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Abstract 30 

Exceedances of critical loads for deposition of sulphur (S) and nitrogen (N) to different ecosystems were 31 
estimated using European and North American ensembles of air quality models, under Phase 4 of the Air 32 
Quality Model Evaluation International Initiative (AQMEII4), to identify where risk of ecosystem harm is 33 
expected to occur based on model deposition estimates.  The ensembles were driven by common 34 
emissions and lateral boundary condition inputs.  Model output was regridded to common North 35 
American and Europe 0.125o resolution domains, which were then used to calculate critical load 36 
exceedances.  Targeted deposition diagnostics implemented in AQMEII4 allowed an unprecedented level 37 
of post-simulation analysis to be carried out and facilitated the identification of specific causes of model-38 
to-model variability in critical load exceedance estimates.   39 

Datasets for North American critical loads for acidity for forest soil water and aquatic ecosystems were 40 
created for this analysis.  These were combined with the ensemble deposition predictions to show a 41 
substantial decrease in the area and number of locations in exceedance between 2010 and 2016 (forest 42 
soils: 13.2% to 6.1%; aquatic ecosystems: 21.2% to 11.4%).  All models agreed in the direction of the 43 
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ensemble exceedance change between 2010 and 2016.  The North American ensemble also predicted a 44 
decrease in both severity and total area in exceedance between the years 2010 and 2016 for 45 
eutrophication-impacted ecosystems in the USA (sensitive epiphytic lichen: 81.5% to 75.8%).  The 46 
exceedances for herbaceous community richness also decreased between 2010 and 2016, from 13.9% to 47 
3.9%.  The uncertainty associated with the North American eutrophication results is high; there were 48 
sharp differences between the models in both predictions of total N deposition and the change in N 49 
deposition, and hence in the predicted eutrophication exceedances between the two years.  The European 50 
ensemble was used to predict relatively static exceedances of critical loads with respect to acidification 51 
(4.48% to 4.32% from 2009 to 2010) while eutrophication exceedance increased slightly (60.2% to 52 
62.2%).   53 

While most models showed the same changes in critical load exceedances as the ensemble between the 54 
two years, the spatial extent and magnitude of exceedances varied significantly between the models. The 55 
reasons for this variation were examined in detail by first ranking the relative contribution of different 56 
sources of sulphur and nitrogen deposition in terms of deposited mass and model-to-model variability in 57 
that deposited mass, followed by their analysis using AQMEII4 diagnostics, along with evaluation of the 58 
most recent literature.  59 

All models in both the North American and European ensembles had net annual negative biases with 60 
respect to observed wet deposition of sulphate, nitrate and ammonium.  Diagnostics and recent literature 61 
suggest that this bias may stem from insufficient cloud scavenging of aerosols and gases, and may be 62 
improved through the incorporation of multiphase hydrometeor scavenging within the modelling 63 
frameworks.  The inability of North American models to predict the timing of the seasonal peak in wet 64 
ammonium ion deposition (observed maximum was in April, while all models predicted a June 65 
maximum) may also relate to the need for multiphase hydrometeor scavenging (absence of snow 66 
scavenging in all models employed here).  High variability in the relative importance of particulate 67 
sulphate, nitrate and ammonium deposition fluxes between models was linked to the use of updated 68 
particle dry deposition parameterizations in some models.  However, recent literature and further 69 
development of some of the models within the ensemble suggests these particulate biases may also be 70 
ameliorated via the incorporation of multiphase hydrometeor scavenging.  Annual sulphur and nitrogen 71 
deposition prediction variability was linked to SO2 and HNO3 dry deposition parameterizations, and 72 
diagnostic analysis showed that the cuticle and soil deposition pathways dominate the deposition mass 73 
flux of these species.  Further work improving parameterizations for these deposition pathways should 74 
reduce variability in model acidifying gas deposition estimates.  The absence of base cation chemistry in 75 
some models was shown to be a major factor in positive biases in fine mode particulate ammonium and 76 
particle nitrate concentrations.  Models employing ammonia bidirectional fluxes had both the largest and 77 
the smallest magnitude biases, depending on the model and bidirectional flux algorithm employed.  A 78 
careful analysis of bidirectional flux models suggests that those with poor NH3 performance may 79 
underestimate the extent of NH3 emissions fluxes from forested areas.   80 

Model-measurement fusion in the form of a simple bias correction was applied to the 2016 critical loads.  81 
This generally reduced variability between models.  However, the bias correction exercise illustrated the 82 
need for observations which close the sulphur and nitrogen budgets in carrying out model-measurement 83 
fusion.  Chemical transformations between different forms of sulphur and nitrogen in the atmosphere 84 
sometimes result in compensating biases in the resulting total sulphure and nitrogen deposition flux fields.  85 
If model-measurement fusion is only applied to some but not all of the fields contributing to total 86 
deposition of sulphur or nitrogen, the corrections may result in greater variability between models, or less 87 



3 
 

accurate results for an ensemble of models, for those cases where an unobserved or unused observed 88 
component contributes significantly to predicted total deposition.   89 

Based on these results, an increased process-research focus is therefore recommended for the following 90 
model processes and on observations which may assist in model evaluation and improvement:  91 
multiphase hydrometeor scavenging combined with updated particle dry deposition, cuticle and soil 92 
deposition pathway algorithms for acidifying gases, base cation chemistry and emissions, and NH3 93 
bidirectional fluxes.  Comparisons with satellite observations suggest that oceanic NH3 emissions sources 94 
should be included in regional chemical transport models.  The choice of land use database employed 95 
within any given model was shown to significantly influence deposition totals in several instances, and 96 
employing a common land use database across chemical transport models and critical load calculations is 97 
recommended for future work 98 

Introduction 99 

The concept of a Critical load (CL) was first proposed as a means for evaluating the ecosystem impacts of 100 
the deposition of sulphur and nitrogen in response to the Convention on Long-Range Transboundary Air 101 
Pollution (CLRTAP), an international agreement for mitigation and control of acidifying pollution, which 102 
entered into force in 1983 (CLRTAP, 2023).  The Convention provided some of the initial impetus for the 103 
development of comprehensive air-quality models.  The models provide a means of estimating the 104 
deposition fluxes of sulphur- and nitrogen-containing chemicals of anthropogenic origin, which may then 105 
be used to estimate the corresponding ecosystem impacts.  Critical load exceedance estimates are the 106 
broadly accepted methodology for estimating the potential for ecosystem harm related to acidification and 107 
eutrophication.  A critical load in this context was defined (Nilsson and Grennfelt, 1988) as “A 108 
quantitative estimate of an exposure to one or more pollutants below which significant harmful effects on 109 
specified sensitive elements of the environment do not occur, according to present knowledge”.   This 110 
definition is parsed in detail for readers unfamiliar with the Critical Load concept, in the Supplemental 111 
Information (SI).  112 

The creation of critical loads for acidification, and the calculation of their exceedances is based on the 113 
concept of chemical charge balance steady-state within soil water or aquatic ecosystems.  The fluxes of 114 
anions and cations entering or leaving an ecosystem are used to determine whether an excess cation flux 115 
is available to the ecosystem, which could balance anion fluxes associated with acidifying deposition.  116 
Anion fluxes added to the system from anthropogenic sources include forms of deposited sulphur and 117 
nitrogen noted above.  The S-containing forms of deposition (Sdep) are assumed to rapidly oxidize and are 118 
treated within critical load calculations as the sulphate ion.  Every mole of deposited sulphur is assumed 119 
to be associated with two negative charges as the sulphate ion, SO4

2-(aq), hence the deposition flux is 120 
tracked as charge equivalents per hectare per year; eq ha-1 yr-1.  N-containing forms of deposition (Ndep) 121 
are assumed to rapidly oxidize and are treated as the nitrate ion - every mole of deposited nitrogen 122 
(including those of ammonia and ammonium) is assumed to be associated with one negative charge of 123 
nitrate ion deposition, NO3

-(aq)).  Base cations and their deposition (Ca2+, Mg2+, K+, and Na+) are 124 
included in critical load calculations (collectively, BCdep), and may incorporate anthropogenic base cation 125 
fluxes.  The anthropogenic deposition fluxes to the ecosystem from the atmosphere are used in 126 
calculations of critical load exceedances.  The critical loads themselves include estimates of natural 127 
atmospheric fluxes as well as other terms for fluxes of anions and cations.  For example, in the steady-128 
state or simple mass balance (SMB) model often used to define surface water critical loads for terrestrial 129 
ecosystems (Sverdrup and DeVries, 1994), BCdep includes the release of soil base cations due to 130 
weathering, non-marine chloride deposition, harvesting of base cation and/or nitrogen-containing 131 
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biomass, denitrification, nitrogen immobilization in the rooting zone, run-off volume, and a critical value 132 
of the non-sodium base cation to aluminum ion ratio.  Aquatic ecosystem critical loads with respect to 133 
acidity are usually calculated using the steady-state water chemistry (SSWC) or the first-order acidity 134 
balance (FAB) methodologies (Henriksen and Posch, 2001; CLRTAP 2023, de Vries et al., 2015), or other 135 
similar approaches (McDonnell et al., 2014).  The SSWC makes use of the difference between an 136 
estimate of the sea-salt corrected pre-acidification concentration of base cations in the surface water, and 137 
a specified biological indicator species’ acid neutralizing capacity limit above which no significant 138 
damage is expected to occur.  The FAB methodology assumes the runoff fluxes at a lake outlet are charge-139 
balanced, relates these runoff terms to fluxes of ions entering the lake and dimensionless retention factors 140 
and to terms for nitrogen immobilization, nitrogen growth uptake into vegetation, denitrification, 141 
atmospheric deposition, and weathering.  An overview of the above methods for critical load (CL) 142 
estimation, and how they are used in estimating exceedances, may be found in CLRTAP (2023), Makar et 143 
al. (2018) and the references therein.   144 

Critical loads of nutrient nitrogen and their exceedances are used to address the issue of the influx of 145 
airborne nitrogen resulting in changes in soil-based processes, plant growth and inter-species 146 
relationships.   Nitrogen-containing gases and aerosol components may be directly toxic to sensitive 147 
individual plant and animal species, while the accumulation of nitrogen (increased nitrogen availability) 148 
may also change species composition or relative abundance.  Soil-mediated effects of acidification may 149 
include eutrophication, and species may have increased susceptibility to secondary stressors such as 150 
drought, frost, pathogens or herbivores (CLRTAP, 2023).  Critical loads for the eutrophication processes 151 
associated with nutrient nitrogen in terrestrial ecosystems may also make use of a version of the SMB 152 
model.  This critical load model balances the input fluxes of all forms of nitrogen deposition plus 153 
biological fixation and soil nitrogen adsorption against ecosystem nitrogen losses (immobilization in soil 154 
organic matter, removal via harvesting of vegetation and animals, fluxes to the atmosphere 155 
(denitrification), erosion, combustion, ammonia volatilization, and leaching below the root zone).   156 
Biological fixation, soil adsorption, combustion, erosion and ammonium leaching are usually considered 157 
negligible, and denitrification is assumed to be linearly dependent on the net input of nitrogen, leading to 158 
critical loads of nutrient nitrogen dependent only on immobilization, harvesting removal, a sensitive plant 159 
or animal species acceptable limit for nitrogen leaching (nitrogen in soil water), and an ecosystem-160 
dependent denitrification fraction (CLRTAP, 2023).  The acceptable limits for nitrogen concentrations in 161 
soil can range from 6.5 down to 0.2 mg N l-1, depending on vegetation type (CLRTAP, 2023).  A further 162 
means of estimating eutrophication is via comparison of measured nitrogen deposition with observed 163 
ecosystem damage over a large number of sites (Geiser et al. 2019; Simkin et al. 2016).  Exceedances for 164 
eutrophication in this case may be estimated as the differences between the estimated nitrogen deposition 165 
and the observation-based critical load. 166 

As noted in the Supplement, critical load exceedance calculations are carried out on an ongoing basis due 167 
to the ongoing cycle of chemical transport model (CTM) process improvement.  The results of our 168 
analyses should thus be considered a “snapshot” of the state of both CTM science and critical load (CL) 169 
knowledge at the time the simulations and critical load data collection took place (2021). CTMs 170 
numerically integrate the system of time-dependent differential equations describing the rates of change 171 
of chemical species in the atmosphere, in order to predict the changes in chemical concentrations and 172 
deposition over time.  This is usually done by breaking the net differential equation for the rates of change 173 
into component processes (e.g. advection, diffusion, gas-phase chemistry, inorganic particle chemistry, 174 
dry deposition, particle microphysics treating the nucleation, condensation of gases, coagulation of 175 
particles, cloud processing of gases and aerosols including wet deposition), with the processes being 176 
solved in sequence to determine the future state of the atmosphere (Marchuk, 1990).  However, there is 177 
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usually not a complete scientific consensus on the best numerical methods to carry out the time-stepping 178 
for each of these processes, and the level of detail in process representation in the models may also vary 179 
considerably, depending at times on external constraints such as the processing time available for CTM 180 
simulations.  The individual processes are usually evaluated based on laboratory or other process-specific 181 
data wherever possible, but often the selection of a specific process representation within a CTM is often 182 
based on comparisons of the output of entire CTM relative to surface or satellite monitoring data.  This 183 
latter approach may allow compensating errors in process representation to take place (c.f. Makar et al., 184 
2014; Hyder et al., 2018; Huang et al., 2021; Vizuete et al., 2022).  These considerations may contribute 185 
to the resulting variability in deposition estimates from the different modelling frameworks.  The work 186 
conducted here uses analysis of new model diagnostic outputs added for AQMEII-4to attempt to 187 
determine the key causes of these model deposition estimate differences. 188 

The ongoing reevaluation and improvement of CTMs is aided by ensemble model comparisons, where 189 
models driven by the same lateral boundary and emissions inputs are cross-compared and evaluated 190 
against observations.  The Air-Quality Model Evaluation International Initiative (AQMEII) has comprised  191 
model CTM ensemble evaluation studies, to date in four phases.  The initial phase of AQMEII utilized 192 
largely off-line regional models used for research and public policy support to simulate a common year, 193 
2006, with common emissions inputs, in both North America and Europe, with 22 modelling groups 194 
participating (Galmarini et al., 2012).  Subsequent phases of AQMEII examined specific issues within the 195 
CTM community:  AQMEII-2 had as its focus the evaluation of both weather and air-quality predictions 196 
for fully coupled, on-line air-quality models, where the particulate matter generated by the models on any 197 
given timestep feeds back into the coupled models’ weather forecast radiative transfer and cloud 198 
formation processes (Galmarini et al., 2015).  AQMEII-3 addressed questions of hemispheric transport of 199 
air pollutants – the relative contributions of local versus long-range transport towards predicted pollutant 200 
concentrations, and their impacts on ecosystem and human health (Galmarini et al., 2017).   201 

The variety in underlying scientific theory encapsulated within CTMs and their process representation 202 
implies the need for cross-comparison of critical load exceedance predictions from a variety of models.  203 
As part of AQMEII-3, 14 air-quality models were used to calculate oxidized sulphur and oxidized and 204 
reduced nitrogen deposition, and hence EU critical load exceedances (Vivanco et al., 2018).  This 205 
comparison revealed a high degree of variability in simulated wet and dry deposition fluxes.  The models 206 
with the best performance relative to observations were used to provide ensemble critical loads – a 207 
“reduced ensemble” in that not all models submitting output for the study were used in generating 208 
ensemble critical loads. However, even within this reduced ensemble, local variations of over a factor of 209 
four in both sulphur and nitrogen deposition could be seen between the ensemble members, and the 210 
predicted percent area in exceedance for sensitive ecosystems varied by more than a factor of two for the 211 
best performing models (Vivanco et al., 2018).  These results highlighted the large range of model-212 
dependent variability possible in critical load exceedance estimates – but the causes for that variability, 213 
and how it might be reduced, were not investigated to any significant extent.   214 

The study protocols of AQMEII phase four (AQMEII4) were designed partly in response to the large 215 
variation in model sulphur and nitrogen deposition estimates noted in Vivanco et al. (2018), Solazzo et al.  216 
(2018) and Hogrefe et al. (2020).  AQMEII4 protocols were also motivated by a similarly large variation 217 
in simulated ozone deposition velocities (Hardacre et al., 2015; Zhiyong Wu et al., 2018), and renewed 218 
emphasis on the importance of specific ozone deposition pathways (Clifton et al., 2017, 2020a,b).   219 

AQMEII4 has two main activities:  a regional model intercomparison with enhanced diagnostics for gas-220 
phase dry deposition (Galmarini et al., 2021), and an observation-driven single-point model 221 
intercomparison study for ozone dry deposition at sites with ozone flux records (Clifton et al., 2023).  The 222 
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current work continues the regional model intercomparison driven by common boundary conditions, with 223 
a focus here on critical load exceedances for acidity and eutrophication, and the use of additional 224 
diagnostics to determine the underlying causes for the model-to-model variability in these exceedance 225 
estimates.   226 

As described later in our analysis, two processes account for much of the variability in CTM predictions 227 
of the total deposition of sulphur and nitrogen (Sdep and Ndep):  particle dry deposition and the scavenging 228 
of particles by depositing hydrometeors.  We note that subsequent to the construction and application of 229 
the model versions applied in AQMEII4, new parameterizations for particle dry deposition became 230 
available.   Emerson et al.  (2020) compiled multiple particle dry deposition velocity observations and 231 
compared these to the predictions of the commonly used Zhang et al.  (2001) algorithm.  Relative to these 232 
observations, the Zhang et al.  (2001) algorithm tended to overestimate deposition velocity on vegetated 233 

surfaces at smaller particle sizes  (< 0.4 m diameter), while underestimating the deposition velocity for 234 

particles between 1 and 10 m. Several papers prior to 2019 noted that the relationship between particle 235 
size and deposition velocity did not “capture observed relationships between particle deposition,velocities 236 
and particle size, especially around the accumulation mode” (Clifton et al., 2024).  Emerson et al.  (2020) 237 
also noted a substantial overestimate of the Zhang et al.  (2001) particle deposition velocity over water 238 
surfaces relative to observations.  Emerson et al.  (2020) proposed a modified version of the Zhang et al.  239 
(2001) algorithm, demonstrating a better fit to the ensemble of deposition velocity observations.  The 240 
differences between the two parameterizations were substantial, with decreases in particle deposition 241 

velocities in the sub-m range of one to two orders of magnitude relative to Zhang et al.  (2001) across 242 
multiple land use types, and increases over vegetated surfaces of up to an order of magnitude for particle 243 

diameters from 1 to 10 m. The decrease in sub-m deposition velocities might be expected to result in 244 
increases in air concentrations of Aitken to mid-Accumulation mode particles, and decreases in those of 245 
mid-Accumulation mode to Coarse-mode particles.  Ryu and Min (2022) applied the Emerson et al.  246 
(2020) parameterization to the WRF-Chem model, and found that PM2.5 positive biases increased in 247 
magnitude, while PM10 negative biases were partially offset with the use of the new algorithm.  Pleim et 248 
al.  (2022) also re-examined aerosol dry deposition velocities in the context of the CMAQ model, noting 249 
an increase in accumulation mode dry deposition velocities of almost an order of magnitude in forested 250 
areas, an overall reduction in PM2.5 concentrations, and an improvement in PM2.5 prediction accuracy.  251 
The latter work does not necessarily contradict the Emerson et al.  (2020) results, which imply possible 252 
increases in PM mass within the Aitken and Accumulation modes.  The increase in the removal of mass 253 
between the mid-Accumulation mode to larger sizes may dominate over the particle deposition velocity 254 
decreases between the Aitken to mid-Accumulation mode noted in the observations collected by Emerson 255 
et al.  (2020).    256 

Studies using sectional aerosol size representations have recently found that improved aerosol deposition 257 
velocity algorithms need to be combined with improved wet hydrometeor scavenging, to result in net 258 
improvements of regional model performance.  Ryu and Min (2022) found that the best overall WRF-259 
Chem performance resulted from a combination of updates (when the new dry deposition algorithm was 260 
combined with updates for cloud scavenging employing cloud fractions for rainout and a revised 261 
parameterization for below-cloud scavenging incorporating separate terms for rain and snow removal 262 
rates).  Ghahreman et al.  (2024), in updating the cloud scavenging parameterization of the GEM-MACH 263 
model, noted differences in rain and snow below-cloud scavenging rates of up to two orders of magnitude 264 
between the previously applied, temperature-based parameterization Slinn (1984) and the newly 265 
implemented parameterization of multiphase scavenging (from both the underlying meteorological model 266 
and the empirical scavenging parameterization of Wang et al.  (2014)).  Differences in scavenging rates 267 
were found to be strongly dependent on temperature, aerosol size, and the precipitation rate.  The revised 268 
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parameterizations resulted in an overall improvement in performance for wet SO4
2- deposition, where the 269 

Emerson et al.  (2020) algorithm was employed for the particle dry deposition simulation in all the model 270 
runs. 271 

A large part of the model-to-model variability and uncertainty resides in the above two processes, as 272 
demonstrated in our analysis.  We next describe our methodology (including an overview of the two 273 
AQMEII4 model domains, descriptions of the construction of the critical load data employed herein, and 274 
descriptions of the models, their inputs and boundary conditions).  Our analysis follows, first presenting 275 
estimates of critical load exceedances for two different simulation years in each domain, and the 276 
exceedances estimated using ensembles of model deposition predictions.   The bulk of the analysis then 277 
examines individual contributions of different sulphur and nitrogen species towards their total deposition, 278 
for each model, and for the ensemble.  The causes of the differences between the models are determined 279 
through process analysis. Our concluding section includes research recommendations based on the 280 
analysis in order to improve the performance of individual models, and to reduce the variability between 281 
their estimates of critical load exceedances. 282 

Methodology 283 

1.0 Critical Load Data  284 

Six critical load (CL) datasets were used in conjunction with our ensembles of CTM deposition 285 
estimates.  North American CL datasets included terrestrial (forest) ecosystem acidity critical loads for the 286 
continent, aquatic ecosystem acidity critical loads combining data from Canada and the USA, and USA-287 
specific sensitive epiphytic lichen species and herbaceous plant species eutrophication critical loads.  288 
European CL datasets combined CL information from multiple countries for terrestrial and aquatic 289 
ecosystem acidity and terrestrial ecosystem eutrophication.  A brief summary of the six CL datasets used 290 
in this work is provided here – full descriptions of the methodology used to create the CL data are 291 
provided in the Supplement, section 1.   292 

