vivanco et al., 2018). These results highlighted the large range of model-
dependent variability possible in critical load exceedance estimates — but the causes for that variability,
and how it might be reduced, were not investigated to any significant extent.

The study protocols of AQMEII phase four (AQMEII4) were designed partly in response to the large
variation in model sulphur and nitrogen deposition estimates noted in Vivanco et al. (2018), Solazzo et al.
(2018) and Hogrefe et al. (2020). AQMEII4 protocols were also motivated by a similarly large variation
in simulated ozone deposition velocities (Hardacre ef al., 2015; Zhiyong Wu et al., 2018), and renewed
emphasis on the importance of specific ozone deposition pathways (Clifton et al., 2017, 2020a,b).

AQMEII4 has two main activities: a regional model intercomparison with enhanced diagnostics for gas-
phase dry deposition (Galmarini et al., 2021), and an observation-driven single-point model
intercomparison study for ozone dry deposition at sites with ozone flux records (Clifton ef al., 2023). The
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current work continues the regional model intercomparison driven by common boundary conditions, with
a focus here on critical load exceedances for acidity and eutrophication, and the use of additional
diagnostics to determine the underlying causes for the model-to-model variability in these exceedance
estimates.

As described later in our analysis, two processes account for much of the variability in CTM predictions
of the total deposition of sulphur and nitrogen (Sqe, and Ngep): particle dry deposition and the scavenging
of particles by depositing hydrometeors. We note that subsequent to the construction and application of
the model versions applied in AQMEII4, new parameterizations for particle dry deposition became
available. Emerson et al. (2020) compiled multiple particle dry deposition velocity observations and
compared these to the predictions of the commonly used Zhang et al. (2001) algorithm. Relative to these
observations, the Zhang et al. (2001) algorithm tended to overestimate deposition velocity on vegetated
surfaces at smaller particle sizes (< 0.4 um diameter), while underestimating the deposition velocity for
particles between 1 and 10 um. Several papers prior to 2019 noted that the relationship between particle
size and deposition velocity did not “capture observed relationships between particle deposition,velocities
and particle size, especially around the accumulation mode” (Clifton et al., 2024). Emerson et al. (2020)
also noted a substantial overestimate of the Zhang et al. (2001) particle deposition velocity over water
surfaces relative to observations. Emerson et al. (2020) proposed a modified version of the Zhang et al.
(2001) algorithm, demonstrating a better fit to the ensemble of deposition velocity observations. The
differences between the two parameterizations were substantial, with decreases in particle deposition
velocities in the sub-pm range of one to two orders of magnitude relative to Zhang ef al. (2001) across
multiple land use types, and increases over vegetated surfaces of up to an order of magnitude for particle
diameters from 1 to 10 um. The decrease in sub-um deposition velocities might be expected to result in
increases in air concentrations of Aitken to mid-Accumulation mode particles, and decreases in those of
mid-Accumulation mode to Coarse-mode particles. Ryu and Min (2022) applied the Emerson ef al.
(2020) parameterization to the WRF-Chem model, and found that PM, 5 positive biases increased in
magnitude, while PM10 negative biases were partially offset with the use of the new algorithm. Pleim et
al. (2022) also re-examined aerosol dry deposition velocities in the context of the CMAQ model, noting
an increase in accumulation mode dry deposition velocities of almost an order of magnitude in forested
areas, an overall reduction in PM, s concentrations, and an improvement in PM; s prediction accuracy.
The latter work does not necessarily contradict the Emerson et al. (2020) results, which imply possible
increases in PM mass within the Aitken and Accumulation modes. The increase in the removal of mass
between the mid-Accumulation mode to larger sizes may dominate over the particle deposition velocity
decreases between the Aitken to mid-Accumulation mode noted in the observations collected by Emerson
et al. (2020).

Studies using sectional aerosol size representations have recently found that improved aerosol deposition
velocity algorithms need to be combined with improved wet hydrometeor scavenging, to result in net
improvements of regional model performance. Ryu and Min (2022) found that the best overall WRF-
Chem performance resulted from a combination of updates (when the new dry deposition algorithm was
combined with updates for cloud scavenging employing cloud fractions for rainout and a revised
parameterization for below-cloud scavenging incorporating separate terms for rain and snow removal
rates). Ghahreman ef al. (2024), in updating the cloud scavenging parameterization of the GEM-MACH
model, noted differences in rain and snow below-cloud scavenging rates of up to two orders of magnitude
between the previously applied, temperature-based parameterization Slinn (1984) and the newly
implemented parameterization of multiphase scavenging (from both the underlying meteorological model
and the empirical scavenging parameterization of Wang et al. (2014)). Differences in scavenging rates
were found to be strongly dependent on temperature, acrosol size, and the precipitation rate. The revised
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parameterizations resulted in an overall improvement in performance for wet SO4> deposition, where the
Emerson et al. (2020) algorithm was employed for the particle dry deposition simulation in all the model
runs.

A large part of the model-to-model variability and uncertainty resides in the above two processes, as
demonstrated in our analysis. We next describe our methodology (including an overview of the two
AQMEII4 model domains, descriptions of the construction of the critical load data employed herein, and
descriptions of the models, their inputs and boundary conditions). Our analysis follows, first presenting
estimates of critical load exceedances for two different simulation years in each domain, and the
exceedances estimated using ensembles of model deposition predictions. The bulk of the analysis then
examines individual contributions of different sulphur and nitrogen species towards their total deposition,
for each model, and for the ensemble. The causes of the differences between the models are determined
through process analysis. Our concluding section includes research recommendations based on the
analysis in order to improve the performance of individual models, and to reduce the variability between
their estimates of critical load exceedances.

Methodology

1.0 Critical Load Data

Six critical load (CL) datasets were used in conjunction with our ensembles of CTM deposition
estimates. North American CL datasets included terrestrial (forest) ecosystem acidity critical loads for the
continent, aquatic ecosystem acidity critical loads combining data from Canada and the USA, and USA-
specific sensitive epiphytic lichen species and herbaceous plant species eutrophication critical loads.
European CL datasets combined CL information from multiple countries for terrestrial and aquatic
ecosystem acidity and terrestrial ecosystem eutrophication. A brief summary of the six CL datasets used
in this work is provided here — full descriptions of the methodology used to create the CL data are
provided in the Supplement, section 1.

North American CL estimates for were generated using the Simple Mass Balance model
(Sverdrup & Warfvinge, 1990; Sverdrup & De Vries, 1994), employing data from several studies within
the U.S. and Canada (McNulty et al., 2007, 2013; Duarte et al., 2011, 2013; Phelan et al., 2014, 2016;
Sullivan, 2011; Sullivan et al., 2012; Cathcart et al., 2024) Table S1 (Supplement) provides
methodological information for these studies, such as the horizontal spatial resolution, dataset extent,
plant-species-specific critical base cation to aluminum soil water ratio values, the approaches used to
estimate soil base cation weather rates, losses of (non-sodium) base cations from the ecosystem through
uptake via harvesting or grazing, and whether nitrogen uptake via harvesting/grazing was included in the
calculation of nitrogen minimum critical loads.

The North American Aquatic Ecosystem acidity critical load dataset constructed here combined
individual datasets from the Canada and the USA, as follows.

Environment and Climate Change Canada data corresponding to the subset of 2,997 lake surveys
which reside within the common AQMEII4 North American grid were used in conjunction with the
Steady-State Water Chemistry (SSWC) critical load model (Sverdrup ef al., 1990) as described in Aherne
and Jeffries (2015). SSWC is in widespread use for aquatic ecosystem CL (Posch ef al., 2001; Cathcart et
al., 2016; Henriksen et al., 2002; Jeffries et al., 2010; Scott et al., 2010; Whitfield et al., 2006; Williston
et al., 2016; Dupont et al., 2005; Miller, 2011). CL calculations for Canada followed a hierarchy based on
the available information for individual lakes (for example catchment runoff rates were determined by



311
312
313
314
315

316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

331
332

333
334
335
336
337
338

339
340
341
342
343
344
345

346
347
348
349
350
351
352
353
354

isotope mass balance estimates in preference to a GIS map based approach using regional datasets, and
when dissolved organic carbon estimates were available, an organic acid adjusted limiting value of the
acid neutralizing capacity was used to include the influence of organic acids in the lake in preference to a
fixed value of 40 peq L™!. Only sulphur deposition was used to determine exceedance, since the SSWC
model does not consider non-acidifying nitrogen.

Aquatic ecosystem critical loads for the USA were taken from the National Critical Loads
Database Version 3.2.1 (NCLDv3.2.1, Lynch et al., 2022), which contains both the critical load data used
here and supporting information. A total of 21,667 critical loads were used for 14,334 unique lakes and
streams across the USA (a combination of different methods for determining the critical loads were
included in the USA values, sometimes resulting in more than one CL estimate for the same water body).
Most USA aquatic critical loads (78%) were determined using the SSWC model (Lynch ef al., 2022;
Schefte ef al., 2014; Dupont et al., 2005, Miller 2011, VDEC (2003, 2004, 2012)), and site-specific
catchment runoff rates (US EPA, 2023). The remaining 22% of USA aquatic critical loads were
determined by a dynamic modelling approach (Sullivan et al., 2005; Fakhraei et al., 2014; Lawrence et
al., 2015) and a combination of dynamic modeling with a regionalization approach (McDonnell et al.,
2012, 2014; Sullivan et al., 2012; and McDonnell ef al., 2021). Organic acid-adjusted limiting acid
neutralizing capacity values were not used in generating these USA aquatic CL with respect to acidity
datasets, and an average critical load value was used for these waterbodies for which overlapping CL
estimates were available. A more detailed description of the USA aquatic critical loads used here can be
found in Lynch et al., (2022).

North American critical loads for eutrophication were estimated using CLE for two ecosystem
types, sensitive epiphytic lichen, and herbaceous species richness.

CL for sensitive epiphytic lichen species richness made use of 9,000 community surveys across
the USA from 1990-2012 (Geiser et al. 2019), where a 90% quantile regression was used to model
relationships between deposition levels and observed species richness in order to estimate critical loads,
and a -20% decline in species richness was used to determine the critical load. These methods resulted in
a single critical load of 3.1 kg-N ha™! yr'! for sensitive epiphytic lichen, which was applied to all
broadleaf, conifer, or mixed forest landcover types.

CL for USA herbaceous species richness made use of data developed using over 14,000
vegetation survey plots across nitrogen deposition gradients (Simkin et al., 2016). An observation-based
approach using median quantile regressions for herbaceous species richness response to deposition was
employed, to generate critical loads with respect to nitrogen deposition linked to various atmospheric and
soil conditions. Separate CL models were developed for open and closed canopies. The resulting CL of
N for open canopy systems ranged from 6.2 to 12.3 kg-N ha''yr! and the CLs of N for closed canopy
systems ranged from 6.1 to 23.7 kg-N ha''yr'.

Two EU CL datasets were employed for the AQMEII4 EU domain, for acidification and
eutrophication of terrestrial ecosystems, respectively. The critical load database and the exceedance
calculations for Europe were provided by the Coordination Centre for Effects (CCE) under the United
Nations Economic Commission for Europe Convention on Long-range Transboundary Air Pollution
(UNECE LRTAP Convention), hosted by the Umweltbundesamt (UBA) in Germany, which develops and
maintains the European critical loads database (Geupel ef al., 2022). The most recent database available
was used here, and while country-dependent, all CL estimates made use of the Simple Mass Balance
model (Sverdrup & De Vries, 1994; CLRTAP, 2023, Geupel et al., 2022), with gap-filling using the CCE
background database (Reinds et al., 2021). Critical loads for EU eutrophication (CLy,:N) were also
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based on the SMB method applied to nitrogen deposition, and used two different methodologies to
determine the accepted nitrogen leaching. Dependent on the country, empirical values were sometimes
used as upper and lower boundaries for the SMB modelling results in order to avoid rather extreme results
in ecosystems where the SMB model predicts very high or very low eutrophication CL values (Bobbink et
al.,2022). The resulting EU CLE were summarized as the share of the receptor area with critical load
exceedance (bar charts) and the magnitude of the exceedance within each analysis grid cell (maps). The
exceedance in a grid cell is defined as the so-called ’average accumulated exceedance’ (AAE), which is
calculated as the area-weighted average of the exceedances of the critical loads of all ecosystems in this
grid cell.

2.0 AQMEII4 Overview Description

The setup of the AQMEII4 regional model comparison is described in detail in Galmarini et al. (2021); a
brief overview is provided here. The models within this analysis are a “snapshot” of regional chemical
transport model development as of the time simulations were completed (2021).

Model simulations were carried out for the years 2010 and 2016 for North America, and 2009 and 2010
for the European region. North American years were chosen due to policy relevance, with a significant
change in SO, emissions controls enacted between the two years. The European years were chosen due to
a large difference in meteorology between the years 2009 and 2010, the latter being a year with unusually
high summer temperatures eastern Europe and the western side of the Russian Federation (Barriopedro et
al., 2011) leading to increased European forest fire activity and emissions during that year (JRC, 2011).
The July 2009 and July 2010 temperature and precipitation anomalies relative to the base year period
1961 to 1990 are shown in Supplemental Information Figure S2 (NCDC, 2024)). The precipitation
anomalies in July of each year are less significantly different than the temperature anomalies; similarly,
the differences between the annual average temperature and precipitation anomalies between the two
years is less significant than the July values. In the analysis which follows, the differences in simulated
deposition and critical load exceedances for European region between the two years is shown to be
relatively minor, implying that forest fire emissions contributed a relatively small proportion of sulphur
and nitrogen deposition in 2010, and that the summer temperature anomalies in 2010 did not result in
significant perturbations to total sulphur and nitrogen deposition.

Simulations were carried out by making use of the individual models’ grid projection and resolution.
Mass-conserving interpolation (for concentrations and fluxes) and nearest neighbour interpolation (for
diagnostics) were then used to map these “native grid” outputs to corresponding North American and
European AQMEII4 grids. The latter have 0.125° x 0.125° resolution (North America: 23.5° N to 58.5°
N, 130° W to 59.5° W; Europe 25° N to 70° N, 30° W to 60° E). Values extracted from the AQMEII4
grid locations were used for comparison to observations. Models made use of their own meteorological
drivers or on-line meteorological components for meteorological field predictions. Models shared
common inputs for emissions and chemical lateral boundary conditions. The latter provide a uniform
chemical forcing and prevent input variations not associated with the models themselves from influencing
simulations results.

North American anthropogenic emissions were generated using emissions modelling platforms which
included the anthropogenic inventories, temporal and spatial allocation from county or state/province
level to native model grids, for each of the two model years, as well as adjustments for specific
inventories by year. Emissions processing was carried out by the United States Environmental Protection
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Agency for the Carbon Bond 6 (revision 3; CB6r3)) and Statewide Air Pollution Research Center -07
(SAPRCO07) chemical mechanisms (Yarwood et al., 2010; Carter, 2010), and by Environment and Climate
Change Canada for the Acid Deposition and Oxidant Mechanism version II (ADOM-II; Stockwell et al.,
1989). Note that while none of the modelling groups made use of the SAPRCO07 mechanism itself within
their simulations, this mechanism was sometimes used as a starting point for lumping individual models’
VOC species, due to the greater level of detail available within the SAPRCO7 speciation. European
anthropogenic emissions were prepared for the participating models’ chemical mechanisms by the
Netherlands Organization for Applied Scientific Research (TNO) as part of the Monitoring Atmospheric
Composition and Climate, part 3 (MACC-III) project (Kuenen et al., 2015), with individual groups using
their own emissions data for the portion of their native model grids extending beyond the range of
MACC-III emissions grid if necessary.

North American forest fire emissions were generated by combining the US emissions modelling platform
values with Canadian data for 2010, while both USA and Canadian data were based on the 2016
emissions modelling platform estimates. These forest fire emissions included criteria air contaminant
emission mass, heat flux, and acres burned. Fire plume rise calculations were carried out by individual
modeling groups, typically based on large stack plume rise formulae (Briggs, 1971, 1972). European
forest fire emissions were provided by the Finnish Meteorological Institute using eight layers from 50 to
6200m. Both North American and European forest fire emissions were chemically disaggregated by the
participating modelling groups and mapped on a nearest grid cell basis to their native model grids.

Lightning NO emissions were also prescribed in both domains, based on GEIA monthly climatology
values (Price et al., 1997), diurnally disaggregated following Blakeslee ef al. (2014) and allocated
vertically following Ott et al. (2010) by individual modelling groups.

Chemical lateral boundary conditions for both EU and NA simulations were taken from 3 hourly, 0.75°x
0.75°, 54 vertical level ECMWF CAMS EAC4 reanalysis products (Inness et al., 2019), interpolated by
participants to their own vertical and horizontal grid structures, and chemically disaggregated to their own
chemical speciation.

2.1 Common Model Diagnostics

The AQMEII4 protocol for ensemble participants included the reporting of gas-phase species’
aerodynamic, bulk surface, stomatal, mesophyll, quasi-laminar sub-layer and within-canopy buoyant
resistances (when present in the reporting model). Effective conductances (Paulot et al., 2018; Clifton et
al., 2020) and effective fluxes (Galmarini ef al., 2021) were also reported. These latter two diagnostic
terms provide the relative contribution of the four main pathways associated with gas-phase deposition
towards the deposition velocity and the deposition flux, respectively. The four main pathways include
soil, the lower canopy, leaf cuticles, and stomata. Note that not all models specify a separate lower
canopy pathway (the conductance associated with this pathway tends to be relatively small, providing
justification for its absence). Effective fluxes are of particular interest to criticalload exceedance analysis,
since they provide information on the charge equivalents deposited to different component surface types.
Effective fluxes include the impact of other processes in addition to deposition on the concentrations and
hence on the net flux of the deposited gases, via the net flux term (/). For example, the soil, lower
canopy, cuticle and stomatal effective fluxes in the Wesely (1989) dry deposition parameterization are
given by:

-1
DFLXSOIL — ( (rac+ryS) >F (1)

— — _ -1
(rs+rm) 1+(rlu) 1+(rdc+rcl) 1+(rac+rgs)

10
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-1
DFLX,cay = < (rgc+rer) )_1) F )

(rs+rp) 1+ (rp) 1+ @rge+ra) 1+ (rac+rgs

DFLXyp = ( () )F 3)

-1
(Ts+rm)_1+(Tlu)_l+(rdc+rcl)_1+(rac+rgs)

DFLX g = ( (rs+7m) 7 )F &)

-1
(rs+rm) "+ (rp) "+ (rget+re) ™t +(rac +rgs)

Where F'is the net flux to the surface, and the » terms are resistances associated with different pathways
of gas mass transfer to the four surface components (7..: aerodynamic mass transfer within canopy,
dependent on canopy height and density, rg: the soil and leaf litter resistance, 74 : canopy buoyant
convection resistance, r.;: resistance associated with leaves, twigs, bark and other exposed surface in the
lower canopy, 7: resistance of leaf cuticles in healthy vegetation and other outer surfaces, 7;: leaf
stomata, r,: leaf mesophyll). The effective conductances can be generated from similar formulae, with
the /" term in equations (1) through (4) being replaced by the deposition velocity of the gas V;. Note that
the formulae for individual models vary from the Wesely (1984) example shown above; see Galmarini et
al. (2021) for details on the formulae for each of the gas-phase deposition algorithms used in the
AQMEII4 regional model ensembles analyzed here.

2.2 Model Parameterization Descriptions

The models CMAQ-M3Dry, CMAQ-STAGE, WRF-Chem (IASS), GEM-MACH (Base), GEM-MACH
(Zhang), GEM-MACH (Ops), WRF-Chem (UPM), and WRF-Chem (UCAR) provided simulations for
AQMEII-4, interpolated to the common the North American domain. The models WRF-Chem (IASS),
LOTOS-EUROS (TNO), WRF-Chem (UPM) and CMAQ (Hertfordshire) provided simulations for
AQMEII-4, interpolated to the common European domain. Some of the modelling frameworks were
repeated, but process implementation details were varied in order for the relative impact of these
differences to be examined. We describe each of these models according to the starting framework
(CMAQ, GEM-MACH, WRF-Chem, LOTOS-EUROS), below.

2.2.1 CMAQ-M3Dry, CMAQ-STAGE, CMAQ (Hertfordshire) — WRF-CMAQ Implementations

These three models make use of the WRF-CMAQ off-line modelling framework (CMAQ v5.3.2, US EPA
(2020)), with the North American implementations (CMAQ-M3Dry, CMAQ-STAGE) employing 12 km
cell resolution, and the EU implementation employing 10km cell resolution (Lambert Conformal Conic
projection, 459x299 and 500x681 grid cells, respectively). The CMAQ implementations employed 35
model layers with the lowest layer thickness of ~20m. Both NA models operate in an oft-line
configuration using the same driving weather forecast model output (NA: WRF4.1.1, EU: WRF 4.2.1,
Skamarock ef al., 2019). All three CMAQ model implementations use the same gas-phase chemical
mechanism (Carbon Bond 6; Luecken et al., 2018)), a modal aerosol size distribution representation with
three modes (Binkowski and Roselle, 2003), acrosol microphysics through the AERO7 module (Appel et
al., 2021; Binkowski and Shankar, 1995; Vehkamaki et al., 2002), and thermodynamic equilibrium
partitioning for semivolatile inorganic species between gas and aerosol phases species (involving the
components K*-Ca?*-Mg?*-NH4"-Na*"-SO4*-NOjs™- CI" - H,0) using the ISORROPIA II algorithm
(Fountoukis and Nenes, 2007). Organic aerosol formation and monoterpene oxidation are modelled as
described in AERO7 (Appel et al., 2021, Xu et al., 2018).

11
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For all three model implementations, the impact scavenging of aerosols by cloud droplets is carried out
for the Aitken mode particles, while accumulation and coarse mode particles may form cloud
condensation nuclei, resulting in their scavenging via cloud droplet nucleation (Binkowski and Roselle,
2003; Chaumerliac, 1984, Fahey et al., 2017). Aerosol scavenging in the Aitken mode is carried out as a
simple exponential decay for number, surface area and mass concentration assuming a cloud droplet
settling velocity based on Pruppacher and Klett (1978), and an assumed cloud droplet size distribution.
Only Aitken mode particles (roughly 0.01 to 0.1 um diameter) are impact scavenged, for which only
cloud liquid water is included as a scavenging hydrometeor. Wet deposition of all aqueous species is
represented as a first-order loss rate based on the precipitation rate and total liquid water content (Fahey et
al., 2017). The number of cloud droplets is parameterized following Bower and Choularton (1992) from
the cloud liquid water content provided by the meteorological model.

The three CMAQ implementations differ in the algorithms employed for aerosol and gas-phase dry
deposition algorithms.

CMAQ-M3Dry’s aerosol dry deposition methodology was based on Binkowski and Shankar (1995), with
updates as described in Venkatram and Pleim (1999), Giorgi (1986), and subsequent corrections to
include the effect of mode width in the Stokes number (reducing previous large overpredictions in coarse
mode deposition velocities). Further modifications included changes to the Stoke’s number for vegetated
surfaces, modification of the impaction term, scaling of diffusion layer resistance by LAI for the
vegetated fraction of each grid cell, and improved mass conservation for the process of gravitational
settling (Appel et al., 2021).

CMAQ-STAGE and CMAQ (Hertfordshire)’s aerosol dry deposition methodology followed that of
CMAQ-M3Dry, but made use of Slinn (1982) and Zhang et al. (2001) for impaction on vegetated
surfaces, and Georgi (1986) for water and soil surfaces, with the resulting deposition velocities for
smooth and vegetated surfaces weighted by the area of vegetated surface (Appel et al., 2021).

The gas-phase dry deposition algorithms and diagnostic equations of CMAQ-M3Dry, CMAQ-STAGE
and CMAQ (Hertfordshire) are described in detail elsewhere (Galmarini ef al., 2021, Table B2, with other
implementation details in Hogrefe et al., 2023). The algorithms follow the original approach of Wesely et
al. (1989), but with separate resistance branches for the vegetated and non-vegetated fractions, dry versus
wet fractions, and snow-covered versus non-snow covered fractions.

Bidirectional fluxes of ammonia were found in the analysis which follows to be a major source of model-
to-model variability, hence will be described here in more detail.

CMAQ-M3Dry simulated bidirectional fluxes of ammonia by first calculating soil ammonia
concentrations using the Environmental Policy Integrated Climate (EPIC) agricultural ecosystem model
(Williams, 1995; Ran et al., 2018), prior to the CTM simulations being carried out. Typically, the EPIC
model simulation requires a model spin-up period of 25 years or more, and requires a prior simulation of
N deposition as input information. The soil NH3 concentrations from this coupled system were then
used as inputs for the AQMEII4 run (Pleim et al., 2019). While all dry deposition diagnostics reported to
AQMEII4 for CMAQ-M3Dry were computed making use of a post-processor, the post-processing did not
include the generation of bidirectional flux calculations, and hence diagnostics such as the net
compensation point concentration and the ground compensation point calculation were not provided from
CMAQ-M3Dry for AQMEII4.

CMAQ-STAGE (Massad et al., 2010; Bash et al., 2013) also simulated bidirectional fluxes following
Williams, (1995), using a previous coupled EPIC simulation only for initial conditions, porting

12
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methodology and information on daily fertilization and nitrification from EPIC into the CMAQ-STAGE
framework while estimating evasion and deposition locally within the chemical transport model. This
methodology, which operates on a land-use specific basis and then aggregates to a grid-cell basis, allowed
additional AQMEII4 diagnostic to be incorporated into the CMAQ-STAGE simulations. This allows a
greater consistency between the CTM and the resulting soil NH3 calculations (and allows for the output of
all of the diagnostics as specified under the AQMEII4 protocol see Hogrefe ef al., 2023). However, these
calculations do not include other terms in EPIC dealing with N fixation, mineralization, denitrification,
runoff, percolation and plant uptake, and hence will diverge from the EPIC simulated soil ammonia
concentrations due to the differences in evasion and deposition parameterizations between CMAQ-
STAGE and EPIC.

2.2.2 NA WRF-Chem (IASS)/ EU WRF-Chem (IASS), NA WRF-Chem (UPM)/EU WRF-Chem (UPM) ,
NA WRF-Chem (UCAR): WRF-Chem implementations

All three of these models made use of the WRF-Chem chemical transport modelling framework (Grell et
al., 2005), employing a 12km Lambert Conformal Conic projection (400x360 grid cells in the European
domain, 480x290 grid cells in the North American domain), 2-way coupling between air-quality and
meteorology, a sectional aerosol size distribution representation (4 bins), acrosol microphysics and
chemistry via the MOSAIC model (Zaveri et al., 2008), organic aerosol formation following Knote et al.,
(2014, 2015), cloud microphysics following Morrison et al. (2009), the Noah land surface model (Noah-
MP, Niu et al., 2011), the Rapid Radiative Transfer Model for radiative transfer calculations (RRTM,
lacono et al., 2008), biogenic emissions using the MEGAN model (Guenther ef al., 2006, Wiedenmyer et
al., 2007), and the FAST-J algorithm for photolysis rate calculation (Fast ef al., 2009). All three code
versions also make use of the Wesely (1989) parameterization for gas dry deposition and the Binkowski
and Shankar (1995) approach for aerosol deposition. However, WRF-Chem has a large variety of
configurations available for other model processes, allowing the impact of those configurations on
deposition results to be studied under AQMEII4. The differences between the model configurations are
summarized in Table 1. It should also be noted that WRF-Chem is an on-line modelling framework —
differences in the model parameterizations can influence the meteorological predictions through the
aerosol direct and indirect effects, and consequently the meteorology generated by the implementations
may also differ.

Not all of the WRF-Chem model implementations were able to report all of the information required to
calculate exceedances: the WRF-Chem (IASS) implementation did not report all of the species
contributing to Ss, and Ng, totals, and also did not report several diagnostics requested under the
AQMEII4 protocol. Consequently, the WRF-Chem (IASS) results were not included in ensemble
deposition generation and the model ensembles are referred to hereafter as “reduced ensembles”. Our
analysis is therefore based on these reduced ensembles, though WRF-Chem (IASS) values for deposition
totals have been provided when available in Figures and Tables for comparison purposes.

13



557

558
559

560
561
562
563
564
565
566
567
568
569
570
571
572
573
574

Table 1. AQMEII4 WRF-Chem Configuration Differences

Parameterization

WRF-Chem (IASS)

WRF-Chem (UPM)

WRF-Chem (UCAR)

WRF-Chem version
number

3.9.1

4.0.3

4.1.2

America: USGS-24
(Anderson et al., 1976),
24 classes

24 classes

Wet Deposition Convective : via Grell | Grid scale wet Below cloud: Slinn
and Devenyi (2002); deposition following (1984); in-cloud: Easter
grid-scale following Easter et al. (2004). et al. (2004)
Neu and Prather (2012)
for gases, Chapman et
al. (2009) for aerosols
Land Use/Land Cover | Europe: CORINE 33 USGS-24 classes, Modified IGBP
Classification classes. North (Anderson et al., 1976), | MODIS NOAH, 21

classes including
oceans and inland
water, Friedl et al.
(2010);

Cumulus cloud Grell and Devenyi, Grell and Devenyi, Grell and Freitas, 2014

parameterization 2002. 2002

Windblown Dust On-line, Shao-et al. MOSAIC (Zaveri et al., | GOCART, with AFWA
2011 2008) modifications Gong et

al. (1997), Ginoux et

Janic (2001)

(YSU) Hong ef al.
(2006), Hong (2010)

al. (2001).
Gas-Phase Chemistry MOZART, Emmons et | CMBZ, Zaveri and MOZART, Emmons et
Mechanism al. (2010) Peters, 1999 al. (2010)
Vertical resolution 38 levels up to 50 hPa | 35 vertical levels 41 vertical levels
PBL Scheme Mellor—Yamada—Janjic, Yonsei University Mellor-Yamada

Nakahasi Niino, level
2.5 Nakanishi and
Niino (2006)

2.2.3 LOTOS-EUROS (TNO).: LOTOS-EUROS

LOTOS-EUROS (TNO) used in the AQMEII4 EU simulations is an open-source 3D chemistry transport
model used extensively for air-quality forecasts and scenarios for European domains (Timmermans et al.,
2022; Manders et al., 2017). Gas dry deposition fluxes made use of the Wesely (1989)-based approach
(DEPosition of Acidifying Compounds; DEPAC, Van Zanten ef al., 2010). Particle dry deposition was

carried out using the approach of Zhang (2001). Wet deposition followed the droplet saturation approach,
and cloud chemistry with sulphate formation dependent on cloud liquid water and droplet pH (Banzhaf et
al.,2012). The dry deposition of ammonia makes use of a bidirectional flux approach (Wichink Kruit et
al., 2012). Gas-phase chemistry was carried out using a modified form of the CBM-IV scheme (Gery et
al., 1989; Whitten et al., 1980). N,Os hydrolysis was included following Schaap et al. (2004), and
inorganic thermodynamic particle chemistry was solved using the ISORROPIA II module (Fountoukis
and Nenes, 2007). The model operated using 12 layers in the vertical in a hybrid coordinate system, with
the near surface layer having a thickness of ~20m and a model top of approximately 8 km. The
simulations carried out here made use of a 20x20km grid cell size over Europe. Driving meteorology for
the model was from 3-hourly ECMWEF short-term forecasts. Land use data for the model comes from the
Corine2000 Land Cover database (EEA, 2000, 2007).
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2.2.4 GEM-MACH (Base), GEM-MACH (Zhang), GEM-MACH (Ops): GEM-MACH

All three of these NA models are variations on the Environment and Climate Change Canada GEM-
MACH model. The first two configurations (GEM-MACH (Base), GEM-MACH (Zhang)) are based on
the “research” version of the model, which has more detailed physical parameterizations, whereas GEM-
MACH (Ops) is based on the “operational forecast” configuration, where more simplified
parameterizations have been employed in order to reduce processing time for operational air-quality
forecast simulations. Common elements across all three implementations include a horizontal grid cell
size of 0.09° in a rotated latitude-longitude domain (~10km), 83 model levels, biogenic VOCs from
BEIS3.09, 3.1.3 (Vukovich and Pierce, 2002; Stroud et al., 2010), a sectional aerosol size distribution (12
bins, Gong et al. (2003), the ADOM-II gas-phase mechanism (Stockwell et al., 1989), a modified Odum
approach for SOA formation (Stroud et al., 2018), and an inorganic aerosol chemistry module solving the
thermodynamic equilibrium for the SO4*-NOs-NH4*- H,O system (Makar et al., 2003). The GEM-
MACH implementations also all make use of the GEM weather forecast model v4.9.8 for driving
meteorology (Coté et al., 1998, Girard et al., 2014)), with the ISBA land surface scheme (Belair et al.,
2003a,b), and the CCMA Rad2 radiative transfer algorithm (Li and Barker, 2005). As was the case for the
WRF-Chem implementations described above, GEM-MACH has several optional process representations
used in operational forecast versus research versions of the model, hence the relative importance of model
configurations versus deposition parameterizations may be studied. The differences between the
configurations are summarized in Table 2.

Collectively, the differences between GEM-MACH (Base) and GEM-MACH (Zhang) provide an estimate
of the relative importance of the gas-phase deposition parameterization towards simulation results, while
comparisons between GEM-MACH (Base or Zhang) and GEM-MACH (Ops) show the relative impact of
the combination of ammonia bidirectional fluxes and the suite of more complex physical
parameterizations used in the former model configurations compared to the operational framework.

Table 2. AQMEII4 GEM-MACH Configuration Differences

Parameterization GEM-MACH (Base) GEM-MACH (Zhang) | GEM-MACH (Ops)

Gas dry deposition Makar et al.(2018) Zhang et al. (2003) Makar et al.(2018)

Ammonia bidirectional | Zhang et al. (2010) As in GEM-MACH None

fluxes (Base)

Particulate matter dry 1-D semi-Lagrangian As in GEM-MACH Zhang et al. (2001),

deposition mass transfer (Makar et | (Base) applied as flux lower
al., 2018), using boundary condition in
Emerson et al. (2020) the diffusion equation.

correction to Zhang et
al. (2001) coefficients
Vertical resolution 83 levels plus 3 As in GEM-MACH 83 levels
additional levels for (Base)
forest canopy processes
(Makar et al,, 2017)

Meteorological model P3 explicit As in GEM-MACH Convective: Kain-
cloud parameterization | hydrometeor scheme (Base) Fritsch convective
(Morrison and parameterization (Kain
Milbrandt, 2015; and Fritsch, 1990,
Milbrandt and Kain, 2004).
Morrison, 2016). Stratiform: Sundqvist

et al. (1989)
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Land Use/Land Cover

GEM-MACH 15 Land

Zhang et al. (2002,

As in GEM-MACH

Classification use scheme (Makar et 2003), 26 land-use (Base)

al., 2018), aggregated | categories

from Zhang et al.,

(2002, 2003) 26 land

use categories.
Leaf Area Index data Satellite-derived As in GEM-MACH BEIS-based (Vukovich
source (Zhang et al., 2020) (Base) and Pierces, 2002)
Seasonality for Based on satellite LAl | As in GEM-MACH Fixed function of
emissions (Zhang et al., 2020) (Base) latitude and Julian day
Major point source Akingunola et al., 2018 | As in GEM-MACH Briggs (1984)
plumerise algorithm (Base)
Gas-phase chemistry KPP2.1 (Sandu and As in GEM-MACH Young and Boris
solver Sander, 2006) (Base) (1977)
Vehicle Induced Makar et al. (2021) As in GEM-MACH None
Turbulence (Base)
Forest Canopy shading | Makar et al. (2017) As in GEM-MACH None
and turbulence (Base)
CHys as chemically Yes As in GEM-MACH No
active tracer (Base)
Aerosol direct and Yes (Makar et al., As in GEM-MACH No
indirect effect feedback | 2015a,b) (Base)
Floor (minimum) PBL | No As in GEM-MACH Yes (100m)
height imposed (Base)

Area source emissions
treatment

Flux lower boundary
condition on diffusion
equation

As in GEM-MACH
(Base)

Mass injection into two
lowest model layers

Advection mass
conservation

ILMC, 3 sweeps
(Sorensen et al., 2013)

As in GEM-MACH
(Base)

ILMC, 2 sweeps,
followed by Bermejo-
Conde (2002) global
mass correction

2.3 Bias Corrected Critical Load Exceedance Estimates

As will be discussed in Section 3.2, model results were evaluated using the available data for North
America and Europe (see Supplemental, Section 7 for species contributing significantly to total S and N
deposition). Critical load exceedances were calculated making use of the total sulphur and total nitrogen
deposition for each model in the ensemble, for 2009 and 2010 for Europe, and 2010, 2016 for North
America. In order to make a rough estimate of the impacts of model biases on the resulting exceedance
estimates, a third set of exceedances were calculated for each model and each domain, for the year 2010
for Europe and 2016 for North America. For this last group, the ratio of the observed to model mean
values at the observation station locations for individual species were used as scaling factors on the model
annual deposition flux estimates prior to summation to total sulphur and total nitrogen deposition.
Specifically, for North America, the ratio of the observed to measured mean concentrations of SO», NO,,
PM2.5 sulphate, PM2.5 ammonium, and AMoN network NHs were used to scale the corresponding dry
flux variables, and the corresponding ratios for wet deposition of sulphate, nitrate and ammonium ions
were used to scale the wet deposition fluxes. Less observation data were available for Europe than North
America: the ratio of observed to modelled SO» and NO, gas concentration mean values were used to
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scale the corresponding dry fluxes, and ratios of observed to modelled wet deposition fluxes for sulphate,
nitrate and ammonium were used to scale the modelled wet deposition fluxes.