North American CL estimates for  were generated using the Simple Mass Balance model 293 
(Sverdrup & Warfvinge, 1990; Sverdrup & De Vries, 1994), employing data from several studies within 294 
the U.S. and Canada (McNulty et al., 2007, 2013; Duarte et al., 2011, 2013; Phelan et al., 2014, 2016; 295 
Sullivan, 2011; Sullivan et al., 2012; Cathcart et al., 2024)  Table S1 (Supplement) provides 296 
methodological information for these studies, such as the horizontal spatial resolution, dataset extent, 297 
plant-species-specific critical base cation to aluminum soil water ratio values, the approaches used to 298 
estimate soil base cation weather rates, losses of (non-sodium) base cations from the ecosystem through 299 
uptake via harvesting or grazing, and whether nitrogen uptake via harvesting/grazing was included in the 300 
calculation of nitrogen minimum critical loads.    301 

The North American Aquatic Ecosystem acidity critical load dataset constructed here combined 302 
individual datasets from the Canada and the USA, as follows. 303 

Environment and Climate Change Canada data corresponding to the subset of 2,997 lake surveys 304 
which reside within the common AQMEII4 North American grid were used in conjunction with the 305 
Steady-State Water Chemistry (SSWC) critical load model (Sverdrup et al., 1990) as described in Aherne 306 
and Jeffries (2015).  SSWC is in widespread use for aquatic ecosystem CL (Posch et al., 2001; Cathcart et 307 
al., 2016; Henriksen et al., 2002; Jeffries et al., 2010; Scott et al., 2010; Whitfield et al., 2006; Williston 308 
et al., 2016; Dupont et al., 2005; Miller, 2011).  CL calculations for Canada followed a hierarchy based on 309 
the available information for individual lakes (for example catchment runoff rates were determined by 310 
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isotope mass balance estimates in preference to a GIS map based approach using regional datasets, and 311 
when dissolved organic carbon estimates were available, an organic acid adjusted limiting value of the 312 
acid neutralizing capacity was used to include the influence of organic acids in the lake in preference to a 313 
fixed value of 40 µeq L-1.  Only sulphur deposition was used to determine exceedance, since the SSWC 314 
model does not consider non-acidifying nitrogen. 315 

Aquatic ecosystem critical loads for the USA were taken from the National Critical Loads 316 
Database Version 3.2.1 (NCLDv3.2.1, Lynch et al., 2022), which contains both the critical load data used 317 
here and supporting information.  A total of 21,667 critical loads were used for 14,334 unique lakes and 318 
streams across the USA (a combination of different methods for determining the critical loads were 319 
included in the USA values, sometimes resulting in more than one CL estimate for the same water body).  320 
Most USA aquatic critical loads (78%) were determined using the SSWC model (Lynch et al., 2022; 321 
Scheffe et al., 2014; Dupont et al., 2005, Miller 2011, VDEC (2003, 2004, 2012)), and site-specific 322 
catchment runoff rates (US EPA, 2023). The remaining 22% of USA aquatic critical loads were 323 
determined by a dynamic modelling approach (Sullivan et al., 2005; Fakhraei et al., 2014; Lawrence et 324 
al., 2015) and a combination of dynamic modeling with a regionalization approach (McDonnell et al., 325 
2012, 2014; Sullivan et al., 2012; and McDonnell et al., 2021).  Organic acid-adjusted limiting acid 326 
neutralizing capacity values were not used in generating these USA aquatic CL with respect to acidity 327 
datasets, and an average critical load value was used for these waterbodies for which overlapping CL 328 
estimates were available.  A more detailed description of the USA aquatic critical loads used here can be 329 
found in Lynch et al., (2022). 330 

North American critical loads for eutrophication were estimated using CLE for two ecosystem 331 
types, sensitive epiphytic lichen, and herbaceous species richness.  332 

CL for sensitive epiphytic lichen species richness made use of 9,000 community surveys across 333 
the USA from 1990-2012 (Geiser et al. 2019), where a 90% quantile regression was used to model 334 
relationships between deposition levels and observed species richness in order to estimate critical loads, 335 
and a -20% decline in species richness was used to determine the critical load. These methods resulted in 336 
a single critical load of 3.1 kg-N ha-1 yr-1 for sensitive epiphytic lichen, which was applied to all 337 
broadleaf, conifer, or mixed forest landcover types. 338 

CL for USA herbaceous species richness made use of data developed using over 14,000 339 
vegetation survey plots across nitrogen deposition gradients (Simkin et al., 2016).  An observation-based 340 
approach using median quantile regressions for herbaceous species richness response to deposition was 341 
employed, to generate critical loads with respect to nitrogen deposition linked to various atmospheric and 342 
soil conditions.  Separate CL models were developed for open and closed canopies.  The resulting CL of 343 
N for open canopy systems ranged from 6.2 to 12.3 kg-N ha-1yr-1 and the CLs of N for closed canopy 344 
systems ranged from 6.1 to 23.7 kg-N ha-1yr-1. 345 

Two EU CL datasets were employed for the AQMEII4 EU domain, for acidification and 346 
eutrophication of terrestrial ecosystems, respectively.  The critical load database and the exceedance 347 
calculations for Europe were provided by the Coordination Centre for Effects (CCE) under the United 348 
Nations Economic Commission for Europe Convention on Long-range Transboundary Air Pollution 349 
(UNECE LRTAP Convention), hosted by the Umweltbundesamt (UBA) in Germany, which develops and 350 
maintains the European critical loads database (Geupel et al., 2022). The most recent database available 351 
was used here, and while country-dependent, all CL estimates made use of the Simple Mass Balance 352 
model (Sverdrup & De Vries, 1994; CLRTAP, 2023, Geupel et al., 2022), with gap-filling using the CCE 353 
background database (Reinds et al., 2021).    Critical loads for EU eutrophication (𝐶𝐿𝑛𝑢𝑡𝑁) were also 354 
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based on the SMB method applied to nitrogen deposition, and used two different methodologies to 355 
determine the accepted nitrogen leaching.  Dependent on the country, empirical values were sometimes 356 
used as upper and lower boundaries for the SMB modelling results in order to avoid rather extreme results 357 
in ecosystems where the SMB model predicts very high or very low eutrophication CL values (Bobbink et 358 
al., 2022).   The resulting EU CLE were summarized as the share of the receptor area with critical load 359 
exceedance (bar charts) and the magnitude of the exceedance within each analysis grid cell (maps). The 360 
exceedance in a grid cell is defined as the so-called ’average accumulated exceedance’ (AAE), which is 361 
calculated as the area-weighted average of the exceedances of the critical loads of all ecosystems in this 362 
grid cell. 363 

  364 

2.0 AQMEII4 Overview Description 365 

The setup of the AQMEII4 regional model comparison is described in detail in Galmarini et al.  (2021); a 366 
brief overview is provided here.  The models within this analysis are a “snapshot” of regional chemical 367 
transport model development as of the time simulations were completed (2021). 368 

Model simulations were carried out for the years 2010 and 2016 for North America, and 2009 and 2010 369 
for the European region.  North American years were chosen due to policy relevance, with a significant 370 
change in SO2 emissions controls enacted between the two years.  The European years were chosen due to 371 
a large difference in meteorology between the years 2009 and 2010, the latter being a year with unusually 372 
high summer temperatures eastern Europe and the western side of the Russian Federation (Barriopedro et 373 
al., 2011) leading to increased European forest fire activity and emissions during that year (JRC, 2011).  374 
The July 2009 and July 2010 temperature and precipitation anomalies relative to the base year period 375 
1961 to 1990 are shown in Supplemental Information Figure S2 (NCDC, 2024)).  The precipitation 376 
anomalies in July of each year are less significantly different than the temperature anomalies; similarly, 377 
the differences between the annual average temperature and precipitation anomalies between the two 378 
years is less significant than the July values.  In the analysis which follows, the differences in simulated 379 
deposition and critical load exceedances for European region between the two years is shown to be 380 
relatively minor, implying that forest fire emissions contributed a relatively small proportion of sulphur 381 
and nitrogen deposition in 2010, and that the summer temperature anomalies in 2010 did not result in 382 
significant perturbations to total sulphur and nitrogen deposition.   383 

Simulations were carried out by making use of the individual models’ grid projection and resolution.  384 
Mass-conserving interpolation (for concentrations and fluxes) and nearest neighbour interpolation (for 385 
diagnostics) were then used to map these “native grid” outputs to corresponding North American and 386 
European AQMEII4 grids.  The latter have 0.125o x 0.125o resolution (North America: 23.5 o N to 58.5 o 387 
N, 130 o W to 59.5 o W; Europe 25 o N to 70 o N, 30 o W to 60 o E).    Values extracted from the AQMEII4 388 
grid locations were used for comparison to observations.   Models made use of their own meteorological 389 
drivers or on-line meteorological components for meteorological field predictions.  Models shared 390 
common inputs for emissions and chemical lateral boundary conditions.  The latter provide a uniform 391 
chemical forcing and prevent input variations not associated with the models themselves from influencing 392 
simulations results.  393 

North American anthropogenic emissions were generated using emissions modelling platforms which 394 
included the anthropogenic inventories, temporal and spatial allocation from county or state/province 395 
level to native model grids, for each of the two model years, as well as adjustments for specific 396 
inventories by year.  Emissions processing was carried out by the United States Environmental Protection 397 
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Agency for the Carbon Bond 6 (revision 3; CB6r3)) and Statewide Air Pollution Research Center -07 398 
(SAPRC07) chemical mechanisms (Yarwood et al., 2010; Carter, 2010), and by Environment and Climate 399 
Change Canada  for the Acid Deposition and Oxidant Mechanism version II (ADOM-II; Stockwell et al., 400 
1989).  Note that while none of the modelling groups made use of the SAPRC07 mechanism itself within 401 
their simulations, this mechanism was sometimes used as a starting point for lumping individual models’ 402 
VOC species, due to the greater level of detail available within the SAPRC07 speciation.  European 403 
anthropogenic emissions were prepared for the participating models’ chemical mechanisms by the 404 
Netherlands Organization for Applied Scientific Research (TNO)  as part of the Monitoring Atmospheric 405 
Composition and Climate, part 3 (MACC-III) project (Kuenen et al., 2015), with individual groups using 406 
their own emissions data for the portion of their native model grids extending beyond the range of 407 
MACC-III emissions grid if necessary. 408 

North American forest fire emissions were generated by combining the US emissions modelling platform 409 
values with Canadian data for 2010, while both USA and Canadian data were based on the 2016 410 
emissions modelling platform estimates.   These forest fire emissions included criteria air contaminant 411 
emission mass, heat flux, and acres burned. Fire plume rise calculations were carried out by individual 412 
modeling groups, typically based on large stack plume rise formulae (Briggs, 1971, 1972).  European 413 
forest fire emissions were provided by the Finnish Meteorological Institute using eight layers from 50 to 414 
6200m.  Both North American and European forest fire emissions were chemically disaggregated by the 415 
participating modelling groups and mapped on a nearest grid cell basis to their native model grids. 416 

Lightning NO emissions were also prescribed in both domains, based on GEIA monthly climatology 417 
values (Price et al., 1997), diurnally disaggregated following Blakeslee et al. (2014) and allocated 418 
vertically following Ott et al. (2010) by individual modelling groups.   419 

Chemical lateral boundary conditions for both EU and NA simulations were taken from 3 hourly, 0.75o x 420 
0.75o, 54 vertical level ECMWF CAMS EAC4 reanalysis products (Inness et al., 2019), interpolated by 421 
participants to their own vertical and horizontal grid structures, and chemically disaggregated to their own 422 
chemical speciation.   423 

2.1 Common Model Diagnostics 424 

The AQMEII4 protocol for ensemble participants included the reporting of gas-phase species’ 425 
aerodynamic, bulk surface, stomatal, mesophyll, quasi-laminar sub-layer and within-canopy buoyant 426 
resistances (when present in the reporting model).  Effective conductances (Paulot et al., 2018; Clifton et 427 
al., 2020) and effective fluxes (Galmarini et al., 2021) were also reported.  These latter two diagnostic 428 
terms provide the relative contribution of the four main pathways associated with gas-phase deposition 429 
towards the deposition velocity and the deposition flux, respectively.  The four main pathways include 430 
soil, the lower canopy, leaf cuticles, and stomata.  Note that not all models specify a separate lower 431 
canopy pathway (the conductance associated with this pathway tends to be relatively small, providing 432 
justification for its absence).  Effective fluxes are of particular interest to criticalload exceedance analysis, 433 
since they provide information on the charge equivalents deposited to different component surface types.  434 
Effective fluxes include the impact of other processes in addition to deposition on the concentrations and 435 
hence on the net flux of the deposited gases, via the net flux term (F).  For example, the soil, lower 436 
canopy, cuticle and stomatal effective fluxes in the Wesely (1989) dry deposition parameterization are 437 
given by: 438 

𝐷𝐹𝐿𝑋𝑆𝑂𝐼𝐿 = (
(𝒓𝒂𝒄+𝒓𝒈𝒔)

−𝟏

(𝒓𝒔+𝒓𝒎)−𝟏+(𝒓𝒍𝒖)−𝟏+(𝒓𝒅𝒄+𝒓𝒄𝒍)−𝟏+(𝒓𝒂𝒄+𝒓𝒈𝒔)
−𝟏) 𝐹                                              (1) 439 
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𝐷𝐹𝐿𝑋𝐿𝐶𝐴𝑁 =  (
(𝒓𝒅𝒄+𝒓𝒄𝒍)−𝟏

(𝒓𝒔+𝒓𝒎)−𝟏+(𝒓𝒍𝒖)−𝟏+(𝒓𝒅𝒄+𝒓𝒄𝒍)−𝟏+(𝒓𝒂𝒄+𝒓𝒈𝒔)
−𝟏) 𝐹                                             (2) 440 

𝐷𝐹𝐿𝑋𝐶𝑈𝑇 = (
(𝑟𝑙𝑢)−1

(𝑟𝑠+𝑟𝑚)−1+(𝑟𝑙𝑢)−1+(𝑟𝑑𝑐+𝑟𝑐𝑙)−1+(𝑟𝑎𝑐+𝑟𝑔𝑠)
−1) 𝐹                                               (3) 441 

𝐷𝐹𝐿𝑋𝑠𝑡𝑜𝑚 = (
(𝑟𝑠+𝑟𝑚)−1

(𝑟𝑠+𝑟𝑚)−1+(𝑟𝑙𝑢)−1+(𝑟𝑑𝑐+𝑟𝑐𝑙)−1+(𝑟𝑎𝑐+𝑟𝑔𝑠)
−1) 𝐹                                             (4) 442 

Where F is the net flux to the surface, and the r terms are resistances associated with different pathways 443 
of gas mass transfer to the four surface components (rac: aerodynamic mass transfer within canopy,  444 
dependent on canopy height and density, rgs: the soil and leaf litter resistance, rdc : canopy buoyant 445 
convection resistance, rcl:  resistance associated with leaves, twigs, bark and other exposed surface in the 446 
lower canopy, rlu: resistance of leaf cuticles in healthy vegetation and other outer surfaces, rs: leaf 447 
stomata, rm: leaf mesophyll).  The effective conductances can be generated from similar formulae, with 448 
the F term in equations (1) through (4) being replaced by the deposition velocity of the gas Vd.  Note that 449 
the formulae for individual models vary from the Wesely (1984) example shown above; see Galmarini et 450 
al. (2021) for details on the formulae for each of the gas-phase deposition algorithms used in the 451 
AQMEII4 regional model ensembles analyzed here.   452 

2.2 Model Parameterization Descriptions 453 

The models CMAQ-M3Dry, CMAQ-STAGE, WRF-Chem (IASS), GEM-MACH (Base), GEM-MACH 454 
(Zhang), GEM-MACH (Ops), WRF-Chem (UPM), and WRF-Chem (UCAR) provided simulations for 455 
AQMEII-4, interpolated to the common the North American domain.  The models WRF-Chem (IASS), 456 
LOTOS-EUROS (TNO), WRF-Chem (UPM) and CMAQ (Hertfordshire) provided simulations for 457 
AQMEII-4, interpolated to the common European domain.  Some of the modelling frameworks were 458 
repeated, but process implementation details were varied in order for the relative impact of these 459 
differences to be examined.  We describe each of these models according to the starting framework 460 
(CMAQ, GEM-MACH, WRF-Chem, LOTOS-EUROS), below. 461 

2.2.1 CMAQ-M3Dry, CMAQ-STAGE, CMAQ (Hertfordshire) – WRF-CMAQ Implementations 462 

These three models make use of the WRF-CMAQ off-line modelling framework (CMAQ v5.3.2, US EPA 463 
(2020)), with the North American implementations (CMAQ-M3Dry, CMAQ-STAGE) employing 12 km 464 
cell resolution, and the EU implementation employing 10km cell resolution (Lambert Conformal Conic 465 
projection, 459x299 and 500x681 grid cells, respectively).  The CMAQ implementations employed 35 466 
model layers with the lowest layer thickness of ~20m.  Both NA models operate in an off-line 467 
configuration using the same driving weather forecast model output (NA: WRF4.1.1, EU: WRF 4.2.1, 468 
Skamarock et al., 2019).  All three CMAQ model implementations use the same gas-phase chemical 469 
mechanism (Carbon Bond 6; Luecken et al., 2018)), a modal aerosol size distribution representation with 470 
three modes (Binkowski and Roselle, 2003), aerosol microphysics through the AERO7 module (Appel et 471 
al., 2021; Binkowski and Shankar, 1995; Vehkamaki et al., 2002), and thermodynamic equilibrium 472 
partitioning for semivolatile inorganic species between gas and aerosol phases species  (involving the 473 
components K+-Ca2+-Mg2+-NH4

+-Na+-SO4
2--NO3

-- Cl- - H2O) using the ISORROPIA II algorithm 474 
(Fountoukis and Nenes, 2007).  Organic aerosol formation and monoterpene oxidation are modelled as 475 
described in AERO7 (Appel et al., 2021, Xu et al., 2018).   476 
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For all three model implementations, the impact scavenging of aerosols by cloud droplets is carried out 477 
for the Aitken mode particles, while accumulation and coarse mode particles may form cloud 478 
condensation nuclei, resulting in their scavenging via cloud droplet nucleation (Binkowski and Roselle, 479 
2003; Chaumerliac, 1984, Fahey et al., 2017).  Aerosol scavenging in the Aitken mode is carried out as a 480 
simple exponential decay for number, surface area and mass concentration assuming a cloud droplet 481 
settling velocity based on Pruppacher and Klett (1978), and an assumed cloud droplet size distribution.  482 

Only Aitken mode particles (roughly 0.01 to 0.1 m diameter) are impact scavenged, for which only 483 
cloud liquid water is included as a scavenging hydrometeor.  Wet deposition of all aqueous species is 484 
represented as a first-order loss rate based on the precipitation rate and total liquid water content (Fahey et 485 
al., 2017). The number of cloud droplets is parameterized following Bower and Choularton (1992) from 486 
the cloud liquid water content provided by the meteorological model. 487 

The three CMAQ implementations differ in the algorithms employed for aerosol and gas-phase dry 488 
deposition algorithms. 489 

CMAQ-M3Dry’s aerosol dry deposition methodology was based on Binkowski and Shankar (1995), with 490 
updates as described in Venkatram and Pleim (1999),  Giorgi (1986), and subsequent corrections to 491 
include the effect of mode width in the Stokes number (reducing previous large overpredictions in coarse 492 
mode deposition velocities).  Further modifications included changes to the Stoke’s number for vegetated 493 
surfaces, modification of the impaction term, scaling of diffusion layer resistance by LAI for the 494 
vegetated fraction of each grid cell, and improved mass conservation for the process of gravitational 495 
settling (Appel et al., 2021).     496 

CMAQ-STAGE and CMAQ (Hertfordshire)’s aerosol dry deposition methodology followed that of 497 
CMAQ-M3Dry, but made use of Slinn (1982) and Zhang et al.  (2001) for impaction on vegetated 498 
surfaces, and Georgi (1986) for water and soil surfaces, with the resulting deposition velocities for 499 
smooth and vegetated surfaces weighted by the area of vegetated surface (Appel et al., 2021).    500 

The gas-phase dry deposition algorithms and diagnostic equations of CMAQ-M3Dry, CMAQ-STAGE 501 
and CMAQ (Hertfordshire) are described in detail elsewhere (Galmarini et al., 2021, Table B2, with other 502 
implementation details in Hogrefe et al., 2023).  The algorithms follow the original approach of Wesely et 503 
al. (1989), but with separate resistance branches for the vegetated and non-vegetated fractions, dry versus 504 
wet fractions, and snow-covered versus non-snow covered fractions.   505 

Bidirectional fluxes of ammonia were found in the analysis which follows to be a major source of model-506 
to-model variability, hence will be described here in more detail. 507 

CMAQ-M3Dry simulated bidirectional fluxes of ammonia by first calculating soil ammonia 508 
concentrations using the Environmental Policy Integrated Climate (EPIC) agricultural ecosystem model 509 
(Williams, 1995; Ran et al., 2018), prior to the CTM simulations being carried out.  Typically, the EPIC 510 
model simulation requires a model spin-up period of 25 years or more, and requires a prior simulation of 511 
N deposition as input information.    The soil NH3 concentrations from this coupled system were then 512 
used as inputs for the AQMEII4 run (Pleim et al., 2019).   While all dry deposition diagnostics reported to 513 
AQMEII4 for CMAQ-M3Dry were computed making use of a post-processor, the post-processing did not 514 
include the generation of bidirectional flux calculations, and hence diagnostics such as the net 515 
compensation point concentration and the ground compensation point calculation were not provided from 516 
CMAQ-M3Dry for AQMEII4.   517 

CMAQ-STAGE (Massad et al., 2010; Bash et al., 2013) also simulated bidirectional fluxes following 518 
Williams, (1995), using a previous coupled EPIC simulation only for initial conditions, porting 519 
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methodology and information on daily fertilization and nitrification from EPIC into the CMAQ-STAGE 520 
framework while estimating evasion and deposition locally within the chemical transport model.  This 521 
methodology, which operates on a land-use specific basis and then aggregates to a grid-cell basis, allowed 522 
additional AQMEII4 diagnostic to be incorporated into the CMAQ-STAGE simulations. This allows a 523 
greater consistency between the CTM and the resulting soil NH3 calculations (and allows for the output of 524 
all of the diagnostics as specified under the AQMEII4 protocol see Hogrefe et al., 2023).  However, these 525 
calculations do not include other terms in EPIC dealing with N fixation, mineralization, denitrification, 526 
runoff, percolation and plant uptake, and hence will diverge from the EPIC simulated soil ammonia 527 
concentrations due to the differences in evasion and deposition parameterizations between CMAQ-528 
STAGE and EPIC.   529 