We note that this approach makes simplifying assumptions. The corrections are inherently dependent on
the assumption that the monitoring data is sufficiently representative of the model domain for the
correction to be meaningful across the domain. While dry deposition fluxes will be proportional to the
concentrations in the lowest model layer, allowing an overall mean bias correction, we are also making
the assumption that the bias ratios for PM2.5 particulate matter will apply for larger particle sizes as well
(note that size-resolved particulate fluxes were not reported under the AQMEII-4 protocol). This form
of bias correction is also the simplest possible means of model-measurement fusion; more complex
methods appear in the literature. These methodologies for example may make use of a combination of
observed wet and adjusted model dry deposition (Schwede and Lear, 2014), inverse distance weighting
from observation stations (Rubin et al., 2023) and adjusting modelled wet deposition fluxes by the ratio of
observed to simulated precipitation and by kriged observed wet deposition to model predicted ratios
(Zhang et al., 2019). An overview of model-measurement fusion approaches including advanced forms of
data assimilation may be found in Fu et al., (2022). The methodology used here provides a first order
estimate of the impact of model biases with respect to observations on critical load exceedances.

3.0 Results

3.1 Critical Load Exceedances
3.1.1 Europe, Acidification

Critical load exceedances for acidification for each of the four European (EU) models are shown in Figure
1 for 2010 and in Figure S3 (Supplement) for 2009, and Figure S9 (Supplement) for bias-corrected 2010.
Figure 2 shows the reduced ensemble values for 2009 and 2010 (a,b), the bias-corrected value for 2010
(c), as well as common AQMEII4 domain total bar charts for all models and the reduced ensemble (d).

The EU exceedances for acidity are similar between the two years (compare Figures 1 and S3, and
reduced ensemble values for each year in Figure 2). However, differences between models within a
given year are larger (especially in an absolute sense; WRF-Chem (IASS) <0.4% in exceedance, WRF-
Chem (UPM): ~6.5%). Low WRF-Chem (IASS) exceedance levels are in part due to unreported
deposition data (see section 2.2.2); the reduced ensemble maps in Figure 2 show the ensemble average for
LOTOS-EUROS (TNO), WRF-Chem (UPM) and CMAQ (Hertfordshire). The EU reduced ensemble
shows the greatest extent of exceedance in the Netherlands along the Netherlands/Belgium border, north-
western Germany, southern Norway, and along the border between Poland and Germany (Figure 2(a,b)).
Individual models in Figure 1 show additional acidity “hotspots” that may appear in one model and not in
another (e.g. LOTOS-EUROS (TNO): near Lucerne and Bonn; WRF-Chem (UPM): westernmost
Switzerland, south-central Germany, and Belgrade; CMAQ (Hertfordshire): south-west Switzerland,
south-central Germany, and south-west Romania). Bias correction for the reduced ensemble for the 2010
data resulted in substantial increases in predicted exceedances (compare last two columns of Figure 2(d),
and compare Figure 1 to Figure S9). However, we note that the European data did not include speciated
particulate matter and hence bias correction was not possible for part of the sulphur budget — much
smaller impacts were noted for bias correction in North America where particulate sulphate data were
available.

The percent area of EU acidification CLE over the region for which CL data was available, for the
reduced ensemble, was 4.48% (range 2.37% to 6.85%) in 2009 and 4.32% (2.06 to 6.52%) in 2010.

17



658
659
660

661

662
663
664
665
666

667
668
669
670
671
672
673
674
675
676
677
678

679
680
681
682
683

684

Average reduced ensemble accumulated exceedance for EU acidity was 13.8 (9.7 to 27.1) eq ha™! yr'! in
2009, and 12.6 (7.8 to 23.7) eq ha™! yr'! in 2010. The quoted range is from the highest and lowest
members in the 3-member reduced ensemble.

3.1.2 Europe, Eutrophication

Critical load exceedances for eutrophication for each of the four EU models are shown in Figure 3 for
2010, in Figure S4 (Supplement) for 2009, and with bias-corrected deposition fields for 2010 in Figure
S10 (Supplement). Figure 4 shows the reduced ensemble values for 2009 and 2010 (a,b), the bias-
corrected values for 2010 (¢), as well as common AQMEII4 domain summaries for all models and the
ensembles (d).

As for EU Acidity CLE’s, the Eutrophication CLE’s are very similar between the two model years
(compare Figures 3 and S4, and the values for each year in Figure 4). The spatial distribution of the
greatest levels of exceedance also varies more strongly between models. All members in the 3-member
reduced ensemble identify the Po river valley as reaching the greatest level of exceedance, but LOTOS-
EUROS (TNO) also shows high levels of exceedance in Benelux to northern Germany and in the
Barcelona area, while WRF-Chem (UPM) shows high levels of exceedance > 800 eq ha! yr'! in multiple
hotspots throughout the region. The relative impact of bias correction was smaller than for acidification
in terms of the total area in exceedance, but the magnitude of exceedances increased significantly (e.g.
larger proportion of red to black areas in Figure 4(c) than Figure 4(b), comparing the last two columns of
Figure 4(d), and comparing Figure 4 to Figure S10). Again, the higher levels of exceedance predicted for
Europe may reflect the impact of the lack of particulate sulphate and particulate nitrate data for bias
correction purposes.

The percentage of the area in exceedance for eutrophication is much higher than that of acidification
(reduced ensemble CLE 60.2% (47.3 to 73.3%) in 2009, and 62.2% 51.2 to 74.4%) in 2010). The
average accumulated exceedance was 156.9 (89.4 to 265.5/) eq ha™! yr'! in 2009 and 161.4 (109.4 to
261.8) eq ha! yr! in 2010 (Figure 4, the range is from lowest and highest members in the 3-member
reduced ensemble).
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685  Figure 1. CLEs for Acidity, EU AQMEII4 common domain, 2010, eq ha"'yr". (a) WRF-Chem (IASS), (b) LOTOS-
686 EUROS (TNO), (¢) WRF-Chem (UPM), (d) CMAQ (Hertfordshire). Grey areas indicate regions for which critical
687 load data are available but are not in exceedance of critical loads. Coloured areas indicate exceedance regions.

[eq ha' yr]

\:, no exceedance |:| 600 - 800
[ ]<200 B 500 - 1.200
[ ] 200-400 B > 1200
| ] 400-600

688
689

19



690 Figure 2. Summary CLEs for Acidity, EU AQMEII4 common domain, eq ha”'yr'!. (a), (b) Spatial distribution of
691 CLEs for the reduced ensemble for the years 2009 and 2010, respectively. (c) Spatial distribution of CLE for the
692 bias-corrected reduced ensemble for the year 2010. (d) Percentage of ecosystems for which CL data are available
693 that are in exceedance by model and year (left axis and colour bar) and average accumulated exceedance (eq ha™! yr
694 1) (right axis and black diamond symbols).
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697 Figure 3. CLEs for Eutrophication, EU AQMEII4 common domain, 2010, eq ha"'yr!. (a) WRF-Chem (IASS), (b)
698 LOTOS-EUROS (TNO), (¢) WRF-Chem (UPM), (d) CMAQ (Hertfordshire). Grey areas indicate regions for which
699 critical load data are available but are not in exceedance of critical loads. Coloured areas indicate exceedance

700 regions.
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Figure 4. Summary CLEs for Eutrophication, EU AQMEII4 common domain, eq ha-'yr'!. (a), (b) Spatial
distribution of CLEs for the reduced ensemble for the years 2009 and 2010, respectively. (c) Spatial distributions of
CLEs for the bias-corrected reduced ensemble for 2010. (d) Percentage of ecosystems for which CL data are

available that are in exceedance by model and year (left axis and colour bar) and average accumulated exceedance

(eq ha! yr'!) (right axis and black diamond symbols).
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3.1.3 North America, Forest Ecosystems Simple Mass Balance Critical Load

Critical load exceedances with respect to the North American (NA) forest soil acidity for the years 2016
and 2010 are shown in Figures 5 and S5, respectively, the bias-corrected 2016 maps are in Figure S11,
and the reduced ensemble maps for both years, and the domain summaries including bias corrected values
for 2016, are shown in Figure 6.

Unlike the EU domain comparison, the NA CLEs depicted in Figure 5 show a large difference in the
extent of regions in exceedance for the different models. While all models with the exception of WRF-
Chem (IASS) identified the regions to the south and west of the Great Lakes, the U.S. east coast, and
Florida as being in exceedance, the magnitude of the exceedances varied greatly between the models,
with the GEM-MACH models (Figure 5(d-f)) showing large regions with exceedances above 800 eq ha™!
yrl, followed by, in descending order, WRF-Chem (UPM), CMAQ-M3Dry, CMAQ-STAGE, WRF-Chem
(UCAR), and WRF-Chem (IASS).

The summary reduced ensemble CLE values (Figure 6) show the improvement in CLEs between the
years 2010 and 2016, which occurred in response to the legislated reduction in SO, emissions during this
time period. The summary chart (Figure 6(c)) however shows that the magnitude of the response to the
SO, reduction was model dependent: the change between 2010 and 2016 was the greatest for GEM-
MACH (Base) in an absolute sense, and the greatest for WRF-Chem (UCAR) in a relative sense.
Similarly, the average accumulated exceedance (right-hand vertical axis and black diamonds, Figure 6(c))
showed decreases in exceedance between 2010 and 2016 for all models, but the extent of these decreases
differed, with WRF-Chem (UCAR) showing the smallest decrease in AAE from 2010 to 2016, followed
in increasing order of the magnitude of change by CMAQ-STAGE, CMAQ-M3Dry WRF-Chem (UPM),
GEM-MACH-Ops, GEM-MACH-Base, and GEM-MACH-Zhang.

The effect of bias correction was less pronounced than in Europe, and in general reduced the variability
between model results. Note that unlike the European case, North American observation data used for
bias correction included corrections for particulate sulphate air concentrations, allowing a greater degree
of closure for the sulphur mass deposited. Comparing Figures 5 and S11 it can be seen that the bias
correction has increased exceedances for the CMAQ and WRF-Chem simulations, and decreased
exceedances for the GEM-MACH simulations, reducing the variability between the models. The extent
to which model-to-model variability has been reduced subsequent to bias correction is also apparent in
Figure 6(d) (bias correction exceedance bars are closer in size across models compared to pre-bias
correction). The net result of bias correction being a slight increase in the area of exceedance in the
reduced ensemble, comparing the two right-hand bars of Figure 6(d).

The percentage of the NA forested area in exceedance for acidification for the reduced ensemble was
13.2% (2.8 t0 22.2%) in 2010, and 6.1% (1.0 to 12.9%) in 2016. The ensemble thus shows a
considerable improvement in exceedances with respect to acidification between the two years.

3.1.4 North America, Aquatic Ecosystems CL(A)

Exceedances with respect to the North American aquatic ecosystem CL dataset for the years 2016 and
2010 are shown in Figures 7 and S6, respectively, the bias-corrected maps for each model for 2016 are in
Figure S12, and the reduced ensemble maps for both years and domain summaries including bias
correction are shown in Figure 8.

Comparison of Figures 5 and 7 shows a similarity in the CLE response of the individual models between
forest soil and aquatic ecosystems, with the GEM-MACH models predicting the highest number and
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magnitude of exceedances, followed by WRF-Chem (UPM), WRF-Chem (UCAR) and the two CMAQ
implementations. Figure 8 (a,b) shows the expected decrease of the reduced ensemble’s CLE between
2010 and 2016, as well as the higher levels of exceedance associated with the GEM-MACH and WRF-
CHEM (UPM) models, followed in descending order by the two CMAQ implementations and WRF-
CHEM (UCAR) (Figure 8 (c)).

The impact of bias correction on the North American aquatic ecosystems critical load exceedances was
relatively minimal for the models included in the reduced ensemble: differences between Figures 7 and
S12 are difficult to distinguish, and Figure 8(d) shows slight increases in the exceedances for CMAQ and
WRF-Chem simulations, slight increases in GEM-MACH simulations, and a very small change in the
reduced ensemble levels of exceedance.

The percentage of the NA aquatic ecosystems in exceedance for the reduced ensemble was 21.2% (12.8 to
28.9%) in 2010 and 11.4% (7.3 to 15.8%) in 2016. The reduced ensemble thus shows a considerable
improvement in exceedances with respect to exceedance of aquatic critical loads between the two years,
again by almost a factor of two.

Figure 5. CLEs for Forest Soil Acidification, NA AQMEII4 common domain, 2016, eq ha'yr!. (a) CMAQ-M3Dry,
(b) CMAQ-STAGE, (c) WRF-Chem (IASS), (d) GEM-MACH (Base), (¢) GEM-MACH (Zhang), (f) GEM-MACH
(Ops), (g) WRF-Chem (UPM), (h) WRF-Chem (UCAR). Grey areas indicate regions for which critical load data are
available but are not in exceedance of critical loads. Coloured areas indicate exceedance regions.
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Figure 6. Summary CLEs for Forest Soil Acidification, NA AQMEII4 common domain, eq ha! yr'!. (a), (b) Spatial
distribution of CLEs for the reduced ensemble for the years 2010 and 2016, respectively. (c) ) Spatial distribution of
CLEs for the reduced ensemble for the year 2016. (d) Percentage of ecosystems for which CL data are available that
are in exceedance by model and year (left axis and colour bar) and average accumulated exceedance (eq ha™! yr!)

(right axis and black diamond symbols).
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Figure 7. CLEs for Aquatic Ecosystems, NA AQMEII4 common domain, 2016, eq ha"! yr'. Panels arranged by
Model as in Figure 6; individual sites are shown as pixels. Dark grey pixels indicate regions for which critical load
data were available but were not in exceedance of critical loads. Coloured areas indicate exceedance regions;
overplotting in precedence by the extent of exceedance was carried out for overlapping pixels. Areas of no CL data
are shown in lighter grey.
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788 Figure 8. Summary CLEs for Aquatic Ecosystems, NA AQMEII4 common domain. (a), (b) Spatial distribution of
789 CLE:s for the reduced ensemble for the years 2010 and 2016, respectively. (c) Spatial distribution of CLEs for the
790 bias-corrected reduced ensemble for the year 2016. (d) Percentage of lakes for which CL data are available that are
791 in exceedance by model and year (left axis and colour bar) and number of lakes in exceedance (right axis and black
792 diamond symbols).
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3.1.5 U.S. N Deposition to Lichen

Exceedances with respect to the USA CL of N for a 20% decline in sensitive epiphytic lichen species
richness (221 eq-N ha'! yr!) dataset for the years 2016 and 2010 are shown in Figures 9 and S7,
respectively, bias-corrected 2016 values in Figure S13, and the reduced ensemble maps for both years and
domain summaries included bias-corrected 2016 values are shown in Figure 10.

The overall pattern of exceedances and their magnitude across models (Figure 9) is similar to that of the
Forest Soil exceedances (Figure 5), with the largest magnitudes in the north-eastern continental USA and
in North Carolina, though the lichen exceedances are more continuous across the region than for forest
soil water acidity impacted ecosystems. GEM-MACH (Base), GEM-MACH (Zhang), and GEM-MACH
(Ops) have maximum exceedances usually between 800 and 1,200 eq ha! yr'!, and the exceedances
predicted by other models are less than 800 eq ha! yr'! aside from a North Carolina exceedance hotspot
which is predicted by all models. The reduced ensemble overall magnitude of exceedances decreased
significantly between 2010 and 2016 (Figure 10(a,b), less black and red regions in the more recent year).
The reduced ensemble total area in exceedance has decreased slightly (Figure 10(c), “reduced ensemble”
columns). All models show a decreasing levels of exceedance between the two years, and slightly
decreasing total area of exceedance. The magnitude of exceedances differs significantly between the
models, with the highest magnitude exceedances predicted by the GEM-MACH group of models,
followed by WRF-Chem (UPM).

Bias correction values varied between the models, with CMAQ exceedances increasing slightly, GEM-
MACH exceedances decreasing slightly, WRF-Chem exceedances increasing, and a slight increase in the
overall extent and magnitude of the reduced ensemble exceedances in the last two columns of Figure
10(d). The similarity in the spatial distribution of exceedances is greater across models following bias
correction (compare Figure 9 with Figure S13 (Supplement)).

The percentage of the NA sensitive epiphytic lichen ecosystems in exceedance for the reduced ensemble
was 81.5% (69.3 to 95.0%) in 2010 and 75.8% (63.7 to 90.7%) in 2016.

3.1.6 U.S. N Deposition to Herbaceous Plants

Exceedances with respect to the USA CL of N for a decline in herbaceous species richness (436 to 1693
eq-N ha'! yr'!) dataset for the years 2016 and 2010 are shown in Figures 11 and S8, respectively, bias-
corrected exceedances for 2016 appear in Figure S14 (Supplement), and the reduced ensemble maps for
both years and domain summaries including bias correction for 2016 are shown in Figure 12.

The spatial distribution of the regions of highest exceedance shares some common features with that of
sensitive epiphytic lichen (compare Figure 11 with Figure 9), such as maximum exceedances in NE USA,
North Carolina, and extending along a region north of Texas. However, both the magnitude and extent of
exceedance is much more varied for herbaceous species richness than for lichen species richness, with the
GEM-MACH suite of models (Figure 11 d-f and Figure 12(d)) predicting the highest exceedance levels
and up to 18.4% of the area in exceedance in 2016, the CMAQ implementations varying between 0.6%
and 0.8%, and WRF-Chem (UCAR) predicting 0.1%.

The impacts of bias correction may be more easily distinguished for herbaceous species richness critical
load exceedances compared to some of the other exceedance estimates (compare Figures 11 and S14),
with the CMAQ and WRF-Chem exceedances increasing, and the GEM-MACH exceedances decreasing.

28



837
838

839
840
841
842

843

844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860

861
862
863

The overall impact was a slight increase in the area and extent of the ensemble average exceedance

(Figure 12(d)).

The percentage of the NA herbaceous plant ecosystems in exceedance for the reduced ensemble was
13.9% (0.4 to 39.5%) in 2010, and 3.9% (0.1 to 18.4%) in 2016, with the higher exceedance levels in the
range resulting from the GEM-MACH suite of models. Reduced ensemble herbaceous species richness
exceedances have decreased considerably between the two years in all models.