2.2.2  NA WRF-Chem (IASS)/ EU WRF-Chem (IASS), NA WRF-Chem (UPM)/EU WRF-Chem (UPM) , 530 
NA WRF-Chem (UCAR):  WRF-Chem implementations 531 

All three of these models made use of the WRF-Chem chemical transport modelling framework (Grell et 532 
al., 2005), employing a 12km Lambert Conformal Conic projection (400x360 grid cells in the European  533 
domain, 480x290 grid cells in the North American domain),  2-way coupling between air-quality and 534 
meteorology, a sectional aerosol size distribution representation (4 bins), aerosol microphysics and 535 
chemistry via the MOSAIC model (Zaveri et al., 2008), organic aerosol formation following Knote et al., 536 
(2014, 2015), cloud microphysics following Morrison et al.  (2009), the Noah land surface model (Noah-537 
MP, Niu et al., 2011), the Rapid Radiative Transfer Model for radiative transfer calculations (RRTM, 538 
Iacono et al., 2008), biogenic emissions using the MEGAN model (Guenther et al., 2006, Wiedenmyer et 539 
al., 2007), and the FAST-J algorithm for photolysis rate calculation (Fast et al., 2009).  All three code 540 
versions also make use of the Wesely (1989) parameterization for gas dry deposition and the Binkowski 541 
and Shankar (1995) approach for aerosol deposition.   However, WRF-Chem has a large variety of 542 
configurations available for other model processes, allowing the impact of those configurations on 543 
deposition results to be studied under AQMEII4.  The differences between the model configurations are 544 
summarized in Table 1.  It should also be noted that WRF-Chem is an on-line modelling framework – 545 
differences in the model parameterizations can influence the meteorological predictions through the 546 
aerosol direct and indirect effects, and consequently the meteorology generated by the implementations 547 
may also differ. 548 

Not all of the WRF-Chem model implementations were able to report all of the information required to 549 
calculate exceedances:  the WRF-Chem (IASS) implementation did not report all of the species 550 
contributing to Sdep and Ndep totals, and also did not report several diagnostics requested under the 551 
AQMEII4 protocol.  Consequently, the WRF-Chem (IASS) results were not included in ensemble 552 
deposition generation and the model ensembles are referred to hereafter as “reduced ensembles”.  Our 553 
analysis is therefore based on these reduced ensembles, though WRF-Chem (IASS) values for deposition 554 
totals have been provided when available in Figures and Tables for comparison purposes. 555 

  556 
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Table 1.  AQMEII4 WRF-Chem Configuration Differences 557 

Parameterization WRF-Chem (IASS) WRF-Chem (UPM) WRF-Chem (UCAR) 

WRF-Chem version 

number 

3.9.1 4.0.3 4.1.2 

Wet Deposition Convective : via Grell 

and Devenyi (2002); 

grid-scale following 

Neu and Prather (2012) 

for gases, Chapman et 

al.  (2009) for aerosols 

Grid scale wet 

deposition following 

Easter et al. (2004). 

 

Below cloud:  Slinn 

(1984); in-cloud: Easter 

et al. (2004) 

Land Use/Land Cover 

Classification 

Europe:  CORINE 33 

classes.  North 

America:  USGS-24 

(Anderson et al., 1976), 

24 classes 

USGS-24 classes, 

(Anderson et al., 1976), 

24 classes 

Modified IGBP 

MODIS NOAH, 21 

classes including 

oceans and inland 

water, Friedl et al.  

(2010);  

Cumulus cloud 

parameterization 

Grell and Devenyi, 

2002. 

Grell and Devenyi, 

2002 

Grell and Freitas, 2014 

Windblown Dust On-line, Shao-et al.  

2011 

MOSAIC (Zaveri et al., 

2008) 

GOCART, with AFWA 

modifications Gong et 

al. (1997), Ginoux et 

al. (2001). 

Gas-Phase Chemistry 

Mechanism 

MOZART, Emmons et 

al. (2010) 

CMBZ, Zaveri and 

Peters, 1999 

MOZART, Emmons et 

al. (2010) 

Vertical resolution 38 levels up to 50 hPa 35 vertical levels 41 vertical levels 

PBL Scheme Mellor–Yamada–Janjic, 

Janic (2001) 

Yonsei University 

(YSU) Hong et al. 

(2006), Hong (2010) 

Mellor-Yamada 

Nakahasi Niino, level 

2.5 Nakanishi and 

Niino (2006) 

 558 

2.2.3 LOTOS-EUROS (TNO):  LOTOS-EUROS 559 

LOTOS-EUROS (TNO) used in the AQMEII4 EU simulations is an open-source 3D chemistry transport 560 
model used extensively for air-quality forecasts and scenarios for European domains (Timmermans et al., 561 
2022; Manders et al., 2017).  Gas dry deposition fluxes made use of the Wesely (1989)-based approach 562 
(DEPosition of Acidifying Compounds; DEPAC, Van Zanten et al., 2010).  Particle dry deposition was 563 
carried out using the approach of Zhang (2001).  Wet deposition followed the droplet saturation approach, 564 
and cloud chemistry with sulphate formation dependent on cloud liquid water and droplet pH (Banzhaf et 565 
al., 2012).  The dry deposition of ammonia makes use of a bidirectional flux approach (Wichink Kruit et 566 
al., 2012).  Gas-phase chemistry was carried out using a modified form of the CBM-IV scheme (Gery et 567 
al., 1989; Whitten et al., 1980).  N2O5 hydrolysis was included following Schaap et al. (2004), and 568 
inorganic thermodynamic particle chemistry was solved using the ISORROPIA II module (Fountoukis 569 
and Nenes, 2007).  The model operated using 12 layers in the vertical in a hybrid coordinate system, with 570 
the near surface layer having a thickness of ~20m and a model top of approximately 8 km.  The 571 
simulations carried out here made use of a 20x20km grid cell size over Europe.   Driving meteorology for 572 
the model was from 3-hourly ECMWF short-term forecasts.   Land use data for the model comes from the 573 
Corine2000 Land Cover database (EEA, 2000, 2007). 574 
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2.2.4 GEM-MACH (Base), GEM-MACH (Zhang), GEM-MACH (Ops):  GEM-MACH 575 

All three of these NA models are variations on the Environment and Climate Change Canada GEM-576 
MACH model. The first two configurations (GEM-MACH (Base), GEM-MACH (Zhang)) are based on 577 
the “research” version of the model, which has more detailed physical parameterizations, whereas GEM-578 
MACH (Ops) is based on the “operational forecast” configuration, where more simplified 579 
parameterizations have been employed in order to reduce processing time for operational air-quality 580 
forecast simulations.  Common elements across all three implementations include a horizontal grid cell 581 
size of 0.09o in a rotated latitude-longitude domain (~10km), 83 model levels, biogenic VOCs from 582 
BEIS3.09, 3.1.3 (Vukovich and Pierce, 2002; Stroud et al., 2010), a sectional aerosol size distribution (12 583 
bins, Gong et al.  (2003), the ADOM-II gas-phase mechanism (Stockwell et al., 1989), a modified Odum 584 
approach for SOA formation (Stroud et al., 2018), and an inorganic aerosol chemistry module solving the 585 
thermodynamic equilibrium for the SO4

2--NO3
--NH4

+- H2O system (Makar et al., 2003).  The GEM-586 
MACH implementations also all make use of the GEM weather forecast model v4.9.8 for driving 587 
meteorology (Côté et al., 1998, Girard et al., 2014)), with the ISBA land surface scheme (Belair et al., 588 
2003a,b), and the CCMA Rad2 radiative transfer algorithm (Li and Barker, 2005).  As was the case for the 589 
WRF-Chem implementations described above, GEM-MACH has several optional process representations 590 
used in operational forecast versus research versions of the model, hence the relative importance of model 591 
configurations versus deposition parameterizations may be studied.  The differences between the 592 
configurations are summarized in Table 2.  593 

Collectively, the differences between GEM-MACH (Base) and GEM-MACH (Zhang) provide an estimate 594 
of the relative importance of the gas-phase deposition parameterization towards simulation results, while 595 
comparisons between GEM-MACH (Base or Zhang) and GEM-MACH (Ops) show the relative impact of 596 
the combination of ammonia bidirectional fluxes and the suite of more complex physical 597 
parameterizations used in the former model configurations compared to the operational framework.   598 

Table 2.  AQMEII4 GEM-MACH Configuration Differences 599 

Parameterization GEM-MACH (Base) GEM-MACH (Zhang) GEM-MACH (Ops) 

Gas dry deposition Makar et al.(2018) Zhang et al. (2003) Makar et al.(2018) 

Ammonia bidirectional 

fluxes 

Zhang et al. (2010) As in GEM-MACH 

(Base) 

None 

Particulate matter dry 

deposition 

1-D semi-Lagrangian 

mass transfer (Makar et 

al., 2018), using 

Emerson et al.  (2020) 

correction to Zhang et 

al.  (2001) coefficients 

As in GEM-MACH 

(Base) 

Zhang et al.  (2001), 

applied as flux lower 

boundary condition in 

the diffusion equation. 

Vertical resolution 83 levels plus 3 

additional levels for 

forest canopy processes 

(Makar et al., 2017) 

As in GEM-MACH 

(Base) 

83 levels 

Meteorological model 

cloud parameterization 

P3 explicit 

hydrometeor scheme 

(Morrison and 

Milbrandt, 2015; 

Milbrandt and 

Morrison, 2016). 

As in GEM-MACH 

(Base) 

Convective:  Kain-

Fritsch convective 

parameterization (Kain 

and Fritsch, 1990, 

Kain, 2004).  

Stratiform:  Sundqvist 

et al. (1989) 
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Land Use/Land Cover 

Classification 

GEM-MACH 15 Land 

use scheme (Makar et 

al., 2018), aggregated 

from Zhang et al., 

(2002, 2003) 26 land 

use categories. 

Zhang et al. (2002, 

2003), 26 land-use 

categories  

 As in GEM-MACH 

(Base) 

Leaf Area Index data 

source 

Satellite-derived 

(Zhang et al., 2020) 

As in GEM-MACH 

(Base) 

BEIS-based (Vukovich 

and Pierces, 2002) 

Seasonality for 

emissions 

Based on satellite LAI 

(Zhang et al., 2020) 

As in GEM-MACH 

(Base) 

Fixed function of 

latitude and Julian day 

Major point source 

plumerise algorithm  

Akingunola et al., 2018 As in GEM-MACH 

(Base) 

Briggs (1984) 

Gas-phase chemistry 

solver 

KPP2.1 (Sandu and 

Sander, 2006) 

As in GEM-MACH 

(Base) 

Young and Boris 

(1977) 

Vehicle Induced 

Turbulence 

Makar et al.  (2021) As in GEM-MACH 

(Base) 

None 

Forest Canopy shading 

and turbulence 

Makar et al. (2017) As in GEM-MACH 

(Base) 

None 

CH4 as chemically 

active tracer 

Yes As in GEM-MACH 

(Base) 

No 

Aerosol direct and 

indirect effect feedback 

Yes (Makar et al., 

2015a,b) 

As in GEM-MACH 

(Base) 

No 

Floor (minimum) PBL 

height imposed 

No As in GEM-MACH 

(Base) 

Yes (100m) 

Area source emissions 

treatment 

Flux lower boundary 

condition on diffusion 

equation 

As in GEM-MACH 

(Base) 

Mass injection into two 

lowest model layers 

Advection mass 

conservation 

ILMC, 3 sweeps 

(Sorensen et al., 2013) 

As in GEM-MACH 

(Base) 

ILMC, 2 sweeps, 

followed by Bermejo-

Conde (2002) global 

mass correction 

 600 

2.3  Bias Corrected Critical Load Exceedance Estimates 601 

As will be discussed in Section 3.2, model results were evaluated using the available data for North 602 
America and Europe (see Supplemental, Section 7 for species contributing significantly to total S and N 603 
deposition).  Critical load exceedances were calculated making use of the total sulphur and total nitrogen 604 
deposition for each model in the ensemble, for 2009 and 2010 for Europe, and 2010, 2016 for North 605 
America.  In order to make a rough estimate of the impacts of model biases on the resulting exceedance 606 
estimates, a third set of exceedances were calculated for each model and each domain, for the year 2010 607 
for Europe and 2016 for North America.  For this last group, the ratio of the observed to model mean 608 
values at the observation station locations for individual species were used as scaling factors on the model 609 
annual deposition flux estimates prior to summation to total sulphur and total nitrogen deposition.  610 
Specifically, for North America, the ratio of the observed to measured mean concentrations of SO2, NO2, 611 
PM2.5 sulphate, PM2.5 ammonium, and AMoN network NH3 were used to scale the corresponding dry 612 
flux variables, and the corresponding ratios for wet deposition of sulphate, nitrate and ammonium ions 613 
were used to scale the wet deposition fluxes.  Less observation data were available for Europe than North 614 
America:  the ratio of observed to modelled SO2 and NO2 gas concentration mean values were used to 615 
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scale the corresponding dry fluxes, and ratios of observed to modelled wet deposition fluxes for sulphate, 616 
nitrate and ammonium were used to scale the modelled wet deposition fluxes.  617 

We note that this approach makes simplifying assumptions.  The corrections are inherently dependent on 618 
the assumption that the monitoring data is sufficiently representative of the model domain for the 619 
correction to be meaningful across the domain.  While dry deposition fluxes will be proportional to the 620 
concentrations in the lowest model layer, allowing an overall mean bias correction, we are also making 621 
the assumption that the bias ratios for PM2.5 particulate matter will apply for larger particle sizes as well 622 
(note that size-resolved particulate fluxes were not reported under the AQMEII-4 protocol).    This form 623 
of bias correction is also the simplest possible means of model-measurement fusion; more complex 624 
methods appear in the literature.  These methodologies for example may make use of a combination of 625 
observed wet and adjusted model dry deposition (Schwede and Lear, 2014), inverse distance weighting 626 
from observation stations (Rubin et al., 2023) and adjusting modelled wet deposition fluxes by the ratio of 627 
observed to simulated precipitation and by kriged observed wet deposition to model predicted ratios 628 
(Zhang et al., 2019).  An overview of model-measurement fusion approaches including advanced forms of 629 
data assimilation may be found in Fu et al., (2022). The methodology used here provides a first order 630 
estimate of the impact of model biases with respect to observations on critical load exceedances.   631 

3.0 Results 632 

3.1 Critical Load Exceedances 633 

3.1.1  Europe, Acidification 634 

Critical load exceedances for acidification for each of the four European (EU) models are shown in Figure 635 
1 for 2010 and in Figure S3 (Supplement) for 2009, and Figure S9 (Supplement) for bias-corrected 2010.  636 
Figure 2 shows the reduced ensemble values for 2009 and 2010 (a,b), the bias-corrected value for 2010 637 
(c),  as well as common AQMEII4 domain total bar charts for all models and the reduced ensemble (d).  638 

The EU exceedances for acidity are similar between the two years (compare Figures 1 and S3, and 639 
reduced ensemble values for each year in Figure 2).   However, differences between models within a 640 
given year are larger (especially in an absolute sense; WRF-Chem (IASS) <0.4% in exceedance, WRF-641 
Chem (UPM): ~6.5%).  Low WRF-Chem (IASS) exceedance levels are in part due to unreported 642 
deposition data (see section 2.2.2); the reduced ensemble maps in Figure 2 show the ensemble average for 643 
LOTOS-EUROS (TNO), WRF-Chem (UPM) and CMAQ (Hertfordshire).  The EU reduced ensemble 644 
shows the greatest extent of exceedance in the Netherlands along the Netherlands/Belgium border, north-645 
western Germany, southern Norway, and along the border between Poland and Germany (Figure 2(a,b)).  646 
Individual models in Figure 1 show additional acidity “hotspots” that may appear in one model and not in 647 
another (e.g. LOTOS-EUROS (TNO): near Lucerne and Bonn; WRF-Chem (UPM): westernmost 648 
Switzerland, south-central Germany, and Belgrade; CMAQ (Hertfordshire): south-west Switzerland, 649 
south-central Germany, and south-west Romania).  Bias correction for the reduced ensemble for the 2010 650 
data resulted in substantial increases in predicted exceedances (compare last two columns of Figure 2(d), 651 
and compare Figure 1 to Figure S9).  However, we note that the European data did not include speciated 652 
particulate matter and hence bias correction was not possible for part of the sulphur budget – much 653 
smaller impacts were noted for bias correction in North America where particulate sulphate data were 654 
available.   655 

The percent area of EU acidification CLE over the region for which CL data was available, for the 656 
reduced ensemble, was 4.48% (range 2.37% to 6.85%) in 2009 and 4.32% (2.06 to 6.52%) in 2010.  657 
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Average reduced ensemble accumulated exceedance for EU acidity was 13.8 (9.7 to 27.1) eq ha-1 yr-1 in 658 
2009, and 12.6 (7.8 to 23.7) eq ha-1 yr-1 in 2010.  The quoted range is from the highest and lowest 659 
members in the 3-member reduced ensemble. 660 

3.1.2 Europe, Eutrophication 661 

Critical load exceedances for eutrophication for each of the four EU models are shown in Figure 3 for 662 
2010,  in Figure S4 (Supplement) for 2009, and with bias-corrected deposition fields for 2010 in Figure 663 
S10 (Supplement).  Figure 4 shows the reduced ensemble values for 2009 and 2010 (a,b), the bias-664 
corrected values for 2010 (c),  as well as common AQMEII4 domain summaries for all models and the 665 
ensembles (d).  666 

As for EU Acidity CLE’s, the Eutrophication CLE’s are very similar between the two model years 667 
(compare Figures 3 and S4, and the values for each year in Figure 4).  The spatial distribution of the 668 
greatest levels of exceedance also varies more strongly between models.  All members in the 3-member 669 
reduced ensemble identify the Po river valley as reaching the greatest level of exceedance, but LOTOS-670 
EUROS (TNO) also shows high levels of exceedance in Benelux to northern Germany and in the 671 
Barcelona area, while WRF-Chem (UPM) shows high levels of exceedance > 800 eq ha-1 yr-1 in multiple 672 
hotspots throughout the region.  The relative impact of bias correction was smaller than for acidification 673 
in terms of the total area in exceedance, but the magnitude of exceedances increased significantly (e.g. 674 
larger proportion of red to black areas in Figure 4(c) than Figure 4(b), comparing the last two columns of 675 
Figure 4(d), and comparing Figure 4 to Figure S10).  Again, the higher levels of exceedance predicted for 676 
Europe may reflect the impact of the lack of particulate sulphate and particulate nitrate data for bias 677 
correction purposes. 678 

The percentage of the area in exceedance for eutrophication is much higher than that of acidification 679 
(reduced ensemble CLE 60.2% (47.3 to 73.3%) in 2009, and  62.2% 51.2 to 74.4%)  in 2010).   The 680 
average accumulated exceedance was 156.9 (89.4 to 265.5/) eq ha-1 yr-1 in 2009 and 161.4 (109.4 to 681 
261.8) eq ha-1 yr-1 in 2010 (Figure 4, the range is from lowest and highest members in the 3-member 682 
reduced ensemble). 683 

  684 
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Figure 1.  CLEs for Acidity, EU AQMEII4 common domain, 2010, eq ha-1yr-1. (a) WRF-Chem (IASS), (b) LOTOS-685 
EUROS (TNO), (c) WRF-Chem (UPM), (d) CMAQ (Hertfordshire).  Grey areas indicate regions for which critical 686 
load data are available but are not in exceedance of critical loads.  Coloured areas indicate exceedance regions.   687 

 688 

  689 
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Figure 2. Summary CLEs for Acidity, EU AQMEII4 common domain, eq ha-1yr-1.  (a), (b) Spatial distribution of 690 
CLEs for the reduced ensemble for the years 2009 and 2010, respectively. (c) Spatial distribution of CLE for the 691 
bias-corrected reduced ensemble for the year 2010. (d) Percentage of ecosystems for which CL data are available 692 
that are in exceedance by model and year (left axis and colour bar) and average accumulated exceedance (eq ha-1 yr-693 
1) (right axis and black diamond symbols). 694 

 695 

  696 



21 
 

Figure 3.  CLEs for Eutrophication, EU AQMEII4 common domain, 2010, eq ha-1yr-1. (a) WRF-Chem (IASS), (b) 697 
LOTOS-EUROS (TNO), (c) WRF-Chem (UPM), (d) CMAQ (Hertfordshire).  Grey areas indicate regions for which 698 
critical load data are available but are not in exceedance of critical loads.  Coloured areas indicate exceedance 699 
regions.   700 

 701 
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Figure 4. Summary CLEs for Eutrophication, EU AQMEII4 common domain, eq ha-1yr-1.  (a), (b) Spatial 702 
distribution of CLEs for the reduced ensemble for the years 2009 and 2010, respectively. (c) Spatial distributions of 703 
CLEs for the bias-corrected reduced ensemble for 2010.  (d) Percentage of ecosystems for which CL data are 704 
available that are in exceedance by model and year (left axis and colour bar) and average accumulated exceedance 705 
(eq ha-1 yr-1) (right axis and black diamond symbols). 706 

 707 

 708 

 709 

  710 
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3.1.3  North America, Forest Ecosystems Simple Mass Balance Critical Load 711 

Critical load exceedances with respect to the North American (NA) forest soil acidity for the years 2016 712 
and 2010 are shown in Figures 5 and S5, respectively, the bias-corrected 2016 maps are in Figure S11, 713 
and the reduced ensemble maps for both years, and the domain summaries including bias corrected values 714 
for 2016, are shown in Figure 6.   715 

Unlike the EU domain comparison, the NA CLEs depicted in Figure 5 show a large difference in the 716 
extent of regions in exceedance for the different models.  While all models with the exception of WRF-717 
Chem (IASS) identified the regions to the south and west of the Great Lakes, the U.S. east coast, and 718 
Florida as being in exceedance, the magnitude of the exceedances varied greatly between the models, 719 
with the GEM-MACH models (Figure 5(d-f)) showing large regions with exceedances above 800 eq ha-1 720 
yr-1, followed by, in descending order, WRF-Chem (UPM), CMAQ-M3Dry, CMAQ-STAGE, WRF-Chem 721 
(UCAR), and WRF-Chem (IASS).   722 