3.1.7 Critical Load Exceedances, Key Results

The percent exceedance for the reduced ensemble and ranges from the reduced ensembles for the
ecosystems examined here are summarized in Table 3. The values suggest acidification in EU will
happen over a smaller region than eutrophication at 2009/2010 emissions levels, with a slight decrease in
acidification and a slight increase in eutrophication between the two years. About 60% of EU ecosystems
would be subject to eutrophication at some point in the future at 2010/2009 emissions levels. One
striking difference between the different model estimates of CLE is in the magnitude of exceedances (as
opposed to the total area in exceedance). WRF-Chem (UPM) for example in Figures 1 and 3 predicts
more severe levels of exceedance across Europe than the other models. The North America results
suggest that reductions in SO, and NOx emissions between 2010 and 2016 resulted in a substantial
reduction in the number of forest soil and aquatic ecosystem acidification exceedances (by nearly a factor
of two). The impacts of nitrogen deposition on herbaceous species also improved (by nearly a factor of
three), while impacts of nitrogen deposition on sensitive lichen had more modest improvement (from 81.5
to 75.8% in exceedance). The magnitude and spatial extent of these eutrophication exceedances were
highly dependent on the model, and on the variations in the representation of sub-processes within each
model, used for predictions. Understanding the large range of model predictions is one of the main aims
of the current work. The next section discusses the underlying causes driving the model-to-model
differences, using the AQMEII4 deposition diagnostics.

Table 3. Summary of reduced ensemble percent exceedance mean values and their range in EU and NA
domains, along with Total S deposition and Total N deposition predicted by the ensemble. All models
used the same starting inventories for emissions.

(lower to upper
bound)

(lower to upper
bound)

2016 (eq ha! yr)

EU Ecosystem Year 2009 Percent | Year 2010 Percent | Total S Total N
Exceedance Exceedance Deposition, Deposition,
(lower to upper (lower to upper 2010 (eq ha' yr'') | 2010 (eq ha! yr')
bound) bound)

Acidification 4.48 (2.37 t0 6.85) | 4.32 (2.06 t0 6.52) | 158.4 376.5

Eutrophication 60.2 (47.31t073.3) | 62.2(51.2t0 74.4) | (81.5to0 221.6) (304.8 to 481.9)

NA Ecosystem Year 2010 Percent | Year 2016 Percent | Total S Total N
Exceedance Exceedance Deposition, Deposition,

2016 (eq ha' yr'!)

Forest Soils

13.2 (2.8 t0 22.2)

6.1(1.0to0 12.9)

Acidification

Lake Ecosystems 21.2 (12.8t028.9) | 11.4(7.3to0 15.8)
USA N Deposition | 81.5(69.3 t0 95.0) | 75.8 (63.7 t0 90.7)
Lichen

USA N Deposition 13.9(0.4t039.5) |3.9(0.1to18.4)
Herbaceous

135.6
(56.1 to 193.4)

321.7
(182.4 to 430)
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864 Figure 9. CLEs for Sensitive Epiphytic Lichen Species, NA AQMEII4 common domain, 2016, eq ha" yr'!. Panels
865 arranged by model as in Figure 6. Light grey areas indicate regions for which critical load data were available but
866 were not in exceedance of critical loads. Coloured areas indicate exceedance regions.
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868  Figure 10. Summary CLEs, Sensitive Epiphytic Lichen Species, NA AQMEII4 common domain, eq ha™' yr'!. (a),
869 (b) Spatial distribution of CLEs for the reduced ensemble for the years 2010 and 2016, respectively. (c) Spatial

870 distribution of CLEs for the bias-corrected reduced ensemble for the year 2016. (d) Percentage of sensitive epiphytic
871 lichen ecosystems for which CL data are available that are also are in exceedance, by model and year (left axis and
872 colour bar) and number of sites in exceedance (right axis and white diamond symbols).

B *;
¥ ’ =
\/\M

e No Exceedance 400 - 600 B >1,200
eqhaly <200 600 - 800
200 - 400 M 300- 1,200
(d) Exceedances of Critical Loads for Sensitive Epiphytic Lichen Species
—. 100 - - 60,000,000
Sqipli- § Tinil il W1 Ul
g o | bt | M L |e Ll W | [l [ 5000000
£ 7 =l | = ]
Lo ° 000, £
§; 60 <o =1 5 o . o 3 (o] 40,000,000 2
§, 50 — % — 30,000,000 é"_)
£ w0 arag es HBHH A AL - :
S 50 RIS Tl Tl T eI 20,000,000 S
o | il ., t— !
g 20 i EEREER EEREE R EEnEE N EE R
10 H H | | LB 1 B TR R
o T
2010 2016 HUIE_BC 2010 2016 ‘ZOIS_BC

0
2010 | 2016 |zols_5!1 2010 | 2016 [2016_BQ 2010 | 2016 2016_BQ 2010 | 2016 2016_BC 2010 | 2016 [2016_BC 2010 | 2016 1016_81

CMAQ-M3DRY (EPA) CMAQ-STAGE (EPA) | GEM-MACH-BASE (ECCC) | GEM-MACH-Zhang (ECCC)| GEM-MACH-Ops (ECCC) | WRF-Chem (UPM) WRF-Chem (UCAR) Reduced ensemble

O No exceedance 0<=200 @ >200 <=400 0 >400 <=600 W >600 <=800 W >800 <=1200 u>1200 o Number of sites in d

873

874

31



875
876
877

878
879

Figure 11. CLEs for a decline in Herbaceous Species Community Richness, NA common domain, 2016, eq ha 'yr™!.

Panels arranged by model as in Figure 6. Light grey areas indicate regions for which critical load data were
available but were not in exceedance of critical loads. Coloured areas indicate exceedance regions.
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Figure 12. Summary CLEs for a decline in Herbaceous Species Community Richness, AQMEII4 NA common
domain, eq ha'lyr!. (a), (b) Spatial distribution of CLEs for the reduced ensemble for the years 2010 and 2016,
respectively. (c) Spatial distribution of CLEs for the bias-corrected reduced ensemble for the year 2016. (d)
Percentage of herbaceous species communities for which CL data are available that are also are in exceedance, by

model and year (left axis and colour bar) and number of sites in exceedance (right axis and white diamond symbols).
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887 3.2 Analysis of Model Deposition Predictions
888  3.2.1 Causes of S Deposition Variability in North America Domain Simulations
889  The AQMEII4 common grid average, and percent contribution of each depositing species towards total S
890  deposition in 2016, are given in Table 4. The averages and standard deviation for the reduced ensemble
891  show that wet deposition of the sum of the sulphate and bisulphite ions (SO4?” and HSOs") contributes
892  more to total S deposition than particulate sulphate dry deposition, which is in turn contributes more than
893  SO; (g) dry deposition. However, the model-to-model variability is also large, particularly for the
894  contribution of particulate sulphate, which varies by nearly two orders of magnitude between GEM-
895  MACH (Base, Zhang Ops) and WRF-Chem (UPM). The contributions to the average reduced ensemble
896  total S deposition are 62.0 £19.3, 44.8 + 39.0, and 28.8 + 9.9 eq ha™! yr'! for wet, particle dry and gas dry
897  deposition respectively (& ranges in Table 4 are the standard deviation of the component). The greatest
898  cause of model variability in absolute total deposition is associated with the contribution of particulate
899  sulphate dry deposition, followed by sulphur wet deposition and then gaseous SO- dry deposition.
900 Table 4. Average S deposition contributions in common AQMEII4 NA grid area (eq ha! yr'!) and percent
901 contribution to average total S deposition, 2016. n/d = no data submitted or insufficient data to calculate percentage.
Average Deposition (eq ha™! yr!) Percent of total S deposition
Model S04 + Particle | SOx(g) Dry Total S SO4®) + Particle | SOx(g) Dry
Number HSO;® Sulphate | Deposition | Deposition HSO;® Sulphate | Deposition
Wet Dry Wet Dry
Deposition | Deposition Deposition | Deposition
CMAQ-
M3Dry 79.0 19.0 24.9 122.9 64.3 15.4 20.2
CMAQ-
STAGE 79.2 21.0 23.3 123.4 64.2 17.0 18.8
WRF-Chem
(TASS) 0.9 nd 26.7 n/d n/d n/d n/d
GEM-
MACH
(Base) 52.4 90.7 23.0 166.1 31.5 54.6 13.9
GEM-
MACH
(Zhang) 51.4 88.8 25.1 165.3 31.1 53.7 15.2
GEM-
MACH
(Ops) 81.3 88.2 23.9 193.4 42.0 45.6 12.4
WRF-Chem
(UPM) 66.3 2.8 52.8 121.9 54.4 23 433
WRF-Chem
(UCAR) 24.4 3.0 28.7 56.1 43.5 5.3 51.2
Reduced
ensemble
average 62.0 44.8 28.8 135.6 45.7 33.0 21.2
Reduced
ensemble
standard
deviation 19.3 39.0 9.9 41.3 13.0 21.2 14.5
902
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The spatial distributions of the two largest components of the total S deposition variability (wet S and dry
particle S) are shown in Figure 13. The WRF-Chem (IASS) values did not represent the expected sources
of S deposition over the continent and some deposition fields such as the total particulate sulphate dry
deposition were not submitted. The wet S deposition maps are qualitatively similar between the other
models (note that the colour scale is logarithmic), with WRF-Chem (UCAR) having the lowest values
(Figure 13(a)). As shown in Table 4, the greatest degree of variability between the different modelling
platforms is in the particle deposition fluxes (Figure 13(b)). This variability extends over orders of
magnitude. WRF-Chem (UPM) and WRF-Chem (UCAR) predict the lowest deposition fluxes of dry
particulate sulphate over both land and ocean. CMAQ-STAGE and CMAQ-M3Dry predict higher values
over parts of the ocean, but relatively low values over land. GEM-MACH (Base), GEM-MACH (Zhang)
and GEM-MACH (Ops) have the highest particulate sulphate dry deposition fluxes, roughly equivalent to
the wet deposition fluxes.

We next evaluate each of the models’ predictions against North American network observations for
concentrations of SO, and particulate sulphate, and wet sulphur deposition for the year 2016. The
monitoring network databases employed included the U.S. Environmental Protection Agency’s Air
Quality System (AQS; https://www.epa.gov/ags , last access: 7 July 2024), the National Atmospheric
Deposition Program’s National Trend Network (NADP NTN;
https://nadp.slh.wisc.edu/networks/national-trends-network/ , last access 7 July 2024), the Canadian
National Air Pollution Surveillance (NAPS) program (https://www.canada.ca/en/environment-climate-
change/services/air-pollution/monitoring-networks-data/national-air-pollution-program.html , last access:
7 July 2024), and the Canadian National atmospheric chemistry database (
https://www.canada.ca/en/environment-climate-change/services/air-pollution/monitoring-networks-
data/national-atmospheric-chemistry-database.html, last access 7 July 2024).

Figure 13. 2016 total annual deposition flux (eq ha™! yr'!) of (a) wet S, and (b) dry particulate sulphate. Note that
regions outside the common AQMEII-4 domain have been assigned an “outside domain” mask value of -9.

WRF-Chem (IS)
(No data)

WRF-Chern (UCAR)-
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The NA models’ monthly average values of hourly near-surface SO, (g) concentrations and daily PM, s
sulphate concentrations are compared to observations in Figure 14. The monthly averages of daily
(CAPMoN) and weekly (NADP) wet S deposition are shown in Figure 15. Model-observation evaluation
statistics are compared in Table S2 (Supplement). Station locations for the observations are shown in
Supplement Figures S15, S16, and S17.

Table S2 shows that CMAQ-M3Dry and CMAQ-STAGE had the best values for most metrics, for the
concentrations of SO, and PM: 5 sulphate, and daily wet sulphur deposition. The CMAQ-M3Dry,
CMAQ-STAGE and WRF-Chem (IASS) had predominantly negative biases, and all other models had
positive biases. The same tendency can be seen in Figure 14(a), where CMAQ-M3Dry and CMAQ-
STAGE negative biases can be seen to occur in the warmer months, WRF-Chem (IASS) negative biases
in the spring. Despite these differences, the net contribution of SO, dry deposition flux towards total
sulphur deposition on an annual basis is relatively similar across the models (Table 4), with the standard
deviation being relatively small, mostly driven by the SO, deposition flux for WRF-Chem (UPM) being
higher than for the other models.

Particle sulphate (Figure 14(b), and Table S2) values were also closest to monthly observed values for
CMAQ-M3Dry and CMAQ-STAGE, while being biased negative for WRF-Chem (IASS) and biased
positive for the remaining models. The evaluation of total S wet deposition (Figure 15(a), Table S2)
showed that all models with the exception of GEM-MACH (Ops) had negative biases relative to the
Canadian daily wet S deposition observations. Weekly wet S deposition biases are also negative for most
models (Table S2, Figure 15(b)), with only GEM-MACH-Ops having a positive bias in the ensemble.

Figure 14. Comparison of model (blue line) and observed (red line) monthly average surface concentrations of (a)
hourly SO: (ppbv)) and (b) daily PM, s sulphate (ug m™), for the year 2016 (AQS, NAPS data).
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Figure 15. Comparison of model (blue line) and observed (red line) monthly average values of wet sulphur
deposition for (a) daily CAPMoN data (eq ha! day™!), (b) weekly NADP data (eq ha! week™), for the year 2016.
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Factors aside from emissions which affect the SO, concentrations within the models are the loss processes
of gas oxidation, uptake into hydrometeor water (and subsequent in-cloud oxidation), and dry deposition.
Both the gas oxidation and hydrometeor uptake pathways may lead to particulate sulphate formation
(through nucleation/condensation of sulphuric acid into particles and through evaporation of
hydrometeors). An underestimate of chemical conversion of SO, within hydrometeors may thus be
expected to result in underestimates of particulate sulphate and in sulphate ion wet deposition. However,
Table S2 shows relatively little bias for PM, 5 sulphate relative to observations for CMAQ-M3Dry and
CMAQ-STAGE, and positive biases for the GEM-MACH models and WRF-Chem (UPM); these positive
biases in predicted particulate sulphate would argue against an insufficient conversion of SO, to
particulate sulphate in the latter group of models. Rather, the general tendency of negative biases in wet
sulphur deposition may indicate insufficient hydrometeor scavenging and subsequent aqueous-phase
oxidation of aerosols across all models. We also note that the mean bias of SO, concentrations for GEM-
MACH (Ops) is more positive than those of GEM-MACH (Base) and GEM-MACH (Zhang), while the
particulate sulphate bias was lower, and the wet sulphate deposition bias was higher. GEM-MACH (Ops)
makes use of an operational weather forecast for cloud fields, while GEM-MACH(Base) and GEM-
MACH(Zhang) make use of an explicit cloud microphysics scheme, which allows weather/air quality
feedbacks to be simulated, but tends to underestimate the cloud amounts when used at lower resolution
such as the 10km grid cell size used in the simulations for these three models in this study. The
differences between { GEM-MACH (Base), GEM-MACH (Zhang)} and GEM-MACH (Ops) may thus
reflect weaker scavenging of aerosols into clouds in the Base and Zhang implementations.
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GEM-MACH (Base), GEM-MACH (Zhang) and WRF-Chem (UCAR) have the most positive biases for
particulate sulphate. As noted above, GEM-MACH (Base) and GEM-MACH (Zhang) share a common
framework, and unlike other models in the ensemble, they also share an implementation of the updated
particle deposition parameters of Emerson et al. (2020). The Emerson ef al. (2020) makes use of
extensive measurement data, and compared to earlier parameterizations such as Zhang et al. (2001),
results in decreased dry deposition velocities for sub-micrometer particles and increased dry deposition
velocities for particles larger than 0.2 to 0.8 um, depending on land use type. The increased PM» 5 SO4
values in GEM-MACH (Base) and GEM-MACH (Zhang) in Figure 14(b) may thus reflect decreases in
the deposition removal flux in the sub-micrometer portion of the bins in these 12-bin sectional model
framework. WRF-Chem (UPM) and WRF-Chem (UCAR) are also both sectional models making use of a
common modelling framework, with WRF-Chem (UPM) being a slightly earlier release than WRF-Chem
(UCAR). Neither model made use of the Emerson ef al. (2020) update at the time the AQMEII4
simulations took place. However, this option was later examined for the WRF-Chem (UCAR)
configuration by Ryu and Min (2022), who found that the Emerson et al. (2020) dry deposition
parameterization, applied subsequent to the runs carried out here, resulted in an increase in the positive
PM, s bias from +4.5 to +6.7 ug m™ and a shift towards less negative biases in PM10, from -19.7 to -1.77
ug m™, similar to the biases in particulate sulphate and ammonium observed in Figure 14(b) between
{GEM-MACH (Base), GEM-MACH(Zhang)} and GEM-MACH (Ops). Ryu and Min (2022) further
found that the additional update of replacing the default Slinn (1984) aerosol cloud scavenging
parameterization by the Wang (2014) parameterization offset the increase in PM, s SO4 biases associated
with the new particle dry deposition scheme, illustrating the extent to which combinations of
parameterizations are sometimes needed to improve model performance. More recent versions of GEM-
MACH also make use of multiphase hydrometeor partitioning, with and without the Wang (2014) semi-
empirical scavenging scheme, with a significant increase in the uptake of particulate sulphate depending
on precipitation rate, and improvements in the wet sulphate performance relative to previous model
versions (Ghahreman et al., 2024). Implementation of both updated particle dry deposition velocities and
wet scavenging methodology have thus resulted in reduced biases for these fields, for several of the
models examined here, in work subsequent to the simulations for AQMEII4.

With regards to wet sulphur deposition, Figure 15(a) and Table S2 shows a tendency of most models
towards negative biases for total daily wet S deposition. However, this negative bias is much less
pronounced or even positive in comparison to the weekly wet S deposition data. Other metrics of model
performance differed sharply between the two wet deposition observation datasets for some metrics, with
the weekly wet SO4* deposition data comparison having higher MGE, NMGE, and RMSE values than the
daily wet SO4* deposition data comparison. The overall tendency of the performance was similar for
both datasets, with the CMAQ models having the best scores for metrics other than mean bias. We note
that the daily and weekly NA wet deposition values correspond to monitoring networks in two different
locations (see Figure S15(a)). The daily values are from the Canadian CAPMoN network (stations in the
common AQMEII4 domain are located mostly in south-eastern Canada), while the weekly data from the
US NADP network are distributed throughout the USA. The differences in model performance may thus
reflect regional differences in predicted meteorological and/or emissions fields.

One possible cause for the negative biases in wet deposition common to most models could be
underestimates in the amount of model-predicted precipitation, which in turn would reduce the wet flux.
The net precipitation totals converted to liquid water for the eight NA models and observations are shown
in Figure S18, for both daily (CAPMoN) and weekly(NADP) monthly averages. While the monthly
averages of daily precipitation (Figure S18(b)) suggest a tendency towards negative biases in the summer
months for some models, the time series of the precipitation biases does not follow that of the wet
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sulphate deposition biases (for example, the difference relative to wet sulphate observations in Figure
15(a) remains relatively constant for CMAQ-M3Dry and CMAQ-STAGE, while the predicted
precipitation difference relative to observations for the same models in Figure S18(a) shows more
negative biases in the summer than wintertime. Model total precipitation biases thus do not appear to be a
major contributing factor to the sulphur flux biases found in this work.