The summary reduced ensemble CLE values (Figure 6) show the improvement in CLEs between the 723 
years 2010 and 2016, which occurred in response to the legislated reduction in SO2 emissions during this 724 
time period.  The summary chart (Figure 6(c)) however shows that the magnitude of the response to the 725 
SO2 reduction was model dependent:  the change between 2010 and 2016 was the greatest for GEM-726 
MACH (Base) in an absolute sense, and the greatest for WRF-Chem (UCAR) in a relative sense.  727 
Similarly, the average accumulated exceedance (right-hand vertical axis and black diamonds, Figure 6(c)) 728 
showed decreases in exceedance between 2010 and 2016 for all models, but the extent of these decreases 729 
differed, with WRF-Chem (UCAR) showing the smallest decrease in AAE from 2010 to 2016, followed 730 
in increasing order of the magnitude of change by CMAQ-STAGE, CMAQ-M3Dry WRF-Chem (UPM), 731 
GEM-MACH-Ops, GEM-MACH-Base, and GEM-MACH-Zhang.   732 

The effect of bias correction was less pronounced than in Europe, and in general reduced the variability 733 
between model results.  Note that unlike the European case, North American observation data used for 734 
bias correction included corrections for particulate sulphate air concentrations, allowing a greater degree 735 
of closure for the sulphur mass deposited.  Comparing Figures 5 and S11 it can be seen that the bias 736 
correction has increased exceedances for the CMAQ and WRF-Chem simulations, and decreased 737 
exceedances for the GEM-MACH simulations, reducing the variability between the models.  The extent 738 
to which model-to-model variability has been reduced subsequent to bias correction is also apparent in 739 
Figure 6(d) (bias correction exceedance bars are closer in size across models compared to pre-bias 740 
correction).  The net result of bias correction being a slight increase in the area of exceedance in the 741 
reduced ensemble, comparing the two right-hand bars of Figure 6(d). 742 

The percentage of the NA forested area in exceedance for acidification for the reduced ensemble was 743 
13.2% (2.8 to 22.2%) in 2010, and 6.1% (1.0 to 12.9%) in 2016.   The ensemble thus shows a 744 
considerable improvement in exceedances with respect to acidification between the two years.   745 

3.1.4 North America, Aquatic Ecosystems CL(A) 746 

Exceedances with respect to the North American aquatic ecosystem CL dataset for the years 2016 and 747 
2010 are shown in Figures 7 and S6, respectively, the bias-corrected maps for each model for 2016 are in 748 
Figure S12, and the reduced ensemble maps for both years and domain summaries including bias 749 
correction are shown in Figure 8.   750 

Comparison of Figures 5 and 7 shows a similarity in the CLE response of the individual models between 751 
forest soil and aquatic ecosystems, with the GEM-MACH models predicting the highest number and 752 
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magnitude of exceedances, followed by WRF-Chem (UPM), WRF-Chem (UCAR) and the two CMAQ 753 
implementations.  Figure 8 (a,b) shows the expected decrease of the reduced ensemble’s CLE between 754 
2010 and 2016, as well as the higher levels of exceedance associated with the GEM-MACH and WRF-755 
CHEM (UPM) models,  followed in descending order by the two CMAQ implementations and WRF-756 
CHEM (UCAR) (Figure 8 (c)).   757 

The impact of bias correction on the North American aquatic ecosystems critical load exceedances was 758 
relatively minimal for the models included in the reduced ensemble:  differences between Figures 7 and 759 
S12 are difficult to distinguish, and Figure 8(d) shows slight increases in the exceedances for CMAQ and 760 
WRF-Chem simulations, slight increases in GEM-MACH simulations, and a very small change in the 761 
reduced ensemble levels of exceedance.  762 

The percentage of the NA aquatic ecosystems in exceedance for the reduced ensemble was 21.2% (12.8 to 763 
28.9%) in 2010 and 11.4% (7.3 to 15.8%) in 2016.   The reduced ensemble thus shows a considerable 764 
improvement in exceedances with respect to exceedance of aquatic critical loads between the two years, 765 
again by almost a factor of two.   766 

Figure 5.  CLEs for Forest Soil Acidification, NA AQMEII4 common domain, 2016, eq ha-1yr-1.  (a) CMAQ-M3Dry, 767 
(b) CMAQ-STAGE, (c) WRF-Chem (IASS), (d) GEM-MACH (Base), (e) GEM-MACH (Zhang), (f) GEM-MACH 768 
(Ops), (g) WRF-Chem (UPM), (h) WRF-Chem (UCAR).  Grey areas indicate regions for which critical load data are 769 
available but are not in exceedance of critical loads.  Coloured areas indicate exceedance regions.   770 

 771 

  772 
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Figure 6. Summary CLEs for Forest Soil Acidification, NA AQMEII4 common domain, eq ha-1 yr-1.  (a), (b) Spatial 773 
distribution of CLEs for the reduced ensemble for the years 2010 and 2016, respectively. (c) ) Spatial distribution of 774 
CLEs for the reduced ensemble for the year 2016. (d) Percentage of ecosystems for which CL data are available that 775 
are in exceedance by model and year (left axis and colour bar) and average accumulated exceedance (eq ha-1 yr-1) 776 
(right axis and black diamond symbols). 777 

 778 

 779 

  780 
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Figure 7.  CLEs for Aquatic Ecosystems, NA AQMEII4 common domain, 2016, eq ha-1 yr-1.  Panels arranged by 781 
Model as in Figure 6; individual sites are shown as pixels.  Dark grey pixels indicate regions for which critical load 782 
data were available but were not in exceedance of critical loads.  Coloured areas indicate exceedance regions; 783 
overplotting in precedence by the extent of exceedance was carried out for overlapping pixels.  Areas of no CL data 784 
are shown in lighter grey. 785 

 786 

  787 
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Figure 8. Summary CLEs for Aquatic Ecosystems, NA AQMEII4 common domain.  (a), (b) Spatial distribution of 788 
CLEs for the reduced ensemble for the years 2010 and 2016, respectively. (c) Spatial distribution of CLEs for the 789 
bias-corrected reduced ensemble for the year 2016. (d) Percentage of lakes for which CL data are available that are 790 
in exceedance by model and year (left axis and colour bar) and number of lakes in exceedance (right axis and black 791 
diamond symbols). 792 

 793 

 794 

  795 
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3.1.5  U.S. N Deposition to Lichen 796 

Exceedances with respect to the USA CL of N for a 20% decline in sensitive epiphytic lichen species 797 
richness (221 eq-N ha-1 yr-1) dataset for the years 2016 and 2010 are shown in Figures 9 and S7, 798 
respectively, bias-corrected 2016 values in Figure S13, and the reduced ensemble maps for both years and 799 
domain summaries included bias-corrected 2016 values are shown in Figure 10.   800 

The overall pattern of exceedances and their magnitude across models (Figure 9) is similar to that of the 801 
Forest Soil exceedances (Figure 5), with the largest magnitudes in the north-eastern continental USA and 802 
in North Carolina, though the lichen exceedances are more continuous across the region than for forest 803 
soil water acidity impacted ecosystems.  GEM-MACH (Base), GEM-MACH (Zhang), and GEM-MACH 804 
(Ops) have maximum exceedances usually between 800 and 1,200 eq ha-1 yr-1, and the exceedances 805 
predicted by other models are less than 800 eq ha-1 yr-1 aside from a North Carolina exceedance hotspot 806 
which is predicted by all models.  The reduced ensemble overall magnitude of exceedances decreased 807 
significantly between 2010 and 2016 (Figure 10(a,b), less black and red regions in the more recent year).  808 
The reduced ensemble total area in exceedance has decreased slightly (Figure 10(c), “reduced ensemble” 809 
columns).  All models show a decreasing levels of exceedance between the two years, and slightly 810 
decreasing total area of exceedance.  The magnitude of exceedances differs significantly between the 811 
models, with the highest magnitude exceedances predicted by the GEM-MACH group of models, 812 
followed by WRF-Chem (UPM).   813 

Bias correction values varied between the models, with CMAQ exceedances increasing slightly, GEM-814 
MACH exceedances decreasing slightly, WRF-Chem exceedances increasing, and a slight increase in the 815 
overall extent and magnitude of the reduced ensemble exceedances in the last two columns of Figure 816 
10(d).  The similarity in the spatial distribution of exceedances is greater across models following bias 817 
correction (compare Figure 9 with Figure S13 (Supplement)).  818 

The percentage of the NA sensitive epiphytic lichen ecosystems in exceedance for the reduced ensemble 819 
was 81.5% (69.3 to 95.0%) in 2010 and 75.8% (63.7 to 90.7%) in 2016. 820 

 821 

3.1.6  U.S. N Deposition to Herbaceous Plants 822 

Exceedances with respect to the USA CL of N for a decline in herbaceous species richness (436 to 1693 823 
eq-N ha-1 yr-1) dataset for the years 2016 and 2010 are shown in Figures 11 and S8, respectively, bias-824 
corrected exceedances for 2016 appear in Figure S14 (Supplement), and the reduced ensemble maps for 825 
both years and domain summaries including bias correction for 2016 are shown in Figure 12.   826 

The spatial distribution of the regions of highest exceedance shares some common features with that of 827 
sensitive epiphytic lichen (compare Figure 11 with Figure 9), such as maximum exceedances in NE USA, 828 
North Carolina, and extending along a region north of Texas.  However, both the magnitude and extent of 829 
exceedance is much more varied for herbaceous species richness than for lichen species richness, with the 830 
GEM-MACH suite of models (Figure 11 d-f and Figure 12(d)) predicting the highest exceedance levels 831 
and up to 18.4% of the area in exceedance in 2016, the CMAQ implementations varying between 0.6% 832 
and 0.8%, and WRF-Chem (UCAR) predicting 0.1%. 833 

The impacts of bias correction may be more easily distinguished for herbaceous species richness critical 834 
load exceedances compared to some of the other exceedance estimates (compare Figures 11 and S14), 835 
with the CMAQ and WRF-Chem exceedances increasing, and the GEM-MACH exceedances decreasing.  836 
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The overall impact was a slight increase in the area and extent of the ensemble average exceedance 837 
(Figure 12(d)).   838 

The percentage of the NA herbaceous plant ecosystems in exceedance for the reduced ensemble was 839 
13.9% (0.4 to 39.5%) in 2010, and 3.9% (0.1 to 18.4%) in 2016, with the higher exceedance levels in the 840 
range resulting from the GEM-MACH suite of models.  Reduced ensemble herbaceous species richness 841 
exceedances have decreased considerably between the two years in all models.  842 

3.1.7  Critical Load Exceedances, Key Results 843 

The percent exceedance for the reduced ensemble and ranges from the reduced ensembles for the 844 
ecosystems examined here are summarized in Table 3.  The values suggest acidification in EU will 845 
happen over a smaller region than eutrophication at 2009/2010 emissions levels, with a slight decrease in 846 
acidification and a slight increase in eutrophication between the two years.  About 60% of EU ecosystems 847 
would be subject to eutrophication at some point in the future at 2010/2009 emissions levels.  One 848 
striking difference between the different model estimates of CLE is in the magnitude of exceedances (as 849 
opposed to the total area in exceedance).  WRF-Chem (UPM) for example in Figures 1 and 3 predicts 850 
more severe levels of exceedance across Europe than the other models.   The North America results 851 
suggest that reductions in SO2 and NOx emissions between 2010 and 2016 resulted in a substantial 852 
reduction in the number of forest soil and aquatic ecosystem acidification exceedances (by nearly a factor 853 
of two). The impacts of nitrogen deposition on herbaceous species also improved (by nearly a factor of 854 
three), while impacts of nitrogen deposition on sensitive lichen had more modest improvement (from 81.5 855 
to 75.8% in exceedance).  The magnitude and spatial extent of these eutrophication exceedances were 856 
highly dependent on the model, and on the variations in the representation of sub-processes within each 857 
model, used for predictions.  Understanding the large range of model predictions is one of the main aims 858 
of the current work.  The next section discusses the underlying causes driving the model-to-model 859 
differences, using the AQMEII4 deposition diagnostics. 860 

Table 3.  Summary of reduced ensemble percent exceedance mean values and their range in EU and NA 861 
domains, along with Total S deposition and Total N deposition predicted by the ensemble.  All models 862 
used the same starting inventories for emissions. 863 

EU Ecosystem Year 2009 Percent 

Exceedance 

(lower to upper 

bound) 

Year 2010 Percent 

Exceedance 

(lower to upper 

bound) 

Total S 

Deposition, 

2010 (eq ha-1 yr-1) 

Total N 

Deposition,  

2010 (eq ha-1 yr-1) 

Acidification 4.48 (2.37 to 6.85) 4.32 (2.06 to 6.52) 158.4  

(81.5 to 221.6) 

376.5  

(304.8 to 481.9) Eutrophication 60.2 (47.3 to 73.3) 62.2 (51.2 to 74.4) 

 

NA Ecosystem Year 2010 Percent 

Exceedance 

(lower to upper 

bound) 

Year 2016 Percent 

Exceedance 

(lower to upper 

bound) 

Total S 

Deposition, 

2016 (eq ha-1 yr-1) 

Total N 

Deposition,  

2016 (eq ha-1 yr-1) 

Forest Soils 

Acidification 

13.2 (2.8 to 22.2) 6.1 (1.0 to 12.9) 135.6  

(56.1 to 193.4) 

321.7  

(182.4 to 430) 

Lake Ecosystems 21.2 (12.8 to 28.9) 11.4 (7.3 to 15.8) 

USA N Deposition 

Lichen 

81.5 (69.3 to 95.0) 75.8 (63.7 to 90.7) 

USA N Deposition 

Herbaceous 

13.9 (0.4 to 39.5) 3.9 (0.1 to 18.4) 
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Figure 9.  CLEs for Sensitive Epiphytic Lichen Species, NA AQMEII4 common domain, 2016, eq ha-1 yr-1.  Panels 864 
arranged by model as in Figure 6.  Light grey areas indicate regions for which critical load data were available but 865 
were not in exceedance of critical loads.  Coloured areas indicate exceedance regions. 866 

  867 
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Figure 10. Summary CLEs, Sensitive Epiphytic Lichen Species, NA AQMEII4 common domain, eq ha-1 yr-1.  (a), 868 
(b) Spatial distribution of CLEs for the reduced ensemble for the years 2010 and 2016, respectively.  (c) Spatial 869 
distribution of CLEs for the bias-corrected reduced ensemble for the year 2016. (d) Percentage of sensitive epiphytic 870 
lichen ecosystems for which CL data are available that are also are in exceedance, by model and year (left axis and 871 
colour bar) and number of sites in exceedance (right axis and white diamond symbols). 872 

 873 

  874 
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Figure 11.  CLEs for a decline in Herbaceous Species Community Richness, NA common domain, 2016, eq ha-1yr-1.  875 
Panels arranged by model as in Figure 6.  Light grey areas indicate regions for which critical load data were 876 
available but were not in exceedance of critical loads.  Coloured areas indicate exceedance regions. 877 

 878 

  879 
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Figure 12. Summary CLEs for a decline in Herbaceous Species Community Richness, AQMEII4 NA common 880 
domain, eq ha-1yr-1.  (a), (b) Spatial distribution of CLEs for the reduced ensemble for the years 2010 and 2016, 881 
respectively. (c) Spatial distribution of CLEs for the bias-corrected reduced ensemble for the year 2016.  (d) 882 
Percentage of herbaceous species communities for which CL data are available that are also are in exceedance, by 883 
model and year (left axis and colour bar) and number of sites in exceedance (right axis and white diamond symbols). 884 

 885 

  886 
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3.2 Analysis of Model Deposition Predictions   887 

3.2.1  Causes of S Deposition Variability in North America Domain Simulations 888 

The AQMEII4 common grid average, and percent contribution of each depositing species towards total S 889 
deposition in 2016, are given in Table 4.  The averages and standard deviation for the reduced ensemble 890 
show that wet deposition of the sum of the sulphate and bisulphite ions (SO4

(2-) and HSO3
(-)) contributes 891 

more to total S deposition than particulate sulphate dry deposition, which is in turn contributes more than 892 
SO2 (g) dry deposition.  However, the model-to-model variability is also large, particularly for the 893 
contribution of particulate sulphate, which varies by nearly two orders of magnitude between GEM-894 
MACH (Base, Zhang Ops) and WRF-Chem (UPM).  The contributions to the average reduced ensemble 895 
total S deposition are 62.0 ±19.3, 44.8 ± 39.0, and 28.8 ± 9.9 eq ha-1 yr-1 for wet, particle dry and gas dry 896 

deposition respectively (± ranges in Table 4 are the standard deviation of the component).  The greatest 897 

cause of model variability in absolute total deposition is associated with the contribution of particulate 898 
sulphate dry deposition, followed by sulphur wet deposition and then gaseous SO2 dry deposition.   899 

Table 4.  Average S deposition contributions in common AQMEII4 NA grid area (eq ha-1 yr-1) and percent 900 
contribution to average total S deposition, 2016.  n/d = no data submitted or insufficient data to calculate percentage. 901 

 
Average Deposition (eq ha-1 yr-1) Percent of total S deposition 

Model 

Number 

SO4
(2-) + 

HSO3
(-) 

Wet 

Deposition 

Particle 

Sulphate 

Dry 

Deposition 

SO2(g) Dry 

Deposition 

Total S 

Deposition 

SO4
(2-) + 

HSO3
(-) 

Wet 

Deposition 

Particle 

Sulphate 

Dry 

Deposition 

SO2(g) Dry 

Deposition 

CMAQ-

M3Dry 79.0 19.0 24.9 122.9 64.3 15.4 20.2 

CMAQ-

STAGE 79.2 21.0 23.3 123.4 64.2 17.0 18.8 

WRF-Chem 

(IASS) 0.9 nd 26.7 n/d n/d n/d n/d 

GEM-

MACH 

(Base) 52.4 90.7 23.0 166.1 31.5 54.6 13.9 

GEM-

MACH 

(Zhang) 51.4 88.8 25.1 165.3 31.1 53.7 15.2 

GEM-

MACH 

(Ops) 81.3 88.2 23.9 193.4 42.0 45.6 12.4 

WRF-Chem 

(UPM) 66.3 2.8 52.8 121.9 54.4 2.3 43.3 

WRF-Chem 

(UCAR) 24.4 3.0 28.7 56.1 43.5 5.3 51.2 

Reduced 

ensemble 

average 62.0 44.8 28.8 135.6 45.7 33.0 21.2 

Reduced 

ensemble 

standard 

deviation 19.3 39.0 9.9 41.3 13.0 21.2 14.5 

 902 
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The spatial distributions of the two largest components of the total S deposition variability (wet S and dry 903 
particle S) are shown in Figure 13.  The WRF-Chem (IASS) values did not represent the expected sources 904 
of S deposition over the continent and some deposition fields such as the total particulate sulphate dry 905 
deposition were not submitted. The wet S deposition maps are qualitatively similar between the other 906 
models (note that the colour scale is logarithmic), with WRF-Chem (UCAR) having the lowest values 907 
(Figure 13(a)).  As shown in Table 4, the greatest degree of variability between the different modelling 908 
platforms is in the particle deposition fluxes (Figure 13(b)).  This variability extends over orders of 909 
magnitude.  WRF-Chem (UPM) and WRF-Chem (UCAR) predict the lowest deposition fluxes of dry 910 
particulate sulphate over both land and ocean.  CMAQ-STAGE and CMAQ-M3Dry predict higher values 911 
over parts of the ocean, but relatively low values over land.  GEM-MACH (Base), GEM-MACH (Zhang) 912 
and GEM-MACH (Ops) have the highest particulate sulphate dry deposition fluxes, roughly equivalent to 913 
the wet deposition fluxes.   914 

We next evaluate each of the models’ predictions  against North American network observations for 915 
concentrations of SO2 and particulate sulphate, and wet sulphur deposition for the year 2016.  The 916 
monitoring network databases employed included the U.S. Environmental Protection Agency’s Air 917 
Quality System (AQS; https://www.epa.gov/aqs , last access: 7 July 2024), the National Atmospheric 918 
Deposition Program’s National Trend Network (NADP NTN; 919 
https://nadp.slh.wisc.edu/networks/national-trends-network/  , last access 7 July 2024), the Canadian 920 
National Air Pollution Surveillance (NAPS) program (https://www.canada.ca/en/environment-climate-921 
change/services/air-pollution/monitoring-networks-data/national-air-pollution-program.html , last access: 922 
7 July 2024), and the Canadian National atmospheric chemistry database ( 923 
https://www.canada.ca/en/environment-climate-change/services/air-pollution/monitoring-networks-924 
data/national-atmospheric-chemistry-database.html, last access 7 July 2024). 925 

Figure 13.  2016 total annual deposition flux (eq ha-1 yr-1) of (a) wet S, and (b) dry particulate sulphate.  Note that 926 
regions outside the common AQMEII-4 domain have been assigned an “outside domain” mask value of -9. 927 

 928 

 929 

https://www.epa.gov/aqs
https://nadp.slh.wisc.edu/networks/national-trends-network/
https://www.canada.ca/en/environment-climate-change/services/air-pollution/monitoring-networks-data/national-air-pollution-program.html
https://www.canada.ca/en/environment-climate-change/services/air-pollution/monitoring-networks-data/national-air-pollution-program.html
https://www.canada.ca/en/environment-climate-change/services/air-pollution/monitoring-networks-data/national-atmospheric-chemistry-database.html
https://www.canada.ca/en/environment-climate-change/services/air-pollution/monitoring-networks-data/national-atmospheric-chemistry-database.html
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The NA models’ monthly average values of hourly near-surface SO2 (g) concentrations and daily PM2.5 930 
sulphate concentrations are compared to observations in Figure 14.  The monthly averages of daily 931 
(CAPMoN) and weekly (NADP) wet S deposition are shown in Figure 15.  Model-observation evaluation 932 
statistics are compared in Table S2 (Supplement).  Station locations for the observations are shown in 933 
Supplement Figures S15, S16, and S17.    934 