We also note the potential for the lower magnitude biases in the daily wet SO4* evaluation, compared to
the weekly evaluation, to be the result of the respective regions represented by the two monitoring
networks. Figure S16(a) shows that the daily data are derived from a smaller geographic area than the
weekly data, hence regional performance differences may be affecting the two evaluation results.

Summary, North American S Deposition variability

Sulphur deposition results from a complex balance between SO- oxidation, particulate sulphate formation,
scavenging and release of particles within clouds, in addition to the processes governing deposition of
each of the components. The largest contributing pathways to North American sulphur deposition, in
descending order of importance, were wet deposition (SOs* + HSO5"), particulate sulphate dry deposition,
and dry SO»(g) deposition in the reduced ensemble of mnodel runs. The largest contributors to model-to-
model variability in sulphur deposition, in descending order of importance, were particulate sulphate dry
deposition, wet deposition (SO4> + HSO5"), and dry SO»(g) deposition.

CMAQ-M3Dry, CMAQ-STAGE, and GEM-MACH (Ops) had both the highest levels of wet deposition
and also the best scores relative to wet deposition observations. Models with higher PM, s sulphate
positive biases relative to observations also had stronger negative biases for wet sulphate deposition,
indicating that the magnitude of particle scavenging into hydrometeors may play a role in both biases in
the models. Comparisons between { GEM-MACH (Base), GEM-MACH (Zhang)} and {GEM-MACH
(Ops)} provide some evidence for this effect. WRF-Chem (UPM) and WRF-Chem (UCAR) have very
low particulate sulphate deposition fluxes relative to the other models, and substantial positive biases in
PM, 5 sulphate and negative biases in wet sulphate deposition, relative to observations, likely related to
insufficient wet scavenging of sulphate particles into hydrometeors (Ryu and Min, 2022)

3.2.2 Causes of N Deposition Variability in North America Domain Simulations

The common grid spatial average and percent contribution of each of the species contributing to total
annual N deposition for 2016 are given in Table 5. The columns in the Table are arranged in descending
order from left to right of contribution to the reduced ensemble total nitrogen deposition for each
contributing chemical (“Red. Ens. Avg” row). The impact of variability on the model deposition from
each component for each model is once again shown as the standard deviation across the models used for
the reduced ensemble (“Red. Ens. Std. Dev” row). From the standard deviation row, it can be seen that
the variation (standard deviation) between models for the contributions towards total N deposition are
driven, in descending order, by particle ammonium (DAM column, where the standard deviation for
particle ammonium deposition is larger than the reduced ensemble mean value), followed by wet
ammonium ion (WNH4), wet nitrate ion (WNO3), dry HNO3; (DHNO:3), dry particle nitrate (DNI), dry
NO; (DNO2), dry ammonia gas (DNH3), with the remaining species contributing a small percentage of
the total variability. Both the particle ammonium and wet ammonium variability between the models is
largely driven by the GEM-MACH group of models, which have average dry particle ammonium and wet
ammonium fluxes which are respectively 17.4x and 1.76x higher than the other models.
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1065  We next evaluate the models’ nitrogen performance using the available concentration and wet deposition
1066  flux data to determine the impact of the parameterization differences on model performance, and hence
1067  identify which components in which models might be improved.
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1068  Table 5. Contributions of N species towards total deposition (eq ha™! yr'') and percent of total N deposited, over the
1069 common AQMEII4 NA grid, arranged in descending order of importance to the reduced ensemble average. WNH4:
1070  wet deposition of NH4"(aq). DHNO3: dry deposition of HNO3(g). WNO3: wet deposition of NOs(aq). DAM: dry
1071 deposition of particulate ammonium. DNH3: dry deposition of NH3(g). DNI: dry deposition of particulate nitrate.
1072 DNO2: dry deposition of NO»(g). DPAN: dry deposition of peroxyactylnitrate gas. DRN3: dry deposition of
1073 gaseous organic nitrate gases. DN20S5: dry deposition of N>Os(g). DHNO4: dry deposition of pernitric acid gas.
1074  DNO: dry deposition of NO(g). WRF-Chem (IASS) did not report dry particle fluxes. The GEM-MACH
1075  models and WRF-CHEM(UPM) do not include dry deposition of N>Os(g), and the GEM-MACH models
1076  do not dry deposit HNO4(g).

Average (eq ha! yr'!)
Model
Red.

WRF- GEM- | GEM- GEM- WRF- WREF- Red.
Species 541\34]‘;‘3 gﬁ%% Chem | MACH | MACH | MACH | Chem | CHEM | Ens glds

(IASS) | (Base) | (Zhang) | (Ops) (UPM) | (UCAR) | Avg Dev
WNH4 | 51 60.4 0.2 129 129 114.2 64.3 294 82.5 37.7
DHNO3 | 52.5 51.9 0 66.9 56.2 62.4 75.1 46.8 58.8 9.1
WNO3 | 65.6 66.9 0.2 45 51.3 71.9 73.1 33.6 58.2 14
DAM 8.5 8.4 nd 98.5 100.7 82.6 2.7 2 433 44.2
DNH3 33.2 29.5 36.3 26.9 26.6 40 40.3 47.2 34.8 7.3
DNI 18.3 18.9 nd 26.8 32.7 19 7.6 7.1 18.6 8.6
DNO2 7.9 7.3 7.7 23.8 21.9 26.7 10.9 10.8 15.6 7.6
DPAN 4.9 4.7 2 7.7 7.4 10 2.7 2 5.6 2.7
DRN3 6.6 4.9 0.4 1.8 2.4 3.1 0.7 3.1 3.2 1.8
DN205 | 1.2 1.1 2.2 nd nd nd nd nd 1.2 0.1
DHNO4 | 0.4 0.1 0 nd nd nd 0.8 0.4 0.3 0.1
DNO 0.5 0.5 0 0.1 1.2 0.2 0 0 0.4 0.4
Total N | 250.7 254.7 49 426.5 429.4 430 278.2 182.4 321.7 ]196.5
Percent Contribution

Model
Red.

WREF- GEM- | GEM- GEM- WREF- WREF- Red.
Species 15[1\3{[35- g,?/IAA(‘}%- Chem MACH | MACH | MACH | Chem CHEM | Ens 1;215

(IASS) | (Base) | (Zhang) | (Ops) (UPM) | (UCAR) | Avg Dev
WNH4 | 204 23.7 0.4 30.2 30 26.5 23.1 16.1 25.6 4.7
DHNO3 | 21 20.4 0 15.7 13.1 14.5 27 25.7 18.3 5
WNO3 | 26.2 26.3 0.3 10.6 11.9 16.7 26.3 18.4 18.1 6.4
DAM 34 3.3 nd 23.1 23.5 19.2 1 1.1 13.5 9.9
DNH3 13.2 11.6 74.2 6.3 6.2 9.3 14.5 25.9 10.8 7.6
DNI 7.3 7.4 nd 6.3 7.6 4.4 2.7 3.9 5.8 1.8
DNO2 3.2 2.9 15.8 5.6 5.1 6.2 3.9 5.9 4.9 1.3
DPAN 1.9 1.9 4.1 1.8 1.7 2.3 1 1.1 1.7 0.5
DRN3 2.6 1.9 0.7 0.4 0.6 0.7 0.2 1.7 1 0.8
DN205 | 0.5 0.4 4.4 nd nd nd nd nd 0.4 0
DHNO4 | 0.2 0 0 nd nd nd 0.3 0.2 0.1 0.1
DNO 0.2 0.2 0.1 0 0.3 0 0 0 0.1 0.1
WNH4 | 204 23.7 0.4 30.2 30 26.5 23.1 16.1 25.6 4.7
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Dry deposition of particle ammonium

The largest source of variability between North America models’ total N predictions resides in the dry
particle ammonium deposition fluxes, with Table 5 showing that the standard deviation of this deposition
flux across models was essentially as large as the reduced ensemble average. Particle dry ammonium
deposition contributes a disproportionately high contribution to total N variability across the North
American ensemble, despite the magnitude of the ensemble average particle ammonium dry deposition
flux being less than the deposition of wet ammonium ion, dry nitric acid gas, or wet nitrate ion,

Figure 16 compares the monthly average PM, s ammonium concentrations with observations (station
locations appear in Figure S15(b)), and Table S3 provides detailed statistics. From the latter, CMAQ-
M3Dry and CMAQ-STAGE have the best overall performance for particulate ammonium, and GEM-
MACH (Base), GEM-MACH (Zhang) and GEM-MACH (Ops) have the worst performance by the
statistical measures used here. This latter group of models also have the largest magnitude of positive
biases relative to observed PM» s ammonium concentrations, while the CMAQ implementations have the
negative biases, and the remaining models have smaller magnitude positive biases. Figure 16 shows that
CMAQ-M3Dry, CMAQ-STAGE, WRF-Chem (IASS) and to a lesser extent WRF-Chem (UPM) have a
greater seasonal variability in model particle ammonium (blue line) than observed (red line), with the
difference between summer and winter (months 1 and 12 versus months 5 through 9) being higher in the
models than in observations.

The GEM-MACH contributions to model N variability in critical load exceedances are thus linked to poor
model performance for PM, s ammonium. This poor performance is likely due to two factors, which can
be deduced from comparing the process representations implemented in the models (section 2.2).

The first factor, which differentiates GEM-MACH (Base), GEM-MACH (Zhang) and GEM-MACH
(Ops) from the other ensemble members relates to how inorganic aerosol thermodynamic partitioning
chemistry has been implemented: while all this process representation in the models of the ensemble is
derived from the ISORROPIA module (Nenes ef al., 1998; Fountoukis et al., 2007), the GEM-MACH
implementations in AQMEII-4 employ a partial speciation of SO4*, NHs" and NOs~ (Makar e al., 2003),
and do not include the reactions involving particulate base cations (Ca*", Mg?*, Na*, K). The other
models in the ensemble do include these additional reactions. In the absence of base cation chemistry, the
formation of particle ammonium will be controlled by the availability of ammonia gas in excess of that
required to charge balance particulate sulphate, as well as by the availability of nitric acid gas. In the
presence of base cations, nitric acid gas will preferentially associate with base cations rather than
ammonia, leaving less HNOj3 available for particle ammonium nitrate formation. Several observational
studies have shown that when base cations are present, their peak mass occurs in the coarse particle size
mode (> 2.5 um diameter), where they will have higher deposition velocities (e.g. inland, agricultural dust
sources, Makar ef al., 1998; ocean sources of sea-salt, Anlauf et al., 2006). Base cation inorganic
heterogeneous chemistry thus provides a competing pathway for uptake of nitrate into particles, and when
present, will also reduce the amount of NH; that may be taken up by particles, especially in the fine mode.
The positive bias of PM» s ammonium in Figure 16 for GEM-MACH relative to the other models likely
represents the impact of simplified inorganic aerosol chemistry.

The second factor influencing the GEM-MACH models positive particulate ammonium biases may be
reflected in the biases for GEM-MACH (Base) and GEM-MACH (Zhang), which are 50% to a factor of
two, respectively, higher than that of GEM-MACH (Ops): that is, an additional source of bias resides in
the former two model implementations that is not present in the latter implementation. The likely source
of this additional bias is their use of Emerson et al. (2020) particle deposition velocities in these
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implementations, in the absence of enhanced wet scavenging of aerosols, as discussed above for PM, s
sulphate, and described in Ryu and Min (2022) and Ghahreman et al. (2024). Ryu and Min (2022)
showed that the use of the updated particle deposition velocity as per Emerson ef al. (2020), when
implemented in the absence of concurrent multiphase wet scavenging updates led to positive biases in
PM?? concentrations in the WRF-Chem model.

We note that the manner in which inorganic heterogeneous chemistry is simulated also differs between the
models. CMAQ-M3Dry and CMAQ-STAGE calculate local equilibrium concentrations at different
modes of the size distribution, and WRF-Chem (UPM) and WRF-Chem (UCAR) also calculate the
equilibrium with respect to specific size bins, while GEM-MACH (Base), GEM-MACH (Zhang) and
GEM-MACH (Ops) carry out a single bulk calculation across all size bins. The use of a bulk calculation
is a third simplification for the latter group of models, and may also affect the particulate ammonium
performance of these models.

Figure 16. PM, s ammonium compared to observations, North American Model Ensemble, 2016. Red line:

monthly observed average. Blue line: monthly model average.
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The spatial distribution of PM, s ammonia biases was examined in Figure 17, for the month of July, 2016
(July was chosen due to the expectation that bidirectional fluxes would have a higher impact in the
summer months). The region with the highest positive biases (dark red circles, Figure 17) are in the same
station locations for all models, in the agricultural region to south of the Great Lakes. Positive PM2 s
ammonium MB also occur near urban regions in western USA (Seattle/Tacoma, Yakima, Portland,
Sacramento, San Jose, Boise, Butte, Helena, Denver, Boulder, and Albuquerque) and at one eastern site
Miami. A re-examination of ammonia gas deposition and emissions parameters and primary particle
ammonium emissions inventories are recommended for these locations, given that they are likely having a
large impact on model performance statistics. The CMAQ models and WRF-Chem (IASS) have negative
to minimal biases along the coastlines and SW USA (regions of sea-spray NaCl and wind-blown base
cation containing dust, respectively), while WRF-Chem (UPM) and WRF-Chem (UCAR) have small
negative to positive biases in these regions, and the GEM-MACH models are uniformly biased positive in
these regions. This provides support to the possibility that the GEM-MACH positive bias in particulate
ammonium concentrations is due to missing particulate base cation chemistry; the regions where
particulate base cations would be expected to contribute significantly to total particulate mass are also the
regions where the GEM-MACH models have positive biases, and the biases in the other model biases are
not as significant.

Figure 17. Mean Biases, PM, s NHa, July, 2016, by station (ug m~). Negative values given in blue, positive biases
given in red. Note that colour scale is logarithmic.
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Wet deposition of ammonium and nitrate ions.

Wet deposition of ammonium ion is the largest contributor to the North America reduced ensemble Ny,
and the second largest contributor to model-to-model variability in N deposition (Table 5). Wet
deposition of nitrate ion is the third largest contributor to both the NA ensemble total N deposition and
model-to-model variability in N deposition. Time series of the monthly averages of observed and
modelled daily (CAPMoN) and weekly (NADP) wet NH4" deposition fluxes are shown in Figure 18. The
monthly mean of modelled daily values (Figure 18(a)) are generally biased negative, with the exceptions
of the months of July and August for GEM-MACH (Base) and GEM-MACH (Zhang). The observed
maximum in NH4" wet deposition occurs in April (Figure 18(a), red line, month 4) — this seasonal
variation is captured only by GEM-MACH (Ops) and WRF-Chem (UCAR), with the other models
predicting peak deposition in between June through August. The monthly average of the weekly wet
NH4" deposition fluxes (Figure 18(b)) shows a similar pattern, with the observed values (red lines, Figure
18(b)) peaking in April, and all of the models except for WRF-Chem (UCAR) peaking in June. As was
the case for wet sulphate deposition, the observed seasonal variation is apparently not connected with
biases in precipitation predictions (see Figure S18(a,b), supplemental information), with the possible
exception of WRF-Chem (UCAR), for which total precipitation is biased substantially negative
throughout the year.

Figure 18. Time series of monthly average observed (red line) and modelled (blue line) wet ammonium deposition
fluxes, for (a) Daily CAPMoN data (eq ha! day™"), and (b) Weekly NADP data (eq ha™! week™).
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As noted above, the models taking part in this ensemble did not make use of multiphase hydrometeor
scavenging in precipitation. The maximum wet NH4" deposition negative bias in April featuring for
several models may reflect the absence of this level of detail in hydrometeor scavenging, with the absence
of snow scavenging potentially impacting early spring deposition. We note that the weekly and daily
monitoring networks cover different geographical regions, hence the differences in model performance
relative to the two observation datasets (compare the CAPMoN and NADP station locations in yellow and
green circles respectively, Figure S15(a).

45



1185
1186
1187
1188
1189
1190

1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224

1225
1226
1227
1228
1229

The mean biases in average daily and weekly wet NH4" deposition for the month of April are shown in
Figure 19. WRF-Chem (IASS), CMAQ-M3Dry, and CMAQ-STAGE have predominantly negative biases
throughout the region, WRF-Chem (UCAR) and WRF-Chem (UPM) have a few stations with more
positive biases, and the GEM-MACH models have both positive and negative biases throughout the
domain. Insight into the differences in model performance can be gained through reviewing the manner
in which each model parameterizes aerosol activation and scavenging:

(1) GEM-MACH (Base), GEM-MACH (Zhang), GEM-MACH (Ops), WRF-Chem (UPM), and
WRF-Chem (UCAR) make use of the aerosol activation scheme of Abdul-Razzak and Ghan
(2000), and the Slinn (1984) approach to aerosol scavenging.

(2) In GEM-MACH (Ops), the aerosol activation and scavenging schemes are decoupled from
meteorological feedbacks, while GEM-MACH (Base), GEM-MACH (Zhang), WRF-Chem
(UPM) and WRF-Chem (UCAR) are “aerosol-aware”/full feedback models incorporating
parameterizations for the aerosol direct and indirect effects. The latter will result in cloud
formation from model-produced aerosols acting as cloud-condensation nuclei; clouds are more
likely to form where aerosol concentrations are high (and thus more likely to scavenge aerosols
below the clouds as well), compared to offline models. Very high aerosol concentrations may
also reduce cloud droplet size and cloud to precipitation conversion, potentially making clouds
more persistent, while reducing precipitation.

(3) WRF-Chem (IASS) also makes use of aerosol direct and indirect effect feedbacks, but employs
the approach of Chapman et al. (2009) for acrosol scavenging.

(4) CMAQ-M3Dry and CMAQ-STAGE are off-line models (no feedbacks between aerosols, cloud
formation and radiative transfer takes place), where interstitial and nucleation aerosol scavenging
by cloud droplets is modelled following Binkowski and Roselle (2003), and the wet deposition
rate is a simple parameterization dependent on the cloud total liquid water content, cloud
thickness, and cloud precipitation rate (Fahey et al., 2017).

The Slinn (1984) aerosol scavenging approach makes use of different observation-based aerosol
collection efficiency formulae for rain and snow, respectively, where temperature dependence in the
collection efficiency such as a 0 C may be used to distinguish between liquid and solid hydrometeor
collection efficiencies. Subsequent to the AQMEII-4 simulations carried out here, parameterizations that
utilize multiphase precipitation data with multiple hydrometeor classes, such as that of Wang et al.
(2014), have been tested within the modelling framework of GEM-MACH (Ghahreman et al., 2024).(.
Similarly, Ryu and Min (2022) describes the impact of multiphase hydrometeor scavenging as
implemented in the WRF-Chem modelling framework. These tests resulted in significant improvements
in particulate concentrations and wet deposition compared to previous implementations employing the
approach of Slinn (1984). The approach for scavenging in Binkowski and Roselle (2003) assumes
scavenging only occurs to cloud droplets; snow scavenging is not considered. However, snow scavenging
at higher precipitation rates is known to be one to two orders of magnitude more efficient than scavenging
by rain. Hence the use of the (Slinn (1984) parameterization instead of multiphase hydrometeor
scavenging and the ; Wang, (2014) parameterization in GEM-MACH, and the omission of multiphase
hydrometeor scavenging in CMAQ, may account for the springtime bias in all models noted here.