Table S2 shows that CMAQ-M3Dry and CMAQ-STAGE had the best values for most metrics, for the 935 
concentrations of SO2 and PM2.5 sulphate, and daily wet sulphur deposition.  The CMAQ-M3Dry, 936 
CMAQ-STAGE and WRF-Chem (IASS) had predominantly negative biases, and all other models had 937 
positive biases.  The same tendency can be seen in Figure 14(a), where CMAQ-M3Dry and CMAQ-938 
STAGE negative biases can be seen to occur in the warmer months, WRF-Chem (IASS) negative biases 939 
in the spring.  Despite these differences, the net contribution of SO2 dry deposition flux towards total 940 
sulphur deposition on an annual basis is relatively similar across the models (Table 4), with the standard 941 
deviation being relatively small, mostly driven by the SO2 deposition flux for WRF-Chem (UPM) being 942 
higher than for the other models. 943 

Particle sulphate (Figure 14(b), and Table S2) values were also closest to monthly observed values for 944 
CMAQ-M3Dry and CMAQ-STAGE, while being biased negative for WRF-Chem (IASS) and biased 945 
positive for the remaining models.  The evaluation of total S wet deposition (Figure 15(a), Table S2) 946 
showed that all models with the exception of GEM-MACH (Ops) had negative biases relative to the 947 
Canadian daily wet S deposition observations.  Weekly wet S deposition biases are also negative for most 948 
models (Table S2, Figure 15(b)), with only GEM-MACH-Ops having a positive bias in the ensemble.   949 

Figure 14.  Comparison of model (blue line) and observed (red line) monthly average surface concentrations of (a) 950 
hourly SO2 (ppbv)) and (b) daily PM2.5 sulphate (ug m-3), for the year 2016 (AQS, NAPS data). 951 

 952 

  953 
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Figure 15.  Comparison of model (blue line) and observed (red line) monthly average values of wet sulphur 954 
deposition for (a) daily CAPMoN data (eq ha-1 day-1), (b) weekly NADP data (eq ha-1 week-1), for the year 2016. 955 

 956 

Factors aside from emissions which affect the SO2 concentrations within the models are the loss processes 957 
of gas oxidation, uptake into hydrometeor water (and subsequent in-cloud oxidation), and dry deposition.  958 
Both the gas oxidation and hydrometeor uptake pathways may lead to particulate sulphate formation 959 
(through nucleation/condensation of sulphuric acid into particles and through evaporation of 960 
hydrometeors).  An underestimate of chemical conversion of SO2 within hydrometeors may thus be 961 
expected to result in underestimates of particulate sulphate and in sulphate ion wet deposition.  However, 962 
Table S2 shows relatively little bias for PM2.5 sulphate relative to observations for CMAQ-M3Dry and 963 
CMAQ-STAGE, and positive biases for the GEM-MACH models and WRF-Chem (UPM); these positive 964 
biases in predicted particulate sulphate would argue against an insufficient conversion of SO2 to 965 
particulate sulphate in the latter group of models.  Rather, the general tendency of negative biases in wet 966 
sulphur deposition may indicate insufficient hydrometeor scavenging and subsequent aqueous-phase 967 
oxidation of aerosols across all models.  We also note that the mean bias of SO2 concentrations for GEM-968 
MACH (Ops) is more positive than those of GEM-MACH (Base) and GEM-MACH (Zhang), while the 969 
particulate sulphate bias was lower, and the wet sulphate deposition bias was higher.  GEM-MACH (Ops) 970 
makes use of an operational weather forecast for cloud fields, while GEM-MACH(Base) and GEM-971 
MACH(Zhang) make use of an explicit cloud microphysics scheme, which allows weather/air quality 972 
feedbacks to be simulated, but tends to underestimate the cloud amounts when used at lower resolution 973 
such as the 10km grid cell size used in the simulations for these three models in this study.   The 974 
differences between {GEM-MACH (Base), GEM-MACH (Zhang)} and GEM-MACH (Ops) may thus 975 
reflect weaker scavenging of aerosols into clouds in the Base and Zhang implementations.  976 

  977 
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GEM-MACH (Base), GEM-MACH (Zhang) and WRF-Chem (UCAR) have the most positive biases for 978 
particulate sulphate.  As noted above, GEM-MACH (Base) and GEM-MACH (Zhang) share a common 979 
framework, and unlike other models in the ensemble, they also share an implementation of the updated 980 
particle deposition parameters of Emerson et al. (2020).  The Emerson et al.  (2020) makes use of 981 
extensive measurement data, and compared to earlier parameterizations such as Zhang et al.  (2001), 982 
results in decreased dry deposition velocities for sub-micrometer particles and increased dry deposition 983 
velocities for particles larger than 0.2 to 0.8 um, depending on land use type.  The increased PM2.5 SO4 984 
values in GEM-MACH (Base) and GEM-MACH (Zhang) in Figure 14(b) may thus reflect decreases in 985 
the deposition removal flux in the sub-micrometer portion of the bins in these 12-bin sectional model 986 
framework.  WRF-Chem (UPM) and WRF-Chem (UCAR) are also both sectional models making use of a 987 
common modelling framework, with WRF-Chem (UPM) being a slightly earlier release than WRF-Chem 988 
(UCAR).  Neither model made use of the Emerson et al.  (2020) update at the time the AQMEII4 989 
simulations took place.  However, this option was later examined for the WRF-Chem (UCAR) 990 
configuration by Ryu and Min (2022), who found that the Emerson et al.  (2020) dry deposition 991 
parameterization, applied subsequent to the runs carried out here, resulted in an increase in the positive 992 
PM2.5 bias from +4.5 to +6.7 ug m-3 and a shift towards less negative biases in PM10, from -19.7 to -1.77 993 
ug m-3, similar to the biases in particulate sulphate and ammonium observed in Figure 14(b) between 994 
{GEM-MACH (Base), GEM-MACH(Zhang)} and GEM-MACH (Ops).    Ryu and Min (2022) further 995 
found that the additional update of replacing the default Slinn (1984) aerosol cloud scavenging 996 
parameterization by the Wang (2014) parameterization offset the increase in PM2.5 SO4 biases associated 997 
with the new particle dry deposition scheme, illustrating the extent to which combinations of 998 
parameterizations are sometimes needed to improve model performance.  More recent versions of GEM-999 
MACH also make use of multiphase hydrometeor partitioning, with and without the Wang (2014) semi-1000 
empirical scavenging scheme, with a significant increase in the uptake of particulate sulphate depending 1001 
on precipitation rate, and improvements in the wet sulphate performance relative to previous model 1002 
versions (Ghahreman et al., 2024).  Implementation of both updated particle dry deposition velocities and 1003 
wet scavenging methodology have thus resulted in reduced biases for these fields, for several of the 1004 
models examined here, in work subsequent to the simulations for AQMEII4. 1005 

With regards to wet sulphur deposition, Figure 15(a) and Table S2 shows a tendency of most models 1006 
towards negative biases for total daily wet S deposition.  However, this negative bias is much less 1007 
pronounced or even positive in comparison to the weekly wet S deposition data.  Other metrics of model 1008 
performance differed sharply between the two wet deposition observation datasets for some metrics, with 1009 
the weekly wet SO4

2- deposition data comparison having higher MGE, NMGE, and RMSE values than the 1010 
daily wet SO4

2- deposition data comparison.  The overall tendency of the performance was similar for 1011 
both datasets, with the CMAQ models having the best scores for metrics other than mean bias. We note 1012 
that the daily and weekly NA wet deposition values correspond to monitoring networks in two different 1013 
locations (see Figure S15(a)).  The daily values are from the Canadian CAPMoN network (stations in the 1014 
common AQMEII4 domain are located mostly in south-eastern Canada), while the weekly data from the 1015 
US NADP network are distributed throughout the USA.  The differences in model performance may thus 1016 
reflect regional differences in predicted meteorological and/or emissions fields. 1017 

One possible cause for the negative biases in wet deposition common to most models could be 1018 
underestimates in the amount of model-predicted precipitation, which in turn would reduce the wet flux. 1019 
The net precipitation totals converted to liquid water for the eight NA models and observations are shown 1020 
in Figure S18, for both daily (CAPMoN) and weekly(NADP)  monthly averages.  While the monthly 1021 
averages of daily precipitation (Figure S18(b)) suggest a tendency towards negative biases in the summer 1022 
months for some models, the time series of the precipitation biases does not follow that of the wet 1023 
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sulphate deposition biases (for example, the difference relative to wet sulphate observations in Figure 1024 
15(a) remains relatively constant for CMAQ-M3Dry and CMAQ-STAGE, while the predicted 1025 
precipitation difference relative to observations for the same models in Figure S18(a) shows more 1026 
negative biases in the summer than wintertime.  Model total precipitation biases thus do not appear to be a 1027 
major contributing factor to the sulphur flux biases found in this work.   1028 

We also note the potential for the lower magnitude biases in the daily wet SO4
2-  evaluation, compared to 1029 

the weekly evaluation, to be the result of the respective regions represented by the two monitoring 1030 
networks.  Figure S16(a) shows that the daily data are derived from a smaller geographic area than the 1031 
weekly data, hence regional performance differences may be affecting the two evaluation results.   1032 

Summary, North American S Deposition variability 1033 

Sulphur deposition results from a complex balance between SO2 oxidation, particulate sulphate formation, 1034 
scavenging and release of particles within clouds, in addition to the processes governing deposition of 1035 
each of the components.  The largest contributing pathways to North American sulphur deposition, in 1036 
descending order of importance, were wet deposition (SO4

2- + HSO3
-), particulate sulphate dry deposition, 1037 

and dry SO2(g) deposition in the reduced ensemble of mnodel runs.  The largest contributors to model-to-1038 
model variability in sulphur deposition, in descending order of importance, were particulate sulphate dry 1039 
deposition, wet deposition (SO4

2- + HSO3
-), and dry SO2(g) deposition.   1040 

CMAQ-M3Dry, CMAQ-STAGE, and GEM-MACH (Ops) had both the highest levels of wet deposition 1041 
and also the best scores relative to wet deposition observations.  Models with higher PM2.5 sulphate 1042 
positive biases relative to observations also had stronger negative biases for wet sulphate deposition, 1043 
indicating that the magnitude of particle scavenging into hydrometeors may play a role in both biases in 1044 
the models.  Comparisons between {GEM-MACH (Base), GEM-MACH (Zhang)} and {GEM-MACH 1045 
(Ops)} provide some evidence for this effect.  WRF-Chem (UPM) and WRF-Chem (UCAR) have very 1046 
low particulate sulphate deposition fluxes relative to the other models, and substantial positive biases in 1047 
PM2.5 sulphate and negative biases in wet sulphate deposition, relative to observations, likely related to 1048 
insufficient wet scavenging of sulphate particles into hydrometeors (Ryu and Min, 2022) 1049 

3.2.2 Causes of N Deposition Variability in North America Domain Simulations 1050 

The common grid spatial average and percent contribution of each of the species contributing to total 1051 
annual N deposition for 2016 are given in Table 5. The columns in the Table are arranged in descending 1052 
order from left to right of contribution to the reduced ensemble total nitrogen deposition for each 1053 
contributing chemical (“Red. Ens. Avg” row).  The impact of variability on the model deposition from 1054 
each component for each model is once again shown as the standard deviation across the models used for 1055 
the reduced ensemble (“Red. Ens. Std. Dev” row).  From the standard deviation row, it can be seen that 1056 
the variation (standard deviation) between models for the contributions towards total N deposition are 1057 
driven, in descending order, by particle ammonium (DAM column, where the standard deviation for 1058 
particle ammonium deposition is larger than the reduced ensemble mean value), followed by wet 1059 
ammonium ion (WNH4), wet nitrate ion (WNO3), dry HNO3 (DHNO3), dry particle nitrate (DNI), dry 1060 
NO2 (DNO2), dry ammonia gas (DNH3), with the remaining species contributing a small percentage of 1061 
the total variability.    Both the particle ammonium and wet ammonium variability between the models is 1062 
largely driven by the GEM-MACH group of models, which have average dry particle ammonium and wet 1063 
ammonium fluxes which are respectively 17.4x and 1.76x higher than the other models.   1064 
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We next evaluate the models’ nitrogen performance using the available concentration and wet deposition 1065 
flux data to determine the impact of the parameterization differences on model performance, and hence 1066 
identify which components in which models might be improved. 1067 



41 
 

Table 5.  Contributions of N species towards total deposition (eq ha-1 yr-1) and percent of total N deposited, over the 1068 
common AQMEII4 NA grid, arranged in descending order of importance to the reduced ensemble average. WNH4:   1069 
wet deposition of NH4

+(aq). DHNO3: dry deposition of HNO3(g).  WNO3: wet deposition of NO3
-(aq).  DAM: dry 1070 

deposition of particulate ammonium.  DNH3: dry deposition of NH3(g).  DNI: dry deposition of particulate nitrate.  1071 
DNO2: dry deposition of NO2(g).  DPAN: dry deposition of peroxyactylnitrate gas.  DRN3: dry deposition of 1072 
gaseous organic nitrate gases.  DN2O5: dry deposition of N2O5(g).  DHNO4: dry deposition of pernitric acid gas.  1073 
DNO: dry deposition of NO(g).  WRF-Chem (IASS) did not report dry particle fluxes.  The GEM-MACH 1074 
models and WRF-CHEM(UPM) do not include dry deposition of N2O5(g), and the GEM-MACH models 1075 
do not dry deposit HNO4(g). 1076 

Average (eq ha-1 yr-1) 

 Model 

 Species 
CMAQ-

M3Dry 
CMAQ-

STAGE 

WRF-

Chem  

(IASS) 

GEM-

MACH 

(Base) 

GEM-

MACH 

(Zhang) 

GEM-

MACH 

(Ops) 

WRF-

Chem 

(UPM) 

WRF-

CHEM 

(UCAR) 

Red. 

Ens 

Avg 

Red. 

Ens. 

Std 

Dev 
WNH4  51 60.4 0.2 129 129 114.2 64.3 29.4 82.5 37.7 
DHNO3  52.5 51.9 0 66.9 56.2 62.4 75.1 46.8 58.8 9.1 
WNO3  65.6 66.9 0.2 45 51.3 71.9 73.1 33.6 58.2 14 
DAM  8.5 8.4 nd 98.5 100.7 82.6 2.7 2 43.3 44.2 
DNH3  33.2 29.5 36.3 26.9 26.6 40 40.3 47.2 34.8 7.3 
DNI  18.3 18.9 nd 26.8 32.7 19 7.6 7.1 18.6 8.6 
DNO2  7.9 7.3 7.7 23.8 21.9 26.7 10.9 10.8 15.6 7.6 
DPAN  4.9 4.7 2 7.7 7.4 10 2.7 2 5.6 2.7 
DRN3  6.6 4.9 0.4 1.8 2.4 3.1 0.7 3.1 3.2 1.8 
DN2O5  1.2 1.1 2.2 nd nd nd nd nd 1.2 0.1 
DHNO4  0.4 0.1 0 nd nd nd 0.8 0.4 0.3 0.1 
DNO  0.5 0.5 0 0.1 1.2 0.2 0 0 0.4 0.4 
Total N 250.7 254.7 49 426.5 429.4 430 278.2 182.4 321.7 96.5 
Percent Contribution 

 Model 

Species 
CMAQ-

M3Dry 

CMAQ-

STAGE 

WRF-

Chem 

(IASS) 

GEM-

MACH 

(Base) 

GEM-

MACH 

(Zhang) 

GEM-

MACH 

(Ops) 

WRF-

Chem 

(UPM) 

WRF-

CHEM 

(UCAR) 

Red. 

Ens 

Avg 

Red. 

Ens. 

Std 

Dev 

WNH4  20.4 23.7 0.4 30.2 30 26.5 23.1 16.1 25.6 4.7 

DHNO3  21 20.4 0 15.7 13.1 14.5 27 25.7 18.3 5 

WNO3  26.2 26.3 0.3 10.6 11.9 16.7 26.3 18.4 18.1 6.4 

DAM  3.4 3.3 nd 23.1 23.5 19.2 1 1.1 13.5 9.9 

DNH3 13.2 11.6 74.2 6.3 6.2 9.3 14.5 25.9 10.8 7.6 

DNI  7.3 7.4 nd 6.3 7.6 4.4 2.7 3.9 5.8 1.8 

DNO2  3.2 2.9 15.8 5.6 5.1 6.2 3.9 5.9 4.9 1.3 

DPAN  1.9 1.9 4.1 1.8 1.7 2.3 1 1.1 1.7 0.5 

DRN3  2.6 1.9 0.7 0.4 0.6 0.7 0.2 1.7 1 0.8 

DN2O5  0.5 0.4 4.4 nd nd nd nd nd 0.4 0 

DHNO4  0.2 0 0 nd nd nd 0.3 0.2 0.1 0.1 

DNO  0.2 0.2 0.1 0 0.3 0 0 0 0.1 0.1 

WNH4  20.4 23.7 0.4 30.2 30 26.5 23.1 16.1 25.6 4.7 

1077 
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Dry deposition of particle ammonium 1078 

The largest source of variability between North America models’ total N predictions resides in the dry 1079 
particle ammonium deposition fluxes, with Table 5 showing that the standard deviation of this deposition 1080 
flux across models was essentially as large as the reduced ensemble average.  Particle dry ammonium 1081 
deposition contributes a disproportionately high contribution to total N variability across the North 1082 
American ensemble, despite the magnitude of the ensemble average particle ammonium dry deposition 1083 
flux being less than the deposition of wet ammonium ion, dry nitric acid gas, or wet nitrate ion,   1084 

Figure 16 compares the monthly average PM2.5 ammonium concentrations with observations (station 1085 
locations appear in Figure S15(b)), and Table S3 provides detailed statistics.  From the latter, CMAQ-1086 
M3Dry and CMAQ-STAGE have the best overall performance for particulate ammonium, and GEM-1087 
MACH (Base), GEM-MACH (Zhang) and GEM-MACH (Ops) have the worst performance by the 1088 
statistical measures used here.  This latter group of models also have the largest magnitude of positive 1089 
biases relative to observed PM2.5 ammonium concentrations, while the CMAQ implementations have the 1090 
negative biases, and the remaining models have smaller magnitude positive biases.  Figure 16 shows that 1091 
CMAQ-M3Dry, CMAQ-STAGE, WRF-Chem (IASS) and to a lesser extent WRF-Chem (UPM) have a 1092 
greater seasonal variability in model particle ammonium (blue line) than observed (red line), with the 1093 
difference between summer and winter (months 1 and 12 versus months 5 through 9) being higher in the 1094 
models than in observations.   1095 

The GEM-MACH contributions to model N variability in critical load exceedances are thus linked to poor 1096 
model performance for PM2.5 ammonium.  This poor performance is likely due to two factors, which can 1097 
be deduced from comparing the process representations implemented in the models (section 2.2).  1098 

The first factor, which differentiates GEM-MACH (Base), GEM-MACH (Zhang) and GEM-MACH 1099 
(Ops) from the other ensemble members relates to how inorganic aerosol thermodynamic partitioning  1100 
chemistry has been implemented: while all this process representation in the models of the ensemble is 1101 
derived from the ISORROPIA module (Nenes et al., 1998; Fountoukis et al., 2007), the GEM-MACH 1102 
implementations in AQMEII-4 employ a partial speciation of SO4

2-, NH4
+ and NO3

- (Makar et al., 2003), 1103 
and do not include the reactions involving particulate base cations (Ca2+, Mg2+, Na+, K+).  The other 1104 
models in the ensemble do include these additional reactions. In the absence of base cation chemistry, the 1105 
formation of particle ammonium will be controlled by the availability of ammonia gas in excess of that 1106 
required to charge balance particulate sulphate, as well as by the availability of nitric acid gas.  In the 1107 
presence of base cations, nitric acid gas will preferentially associate with base cations rather than 1108 
ammonia, leaving less HNO3 available for particle ammonium nitrate formation.  Several observational 1109 
studies have shown that when base cations are present, their peak mass occurs in the coarse particle size 1110 

mode (> 2.5 m diameter), where they will have higher deposition velocities (e.g. inland, agricultural dust 1111 
sources, Makar et al., 1998; ocean sources of sea-salt, Anlauf et al., 2006).   Base cation inorganic 1112 
heterogeneous chemistry thus provides a competing pathway for uptake of nitrate into particles, and when 1113 
present, will also reduce the amount of NH3 that may be taken up by particles, especially in the fine mode.  1114 
The positive bias of PM2.5 ammonium in Figure 16 for GEM-MACH relative to the other models likely 1115 
represents the impact of simplified inorganic aerosol chemistry. 1116 

The second factor influencing the GEM-MACH models positive particulate ammonium biases may be 1117 
reflected in the biases for GEM-MACH (Base) and GEM-MACH (Zhang), which are 50% to a factor of 1118 
two, respectively, higher than that of GEM-MACH (Ops):  that is, an additional source of bias resides in 1119 
the former two model implementations that is not present in the latter implementation.  The likely source 1120 
of this additional bias is their use of Emerson et al.  (2020) particle deposition velocities in these 1121 
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implementations, in the absence of enhanced wet scavenging of aerosols, as discussed above for PM2.5 1122 
sulphate, and described in Ryu and Min (2022) and Ghahreman et al.  (2024).  Ryu and Min (2022) 1123 
showed that the use of the updated particle deposition velocity as per Emerson et al.  (2020), when 1124 
implemented in the absence of concurrent multiphase wet scavenging updates led to positive biases in 1125 
PM2.5 concentrations in the WRF-Chem model.      1126 

We note that the manner in which inorganic heterogeneous chemistry is simulated also differs between the 1127 
models. CMAQ-M3Dry and CMAQ-STAGE calculate local equilibrium concentrations at different 1128 
modes of the size distribution, and WRF-Chem (UPM) and WRF-Chem (UCAR) also calculate the 1129 
equilibrium with respect to specific size bins, while GEM-MACH (Base), GEM-MACH (Zhang) and 1130 
GEM-MACH (Ops) carry out a single bulk calculation across all size bins.  The use of a bulk calculation 1131 
is a third simplification for the latter group of models, and may also affect the particulate ammonium 1132 
performance of these models.   1133 

Figure 16.  PM2.5 ammonium compared to observations, North American Model Ensemble, 2016.  Red line:  1134 
monthly observed average.  Blue line:  monthly model average. 1135 

 1136 

1137 
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The spatial distribution of PM2.5 ammonia biases was examined in Figure 17, for the month of July, 2016 1138 
(July was chosen due to the expectation that bidirectional fluxes would have a higher impact in the 1139 
summer months). The region with the highest positive biases (dark red circles, Figure 17) are in the same 1140 
station locations for all models, in the agricultural region to south of the Great Lakes.  Positive PM2.5 1141 
ammonium MB also occur near urban regions in western USA (Seattle/Tacoma, Yakima, Portland, 1142 
Sacramento, San Jose, Boise, Butte, Helena, Denver, Boulder, and Albuquerque) and at one eastern site 1143 
Miami.  A re-examination of ammonia gas deposition and emissions parameters and primary particle 1144 
ammonium emissions inventories are recommended for these locations, given that they are likely having a 1145 
large impact on model performance statistics.  The CMAQ models and WRF-Chem (IASS) have negative 1146 
to minimal biases along the coastlines and SW USA (regions of sea-spray NaCl and wind-blown base 1147 
cation containing dust, respectively), while WRF-Chem (UPM) and WRF-Chem (UCAR) have small 1148 
negative to positive biases in these regions, and the GEM-MACH models are uniformly biased positive in 1149 
these regions.  This provides support to the possibility that the GEM-MACH positive bias in particulate 1150 
ammonium concentrations is due to missing particulate base cation chemistry; the regions where 1151 
particulate base cations would be expected to contribute significantly to total particulate mass are also the 1152 
regions where the GEM-MACH models have positive biases, and the biases in the other model biases are 1153 
not as significant. 1154 

Figure 17.  Mean Biases, PM2.5 NH4, July, 2016, by station (g m-3).  Negative values given in blue, positive biases 1155 
given in red.  Note that colour scale is logarithmic.   1156 

 1157 
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Wet deposition of ammonium and nitrate ions. 1158 

Wet deposition of ammonium ion is the largest contributor to the North America reduced ensemble Ndep, 1159 
and the second largest contributor to model-to-model variability in N deposition (Table 5).  Wet 1160 
deposition of nitrate ion is the third largest contributor to both the NA ensemble total N deposition and 1161 
model-to-model variability in N deposition.  Time series of the monthly averages of observed and 1162 
modelled daily (CAPMoN) and weekly (NADP) wet NH4

+ deposition fluxes are shown in Figure 18.  The 1163 
monthly mean of modelled daily values (Figure 18(a)) are generally biased negative, with the exceptions 1164 
of the months of July and August for GEM-MACH (Base) and GEM-MACH (Zhang).  The observed 1165 
maximum in NH4

+ wet deposition occurs in April (Figure 18(a), red line, month 4) – this seasonal 1166 
variation is captured only by GEM-MACH (Ops) and WRF-Chem (UCAR), with the other models 1167 
predicting peak deposition in between June through August.   The monthly average of the weekly wet 1168 
NH4

+ deposition fluxes (Figure 18(b)) shows a similar pattern, with the observed values (red lines, Figure 1169 
18(b)) peaking in April, and all of the models except for WRF-Chem (UCAR) peaking in June.  As was 1170 
the case for wet sulphate deposition, the observed seasonal variation is apparently not connected with 1171 
biases in precipitation predictions (see Figure S18(a,b), supplemental information), with the possible 1172 
exception of WRF-Chem (UCAR), for which total precipitation is biased substantially negative 1173 
throughout the year.   1174 

Figure 18.  Time series of monthly average observed (red line) and modelled (blue line) wet ammonium deposition 1175 
fluxes, for (a) Daily CAPMoN data (eq ha-1 day-1), and (b) Weekly NADP data (eq ha-1 week-1). 1176 

 1177 

As noted above, the models taking part in this ensemble did not make use of multiphase hydrometeor 1178 
scavenging in precipitation.  The maximum wet NH4

+ deposition negative bias in April featuring for 1179 
several models may reflect the absence of this level of detail in hydrometeor scavenging, with the absence 1180 
of snow scavenging potentially impacting early spring deposition.   We note that the weekly and daily 1181 
monitoring networks cover different geographical regions, hence the differences in model performance 1182 
relative to the two observation datasets (compare the CAPMoN and NADP station locations in yellow and 1183 
green circles respectively, Figure S15(a).   1184 
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The mean biases in average daily and weekly wet NH4
+ deposition for the month of April are shown in 1185 

Figure 19.  WRF-Chem (IASS), CMAQ-M3Dry, and CMAQ-STAGE have predominantly negative biases 1186 
throughout the region, WRF-Chem (UCAR) and WRF-Chem (UPM) have a few stations with more 1187 
positive biases, and the GEM-MACH models have both positive and negative biases throughout the 1188 
domain.  Insight into the differences in model performance can be gained through reviewing the manner 1189 
in which each model parameterizes aerosol activation and scavenging: 1190 

(1)  GEM-MACH (Base), GEM-MACH (Zhang), GEM-MACH (Ops), WRF-Chem (UPM), and 1191 
WRF-Chem (UCAR) make use of the aerosol activation scheme of Abdul-Razzak and Ghan 1192 
(2000), and the Slinn (1984) approach to aerosol scavenging.   1193 

(2) In GEM-MACH (Ops), the aerosol activation and scavenging schemes are decoupled from 1194 
meteorological feedbacks, while GEM-MACH (Base), GEM-MACH (Zhang), WRF-Chem 1195 
(UPM) and WRF-Chem (UCAR) are “aerosol-aware”/full feedback models incorporating 1196 
parameterizations for the aerosol direct and indirect effects. The latter will result in cloud 1197 
formation from model-produced aerosols acting as cloud-condensation nuclei; clouds are more 1198 
likely to form where aerosol concentrations are high (and thus more likely to scavenge aerosols 1199 
below the clouds as well), compared to offline models.  Very high aerosol concentrations may 1200 
also reduce cloud droplet size and cloud to precipitation conversion, potentially making clouds 1201 
more persistent, while reducing precipitation. 1202 

(3) WRF-Chem (IASS) also makes use of aerosol direct and indirect effect feedbacks, but employs 1203 
the approach of Chapman et al. (2009) for aerosol scavenging. 1204 

(4) CMAQ-M3Dry and CMAQ-STAGE are off-line models (no feedbacks between aerosols, cloud 1205 
formation and radiative transfer takes place), where interstitial and nucleation aerosol scavenging 1206 
by cloud droplets is modelled following Binkowski and Roselle (2003), and the wet deposition 1207 
rate is a simple parameterization dependent on the cloud total liquid water content, cloud 1208 
thickness, and cloud precipitation rate (Fahey et al., 2017). 1209 

The Slinn (1984) aerosol scavenging approach makes use of different observation-based aerosol 1210 
collection efficiency formulae for rain and snow, respectively, where temperature dependence in the 1211 
collection efficiency such as a 0 C  may be used to distinguish between liquid and solid hydrometeor 1212 
collection efficiencies. Subsequent to the AQMEII-4 simulations carried out here, parameterizations that 1213 
utilize multiphase precipitation data with multiple hydrometeor classes, such as that of Wang et al. 1214 
(2014), have been tested within the modelling framework of GEM-MACH (Ghahreman et al., 2024).(.  1215 
Similarly, Ryu and Min (2022) describes the impact of multiphase hydrometeor scavenging as 1216 
implemented in the WRF-Chem modelling framework.  These tests resulted in significant improvements 1217 
in particulate concentrations and wet deposition compared to previous implementations employing the 1218 
approach of Slinn (1984).   The approach for scavenging in Binkowski and Roselle (2003) assumes 1219 
scavenging only occurs to cloud droplets; snow scavenging is not considered.  However, snow scavenging 1220 
at higher precipitation rates is known to be one to two orders of magnitude more efficient than scavenging 1221 
by rain.  Hence the use of the  (Slinn (1984) parameterization instead of multiphase hydrometeor 1222 
scavenging and the ;  Wang, (2014) parameterization in GEM-MACH, and the omission of multiphase 1223 
hydrometeor scavenging in CMAQ, may account for the springtime bias in all models noted here. 1224 

The causes for the differences in wet deposition of NH4 between WRF-Chem (IASS), WRF-Chem (UPM) 1225 
and WRF-Chem (UCAR) may result from the use of the Chapman et al.  (2009) wet scavenging approach 1226 
in the first model, and the implementation of Abdul-Razzak and Ghan (2000), and the Slinn (1984) 1227 
approaches in the latter two models.  All three models make use of the Morrison Two-Moment cloud 1228 
microphysics scheme and (Morrison et al., 2009), though WRF-Chem (IASS and WRF-Chem (UPM) 1229 
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differ from WRF-Chem (UCAR) in the parameterization of convective clouds (See Table 1).  Differences 1230 
in aerosol scavenging implementations may account for some of the differences in wet ammonium 1231 
deposition between these models, as may the manner in which convective clouds identify cloud 1232 
condensation nuclei from aerosol size distribution and speciation within their convective 1233 
parameterizations. 1234 

Wet nitrate ion deposition is the third largest source of N deposition in the North American ensemble as 1235 
well as the third largest source of model-to-model variability (Table 5).  CMAQ-M3Dry, CMAQ-STAGE 1236 
and GEM-MACH (Ops) have the best performance scores for wet nitrate deposition (Table S3 1237 
(Supplement)).  GEM-MACH (Base) and GEM-MACH (Zhang) have larger magnitude and more 1238 
negative biases than GEM-MACH (Ops), despite all three models making use of the same modelling 1239 
framework.  The only difference between GEM-MACH (Base) and GEM-MACH (Zhang) is the gas-1240 
phase dry deposition algorithm employed (see Table 2).  The increase in wet deposition negative bias 1241 
magnitude going from GEM-MACH (Zhang) to GEM-MACH (Base) in Table S3 (from -0.19 to -0.26 eq 1242 
ha-1 d-1 for daily CAPMoN data, and from -0.41 to -0.64 for weekly NADP data) is therefore attributable 1243 
to gas-phase deposition differences.  This is also reflected in the HNO3 dry deposition flux for the two 1244 
models in Table 5, with the deposition flux for GEM-MACH (Base) at 66.9 eq ha-1 yr-1 being 19% higher 1245 
than the GEM-MACH (Zhang) value of 56.2 eq ha-1 yr-1. 1246 

The remainder of the difference in wet nitrate deposition bias between (GEM-MACH (Base, Zhang) and  1247 
GEM-MACH (Ops) must be due to other factors in the model configuration as described in Table 2.  1248 
Based on the PM2.5 sulphate and PM2.5 nitrate evaluations (Table S2, Table S3), as well as the work of 1249 
Ghahreman et al.  (2024) and Ryu and Min (2022), we believe that the cause of the additional wet nitrate 1250 
negative bias resides in the use of the new particle deposition velocity algorithm in the absence of a 1251 
simultaneous update in the wet deposition algorithm to make use of multiphase hydrometeor scavenging 1252 
of aerosols.  For example, the particulate matter scavenging coefficients for snow are one to two orders of 1253 
magnitude more efficient than for rain – including snow scavenging (which may occur at higher 1254 
elevations even in the summer) will lead to greater uptake of particles (Ghahreman et al., 2024).  The 1255 
Emerson et al. 2020 parameterization will lead to less particle deposition in sub-micrometer particle sizes 1256 
(and hence would otherwise increase PM2.5 concentrations – the increased scavenging associated with 1257 
multiphase hydrometeors will offset this effect. 1258 

Dry Deposition of HNO3 1259 

Dry deposition of HNO3 is the 2nd largest source of Ndep in the reduced ensemble, and the 4th largest 1260 
source of model-to-model variability.   1261 

The spatial variation of the annual sum of the effective deposition fluxes for HNO3 dry deposition are 1262 
shown in Figure S19, Figure S20, Figure S21 and Figure S22, representing the mass of HNO3 transferred 1263 
to the surface via the cuticle, soil, stomatal and lower canopy pathways respectively, and are summarized 1264 
as common grid totals in Figure 20.  Effective fluxes build on the concept of effective conductance: the 1265 
product of the hourly deposition flux with the ratio of specific pathway conductance to total deposition 1266 
velocity, for each of the four pathways (Galmarini et al., 2021).  The Figures thus depict the contributions 1267 
of each pathway towards the HNO3 dry deposition mass flux for each model1.  Effective fluxes 1268 
incorporate changes in the flux resulting from changes in chemical concentration associated with factors 1269 
in addition to deposition.  However, comparison of the effective flux values of Figure 20 to effective 1270 

 
1 Note that the CMAQ-M3dry and CMAQ-STAGE models incorporate the lower canopy pathway into the soil 

pathway; the lower canopy effects are not absent in these models, but form part of the soil pathway, and hence are 

reported here as part of the soil pathway. 
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conductances (not shown) has a similar pattern, implying that the deposition velocity is the dominating 1271 
factor in the HNO3 deposition flux.   The HNO3 mass flux is dominated by the cuticle pathway (Figures 1272 
S19, 20), followed by the soil pathway (Figures S20, 20).  All models show a similar pattern in HNO3 1273 
annual cuticle flux (largest fluxes in the south-eastern USA, lowest fluxes over the western mountain 1274 
ranges and the Canadian boreal forest), though the magnitudes of the fluxes vary, with WRF-Chem 1275 
(UPM) having the highest flux, GEM-MACH (Zhang) showing much lower fluxes for specific land use 1276 
types over the western mountains compared to the other models.   1277 

The HNO3 dry deposition velocity parameterizations in the GEM-MACH models depends in part on 1278 
deposition pathway parameterizations employing functions of the ozone and sulphur dioxide pathway 1279 
values (Makar et al., 2018; Zhang et al., 2003).  Other recent AQMEII4 work for ozone dry deposition 1280 
using an observation-driven single-point modeling framework (Clifton et al., 2023) found that the ozone 1281 
deposition velocity for GEM-MACH (Base) has positive biases in the summer months (average across 8 1282 
sites +73%), negative in the winter months (8 site average of -33%), while GEM-MACH (Zhang) has 1283 
smaller summer biases (+3%) and high winter biases (+50%).   This is consistent with the increase in dry 1284 
HNO3 deposition flux going from GEM-MACH (Zhang) to GEM-MACH (Base) though HNO also 1285 
deposits via dissociation (sulphur dioxide pathway); not all of the observed effects can be attributed to the 1286 
use of O3 as a proxy in part of the deposition algorithm..  A portion of the increase in the negative bias in 1287 
wet nitrate deposition going from GEM-MACH (Zhang) to GEM-MACH (Base) is thus the result of 1288 
higher HNO3 dry deposition removal of the available nitrate which would otherwise be taken up into 1289 
clouds.   1290 

  1291 
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Figure 19.  Model mean biases in wet ammonium deposition for the month of April, 2016, North America (eq ha-1 1292 
yr-1).  Daily station values of the mean bias (CAPMoN network) shown as diamond symbols, weekly station values 1293 
(NADP network) as circles.  Positive biases shown in red, negative biases shown in blue; note that colour scale 1294 
intervals are logarithmic. 1295 

 1296 

  1297 
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Figure 20.  Averages of flux pathway contributions to HNO3 dry deposition, AQMEII4 common NA grid, 2016 (eq 1298 
ha-1 yr-1). 1299 

 1300 

NH3 and the role of bidirectional flux algorithms 1301 

NH3 deposition fluxes were the fifth largest driver of ensemble nitrogen deposition, and the 7th largest 1302 
driver of Ndep variability in North America.  Two different observation datasets for the year 2016 were 1303 
used to evaluate model NH3 concentration performance, Cross-track Infrared Sounding (CrIS) satellite 1304 
retrievals of NH3 (see Supplement for retrieval procedure and references) and AMoN (Chen et al., 2014; 1305 
AMoN, 2024) surface monitoring network observations (see Supplement Figure S16(b) for AMoN 1306 
measurement locations).  The two datasets evaluate model NH3 performance in different ways.  The CrIS 1307 
observations (and model values extracted for evaluation) correspond to the specific time-of-day of the 1308 
satellite overpass, for the polar orbiting platform upon which the CrIS instrument is based.  The 1309 
evaluation against CrIS data is thus a measure of the model performance at early afternoon local time.  1310 
The AMoN observations in contrast are two-week integrated average concentrations; the AMoN 1311 
comparison evaluates average model performance on this integrated time scale, and hence includes into 1312 
that average diurnal variations in NH3 concentrations not available in the CrIS observations.   1313 

The evaluation of the models’ NH3 against CrIS observations at overpass time is shown in Table S4 1314 
(Supplement) and Figure 21.  The general trend for the models is one of negative biases in NH3 1315 
concentrations. CMAQ-M3Dry and CMAQ-STAGE, have the largest negative NH3 biases, lowest FAC2, 1316 
highest MGE, lowest R, lowest COE and lowest IOA scores in Table S4.  This suggests that the 1317 
magnitude of the fluxes and/or the balance between positive (downward; deposition) and negative 1318 
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(upward; emission) fluxes for CMAQ-M3Dry and CMAQ-STAGE are the cause of the model’s relatively 1319 
poor performance for NH3.  GEM-MACH (Base) and GEM-MACH (Zhang) have the smallest (and 1320 
positive) baises compared to the other models, and these two models as well as WRF-Chem (UPM) and 1321 
WRF-Chem (UCAR) have the best overall scores for NH3 against satellite data. 1322 

The satellite data comparison of Figure 21 also shows some significant differences between observed 1323 
ammonia and all models’ predicted ammonia, particularly over water bodies (oceans, Great Lakes), with 1324 
observed NH3 in the range 1-3 ppbv in the Atlantic and near Baja California, while the models all show 1325 
NH3 over the oceans always below 0.3 to 0.5 ppbv, and decreasing with increasing distance from the 1326 
shoreline.  All models reach 0.0 – 0.01 ppbv at the greatest distances from the shoreline, while the satellite 1327 
observations are above 0.5 ppbv (lower detection limit ~0.3 ppbv) throughout the common AQMEII4 1328 
domain.   1329 

NH3 emissions from natural sources has been a source of ongoing interest in the global modelling 1330 
community due to its properties as a greenhouse gas.  Paulot et al. (2015) reviewed estimates of global 1331 
oceanic NH3 emissions, with a range of 7 – 23 Tg N yr-1 and their own estimate being lower at 2.5 Tg N 1332 
yr-1.  Their estimated maps of NH3 emissions showed relatively lower values on the western shoreline of 1333 
North America (Pacific coast) than on eastern shoreline (Atlantic coast), and high emissions in three out 1334 
of the four oceanic NH3 flux models tested, in the Gulf of Mexico and along the Gulf stream between 1335 
North America and Europe (their Figure 3).  Subsequent simulations of oceanic outgassing (Paulot et al., 1336 
2020) showed oceanic outgassing in the Gulf of Mexico in excess of 0.03 g N m-2 yr-1 (17.6 eq ha-1 yr-1), 1337 
and between 0.01 and 0.02 g N m-2 yr-1 (5.9 to 11.8 eq ha-1 yr-1) in the Gulf Stream.  The oceanic 1338 
emissions model of Paulot et al. (2020) would be relatively straightforward to implement in a regional 1339 
modelling context; our work suggests that a considerable deficit in oceanic NH3 may be occurring in the 1340 
current regional air-quality models. 1341 

The evaluation of the models’ NH3 against biweekly surface observations at the AMoN sites is shown in 1342 
Table S5 (Supplement), where biweekly values have been used to create annual averages from both model 1343 
and observed values at observation sites.  GEM-MACH (Base) and GEM-MACH (Zhang) once again 1344 
have the lowest magnitude (and positive) biases relative to observations, CMAQ-M3Dry and CMAQ-1345 
STAGE have the most negative biases, though CMAQ-STAGE has the best correlation coefficient score, 1346 
and WRF-Chem (UPM) has the best scores overall aside from mean bias and correlation coefficient.    1347 

  1348 
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Figure 21.  Comparison of annual average surface NH3 concentrations at CrIS overpass times, participating models, 1349 
reduced ensemble, and corresponding CrIS observed average NH3 at overpass time.  Note that regions outside the 1350 
common AQMEII-4 domain have been assigned an “outside domain” mask value of -9. 1351 

 1352 

  1353 
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Figure 22 shows the contributions to total N deposition flux from dry deposition of NH3(g), and the 1354 
difference in overall deposition patterns between the models employing bidirectional NH3 flux 1355 
parameterizations (CMAQ-M3Dry, CMAQ-STAGE, GEM-MACH (Base), and GEM-MACH (Zhang)) 1356 
and the models which do not employ such a parameterization (WRF-Chem (IASS), GEM-MACH (Ops), 1357 
WRF-Chem (UPM), WRF-Chem (UCAR)).  The models utilizing bidirectional fluxes have large regions 1358 
where the net downward flux is given as zero in the panels of Figure 22 (dark blue regions, CMAQ-1359 
M3Dry, CMAQ-STAGE, GEM-MACH-Base, GEM-MACH Zhang models) – these are locations where 1360 
the annual total NH3 flux is upward; net emissions of NH3 when summed over the course of the year.  The 1361 
size of these regions differs between CMAQ-M3Dry and CMAQ-STAGE, indicating differences in the 1362 
bidirectional flux parameterizations between these models.  GEM-MACH (Base) and GEM-MACH 1363 
(Zhang) also use a bidirectional flux parameterization, which differs from those of CMAQ-M3Dry and 1364 
CMAQ-STAGE, and consequently have relatively similar patterns of net NH3 dry deposition versus 1365 
emissions.  Differences in land-use data as well as country-specific differences in the level of details 1366 
utilized in the bidirectional flux schemes also are resulting in differences between the two modelling 1367 
platforms (e.g. the north-western USA/south-western Canada border shows up as a sharp contrast in the 1368 
CMAQ models NH3 fluxes that utilize information from EPIC over the US and less detailed information 1369 
outside the US while this differences is much less pronounced in the GEM-MACH models).   1370 

  1371 
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Figure 22.  2016 N dry deposition fluxes (eq ha-1 yr-1) for NH3(g) (eq ha-1 yr-1).  Note that regions outside the 1372 
common AQMEII-4 domain have been assigned an “outside domain” mask value of -9.  1373 

 1374 

 1375 

The AQMEII4 diagnostics for NH3 deposition provide further insight into the causes of the differences 1376 
between the models employing NH3 bidirectional fluxes.  The most generic formula for NH3 bidirectional 1377 
fluxes is: 1378 

𝐹𝑇 =
𝑐𝑎−𝑐𝑐

𝑟𝑠𝑢𝑚
                                                                                      (5) 1379 