The causes for the differences in wet deposition of NH4 between WRF-Chem (IASS), WRF-Chem (UPM)
and WRF-Chem (UCAR) may result from the use of the Chapman et al. (2009) wet scavenging approach
in the first model, and the implementation of Abdul-Razzak and Ghan (2000), and the Slinn (1984)
approaches in the latter two models. All three models make use of the Morrison Two-Moment cloud
microphysics scheme and (Morrison ef al., 2009), though WRF-Chem (IASS and WRF-Chem (UPM)
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differ from WRF-Chem (UCAR) in the parameterization of convective clouds (See Table 1). Differences
in aerosol scavenging implementations may account for some of the differences in wet ammonium
deposition between these models, as may the manner in which convective clouds identify cloud
condensation nuclei from aerosol size distribution and speciation within their convective
parameterizations.

Wet nitrate ion deposition is the third largest source of N deposition in the North American ensemble as
well as the third largest source of model-to-model variability (Table 5). CMAQ-M3Dry, CMAQ-STAGE
and GEM-MACH (Ops) have the best performance scores for wet nitrate deposition (Table S3
(Supplement)). GEM-MACH (Base) and GEM-MACH (Zhang) have larger magnitude and more
negative biases than GEM-MACH (Ops), despite all three models making use of the same modelling
framework. The only difference between GEM-MACH (Base) and GEM-MACH (Zhang) is the gas-
phase dry deposition algorithm employed (see Table 2). The increase in wet deposition negative bias
magnitude going from GEM-MACH (Zhang) to GEM-MACH (Base) in Table S3 (from -0.19 to -0.26 eq
ha! d! for daily CAPMoN data, and from -0.41 to -0.64 for weekly NADP data) is therefore attributable
to gas-phase deposition differences. This is also reflected in the HNOj3 dry deposition flux for the two
models in Table 5, with the deposition flux for GEM-MACH (Base) at 66.9 eq ha™! yr! being 19% higher
than the GEM-MACH (Zhang) value of 56.2 eq ha! yr’.

The remainder of the difference in wet nitrate deposition bias between (GEM-MACH (Base, Zhang) and
GEM-MACH (Ops) must be due to other factors in the model configuration as described in Table 2.
Based on the PM> 5 sulphate and PM, 5 nitrate evaluations (Table S2, Table S3), as well as the work of
Ghahreman ef al. (2024) and Ryu and Min (2022), we believe that the cause of the additional wet nitrate
negative bias resides in the use of the new particle deposition velocity algorithm in the absence of a
simultaneous update in the wet deposition algorithm to make use of multiphase hydrometeor scavenging
of aerosols. For example, the particulate matter scavenging coefficients for snow are one to two orders of
magnitude more efficient than for rain — including snow scavenging (which may occur at higher
elevations even in the summer) will lead to greater uptake of particles (Ghahreman et al., 2024). The
Emerson et al. 2020 parameterization will lead to less particle deposition in sub-micrometer particle sizes
(and hence would otherwise increase PM 5 concentrations — the increased scavenging associated with
multiphase hydrometeors will offset this effect.

Dry Deposition of HNO;

Dry deposition of HNOj3 is the 2™ largest source of Ngep in the reduced ensemble, and the 4™ largest
source of model-to-model variability.

The spatial variation of the annual sum of the effective deposition fluxes for HNO3 dry deposition are
shown in Figure S19, Figure S20, Figure S21 and Figure S22, representing the mass of HNO; transferred
to the surface via the cuticle, soil, stomatal and lower canopy pathways respectively, and are summarized
as common grid totals in Figure 20. Effective fluxes build on the concept of effective conductance: the
product of the hourly deposition flux with the ratio of specific pathway conductance to total deposition
velocity, for each of the four pathways (Galmarini et al., 2021). The Figures thus depict the contributions
of each pathway towards the HNO; dry deposition mass flux for each model®. Effective fluxes
incorporate changes in the flux resulting from changes in chemical concentration associated with factors
in addition to deposition. However, comparison of the effective flux values of Figure 20 to effective

! Note that the CMAQ-M3dry and CMAQ-STAGE models incorporate the lower canopy pathway into the soil
pathway; the lower canopy effects are not absent in these models, but form part of the soil pathway, and hence are
reported here as part of the soil pathway.
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conductances (not shown) has a similar pattern, implying that the deposition velocity is the dominating
factor in the HNOs deposition flux. The HNO; mass flux is dominated by the cuticle pathway (Figures
S19, 20), followed by the soil pathway (Figures S20, 20). All models show a similar pattern in HNO3
annual cuticle flux (largest fluxes in the south-eastern USA, lowest fluxes over the western mountain
ranges and the Canadian boreal forest), though the magnitudes of the fluxes vary, with WRF-Chem
(UPM) having the highest flux, GEM-MACH (Zhang) showing much lower fluxes for specific land use
types over the western mountains compared to the other models.

The HNO; dry deposition velocity parameterizations in the GEM-MACH models depends in part on
deposition pathway parameterizations employing functions of the ozone and sulphur dioxide pathway
values (Makar et al., 2018; Zhang et al., 2003). Other recent AQMEII4 work for ozone dry deposition
using an observation-driven single-point modeling framework (Clifton et al., 2023) found that the ozone
deposition velocity for GEM-MACH (Base) has positive biases in the summer months (average across 8
sites +73%), negative in the winter months (8 site average of -33%), while GEM-MACH (Zhang) has
smaller summer biases (+3%) and high winter biases (+50%). This is consistent with the increase in dry
HNO; deposition flux going from GEM-MACH (Zhang) to GEM-MACH (Base) though HNO also
deposits via dissociation (sulphur dioxide pathway); not all of the observed effects can be attributed to the
use of Os as a proxy in part of the deposition algorithm.. A portion of the increase in the negative bias in
wet nitrate deposition going from GEM-MACH (Zhang) to GEM-MACH (Base) is thus the result of
higher HNOs dry deposition removal of the available nitrate which would otherwise be taken up into
clouds.
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1292 Figure 19. Model mean biases in wet ammonium deposition for the month of April, 2016, North America (eq ha™!
1293  yr'!). Daily station values of the mean bias (CAPMoN network) shown as diamond symbols, weekly station values
1294 (NADP network) as circles. Positive biases shown in red, negative biases shown in blue; note that colour scale
1295 intervals are logarithmic.
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Figure 20. Averages of flux pathway contributions to HNO3 dry deposition, AQMEII4 common NA grid, 2016 (eq
ha! yr).
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NH3 and the role of bidirectional flux algorithms

NHj; deposition fluxes were the fifth largest driver of ensemble nitrogen deposition, and the 7™ largest
driver of Ny, variability in North America. Two different observation datasets for the year 2016 were
used to evaluate model NH; concentration performance, Cross-track Infrared Sounding (CrIS) satellite
retrievals of NH3 (see Supplement for retrieval procedure and references) and AMoN (Chen et al., 2014;
AMOoN, 2024) surface monitoring network observations (see Supplement Figure S16(b) for AMoN
measurement locations). The two datasets evaluate model NH3 performance in different ways. The CrlIS
observations (and model values extracted for evaluation) correspond to the specific time-of-day of the
satellite overpass, for the polar orbiting platform upon which the CrIS instrument is based. The
evaluation against CrIS data is thus a measure of the model performance at early afternoon local time.
The AMoN observations in contrast are two-week integrated average concentrations; the AMoN
comparison evaluates average model performance on this integrated time scale, and hence includes into
that average diurnal variations in NH3 concentrations not available in the CrIS observations.

The evaluation of the models’ NH; against CrIS observations at overpass time is shown in Table S4
(Supplement) and Figure 21. The general trend for the models is one of negative biases in NH3
concentrations. CMAQ-M3Dry and CMAQ-STAGE, have the largest negative NH; biases, lowest FAC2,
highest MGE, lowest R, lowest COE and lowest IOA scores in Table S4. This suggests that the
magnitude of the fluxes and/or the balance between positive (downward; deposition) and negative
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(upward; emission) fluxes for CMAQ-M3Dry and CMAQ-STAGE are the cause of the model’s relatively
poor performance for NH;. GEM-MACH (Base) and GEM-MACH (Zhang) have the smallest (and
positive) baises compared to the other models, and these two models as well as WRF-Chem (UPM) and
WRF-Chem (UCAR) have the best overall scores for NH3 against satellite data.

The satellite data comparison of Figure 21 also shows some significant differences between observed
ammonia and all models’ predicted ammonia, particularly over water bodies (oceans, Great Lakes), with
observed NH3 in the range 1-3 ppbv in the Atlantic and near Baja California, while the models all show
NHs over the oceans always below 0.3 to 0.5 ppbv, and decreasing with increasing distance from the
shoreline. All models reach 0.0 — 0.01 ppbv at the greatest distances from the shoreline, while the satellite
observations are above 0.5 ppbv (lower detection limit ~0.3 ppbv) throughout the common AQMEII4
domain.

NH3; emissions from natural sources has been a source of ongoing interest in the global modelling
community due to its properties as a greenhouse gas. Paulot ef al. (2015) reviewed estimates of global
oceanic NH; emissions, with a range of 7 —23 Tg N yr! and their own estimate being lower at 2.5 Tg N
yr!l. Their estimated maps of NH; emissions showed relatively lower values on the western shoreline of
North America (Pacific coast) than on eastern shoreline (Atlantic coast), and high emissions in three out
of the four oceanic NH3 flux models tested, in the Gulf of Mexico and along the Gulf stream between
North America and Europe (their Figure 3). Subsequent simulations of oceanic outgassing (Paulot ef al.,
2020) showed oceanic outgassing in the Gulf of Mexico in excess of 0.03 g N m= yr! (17.6 eq ha! yr'!),
and between 0.01 and 0.02 g N m? yr' (5.9 to 11.8 eq ha! yr'!) in the Gulf Stream. The oceanic
emissions model of Paulot et al. (2020) would be relatively straightforward to implement in a regional
modelling context; our work suggests that a considerable deficit in oceanic NH; may be occurring in the
current regional air-quality models.

The evaluation of the models’ NH; against biweekly surface observations at the AMoN sites is shown in
Table S5 (Supplement), where biweekly values have been used to create annual averages from both model
and observed values at observation sites. GEM-MACH (Base) and GEM-MACH (Zhang) once again
have the lowest magnitude (and positive) biases relative to observations, CMAQ-M3Dry and CMAQ-
STAGE have the most negative biases, though CMAQ-STAGE has the best correlation coefficient score,
and WRF-Chem (UPM) has the best scores overall aside from mean bias and correlation coefficient.
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1349 Figure 21. Comparison of annual average surface NH3 concentrations at CrIS overpass times, participating models,
1350  reduced ensemble, and corresponding CrlS observed average NHjs at overpass time. Note that regions outside the
1351  common AQMEII-4 domain have been assigned an “outside domain” mask value of -9.
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Figure 22 shows the contributions to total N deposition flux from dry deposition of NH3(g), and the
difference in overall deposition patterns between the models employing bidirectional NH3 flux
parameterizations (CMAQ-M3Dry, CMAQ-STAGE, GEM-MACH (Base), and GEM-MACH (Zhang))
and the models which do not employ such a parameterization (WRF-Chem (IASS), GEM-MACH (Ops),
WRF-Chem (UPM), WRF-Chem (UCAR)). The models utilizing bidirectional fluxes have large regions
where the net downward flux is given as zero in the panels of Figure 22 (dark blue regions, CMAQ-
M3Dry, CMAQ-STAGE, GEM-MACH-Base, GEM-MACH Zhang models) — these are locations where
the annual total NH3 flux is upward; net emissions of NH; when summed over the course of the year. The
size of these regions differs between CMAQ-M3Dry and CMAQ-STAGE, indicating differences in the
bidirectional flux parameterizations between these models. GEM-MACH (Base) and GEM-MACH
(Zhang) also use a bidirectional flux parameterization, which differs from those of CMAQ-M3Dry and
CMAQ-STAGE, and consequently have relatively similar patterns of net NH3 dry deposition versus
emissions. Differences in land-use data as well as country-specific differences in the level of details
utilized in the bidirectional flux schemes also are resulting in differences between the two modelling
platforms (e.g. the north-western USA/south-western Canada border shows up as a sharp contrast in the
CMAQ models NH; fluxes that utilize information from EPIC over the US and less detailed information
outside the US while this differences is much less pronounced in the GEM-MACH models).
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Figure 22. 2016 N dry deposition fluxes (eq ha! yr'") for NH;(g) (eq ha! yr'!). Note that regions outside the
common AQMEII-4 domain have been assigned an “outside domain” mask value of -9.
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The AQMEII4 diagnostics for NH3 deposition provide further insight into the causes of the differences
between the models employing NH3 bidirectional fluxes. The most generic formula for NH; bidirectional
fluxes is:

Fr = €a—Cc (5)

Tsum

Where Fris the net flux, ¢, is the atmospheric concentration of ammonia gas, and g, is a sum of
resistances associated with turbulent eddies and molecular diffusion of gaseous NH3 across the reference
height of air and the vegetation canopy. c. is the is the canopy compensation point concentrations of

ammonia gas at the top of the canopy, and may be expressed as a function of the atmospheric
concentration as well as compensation point concentrations near stomata and the ground (c;, ¢g), and of
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the aerodynamic resistance of ammonia gas (7). As can be seen from equation (5), if the atmospheric
concentration is greater than the compensation point concentration, the flux will be positive (downward).
If the atmospheric concentration is less than the compensation point concentration, the flux will be
negative (upward). Galmarini ef al. (2021, Appendix C) gives the detailed formulae for the terms in
equation (5), for the bidirectional flux models participating in AQMEII4. A comparison of 74, Fsum, Ca, Ce,
cg, and ¢, may thus provide insight into the differences in the between the predicted NH; dry deposition
fluxes for the models employing bidirectional flux parameterizations for the AQMEII4 North American
ensemble. These terms were reported by AQMEII4 participants as the diurnal median (50™ percentile) at
each UT hour within each month. The median values for 16UT (noon EDT) for July 2016 are shown in
Figure 23. It is important to note that the median values for a given UT hour may correspond to different
days within a given month. For example, the median values of 7., and 7, at 16 UT in July may not occur
on the same day, and hence the median value of 7., will not necessarily be greater than the median value
of r, as might be expected from the equations governing the resistances as given in Appendix C of
Galmarini et al. (2021). Also, not all models were able to report all variables (as noted above, for
CMAQ-M3Dry, the net and ground compensation point concentrations were calculated off-line of the
model simulation, and could not be included as AQMEII4 diagnostic parameters). However, substantial
differences between the panels of Figure 23 provide a useful indication of relative importance of different
pathways in the participating models.

From Figure 23, we note:

(1) The 2016 July, 16 UT median aerodynamic resistance 7, is similar for all four models (Figure
23(a)) — consequently, differences in 7, are unlikely to be the cause of the model flux differences.

(2) The 2016 July, 16 UT median . values (Figure 23(b)) for CMAQ-M3Dry is considerably
smaller than for other models — at least some relatively high fluxes for CMAQ-M3Dry are due to
these smaller 7., values (which, appearing in the denominator for equation (5), will increase the
magnitude of the fluxes). et al.

(3) The 2016 July, 16 UT median ., values for CMAQ-STAGE over land are equal to those for 7,
for this model. This is expected (#sum = 7. for this model, Galmarini et al., 2021); other terms
influence the magnitude and direction of the fluxes.

(4) The 2016 July, 16 UT median values of the air concentrations of NH3, ¢, (Figure 23(c)) are lower
for CMAQ-M3Dry and CMAQ-STAGE than for GEM-MACH (Base) and GEM-MACH
(Zhang), as might be expected from the above-mentioned bias calculations relative to CrIS and
AMOoN data.

(5) The 2016 July, 16 UT median net compensation point concentration c. (Figure 23(d)) for CMAQ-
STAGE is an order of magnitude smaller than for GEM-MACH (Base) and GEM-MACH
(Zhang). From equation (5), this likely drives much of the large NH; flux for this model and its
negative bias values; smaller c. values will result in larger positive (downward) net fluxes Fr.

(6) Some of the locations where CMAQ-STAGE’s 2016 July, 16 UT median ground compensation
point concentration (cg) has maximized are where GEM-MACH (Base) and GEM-MACH
(Zhang) have zero to near-zero ground compensation point values (Figure 23(e) — e.g. Rocky
mountains, north-central USA agricultural region — dark blue areas in the GEM-MACH results
compared to much lighter values in the CMAQ-STAGE results). The larger CMAQ-STAGE c¢,
values (local values were up to 1E4 ppbv for this model), if dominant, would be expected to
result in larger c. values in equation (5) (see Galmarini et al. 2021) and hence a tendency towards
smaller downward fluxes. This is not the case from the above analysis (DNH3 values in Table 5
for CMAQ-STAGE are greater than those of the GEM-MACH models, and CMAQ-STAGE NH3
concentrations have more negative biases than the two GEM-MACH models), suggesting that the
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ground pathway is not the main term affecting the differences in model NH3 dry deposition

fluxes.

(7) For much of the AQMEII4 common domain (aside from SW USA), CMAQ-M3Dry and CMAQ-
STAGE have lower 2016 July, 16 UT median stomatal compensation point concentrations than

either GEM-MACH (Base) or GEM-MACH (Zhang) (Figure 23(f)). This in turn implies that the
difference in model dry deposition fluxes is via the stomatal pathway:.

The main factors resulting in higher magnitude downward fluxes in CMAQ-M3Dry and CMAQ-STAGE
relative to GEM-MACH (Base) and GEM-MACH (Zhang) are thus lower net compensation point
concentrations (CMAQ-STAGE), lower stomatal compensation point concentrations (CMAQ-M3Dry,
CMAQ-STAGE), and lower 7, values (CMAQ-M3Dry).