Where FT is the net flux, ca  is the atmospheric concentration of ammonia gas,  and rsum is a sum of 1380 
resistances associated with turbulent eddies and molecular diffusion of gaseous NH3 across the reference 1381 
height of air and the vegetation canopy.  cc  is the  is the canopy compensation point concentrations of 1382 
ammonia gas at the top of the canopy, and may be expressed as a function of the atmospheric 1383 
concentration as well as compensation point concentrations near stomata and the ground (cs, cg), and of 1384 
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the aerodynamic resistance of ammonia gas (ra).  As can be seen from equation (5), if the atmospheric 1385 
concentration is greater than the compensation point concentration, the flux will be positive (downward).  1386 
If the atmospheric concentration is less than the compensation point concentration, the flux will be 1387 
negative (upward).   Galmarini et al. (2021, Appendix C) gives the detailed formulae for the terms in 1388 
equation (5), for the bidirectional flux models participating in AQMEII4.  A comparison of ra, rsum, ca, cc, 1389 
cg, and cs may thus provide insight into the differences in the between the predicted NH3 dry deposition 1390 
fluxes for the models employing bidirectional flux parameterizations for the AQMEII4 North American 1391 
ensemble.  These terms were reported by AQMEII4 participants as the diurnal median (50th percentile) at 1392 
each UT hour within each month.  The median values for 16UT (noon EDT) for July 2016 are shown in 1393 
Figure 23. It is important to note that the median values for a given UT hour may correspond to different 1394 
days within a given month.  For example, the median values of rsum and ra at 16 UT in July may not occur 1395 
on the same day, and hence the median value of rsum  will not necessarily be greater than the median value 1396 
of  ra, as might be expected from the equations governing the resistances as given in Appendix C of 1397 
Galmarini et al.  (2021).  Also, not all models were able to report all variables (as noted above, for 1398 
CMAQ-M3Dry, the net and ground compensation point concentrations were calculated off-line of the 1399 
model simulation, and could not be included as AQMEII4 diagnostic parameters).  However, substantial 1400 
differences between the panels of Figure 23 provide a useful indication of relative importance of different 1401 
pathways in the participating models.  1402 

From Figure 23, we note:  1403 

(1) The 2016 July, 16 UT median aerodynamic resistance ra is similar for all four models (Figure 1404 
23(a)) – consequently, differences in ra are unlikely to be the cause of the model flux differences. 1405 

(2) The 2016 July, 16 UT median rsum values (Figure 23(b)) for CMAQ-M3Dry is considerably 1406 
smaller than for other models – at least some relatively high fluxes for CMAQ-M3Dry are due to 1407 
these smaller rsum values (which, appearing in the denominator for equation (5), will increase the 1408 
magnitude of the fluxes).  et al.  1409 

(3) The 2016 July, 16 UT median rsum values for CMAQ-STAGE over land are equal to those for ra 1410 
for this model.  This is expected (rsum = ra for this model, Galmarini et al., 2021); other terms 1411 
influence the magnitude and direction of the fluxes. 1412 

(4) The 2016 July, 16 UT median values of the air concentrations of NH3, ca (Figure 23(c)) are lower 1413 
for CMAQ-M3Dry and CMAQ-STAGE than for GEM-MACH (Base) and GEM-MACH 1414 
(Zhang), as might be expected from the above-mentioned bias calculations relative to CrIS and 1415 
AMoN data. 1416 

(5) The 2016 July, 16 UT median net compensation point concentration cc (Figure 23(d)) for CMAQ-1417 
STAGE is an order of magnitude smaller than for GEM-MACH (Base) and GEM-MACH 1418 
(Zhang).  From equation (5), this likely drives much of the large NH3 flux for this model and its 1419 
negative bias values; smaller cc values will result in larger positive (downward) net fluxes FT.   1420 

(6) Some of the locations where CMAQ-STAGE’s 2016 July, 16 UT median ground compensation 1421 
point concentration (cg) has maximized are where GEM-MACH (Base) and GEM-MACH 1422 
(Zhang) have zero to near-zero ground compensation point values (Figure 23(e) – e.g. Rocky 1423 
mountains, north-central USA agricultural region – dark blue areas in the GEM-MACH results 1424 
compared to much lighter values in the CMAQ-STAGE results).  The larger CMAQ-STAGE cg 1425 
values (local values were up to 1E4 ppbv for this model), if dominant, would be expected to 1426 
result in larger cc values in equation (5) (see Galmarini et al. 2021) and hence a tendency towards 1427 
smaller downward fluxes.  This is not the case from the above analysis (DNH3 values in Table 5 1428 
for CMAQ-STAGE are greater than those of the GEM-MACH models, and CMAQ-STAGE NH3 1429 
concentrations have more negative biases than the two GEM-MACH models), suggesting that the 1430 
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ground pathway is not the main term affecting the differences in model NH3 dry deposition 1431 
fluxes.   1432 

(7) For much of the AQMEII4 common domain (aside from SW USA), CMAQ-M3Dry and CMAQ-1433 
STAGE have lower 2016 July, 16 UT median stomatal compensation point concentrations than 1434 
either GEM-MACH (Base) or GEM-MACH (Zhang) (Figure 23(f)).  This in turn implies that the 1435 
difference in model dry deposition fluxes is via the stomatal pathway.   1436 

The main factors resulting in higher magnitude downward fluxes in CMAQ-M3Dry and CMAQ-STAGE 1437 
relative to GEM-MACH (Base) and GEM-MACH (Zhang) are thus lower net compensation point 1438 
concentrations (CMAQ-STAGE), lower stomatal compensation point concentrations (CMAQ-M3Dry, 1439 
CMAQ-STAGE), and lower rsum values (CMAQ-M3Dry).    1440 

Figure 23.  2016 Spatial distribution of 2016 July, 16 UT median n values for key bidirectional flux diagnostic 1441 
variables.  (a) Aerodynamic resistance (s cm-1), ra.  (b) Sum resistance (s cm-1), rsum.  (c) Air Concentration of NH3 1442 
(ppbv), ca.  (d) Net compensation point concentration (ppbv), cc.  (e) Ground compensation point concentration 1443 
(ppbv), cg.  (f) Stomatal compensation point concentration (ppbv), cs.  Note that regions outside the common 1444 
AQMEII-4 domain have been assigned an “outside domain” mask value of -9. 1445 

 1446 

All four bidirectional flux models calculate fluxes on specific land use types within each grid cell and use 1447 
some form of land use fraction weighting to generate the values of the key parameters in the bidirectional 1448 
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flux equations. The native land-use types used by each modelling platform were converted to a common 1449 
set of 16 AQMEII4 land use types (see Galmarini et al., 2021).   We investigated the CMAQ and GEM-1450 
MACH spatial and temporal patterns of ammonia bidirectional fluxes in the context of the AQMEII4 1451 
land-use types, along with the relationship to the highest regions of nitrogen CLE.   This is shown in 1452 
Figures 24 and 25, where Figure 24 panels (a and b) are the sum of AQMEII4 land use types 11 and 12 1453 
(i.e. the sum of “planted/cultivated” and “grassland” land use types) used in CMAQ and GEM-MACH 1454 
respectively.  Figure 24 panels (c and) are the sum of AQMEII4 land use fractions for land use types 6,7,8 1455 
and 13 (evergreen broadleaf forest, deciduous broadleaf forest, mixed forest, and savanna, respectively), 1456 
for CMAQ and GEM-MACH respectively.  We note that these forested areas are the ecosystems of 1457 
interest for many of the CLE values calculated earlier in this work.  The land use summations of Figure 1458 
25 are also worth noting in the context of the typical timing of the direction of NH3 fluxes during the 1459 
course of a day.   Figure 25 shows an example of this diurnal behaviour of the NH3 bidirectional fluxes 1460 
for the CMAQ and GEM-MACH models, at (a) 15:00 CDT and (b) 7:00 CDT.  Mid-afternoon fluxes 1461 
(Figure 26(a)) tended to be largely negative (upward; emissions; blue colours).  However, the spatial 1462 
location of the fluxes differs between the models even within a given model framework.  CMAQ-M3Dry 1463 
predicts afternoon emissions (blue colours) largely restricted to the combined grassland and agricultural 1464 
land use types, with deposition (red colours) to the forested areas in south-east Canada and south-east 1465 
USA.  CMAQ-STAGE predicts mid-afternoon emissions throughout western North America, though a 1466 
similar pattern of deposition as CMAQ-M3Dry in south-east Canada and south-east USA.  The GEM-1467 
MACH bidirectional fluxes in afternoon are mostly negative (emissions; blue).  All three models show 1468 
midafternoon NH3 deposition in the north-central USA, corresponding to a known region of high NH3 1469 
concentrations (Figure 21, CrIS NH3 retrieval maximum).  In contrast, early morning fluxes (Figure 1470 
25(b)) predicted by both CMAQ implementations are largely positive (downward; deposition; red 1471 
colours), across all land use types., while GEM-MACH predicts deposition in agricultural areas, and 1472 
emissions further downwind in south-east Canada and south-east USA.     1473 

The generic diurnal sign changes in the direction of the ammonia flux across all four models is easily 1474 
explained with reference to equation (5):  in mid-afternoon (Figure 25(a)), both the height of the planetary 1475 
boundary layer and the magnitude of thermal coefficients of diffusivity are relatively high, reducing the 1476 
ambient air concentration of ammonia gas (ca in equation 5), resulting in negative fluxes (emissions; blue 1477 
colours).  In the early morning (Figure 25(b)), both the boundary layer height and the magnitude of 1478 
thermal coefficients of diffusivity are lower, hence increasing the ambient air concentrations of ammonia 1479 
gas, resulting in more positive fluxes and prevalent deposition.  However, the different bidirectional flux 1480 
models show differences in diurnal behaviour by land use type.  CMAQ-M3Dry and CMAQ-STAGE 1481 
show a diurnal pattern of afternoon emissions from agricultural and grassland areas, and deposition in 1482 
forested regions downwind, and early morning deposition irrespective of land-use type.    GEM-MACH 1483 
shows stronger afternoon emissions regardless of land-use type, and morning lower magnitude emissions 1484 
in forested areas and deposition only in agricultural areas and the western USA.   1485 

We note that Table S4 measures model performance specifically at satellite overpass time in the afternoon 1486 
– i.e. at close to the time shown in Figure 25(a), and that the performance of CMAQ-M3Dry and CMAQ-1487 
STAGE is lower than the other models at this time, while the differences between the models aside from 1488 
magnitude of the bias is less pronounced in the integrated surface observations of Table S4.  This analysis 1489 
thus suggests that the CMAQ negative biases may be reduced in magnitude by re-examining the factors 1490 
contributing to compensation point concentrations in forested areas in the day; cc values (equation 5) are 1491 
probably too low in these regions at these times, leading to excessive positive (downward) fluxes.  That 1492 
is, the analysis suggests that the CMAQ negative NH3 biases may be the result of excessive deposition 1493 
and/or insufficient emissions, in forested areas, in both the daytime and early morning, with the effect 1494 
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most noticeable in the afternoon.  The bulk of the differences likely resides in the stomatal deposition 1495 
pathway.  Conversely, we note that the GEM-MACH bidirectional flux algorithm is overestimating 1496 
midafternoon ammonia in the SE USA relative to satellite observations (Figure 21), indicating that 1497 
compensation point concentrations may be overestimated in this region.   1498 

While NH3 fluxes are only the 5th largest source of N deposition in the North American reduced ensemble, 1499 
we also note that the manner in which NH3 bidirectional fluxes are treated in the context of critical load 1500 
exceedance calculations may be open to interpretation.  Exceedances with respect to critical loads are 1501 
calculated with respect to annual total deposition of N and S, but what constitutes total N deposition in 1502 
the context of bidirectional fluxes is less clear.  Here, we have taken the approach of assuming that 1503 
negative fluxes (emissions) of NH3 during the course of a year constitute a loss of N from the ecosystem, 1504 
but that NH3 contained within the ecosystem cannot be converted to other forms of N.  Consequently, the 1505 
approach taken here was to sum the hourly NH3 fluxes (positive downward and negative upward) for the 1506 
year simulated, with only those grid cells with net positive summations (i.e. net annual deposition fluxes) 1507 
adding towards total N deposition.  However, other interpretations are possible.  For example, only the 1508 
positive contributions on an hourly basis could be accumulated, and any losses of N from the same 1509 
ecosystems associated with NH3 emissions could be ignored/excluded from the N balance of the 1510 
ecosystem.   A third interpretation would be to assume that deposited NH3 within the ecosystem may be 1511 
converted to other forms of N, and hence the net NH3 flux (which may be positive or negative in different 1512 
parts of the region simulated) is added to Ndep, with Ndep being set to zero only when the NH3 emissions 1513 
flux exceeds the deposition flux of all other forms of N.   Here, we have taken the first of these 1514 
approaches.  We note that the second approach would lead to higher estimates of total Ndep than generated 1515 
here, while the third approach would result in lower estimates of total Ndep.  Although NH3 is the 5th 1516 
largest contributor to total Ndep across North America, these differences in approach may affect critical 1517 
load exceedance estimates in regions of high NH3 fluxes. 1518 

  1519 
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Figure 24. Comparison of AQMEII4 land use type fractions with locations of highest CLE for forest ecosystems, 1520 
CMAQ versus GEM-MACH.  Upper row:  grid cell fractional area composed of sum of AQMEII4 land use types 1521 
11+12 (planted/cultivated and grassland), for: (a) CMAQ-M3Dry and CMAQ-STAGE, (b) GEM-MACH (Base) and 1522 
GEM-MACH (Zhang).  Lower row:  grid cell fractional area composed of sum of AQMEII4 land use types 1523 
6+7+8+13 (evergreen broadleaf forest, deciduous broadleaf forest, mixed forest, and savanna), for (c) CMAQ-1524 
M3Dry and CMAQ-STAGE, (d) GEM-MACH (Base) and GEM-MACH (Zhang). 1525 

 1526 

1527 
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Figure 25.  NH3(g) flux (eq ha-1 hr-1) at (a) 15:00 CDT August 4, 2016 and (b) 7:00 CDT August 5, 2016.  Blue lines 1528 
in the CMAQ and GEM-MACH models (horizontal row)  panels encloses areas which are predominantly 1529 
agricultural and grassland, red line encloses areas which are predominantly evergreen broadleaf forest, deciduous 1530 
broadleaf forest, mixed forest and savanna, in each model’s respective land use databases (see Figure 24). Blue 1531 
shaded regions indicate negative (upward; emissions) NH3 fluxes, red shaded regions indicate positive (downward; 1532 
deposition) NH3 fluxes.  Green line:  boundary of regions where combined Agricultural and Grassland land use 1533 
types comprise greater than 70% of land cover.  Purple line:  boundary of regions where combined Forest land use 1534 
types comprise greater than 70% of land cover. 1535 

 1536 
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3.2.3 Causes of S Deposition Variability in European Domain Simulations 1537 

The relative contributions of the different sources of S deposition in the AQMEII4 EU common domain 1538 
for the year 2010 are shown in Table 6 and Figure 26. 1539 

The European ensemble contributions to total S deposition contrasted with those in North America; both 1540 
the contribution to total S deposition and the magnitude of variability between the models follow the 1541 
same descending order of importance:  SO2 dry deposition followed by wet (SO4

2- + HSO3
-) deposition, 1542 

followed by particulate sulphate dry deposition (see Table 6). The relatively higher importance of SO2 dry 1543 
deposition towards total sulphur deposition, compared to North America, may reflect a denser spatial 1544 
distribution of SO2 emissions in the EU domain compared to the North American domain, as well as 1545 
higher EU emissions in 2010 compared to the NA 2016 year focused on here for model variability 1546 
analysis.  Another potential cause of differences between the two domains may reflect differences in the 1547 
quality of the emissions data (and emissions reporting requirements) between the two jurisdictions.  SO2 1548 
emissions are largely from industrial stacks in both locations.  In North America, regulations require that 1549 
facility operators for large stack sources report their emissions and stack parameters making use of 1550 
Continuous Emissions Monitoring, on an hourly basis (USA) or as annual reports (Canada).  Plume rise 1551 
algorithms may then be used to distribute the emissions in the vertical within air-quality models.  In the 1552 
EU, stack sources are reported as annual totals without stack parameters which could be used for more 1553 
accurate plume rise estimates (e.g. volume flow rates, effluent temperatures); the lack of this more 1554 
detailed data necessitates approximations (either making use of “typical” plume rise rates or treating stack 1555 
sources as surface emissions without plume rise).  The larger variation in SO2 performance in the 1556 
simulations may thus reflect differences in the level of detail available within SO2 emissions inventories 1557 
in the two regions.     1558 

European observation data for model evaluation were taken from the European Monitoring and 1559 
Evaluation Programme (EMEP; https://www.emep.int/ , last accessed July 11, 2024), and the European 1560 
Air Quality Database (AIRBASE; https://data.europa.eu/data/datasets/data_airbase-the-european-air-1561 
quality-database-1?locale=en , last accessed July 11, 2024). 1562 

Table 6.  Average S deposition contributions in common AQMEII4 EU grid area (eq ha-1 yr-1) and percent 1563 
contribution to average total S deposition, 2010. 1564 

 
Average Deposition (eq ha-1 yr-1) Percent of total S deposition 

Model Number SO2(g) 

Dry 

Deposition 

SO4
(2-) + 

HSO3
(-) 

Wet 

Deposition 

Particle 

Sulphate 

Dry 

Deposition 

Total S 

Deposition 

SO2(g) 

Dry 

Deposition 

SO4
(2-) + 

HSO3
(-) 

Wet 

Deposition 

Particle 

Sulphate 

Dry 

Deposition 

WRF-Chem (IASS) 92.1 42.1 n.r. 134.2 68.6 31.4 n/d 

LOTOS-EUROS 

(TNO) 
38.3 37.9 5.4 81.5 47.0 46.4 6.6 

WRF-Chem (UPM) 105.6 63.2 3.2 172.0 61.4 36.7 1.9 

CMAQ 
(Hertfordshire) 

125.7 75.9 20.1 221.6 56.7 34.3 9.0 

Reduced ensemble 

average 
89.9 59.0 9.5 158.4 56.7 37.2 6.0 

Reduced ensemble 

standard deviation 
37.3 15.8 7.5 58.0 23.6 10.0 4.7 

 1565 

https://www.emep.int/
https://data.europa.eu/data/datasets/data_airbase-the-european-air-quality-database-1?locale=en
https://data.europa.eu/data/datasets/data_airbase-the-european-air-quality-database-1?locale=en
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Dry deposition of SO2 1566 

The model SO2 performance relative to observations at stations closer to urban centers (AIRBASE 1567 
network), and more broadly distributed over the EU region (EMEP network), as well as comparisons to 1568 
wet (SO4

2- + HSO3
-) deposition (EMEP wet deposition network), are shown in Table S6 (Supplement). 1569 

Observation station locations are shown in Figure S17(a).   WRF-Chem (IASS) had the best SO2 1570 
performance relative to both networks for most statistics, with the exceptions of a slightly smaller FAC2 1571 
score compared to other models for both AIRBASE and EMEP, and the largest negative bias for SO2 1572 
relative to AIRBASE observations.  The proximity of AIRBASE station locations to SO2 sources can also 1573 
be seen in Figure 27, where the AIRBASE monthly concentration y-axis (Figure 27(a)) is almost twice 1574 
that of the EMEP monthly concentration y-axis (Figure 27(b)).  Observed SO2 close to sources (Figure 1575 
27(a), red lines) shows a strong seasonal variability, with concentrations in the winter being a factor of 1576 
two higher than than in summer, likely showing the effect of increased winter stability on plume rise. This 1577 
tendency is greatly reduced at regional stations (Figure 27(b), red lines).   LOTOS-EUROS (TNO) 1578 
matches the near-source SO2 time series the most closely, while CMAQ (Hertfordshire) overestimates the 1579 
impact of seasonal variability (Figure 27(a)).  At regional stations, LOTOS-EUROS (TNO) and CMAQ 1580 
(Hertfordshire) overestimate seasonal variation, while WRF-Chem (IASS) most closely matches 1581 
observations.  At least some of the variation in simulated SO2 performance relative to observations and 1582 
hence in SO2 deposition fluxes and critical load exceedance estimates is due to some models 1583 
overestimating the seasonal variation in SO2 at regional locations further from cities.  This may reflect 1584 
differences in atmospheric stability, the seasonal response of the deposition algorithms, or the manner in 1585 
which plume rise is simulated between the models. 1586 

WRF-Chem (IASS) has the best overall performance for SO2; while this model’s mean bias is the most 1587 
negative for observation sites close to the sources (AIRBASE comparison), the remaining statistics are 1588 
the best of the ensemble, and the model bias performance is also better than the other models as the 1589 
distance from the sources increases (EMEP comparison).    The large negative biases in WRF-Chem 1590 
(IASS) model values may indicate an overestimate of SO2 deposition, though other model processes may 1591 
also play a role. 1592 

Wet Deposition of Sulphur 1593 

As was the case for most models on the North American domain, all EU domain models underestimated 1594 
wet deposition relative to observations (note negative biases in Table S6 and monthly time series 1595 
comparison versus observations in Figure 27(c)). CMAQ (Hertfordshire) outperforms the other models 1596 
relative to observations, though we note that the wet sulphur deposition bias for this model is nevertheless 1597 
-0.39 eq ha-1 yr-1, with a correlation coefficient of 0.15.  In contrast to the North American wet sulphur 1598 
deposition comparison time series (Figure 15, Table S2), the European wet deposition observations do not 1599 
show a spring-time peak in values, rather a seasonality centered around the month of June, with higher 1600 
values extending from March to September. 1601 

  1602 
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None of the EU models made use of updated particle dry deposition velocities available in more recent 1603 
literature; as a result, the relative contribution of particle dry deposition towards EU model-to-model 1604 
variability is small.  Speciated PM observations were not available for comparison to model predictions in 1605 
the EU region.    1606 