Figure 23. 2016 Spatial distribution of 2016 July, 16 UT median n values for key bidirectional flux diagnostic
variables. (a) Aerodynamic resistance (s cm™), r,. (b) Sum resistance (s cm™), reum. (c) Air Concentration of NHj
(ppbv), ca. (d) Net compensation point concentration (ppbv), c.. (¢) Ground compensation point concentration
(ppbv), cg. (f) Stomatal compensation point concentration (ppbv), c;. Note that regions outside the common
AQMEII-4 domain have been assigned an “outside domain” mask value of -9.
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(d)

CMAQ-M3Dry

(not available from model)

(e)

CMAQ-M3Dry

(not available from model)

All four bidirectional flux models calculate fluxes on specific land use types within each grid cell and use
some form of land use fraction weighting to generate the values of the key parameters in the bidirectional
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flux equations. The native land-use types used by each modelling platform were converted to a common
set of 16 AQMEII4 land use types (see Galmarini et al., 2021). We investigated the CMAQ and GEM-
MACH spatial and temporal patterns of ammonia bidirectional fluxes in the context of the AQMEII4
land-use types, along with the relationship to the highest regions of nitrogen CLE. This is shown in
Figures 24 and 25, where Figure 24 panels (a and b) are the sum of AQMEII4 land use types 11 and 12
(i.e. the sum of “planted/cultivated” and “grassland” land use types) used in CMAQ and GEM-MACH
respectively. Figure 24 panels (c and) are the sum of AQMEII4 land use fractions for land use types 6,7,8
and 13 (evergreen broadleaf forest, deciduous broadleaf forest, mixed forest, and savanna, respectively),
for CMAQ and GEM-MACH respectively. We note that these forested areas are the ecosystems of
interest for many of the CLE values calculated earlier in this work. The land use summations of Figure
25 are also worth noting in the context of the typical timing of the direction of NH3 fluxes during the
course of a day. Figure 25 shows an example of this diurnal behaviour of the NH; bidirectional fluxes
for the CMAQ and GEM-MACH models, at (a) 15:00 CDT and (b) 7:00 CDT. Mid-afternoon fluxes
(Figure 26(a)) tended to be largely negative (upward; emissions; blue colours). However, the spatial
location of the fluxes differs between the models even within a given model framework. CMAQ-M3Dry
predicts afternoon emissions (blue colours) largely restricted to the combined grassland and agricultural
land use types, with deposition (red colours) to the forested areas in south-east Canada and south-east
USA. CMAQ-STAGE predicts mid-afternoon emissions throughout western North America, though a
similar pattern of deposition as CMAQ-M3Dry in south-east Canada and south-east USA. The GEM-
MACH bidirectional fluxes in afternoon are mostly negative (emissions; blue). All three models show
midafternoon NHj3 deposition in the north-central USA, corresponding to a known region of high NH3
concentrations (Figure 21, CrIS NHj retrieval maximum). In contrast, early morning fluxes (Figure
25(b)) predicted by both CMAQ implementations are largely positive (downward; deposition; red
colours), across all land use types., while GEM-MACH predicts deposition in agricultural areas, and
emissions further downwind in south-east Canada and south-east USA.

The generic diurnal sign changes in the direction of the ammonia flux across all four models is easily
explained with reference to equation (5): in mid-afternoon (Figure 25(a)), both the height of the planetary
boundary layer and the magnitude of thermal coefficients of diffusivity are relatively high, reducing the
ambient air concentration of ammonia gas (¢, in equation 5), resulting in negative fluxes (emissions; blue
colours). In the early morning (Figure 25(b)), both the boundary layer height and the magnitude of
thermal coefficients of diffusivity are lower, hence increasing the ambient air concentrations of ammonia
gas, resulting in more positive fluxes and prevalent deposition. However, the different bidirectional flux
models show differences in diurnal behaviour by land use type. CMAQ-M3Dry and CMAQ-STAGE
show a diurnal pattern of afternoon emissions from agricultural and grassland areas, and deposition in
forested regions downwind, and early morning deposition irrespective of land-use type. GEM-MACH
shows stronger afternoon emissions regardless of land-use type, and morning lower magnitude emissions
in forested areas and deposition only in agricultural areas and the western USA.

We note that Table S4 measures model performance specifically at satellite overpass time in the afternoon
—1.e. at close to the time shown in Figure 25(a), and that the performance of CMAQ-M3Dry and CMAQ-
STAGE is lower than the other models at this time, while the differences between the models aside from
magnitude of the bias is less pronounced in the integrated surface observations of Table S4. This analysis
thus suggests that the CMAQ negative biases may be reduced in magnitude by re-examining the factors
contributing to compensation point concentrations in forested areas in the day; c. values (equation 5) are
probably too low in these regions at these times, leading to excessive positive (downward) fluxes. That
is, the analysis suggests that the CMAQ negative NH; biases may be the result of excessive deposition
and/or insufficient emissions, in forested areas, in both the daytime and early morning, with the effect
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most noticeable in the afternoon. The bulk of the differences likely resides in the stomatal deposition
pathway. Conversely, we note that the GEM-MACH bidirectional flux algorithm is overestimating
midafternoon ammonia in the SE USA relative to satellite observations (Figure 21), indicating that
compensation point concentrations may be overestimated in this region.

While NH; fluxes are only the 5™ largest source of N deposition in the North American reduced ensemble,
we also note that the manner in which NH3 bidirectional fluxes are treated in the context of critical load
exceedance calculations may be open to interpretation. Exceedances with respect to critical loads are
calculated with respect to annual tofal deposition of N and S, but what constitutes total N deposition in
the context of bidirectional fluxes is less clear. Here, we have taken the approach of assuming that
negative fluxes (emissions) of NH; during the course of a year constitute a loss of N from the ecosystem,
but that NH3 contained within the ecosystem cannot be converted to other forms of N. Consequently, the
approach taken here was to sum the hourly NH; fluxes (positive downward and negative upward) for the
year simulated, with only those grid cells with net positive summations (i.e. net annual deposition fluxes)
adding towards total N deposition. However, other interpretations are possible. For example, only the
positive contributions on an hourly basis could be accumulated, and any losses of N from the same
ecosystems associated with NH; emissions could be ignored/excluded from the N balance of the
ecosystem. A third interpretation would be to assume that deposited NH;3 within the ecosystem may be
converted to other forms of N, and hence the net NH3 flux (which may be positive or negative in different
parts of the region simulated) is added to Naep, With Ngep being set to zero only when the NH3; emissions
flux exceeds the deposition flux of all other forms of N. Here, we have taken the first of these
approaches. We note that the second approach would lead to higher estimates of total Ngp than generated
here, while the third approach would result in lower estimates of total Ngep. Although NHj is the 5%
largest contributor to total Nge, across North America, these differences in approach may affect critical
load exceedance estimates in regions of high NHj3 fluxes.
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Figure 24. Comparison of AQMEII4 land use type fractions with locations of highest CLE for forest ecosystems,
CMAQ versus GEM-MACH. Upper row: grid cell fractional area composed of sum of AQMEII4 land use types
11+12 (planted/cultivated and grassland), for: (a) CMAQ-M3Dry and CMAQ-STAGE, (b) GEM-MACH (Base) and
GEM-MACH (Zhang). Lower row: grid cell fractional area composed of sum of AQMEII4 land use types
6+7+8+13 (evergreen broadleaf forest, deciduous broadleaf forest, mixed forest, and savanna), for (¢) CMAQ-
M3Dry and CMAQ-STAGE, (d) GEM-MACH (Base) and GEM-MACH (Zhang).
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Figure 25. NHs(g) flux (eq ha™! hr'!) at (a) 15:00 CDT August 4, 2016 and (b) 7:00 CDT August 5, 2016. Blue lines
in the CMAQ and GEM-MACH models (horizontal row) panels encloses areas which are predominantly
agricultural and grassland, red line encloses areas which are predominantly evergreen broadleaf forest, deciduous
broadleaf forest, mixed forest and savanna, in each model’s respective land use databases (see Figure 24). Blue
shaded regions indicate negative (upward; emissions) NH3 fluxes, red shaded regions indicate positive (downward;
deposition) NH3 fluxes. Green line: boundary of regions where combined Agricultural and Grassland land use
types comprise greater than 70% of land cover. Purple line: boundary of regions where combined Forest land use
types comprise greater than 70% of land cover.

NH; Dry
Deposition
(eq hal hr!)

30.000
10.000
8.000
5.000
3.000
1.000
0.800
0.500
0.300
0.100
0.080
0.050
0.030
0.010
0.008
0.005
0.003
0.001
-0.001
-0.003
-0.005
-0.008
-0.010
-0.030
-0.050
-0.080
-0.100
-0.300
-0.500
-0.800
-1.000
-3.000
-5.000
-8.000
-10.000
-30.000

(a) 15:00

g ﬁ o

GE g

"- )
A

 |GEM-MACH (Base) .
: T

£

b

GEM-MACH (Zhang) |4 -
& o K}

Combined Forested > 70%

Agricultural and Grassland > 70%

60



1537

1538
1539

1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558

1559
1560
1561
1562

1563
1564

1565

3.2.3 Causes of S Deposition Variability in European Domain Simulations

The relative contributions of the different sources of S deposition in the AQMEII4 EU common domain
for the year 2010 are shown in Table 6 and Figure 26.

The European ensemble contributions to total S deposition contrasted with those in North America; both
the contribution to total S deposition and the magnitude of variability between the models follow the
same descending order of importance: SO, dry deposition followed by wet (SO4* + HSO5") deposition,
followed by particulate sulphate dry deposition (see Table 6). The relatively higher importance of SO> dry
deposition towards total sulphur deposition, compared to North America, may reflect a denser spatial
distribution of SO, emissions in the EU domain compared to the North American domain, as well as
higher EU emissions in 2010 compared to the NA 2016 year focused on here for model variability
analysis. Another potential cause of differences between the two domains may reflect differences in the
quality of the emissions data (and emissions reporting requirements) between the two jurisdictions. SO»
emissions are largely from industrial stacks in both locations. In North America, regulations require that
facility operators for large stack sources report their emissions and stack parameters making use of
Continuous Emissions Monitoring, on an hourly basis (USA) or as annual reports (Canada). Plume rise
algorithms may then be used to distribute the emissions in the vertical within air-quality models. In the
EU, stack sources are reported as annual totals without stack parameters which could be used for more
accurate plume rise estimates (e.g. volume flow rates, effluent temperatures); the lack of this more
detailed data necessitates approximations (either making use of “typical” plume rise rates or treating stack
sources as surface emissions without plume rise). The larger variation in SO, performance in the
simulations may thus reflect differences in the level of detail available within SO, emissions inventories
in the two regions.

European observation data for model evaluation were taken from the European Monitoring and
Evaluation Programme (EMEP; https://www.emep.int/ , last accessed July 11, 2024), and the European
Air Quality Database (AIRBASE; https://data.curopa.cu/data/datasets/data_airbase-the-european-air-
quality-database-1?locale=en , last accessed July 11, 2024).

Table 6. Average S deposition contributions in common AQMEII4 EU grid area (eq ha™' yr'') and percent
contribution to average total S deposition, 2010.

Average Deposition (eq ha'! yr'!) Percent of total S deposition

Model Number SO2(g) S04 + Particle Total S SO2(g) S04 + Particle

Dry HSO;® Sulphate | Deposition Dry HSO;0 Sulphate

Deposition Wet Dry Deposition Wet Dry
Deposition | Deposition Deposition | Deposition

WRF-Chem (IASS) 92.1 42.1 n.r. 134.2 68.6 314 n/d
LOTOS-EUROS 38.3 379 5.4 81.5 47.0 46.4 6.6
(TNO)
WRF-Chem (UPM) 105.6 63.2 32 172.0 61.4 36.7 1.9
CMAQ 125.7 75.9 20.1 221.6 56.7 343 9.0
(Hertfordshire)
Reduced ensemble 89.9 59.0 9.5 158.4 56.7 37.2 6.0
average
Reduced ensemble 37.3 15.8 7.5 58.0 23.6 10.0 4.7
standard deviation
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Dry deposition of SO:

The model SO, performance relative to observations at stations closer to urban centers (AIRBASE
network), and more broadly distributed over the EU region (EMEP network), as well as comparisons to
wet (SO4* + HSO5) deposition (EMEP wet deposition network), are shown in Table S6 (Supplement).
Observation station locations are shown in Figure S17(a). WRF-Chem (IASS) had the best SO
performance relative to both networks for most statistics, with the exceptions of a slightly smaller FAC2
score compared to other models for both AIRBASE and EMEP, and the largest negative bias for SO»
relative to AIRBASE observations. The proximity of AIRBASE station locations to SO, sources can also
be seen in Figure 27, where the AIRBASE monthly concentration y-axis (Figure 27(a)) is almost twice
that of the EMEP monthly concentration y-axis (Figure 27(b)). Observed SO- close to sources (Figure
27(a), red lines) shows a strong seasonal variability, with concentrations in the winter being a factor of
two higher than than in summer, likely showing the effect of increased winter stability on plume rise. This
tendency is greatly reduced at regional stations (Figure 27(b), red lines). LOTOS-EUROS (TNO)
matches the near-source SO, time series the most closely, while CMAQ (Hertfordshire) overestimates the
impact of seasonal variability (Figure 27(a)). At regional stations, LOTOS-EUROS (TNO) and CMAQ
(Hertfordshire) overestimate seasonal variation, while WRF-Chem (IASS) most closely matches
observations. At least some of the variation in simulated SO, performance relative to observations and
hence in SO deposition fluxes and critical load exceedance estimates is due to some models
overestimating the seasonal variation in SO, at regional locations further from cities. This may reflect
differences in atmospheric stability, the seasonal response of the deposition algorithms, or the manner in
which plume rise is simulated between the models.

WRF-Chem (IASS) has the best overall performance for SO,; while this model’s mean bias is the most
negative for observation sites close to the sources (AIRBASE comparison), the remaining statistics are
the best of the ensemble, and the model bias performance is also better than the other models as the
distance from the sources increases (EMEP comparison). The large negative biases in WRF-Chem
(IASS) model values may indicate an overestimate of SO, deposition, though other model processes may
also play arole.

Wet Deposition of Sulphur

As was the case for most models on the North American domain, all EU domain models underestimated
wet deposition relative to observations (note negative biases in Table S6 and monthly time series
comparison versus observations in Figure 27(c)). CMAQ (Hertfordshire) outperforms the other models
relative to observations, though we note that the wet sulphur deposition bias for this model is nevertheless
-0.39 eq ha! yr'!, with a correlation coefficient of 0.15. In contrast to the North American wet sulphur
deposition comparison time series (Figure 15, Table S2), the European wet deposition observations do not
show a spring-time peak in values, rather a seasonality centered around the month of June, with higher
values extending from March to September.
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None of the EU models made use of updated particle dry deposition velocities available in more recent
literature; as a result, the relative contribution of particle dry deposition towards EU model-to-model
variability is small. Speciated PM observations were not available for comparison to model predictions in
the EU region.

Returning to the spatial distribution of the relative contributions of the three forms of sulphur deposition
for the year 2010 shown in Figure 26, CMAQ (Hertfordshire), with the highest SO, deposition flux
(Figure 26(a), see also Table 6, Table S6) also has the most positive SO, concentration mean bias. With
increasing distance from the sources, the SO, loss or conversion processes of all four models are likely
underestimated (EMEP SO; biases are positive for all models, Table S6). In contrast, all models have
significant negative biases in wet sulphur deposition (Table S6), hence at least one reason for this
underestimate may be insufficient conversion of SO, to ionic sulphate and bisulphite in simulated cloud
water, through uptake of SO and scavenging of particulate sulphate. The wet deposition of sulphur in
WRF-Chem (IASS) in particular seems anomalously low (Figure 26(c), Figure 27(b)), with much of
Europe having little to no wet sulphate deposition in this model.

63



1617 Figure 26. Spatial distribution and magnitude of contributions to annual S deposition, AQMEII4 common EU
1618 domain, 2010 (eq ha! yr'!). (a) SOx(g) dry deposition. (b) Total wet S deposition. (c) Particle sulphate dry
1619  deposition. Note that regions outside the common AQMEII-4 domain have been assigned an “outside domain”
1620  mask value of -9.
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Figure 27. Comparison of observed and modelled S, AQMEII4 EU common domain, 2010. (a) AIRBASE SO, (ug
m>). (b) EMEP SO; (ug m™). (c) Wet flux of total S deposition (eq ha™! week™!). Red: observations. Blue: model.
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A comparison of the relative differences in the deposition pathway strength for the models may help shed
light on the causes of SO, deposition flux variability between the models. However, no effective fluxes
were reported by LOTOS-EUROS (TNO). Figures S23 and S24 show the spatial distribution of the
summed annual effective fluxes for the reporting models, with the results in the common AQMEII4 EU
domain summarized in Figure 28.

Figure 28. Averages of effective flux pathway contributions to SO, dry deposition, AQMEII4 common EU grid,
2010 (eq ha! yrt).
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Despite having the highest average SO, deposition flux (Table 6), CMAQ (Hertfordshire) also has the
highest positive biases for SO, ambient concentrations (Table S6). From Figures S23, S24 and 28, the
CMAQ (Hertfordshire) positive biases may be the result of spatial variations in deposition, specifically, to
low contributions to the cuticle effective fluxes in Northern Europe for this model (Figure S23(a)).
Despite these relatively low values, the SO» net dry deposition flux for this model (Table 6) is higher than
that of the other models, implying that the low northern EU fluxes are being offset by higher values
elsewhere (eg. via the soil flux, compare soil and cuticle values in Figure 28). We note that the effective
flux analysis is restricted to grid cells that do not have water as a dominant land use type (a maximum of
1% water land fraction was used as an exclusion criterion); for grid cells held in common (mostly land),
the CMAQ (Hertfordshire) the cuticle effective flux pathway specifically is lower than that of the other
models, while the differences are less noticeable for the other terms, as reflected by the summary values
in Figure 28. Other than Northern Europe, CMAQ (Hertfordshire) has higher soil fluxes than WRF-
Chem (IASS). Similar to AQMEII4 analyses for ozone (Hogrefe et al., 2024, under preparation), the
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relative importance of the different pathways towards total deposition varies between the models. For
example, WRF-Chem (IASS), with the best overall performance for SO, concentrations aside from bias
and factor of 2, has flux contributions in descending order of importance: cuticle, stomatal, soil and lower
canopy. For CMAQ (Hertfordshire), with relatively poor performance and high positive biases (Table S6),
the flux contributions in descending order of importance are soil, cuticle, and stomatal (with lower canopy
being incorporated as part of soil flux, for this model), and the cuticle pathway contributes less to
deposition in northern Europe than the other models.

3.2.4 Causes of N Deposition Variability in European Domain Simulations

The common AQMEII4 EU domain relative contributions for each model’s deposited species towards
total nitrogen deposition and its variability are shown in Table 7. The contributions towards total N
deposition for the reduced ensemble, in descending order of importance, were wet NO3", dry HNOs, wet
NH4", dry NH3, dry particulate nitrate, dry NO,, and dry particle ammonium, with relatively small
contributions from the other depositing N species. The spatial distributions of the four largest
contributions to total N deposition are shown in Figure 29. The largest contributions to model-to-model
variability, in descending order, were wet NO5", dry HNOs, dry NH3, wet NH4", and dry NO», with smaller
contributions towards variability from the other species.

Wet deposition fluxes of NOs™ and NH4" and the ground-level concentration of NO, are evaluated in Table
S7 (Supplement); monthly average time series comparisons wet deposition to the observations are
provided in Figure 30. From Figure 29, WRF-Chem (IASS) predicted much lower magnitude wet NOs"
and wet NH4" deposition fluxes than the other three models, and from Table S7, these result in larger
negative biases and poor overall performance relative to observations for WRF-Chem (IASS) in
comparison to the other models. LOTOS-EUROS (TNO) had the best overall performance for NH4* and
NOs wet deposition fluxes. However, similar to the case for wet S deposition, all models have significant
negative biases for both nitrogen ion wet fluxes, as can be seen from Table S7 and Figure 30. LOTOS-
EUROS (TNO) has the best performance for statistics relating to the spatial and temporal distribution of
wet deposition, while WRF-Chem (UPM) has the lowest bias for wet NOs™ deposition. A common feature
of the AQMEII4 ensemble of models for both EU and NA domains are these negative biases for wet
deposition of both sulphate and nitrogen species. Also, we note that the observed wet NH4" deposition
(Figure 30(b), red line) peaks in June, while the model values (blue lines) peak earlier, in March. This in
in contrast to the North American NH4" comparison (Figure 18), where observed peaks occur in April and
model peaks occur in June.
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1680  Table 7. Contributions of N species towards total deposition (eq ha™! yr'! and percent of total N deposited, common
1681 AQMEII4 EU grid, 2010, arranged in descending order of importance to the reduced ensemble average. DNH3: dry
1682 deposition of NH3(g). WNH4: wet deposition of NH4"(aq). DHNO3: dry deposition of HNOj3(g). WNO3: wet
1683 deposition of NO3(aq). DAM: dry deposition of particulate ammonium. DNI: dry deposition of particulate nitrate.
1684 DNO:: dry deposition of NO»(g). DPAN: dry deposition of peroxyactylnitrate gas. DRN3: dry deposition of

1685 organic nitrate gases. DN20S5: dry deposition of N,Os(g). DHNO4: dry deposition of pernitric acid gas. DNO: dry
1686  deposition of NO(g). nr = not reported. ndd = no dry deposition

Average (eq ha'! yr')
Model
Species WRF-Chem LOTOS- WRF-Chem CMAQ Red. Ens Avg Red. Ens. Std
(1ASS) EUROS (UPM) (Hertfordshire) Dev
WNO3 1.8 77.8 174.8 96.2 116.2 42
DHNO3 50.2 384 120.5 78.6 79.2 335
WNH4 4.3 90.3 74.6 64.1 76.3 10.8
DNH3 60.5 76.8 47.9 29.6 51.5 194
DNI nr 18.2 25.9 13.5 19.2 5.1
DNO2 11.6 23.6 27.5 6.3 19.2 9.2
DAM nr 14.2 6.2 6.6 9 3.7
DPAN 2.3 ndd 2.7 5.2 4 1.2
DN205 5.3 1.2 ndd 1 1.1 0.1
DRN3 0.3 ndd 0.6 3.2 1.9 1.3
DHNO4 1.4 ndd 0.9 0.2 0.5 0.4
DNO 0.1 2 0.2 0.4 0.9 0.8
Total N 137.6 342.7 481.9 304.8 376.5 76.1
Percent Contribution
Model
Species WRF-Chem LOTOS- WRF-Chem CMAQ Red. Ens Avg Red. Ens. Std
(IASS) EUROS (UPM) (Hertfordshire) Dev
WNO3 1.3 22.7 36.3 315 30.9 5.6
DHNO3 36.5 11.2 25 25.8 21 6.7
WNH4 3.1 26.4 15.5 21 20.3 4.4
DNH3 43.9 22.4 9.9 9.7 13.7 5.9
DNI nr 5.3 5.4 4.4 5.1 0.4
DNO2 8.4 6.9 5.7 2.1 5.1 2.1
DAM nr 4.1 1.3 2.2 2.4 1.2
DPAN 1.7 nd 0.6 1.7 1.1 0.6
DN205 3.8 0.3 nd 0.3 0.3 0
DRN3 0.2 nd 0.1 1.1 0.5 0.5
DHNO4 1 nd 0.2 0.1 0.1 0.1
DNO 0 0.6 0 0.1 0.2 0.2
1687
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1689
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Figure 29. Spatial distribution of contributions of (a) wet nitrate ion deposition, (b) dry gaseous HNO3 deposition,
(c) wet ammonium ion deposition, and (d) dry gaseous ammonia deposition towards total N deposition in the
common AQMEII4 EU domain, 2010 (eq ha™! yr!). Note that regions outside the common AQMEII-4 domain have
been assigned an “outside domain” mask value of -9.
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Dry deposition of HNOs was the second largest source of modelled EU nitrogen deposition variability.
The spatial distribution of the relative contributions of the four pathways towards the mass flux of HNO;
is shown in Figures S25 and S26 and are summarized for the entire grid in Figure 31. There is more
heterogeneity between the EU models regarding the relative importance of the HNO3 deposition pathways
than was observed for the North American simulations (compare Figures 20 and 31). In the North
American simulations, the cuticle deposition pathway also dominated for all models, followed by the soil
pathways. In the EU simulations, the reported soil pathway for WRF-Chem (UPM) was several orders of
magnitude smaller than the same pathway for CMAQ (Hertfordshire). The cuticle pathway dominated for
WRF-Chem (IASS) (not shown) and CMAQ (Hertfordshire). The stomatal pathway magnitude is less
than the cuticle pathway for the EU models, but greater in general than for the North American models,
where the stomatal pathway had a smaller contribution to HNOs3 dry deposition than the lower canopy
pathway.

Observations of 2010 HNOs(g), NHs(g), and dry particle nitrate were not available for comparison to the
model predictions. However, observations of the NO, concentrations, the 6 largest contributor to total N
deposition and the 5" largest contributor to model-to-model variability, were available at near-source
AIRBASE and regionally distributed EMEP stations (Table S7). Aside from having the 2™ largest
magnitude mean bias, LOTOS-EUROS (TNO) had the best performance for NO> relative to stations
positioned close to emissions sources (AIRBASE), while WRF-Chem (IASS) and CMAQ (Hertfordshire)
had the best performance for NO> for stations distributed more widely across the region (EMEP).

69



1715
1716

1717
1718

1719

1720

Figure 30. Monthly average comparison of wet nitrogen deposition, AQMEII4 common EU grid, 2010. (a) Average
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Figure 31. Averages of flux pathway contributions to HNOj3 dry deposition, AQMEII4 common EU grid, 2010 (eq
ha! yr).
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Conclusions

We have used the AQMEII4 North American and European ensembles to calculate net Sulphur and
Nitrogen deposition from individual models and a reduced ensemble of all models. These deposition
estimates were used to calculate exceedances of critical loads for these two regions, using several critical
load datasets. An in-depth analysis of the causes of model-to-model variability followed, using
diagnostics designed for AQMEII4. We therefore subdivide these conclusions by the domain simulated,
and the critical load exceedance and causes of model variability, within each domain.

North America, Critical Load Exceedances

All simulations showed a decrease in the size of the area in exceedance and the severity of exceedances
with respect to acidification of forest ecosystems and aquatic ecosystem acidity between the years 2010
and 2016. The total area in exceedance for sensitive ephiphytic lichen species richness improved slightly,
but the severity of exceedance was greatly reduced. Given that the lichen community has a dose-response
relationship with increasing deposition, this indicates reduced harm to forest health, even when the CL is
still in exceedance. CLEs for herbaceous species community richness had substantial improvements in
the total area of exceedance and severity of exceedance. The amount of exceedance in any given year and
the extent of reduction between the two years varied considerably between the models. Any individual
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model provided a similar direction of the change between the two years; the range of estimates suggests
the utility of model ensembles where possible in estimating critical load exceedances, as well as model-
measurement fusion, when sufficient S and N species data are available.

North America, Causes of Model S Deposition Variability

The total mass of North American Sulphur deposition followed, in decreasing order of importance, wet
deposition of S (SO + HSOs") , dry deposition of particulate sulphate, and dry deposition of SO,. Dry
deposition of particulate sulphate contributed the most to model-to-model variability in total Sulphur
deposition, followed by wet deposition, and dry SO, deposition. The models with the highest wet S
deposition levels had the best performance relative to monitoring network observations (CMAQ-M3Dry,
CMAQ-STAGE, GEM-MACH (Ops)), though all models’ wet S deposition was biased low relative to
observations. A subgroup of models (GEM-MACH (Base), GEM-MACH (Zhang), GEM-MACH (Ops))
had the highest positive biases in observed PM: 5 sulphate concentrations relative to monitoring network
observations, contributing to the model-to-model variability. Recent work by Ryu and Min (2022) and
Ghahreman et al. (2024) suggests that model negative biases for wet deposition may be improved
through incorporation of multiphase hydrometeor scavenging, and this may also reduce positive biases in
particulate mass resulting from the implementation of the Emerson ez al. (2020) particle dry deposition
algorithm (GEM-MACH (Base) and GEM-MACH (Zhang)). Most North American reduced ensemble
models were in relatively good agreement with regards to their predictions for the total dry deposition
flux of SOx(g).

North America, Causes of N Deposition Variability

The largest contributors to the average total nitrogen deposition fluxes across North America in 2016 were
wet ammonium ion, dry HNOs, wet nitrate ion, dry particle ammonium, dry ammonia gas, dry particle
nitrate and dry NO,, with relatively minor contributions from the other depositing gases. The largest
contributors to the average total N deposition flux variability across models in descending order of
importance were the deposition of dry particulate ammonium, wet ammonium ion, wet nitrate ion, dry
nitric acid, dry particle nitrate, dry NO, and dry NHs.

The first and second contributions to model-to-model variability between the members of the reduced
North American ensemble were due to the three GEM-MACH implementations (Base, Zhang, and Ops)
all having much higher dry particle ammonium and wet ammonium ion deposition fluxes, zero to
positive biases in wet ammonium ion deposition relative to observations during the summer, and the
largest positive biases for PM» s ammonium concentrations relative to observations, as a result of the
simplified sulfate-ammonium-nitrate-water inorganic aerosol thermodynamics algorithm they employed.
The positive biases in fine mode particle ammonium concentrations and positive biases in wet ammonium
ion deposition for this subgroup of models are likely caused by the absence of base cations as an
alternative sink of nitric acid in addition to ammonium nitrate formation. Updates to these model
implementations making use of a new, highly efficient solver for inorganic heterogeneous chemistry
which includes the base cation reactions (Miller et al., 2024) should reduce these positive biases. The
absence of multiphase hydrometeor scavenging of particle mass may also play a role in the particle
ammonium positive biases for these models, and in the negative biases across all North American models
for wet ammonium and wet nitrate deposition (Ghahreman et al., 2024).

Dry deposition of nitric acid was the second largest contributor to total nitrogen deposition fluxes in
North America, and the fourth largest contributor to model-to-model variability, with cuticle and the soil
pathway dominating the HNO3; mass flux, usually by more than an order of magnitude.
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Comparisons of model-predicted 2016 concentrations of NH3(g) to both CrIS satellite-based observations
(in the afternoon, at overpass time) and ground-based AMON monitoring network values (biweekly
averages) showed that the details of implementation of ammonia bidirectional flux algorithms have a
large impact on model NHj; performance, with CMAQ-M3Dry and CMAQ-STAGE having the most
negative NH; biases in NH3, and GEM-MACH (Base) and GEM-MACH (Zhang) models having the
smallest magnitude NHj3 biases. A detailed analysis of the magnitude and direction of these models
employing bidirectional flux algorithms showed a common diurnal behaviour of daytime emissions from
agricultural and grassland areas and deposition in downwind forested areas, and nighttime deposition in
all regions. However, the GEM-MACH models predicted low magnitude net emissions from forested
areas downwind of agricultural areas in the early morning, while the CMAQ models predicted net
deposition at all locations. Differences in the relative magnitudes of compensation point concentrations
and the strength of the daytime stomatal deposition pathway were shown to be the cause for these
differences.

Europe, Critical Load Exceedances

The AQMEII4 ensemble for Europe predicted similar exceedances with respect to acidity and
eutrophication in 2009 and 2010, with the 3-member reduced ensemble showing slightly reduced
exceedance levels for acidity, and slightly increased exceedance levels for eutrophication, in 2010. We
note that the models used made use of inorganic aerosol thermodynamics algorithms which included
reactions of base cations, and none made use of more recent updates to the particle dry deposition
parameterization (Emerson et al., 2020, Pleim et al., 2022). Consequently, the magnitude of differences
between the models varied from the North American models, as well as the order of importance of
different forms of Sulphur towards total deposition differed from the North American ensemble.

Europe, Causes of Model S Deposition Variability

The common domain average reduced ensemble sulphur dry deposition contributions and their variability
followed the same decreasing order of importance (SO, Wet S, dry particulate sulphate). WRF-Chem
(IASS) had the best overall performance relative to observations for SO, concentrations, while CMAQ
(Hertfordshire) had the best performance for wet S deposition. LOTOS-EUROS (TNO) and CMAQ
(Hertfordshire) tended to overestimate regional SO, seasonality, with much higher concentrations in
winter than summer compared to observations in the EMEP SO, network. Near-source observations
(AIRBASE network) had higher winter than summer values, though this seasonal variation was largely
absent in the observations for stations more representative of regional conditions (EMEP). The positive
biases in modelled regional SO, concentrations for LOTOS-EUROS (TNO) and CMAQ (Hertfordshire)
(the latter relative to both EMEP and AIRBASE stations) may reflect differences in plume rise
distribution between the models, or in their driving meteorology’s vertical stability (e.g. the modelled
wintertime atmosphere may be more stable than is observed, for these models). As was the case in the
North America ensemble, all models had negative biases for wet S deposition. As in North America, the
manner in which cloud scavenging of particulate sulphate and SO, was implemented in these models may
be the cause of the wet deposition negative biases. Unlike North America, speciated PM measurements
were unavailable for model evaluation and bias correction.

EU SO, deposition pathways were investigated with AQMEII4 diagnostics; the soil and cuticle pathways
dominated, and the stomatal pathway was relatively unimportant. This order of importance may reflect
diurnal and seasonal SO, concentration variations. SO» concentrations are more likely to be high under
more stable atmospheric conditions (these inhibit the rise of buoyant SO, plumes from large stack
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sources); these conditions are more likely to occur more frequently at night and in the winter, when the
influence of the stomatal pathway is at its minimum.

Europe, Causes of Model N Deposition Variability

The relative contributions towards total N deposition and the range in the EU domain were in decreasing
order of importance: wet nitrate ion, dry HNO3, wet ammonium ion, dry ammonia gas, dry particle
nitrate, and dry NO,. The variations in the N deposition values between models were smaller than in
North America, likely due to the use of base cation-inclusive inorganic aerosol thermodynamic algorithms
in all models, and the use of older implementations of wet scavenging and particle dry deposition than in
the North American models. We note that dry NH; deposition was the 4™ largest contributor to European
N deposition model-to-model variability, with the model employing a bidirectional flux algorithm
(LOTOS-EUROS) having the highest NH3 deposition. Satellite-based NH3 data was unavailable for
Europe for the years simulated, but is recommended for simulation evaluation in more recent years.

LOTOS-EUROS (TNO) had the best overall performance for wet nitrate deposition, wet ammonium
deposition, and near source NO, concentrations compared to the other models. However, all EU models
had substantial negative biases in wet nitrate and ammonium deposition, in common with the North
American models. The seasonality of wet N deposition was poorly simulated, with most models failing to
predict the observed summertime maximum of wet ammonium deposition. Given that this negative bias
has its maximum in the summer, when agricultural NH3 emissions are also likely to maximize, evaluation
in more recent years of NH; predictions against satellite data is recommended.

In accord with the NA ensemble, those EU models which reported effective flux diagnostics for all four
HNO; dry deposition effective flux pathways showed the cuticle and soil pathways dominating. The
details of the individual land-use database may be seen in the HNO; deposition flux diagnostics (Figures
S25 and S26), with differences in the amount of inland water being apparent. Furthermore, we note that
the land-use databases employed in critical load exceedance calculations may also differ from those used
in individual models. Such mismatches are another source of uncertainty in the estimation the critical
load exceedances for the dry deposition portions of total S and N deposition. The effect of land-use type
classifications on model deposition fluxes for ozone will be examined in more detail in a companion
paper (Hogrefe et al., 2024, ACPD, in preparation).

Impact of Bias Correction as a Simple Form of Model-Measurement Fusion

A simple form of model-measurement fusion (bias correction) was applied to each of the models’ species
contributing to total sulphur and nitrogen deposition, for those component species for which observations
were available, and corresponding bias-corrected critical load estimates were generated. This sometimes
resulted in substantial decreases in model-to-model variability in the CLEs generated, indicating that
model-measurement fusion will decrease model-to-model variability, and improved CLE estimates,
provided sufficient data is available on the main contributors to total sulphur and total nitrogen
deposition. In the case of Europe, the application of bias-correction increased CLE variability for
acidification, likely due to the lack of particulate sulphate observations in Europe for the years simulated.
The substantial contrast to North American bias-corrected values suggests that the bias corrections for
individual species contributing to total sulphur deposition may offset each other (e.g. positive biases in
particle sulphate may be offset by negative biases in wet deposition). In the absence of speciated particle
observation data in Europe, this compensating effect could not be captured using bias correction, and
hence the European CLE variability increased with bias correction.
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An important implication of the bias correction exercise conducted here is the need for observation data
which close the sulphur and nitrogen deposition budgets to the greatest extent possible, when carrying out
model-measurement fusion. The biases with respect to observations for sulphur species may reflect
inaccuracies in the transformation of one species to another for example — if model-measurement fusion is
applied to only some of the species contributing to sulphur deposition, the resulting total sulphur
deposition field and exceedance estimates may be /ess accurate than the original model fields. Similarly,
we note that the observations available here did not include particle nitrate or nitric acid data — and hence
the impacts of model measurement fusion on total nitrogen deposition may potentially lead to less
accurate estimates than the original model values.

Recommendations: Air-Quality Modelling Needs Identified by the Analysis

Our analysis suggests that model biases and model-to-model variability may be reduced through targeted
research into specific model process components. These include:

Multiphase hydrometeor scavenging of gases and aerosols into clouds to reduce the magnitude of wet
deposition and particle concentration biases.

Incorporation of improved particle deposition velocity algorithms (e.g Emerson et al., 2020) — but only in
combination with multiphase wet scavenging (Ryu and Min, 2022, Ghahreman et al., 2024.)

Incorporation of base cation inorganic chemistry (if not already present) (Fountoukis and Nenes, 2007,
Miller et al., 2024) and improved base cation emissions inventory development.

NH; bidirectional fluxes evaluated using satellite data, with particular reference to improving
compensation point estimates for forested areas.

Land use type database harmonization across models and between models and critical load databases.
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