Returning to the spatial distribution of the relative contributions of the three forms of sulphur deposition 1607 
for the year 2010  shown in Figure 26,  CMAQ (Hertfordshire), with the highest SO2 deposition flux 1608 
(Figure 26(a), see also Table 6, Table S6) also has the most positive SO2 concentration mean bias.  With 1609 
increasing distance from the sources, the SO2 loss or conversion processes of all four models are likely 1610 
underestimated (EMEP SO2 biases are positive for all models, Table S6).  In contrast, all models have 1611 
significant negative biases in wet sulphur deposition (Table S6), hence at least one reason for this 1612 
underestimate may be insufficient conversion of SO2 to ionic sulphate and bisulphite in simulated cloud 1613 
water, through uptake of SO2 and scavenging of particulate sulphate.  The wet deposition of sulphur in 1614 
WRF-Chem (IASS) in particular seems anomalously low (Figure 26(c), Figure 27(b)), with much of 1615 
Europe having little to no wet sulphate deposition in this model.  1616 
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Figure 26.  Spatial distribution and magnitude of contributions to annual S deposition, AQMEII4 common EU 1617 
domain, 2010 (eq ha-1 yr-1).  (a) SO2(g) dry deposition.  (b) Total wet S deposition.  (c) Particle sulphate dry 1618 
deposition.  Note that regions outside the common AQMEII-4 domain have been assigned an “outside domain” 1619 
mask value of -9. 1620 

 1621 
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Figure 27.  Comparison of observed and modelled S, AQMEII4 EU common domain, 2010.  (a) AIRBASE SO2 (ug 1622 
m-3).  (b) EMEP SO2 (ug m-3). (c) Wet flux of total S deposition (eq ha-1 week-1).  Red: observations.  Blue: model. 1623 

 1624 

  1625 
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A comparison of the relative differences in the deposition pathway strength for the models may help shed 1626 
light on the causes of SO2 deposition flux variability between the models.  However, no effective fluxes 1627 
were reported by LOTOS-EUROS (TNO).  Figures S23 and S24 show the spatial distribution of the 1628 
summed annual effective fluxes for the reporting models, with the results in the common AQMEII4 EU 1629 
domain summarized in Figure 28.  1630 

Figure 28.  Averages of effective flux pathway contributions to SO2 dry deposition, AQMEII4 common EU grid, 1631 
2010 (eq ha-1 yr-1). 1632 

 1633 

Despite having the highest average SO2 deposition flux (Table 6), CMAQ (Hertfordshire) also has the 1634 
highest positive biases for SO2 ambient concentrations (Table S6). From Figures S23, S24 and 28, the 1635 
CMAQ (Hertfordshire) positive biases may be the result of spatial variations in deposition, specifically, to 1636 
low contributions to the cuticle effective fluxes in Northern Europe for this model (Figure S23(a)).  1637 
Despite these relatively low values, the SO2 net dry deposition flux for this model (Table 6) is higher than 1638 
that of the other models, implying that the low northern EU fluxes are being offset by higher values 1639 
elsewhere (eg. via the soil flux, compare soil and cuticle values in Figure 28).  We note that the effective 1640 
flux analysis is restricted to grid cells that do not have water as a dominant land use type (a maximum of 1641 
1% water land fraction was used as an exclusion criterion); for grid cells held in common (mostly land), 1642 
the CMAQ (Hertfordshire) the cuticle effective flux pathway specifically is lower than that of the other 1643 
models, while the differences are less noticeable for the other terms, as reflected by the summary values 1644 
in Figure 28.  Other than Northern Europe, CMAQ (Hertfordshire) has higher soil fluxes than WRF-1645 
Chem (IASS).  Similar to AQMEII4 analyses for ozone (Hogrefe et al., 2024, under preparation), the 1646 
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relative importance of the different pathways towards total deposition varies between the models.  For 1647 
example, WRF-Chem (IASS), with the best overall performance for SO2 concentrations aside from bias 1648 
and factor of 2, has flux contributions in descending order of importance: cuticle, stomatal, soil and lower 1649 
canopy. For CMAQ (Hertfordshire), with relatively poor performance and high positive biases (Table S6), 1650 
the flux contributions in descending order of importance are soil, cuticle, and stomatal (with lower canopy 1651 
being incorporated as part of soil flux, for this model), and the cuticle pathway contributes less to 1652 
deposition in northern Europe than the other models.  1653 

3.2.4 Causes of N Deposition Variability in European Domain Simulations 1654 

The common AQMEII4 EU domain relative contributions for each model’s deposited species towards 1655 
total nitrogen deposition and its variability are shown in Table 7.  The contributions towards total N 1656 
deposition for the reduced ensemble, in descending order of importance, were wet NO3

-, dry HNO3, wet 1657 
NH4

+, dry NH3, dry particulate nitrate, dry NO2, and dry particle ammonium, with relatively small 1658 
contributions from the other depositing N species.   The spatial distributions of the four largest 1659 
contributions to total N deposition are shown in Figure 29.   The largest contributions to model-to-model 1660 
variability, in descending order, were wet NO3

-, dry HNO3, dry NH3, wet NH4
+, and dry NO2, with smaller 1661 

contributions towards variability from the other species.   1662 

Wet deposition fluxes of NO3
- and NH4

+ and the ground-level concentration of NO2 are evaluated in Table 1663 
S7 (Supplement); monthly average time series comparisons wet deposition to the observations are 1664 
provided in Figure 30.  From Figure 29, WRF-Chem (IASS) predicted much lower magnitude wet NO3

- 1665 
and wet NH4

+ deposition fluxes than the other three models, and from Table S7, these result in larger 1666 
negative biases and poor overall performance relative to observations for WRF-Chem (IASS) in 1667 
comparison to the other models. LOTOS-EUROS (TNO) had the best overall performance for NH4

+ and 1668 
NO3

- wet deposition fluxes.  However, similar to the case for wet S deposition, all models have significant 1669 
negative biases for both nitrogen ion wet fluxes, as can be seen from Table S7 and Figure 30.  LOTOS-1670 
EUROS (TNO) has the best performance for statistics relating to the spatial and temporal distribution of 1671 
wet deposition, while WRF-Chem (UPM) has the lowest bias for wet NO3

- deposition.  A common feature 1672 
of the AQMEII4 ensemble of models for both EU and NA domains are these negative biases for wet 1673 
deposition of both sulphate and nitrogen species.  Also, we note that the observed wet NH4

+ deposition 1674 
(Figure 30(b), red line) peaks in June, while the model values (blue lines) peak earlier, in March.  This in 1675 
in contrast to the North American NH4

+ comparison (Figure 18), where observed peaks occur in April and 1676 
model peaks occur in June.   1677 

 1678 

  1679 
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Table 7.  Contributions of N species towards total deposition (eq ha-1 yr-1 and percent of total N deposited, common 1680 
AQMEII4 EU grid, 2010, arranged in descending order of importance to the reduced ensemble average. DNH3: dry 1681 
deposition of NH3(g).  WNH4:   wet deposition of NH4

+(aq). DHNO3: dry deposition of HNO3(g).  WNO3: wet 1682 
deposition of NO3

-(aq).  DAM: dry deposition of particulate ammonium.  DNI: dry deposition of particulate nitrate.  1683 
DNO2: dry deposition of NO2(g).  DPAN: dry deposition of peroxyactylnitrate gas.  DRN3: dry deposition of 1684 
organic nitrate gases.  DN2O5: dry deposition of N2O5(g).  DHNO4: dry deposition of pernitric acid gas.  DNO: dry 1685 
deposition of NO(g).  nr = not reported.  ndd = no dry deposition 1686 

Average (eq ha-1 yr-1) 

 Model 

Species 
WRF-Chem 
(IASS) 

LOTOS-
EUROS 

WRF-Chem 
(UPM) 

CMAQ 
(Hertfordshire) 

Red. Ens Avg 
Red. Ens. Std 
Dev 

WNO3  1.8 77.8 174.8 96.2 116.2 42 

DHNO3  50.2 38.4 120.5 78.6 79.2 33.5 

WNH4  4.3 90.3 74.6 64.1 76.3 10.8 

DNH3  60.5 76.8 47.9 29.6 51.5 19.4 

DNI  nr 18.2 25.9 13.5 19.2 5.1 

DNO2  11.6 23.6 27.5 6.3 19.2 9.2 

DAM  nr 14.2 6.2 6.6 9 3.7 

DPAN  2.3 ndd 2.7 5.2 4 1.2 

DN2O5  5.3 1.2 ndd 1 1.1 0.1 

DRN3  0.3 ndd 0.6 3.2 1.9 1.3 

DHNO4  1.4 ndd 0.9 0.2 0.5 0.4 

DNO  0.1 2 0.2 0.4 0.9 0.8 

Total N 137.6 342.7 481.9 304.8 376.5 76.1 
Percent Contribution 

 Model 

Species 
WRF-Chem 
(IASS) 

LOTOS-
EUROS 

WRF-Chem 
(UPM) 

CMAQ 
(Hertfordshire) 

Red. Ens Avg 
Red. Ens. Std 
Dev 

WNO3  1.3 22.7 36.3 31.5 30.9 5.6 

DHNO3  36.5 11.2 25 25.8 21 6.7 

WNH4  3.1 26.4 15.5 21 20.3 4.4 

DNH3  43.9 22.4 9.9 9.7 13.7 5.9 

DNI  nr 5.3 5.4 4.4 5.1 0.4 

DNO2  8.4 6.9 5.7 2.1 5.1 2.1 

DAM  nr 4.1 1.3 2.2 2.4 1.2 

DPAN  1.7 nd 0.6 1.7 1.1 0.6 

DN2O5  3.8 0.3 nd 0.3 0.3 0 

DRN3  0.2 nd 0.1 1.1 0.5 0.5 

DHNO4  1 nd 0.2 0.1 0.1 0.1 

DNO  0 0.6 0 0.1 0.2 0.2 

 1687 

 1688 

  1689 
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Figure 29.  Spatial distribution of contributions of (a) wet nitrate ion deposition, (b) dry gaseous HNO3 deposition, 1690 
(c) wet ammonium ion deposition, and (d) dry gaseous ammonia deposition towards total N deposition in the 1691 
common AQMEII4 EU domain, 2010 (eq ha-1 yr-1).  Note that regions outside the common AQMEII-4 domain have 1692 
been assigned an “outside domain” mask value of -9. 1693 

 1694 

Dry deposition of HNO3 was the second largest source of modelled EU nitrogen deposition variability.  1695 
The spatial distribution of the relative contributions of the four pathways towards the mass flux of HNO3 1696 
is shown in Figures S25 and S26 and are summarized for the entire grid in Figure 31.  There is more 1697 
heterogeneity between the EU models regarding the relative importance of the HNO3 deposition pathways 1698 
than was observed for the North American simulations (compare Figures 20 and 31).  In the North 1699 
American simulations, the cuticle deposition pathway also dominated for all models, followed by the soil 1700 
pathways.  In the EU simulations, the reported soil pathway for WRF-Chem (UPM) was several orders of 1701 
magnitude smaller than the same pathway for CMAQ (Hertfordshire).  The cuticle pathway dominated for 1702 
WRF-Chem (IASS) (not shown) and CMAQ (Hertfordshire).  The stomatal pathway magnitude is less 1703 
than the cuticle pathway for the EU models, but greater in general than for the North American models, 1704 
where the stomatal pathway had a smaller contribution to HNO3 dry deposition than the lower canopy 1705 
pathway.     1706 

Observations of 2010 HNO3(g), NH3(g), and dry particle nitrate were not available for comparison to the 1707 
model predictions.  However, observations of the NO2 concentrations, the 6th largest contributor to total N 1708 
deposition and the 5th largest contributor to model-to-model variability, were available at near-source 1709 
AIRBASE and regionally distributed EMEP stations (Table S7).  Aside from having the 2nd largest 1710 
magnitude mean bias, LOTOS-EUROS (TNO) had the best performance for NO2 relative to stations 1711 
positioned close to emissions sources (AIRBASE), while WRF-Chem (IASS) and CMAQ (Hertfordshire) 1712 
had the best performance for NO2 for stations distributed more widely across the region (EMEP).   1713 

  1714 
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Figure 30.  Monthly average comparison of wet nitrogen deposition, AQMEII4 common EU grid, 2010.  (a) Average 1715 
flux of NO3

-(aq).  (b) Average flux of NH4
+(aq).  (eq ha-1 day-1) 1716 

 1717 

 1718 

 1719 

1720 
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Figure 31.  Averages of flux pathway contributions to HNO3 dry deposition, AQMEII4 common EU grid, 2010 (eq 1721 
ha-1 yr-1).   1722 

 1723 

 1724 

Conclusions 1725 

We have used the AQMEII4 North American and European ensembles to calculate net Sulphur and 1726 
Nitrogen deposition from individual models and a reduced ensemble of all models.  These deposition 1727 
estimates were used to calculate exceedances of critical loads for these two regions, using several critical 1728 
load datasets.   An in-depth analysis of the causes of model-to-model variability followed, using 1729 
diagnostics designed for AQMEII4.  We therefore subdivide these conclusions by the domain simulated, 1730 
and the critical load exceedance and causes of model variability, within each domain.   1731 

North America, Critical Load Exceedances 1732 

All simulations showed a decrease in the size of the area in exceedance and the severity of exceedances 1733 
with respect to acidification of forest ecosystems and aquatic ecosystem acidity between the years 2010 1734 
and 2016.  The total area in exceedance for sensitive ephiphytic lichen species richness improved slightly, 1735 
but the severity of exceedance was greatly reduced.  Given that the lichen community has a dose-response 1736 
relationship with increasing deposition, this indicates reduced harm to forest health, even when the CL is 1737 
still in exceedance.  CLEs for herbaceous species community richness had substantial improvements in 1738 
the total area of exceedance and severity of exceedance.  The amount of exceedance in any given year and 1739 
the extent of reduction between the two years varied considerably between the models.  Any individual 1740 
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model provided a similar direction of the change between the two years; the range of estimates suggests 1741 
the utility of model ensembles where possible in estimating critical load exceedances, as well as model-1742 
measurement fusion, when sufficient S and N species data are available. 1743 

North America, Causes of Model S Deposition Variability 1744 

The total mass of North American Sulphur deposition followed, in decreasing order of importance, wet 1745 
deposition of S (SO4

2- + HSO3
-) , dry deposition of particulate sulphate, and dry deposition of SO2.  Dry 1746 

deposition of particulate sulphate contributed the most to model-to-model variability in total Sulphur 1747 
deposition, followed by wet deposition, and dry SO2 deposition. The models with the highest wet S 1748 
deposition levels had the best performance relative to monitoring network observations (CMAQ-M3Dry, 1749 
CMAQ-STAGE, GEM-MACH (Ops)), though all models’ wet S deposition was biased low relative to 1750 
observations.  A subgroup of models (GEM-MACH (Base), GEM-MACH (Zhang), GEM-MACH (Ops)) 1751 
had the highest positive biases in observed PM2.5 sulphate concentrations relative to monitoring network 1752 
observations, contributing to the model-to-model variability.  Recent work by Ryu and Min (2022) and 1753 
Ghahreman et al.  (2024) suggests that model negative biases for wet deposition may be improved 1754 
through incorporation of multiphase hydrometeor scavenging, and this may also reduce positive biases in 1755 
particulate mass resulting from the implementation of the Emerson et al.  (2020) particle dry deposition 1756 
algorithm (GEM-MACH (Base) and GEM-MACH (Zhang)).  Most North American reduced ensemble 1757 
models were in relatively good agreement with regards to their predictions for the total dry deposition 1758 
flux of SO2(g). 1759 

North America, Causes of N Deposition Variability 1760 

The largest contributors to the average total nitrogen deposition fluxes across North America in 2016 were 1761 
wet ammonium ion, dry HNO3, wet nitrate ion, dry particle ammonium, dry ammonia gas, dry particle 1762 
nitrate and dry NO2, with relatively minor contributions from the other depositing gases.   The largest 1763 
contributors to the average total N deposition flux variability across models in descending order of 1764 
importance were the deposition of dry particulate ammonium, wet ammonium ion, wet nitrate ion, dry 1765 
nitric acid, dry particle nitrate, dry NO2 and dry NH3.   1766 

The first and second contributions to model-to-model variability between the members of the reduced 1767 
North American ensemble were due to the three GEM-MACH implementations (Base, Zhang, and Ops) 1768 
all having much higher dry particle ammonium and wet ammonium ion deposition fluxes,  zero to 1769 
positive biases in wet ammonium ion deposition relative to observations during the summer, and the 1770 
largest positive biases for PM2.5 ammonium concentrations relative to observations, as a result of the 1771 
simplified sulfate-ammonium-nitrate-water inorganic aerosol thermodynamics algorithm they employed.  1772 
The positive biases in fine mode particle ammonium concentrations and positive biases in wet ammonium 1773 
ion deposition for this subgroup of models are likely caused by the absence of base cations as an 1774 
alternative sink of nitric acid in addition to ammonium nitrate formation. Updates to these model 1775 
implementations making use of a new, highly efficient solver for inorganic heterogeneous chemistry 1776 
which includes the base cation reactions (Miller et al., 2024) should reduce these positive biases.  The 1777 
absence of multiphase hydrometeor scavenging of particle mass may also play a role in the particle 1778 
ammonium positive biases for these models, and in the negative biases across all North American models 1779 
for wet ammonium and wet nitrate deposition (Ghahreman et al., 2024).    1780 

Dry deposition of nitric acid was the second largest contributor to total nitrogen deposition fluxes in 1781 
North America, and the fourth largest contributor to model-to-model variability, with cuticle and the soil 1782 
pathway dominating the HNO3 mass flux, usually by more than an order of magnitude.      1783 
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Comparisons of model-predicted 2016 concentrations of NH3(g) to both CrIS satellite-based observations 1784 
(in the afternoon, at overpass time) and ground-based AMON monitoring network values (biweekly 1785 
averages) showed that the details of implementation of ammonia bidirectional flux algorithms have a 1786 
large impact on model NH3 performance, with CMAQ-M3Dry and CMAQ-STAGE having the most 1787 
negative NH3 biases in NH3, and GEM-MACH (Base) and GEM-MACH (Zhang) models having the 1788 
smallest magnitude NH3 biases.  A detailed analysis of the magnitude and direction of these models 1789 
employing bidirectional flux algorithms showed a common diurnal behaviour of daytime emissions from 1790 
agricultural and grassland areas and deposition in downwind forested areas, and nighttime deposition in 1791 
all regions.  However, the GEM-MACH models predicted low magnitude net emissions from forested 1792 
areas downwind of agricultural areas in the early morning, while the CMAQ models predicted net 1793 
deposition at all locations.  Differences in the relative magnitudes of compensation point concentrations 1794 
and the strength of the daytime stomatal deposition pathway were shown to be the cause for these 1795 
differences.     1796 

Europe, Critical Load Exceedances 1797 

The AQMEII4 ensemble for Europe predicted similar exceedances with respect to acidity and 1798 
eutrophication in 2009 and 2010, with the 3-member reduced ensemble showing slightly reduced 1799 
exceedance levels for acidity, and slightly increased exceedance levels for eutrophication, in 2010.  We 1800 
note that the models used made use of inorganic aerosol thermodynamics algorithms which included 1801 
reactions of base cations, and none made use of more recent updates to the particle dry deposition 1802 
parameterization (Emerson et al., 2020, Pleim et al., 2022).  Consequently, the magnitude of differences 1803 
between the models varied from the North American models, as well as the order of importance of 1804 
different forms of Sulphur towards total deposition differed from the North American ensemble. 1805 

Europe, Causes of Model S Deposition Variability 1806 

The common domain average reduced ensemble sulphur dry deposition contributions and their variability 1807 
followed the same decreasing order of importance (SO2,  Wet S, dry particulate sulphate).  WRF-Chem 1808 
(IASS) had the best overall performance relative to observations for SO2 concentrations, while CMAQ 1809 
(Hertfordshire) had the best performance for wet S deposition.  LOTOS-EUROS (TNO) and CMAQ 1810 
(Hertfordshire) tended to overestimate regional SO2 seasonality, with much higher concentrations in 1811 
winter than summer compared to observations in the EMEP SO2 network.  Near-source observations 1812 
(AIRBASE network) had higher winter than summer values, though this seasonal variation was largely 1813 
absent in the observations for stations more representative of regional conditions (EMEP).  The positive 1814 
biases in modelled regional SO2 concentrations for LOTOS-EUROS (TNO) and CMAQ (Hertfordshire) 1815 
(the latter relative to both EMEP and AIRBASE stations) may reflect differences in plume rise 1816 
distribution between the models, or in their driving meteorology’s vertical stability (e.g. the modelled 1817 
wintertime atmosphere may be more stable than is observed, for these models).  As was the case in the 1818 
North America ensemble, all models had negative biases for wet S deposition.  As in North America, the 1819 
manner in which cloud scavenging of particulate sulphate and SO2 was implemented in these models may 1820 
be the cause of the wet deposition negative biases.  Unlike North America, speciated PM measurements 1821 
were unavailable for model evaluation and bias correction. 1822 

EU SO2 deposition pathways were investigated with AQMEII4 diagnostics; the soil and cuticle pathways 1823 
dominated, and the stomatal pathway was relatively unimportant.   This order of importance may reflect 1824 
diurnal and seasonal SO2 concentration variations. SO2 concentrations are more likely to be high under 1825 
more stable atmospheric conditions (these inhibit the rise of buoyant SO2 plumes from large stack 1826 
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sources); these conditions are more likely to occur more frequently at night and in the winter, when the 1827 
influence of the stomatal pathway is at its minimum.   1828 

Europe, Causes of Model N Deposition Variability 1829 

The relative contributions towards total N deposition and the range in the EU domain were in decreasing 1830 
order of importance: wet nitrate ion, dry HNO3, wet ammonium ion, dry ammonia gas, dry particle 1831 
nitrate, and dry NO2.  The variations in the N deposition values between models were smaller than in 1832 
North America, likely due to the use of base cation-inclusive inorganic aerosol thermodynamic algorithms 1833 
in all models, and the use of older implementations of wet scavenging and particle dry deposition than in 1834 
the North American models.  We note that dry NH3 deposition was the 4th largest contributor to European 1835 
N deposition model-to-model variability, with the model employing a bidirectional flux algorithm 1836 
(LOTOS-EUROS) having the highest NH3 deposition.  Satellite-based NH3 data was unavailable for 1837 
Europe for the years simulated, but is recommended for simulation evaluation in more recent years. 1838 

LOTOS-EUROS (TNO) had the best overall performance for wet nitrate deposition, wet ammonium 1839 
deposition, and near source NO2 concentrations compared to the other models.  However, all EU models 1840 
had substantial negative biases in wet nitrate and ammonium deposition, in common with the North 1841 
American models. The seasonality of wet N deposition was poorly simulated, with most models failing to 1842 
predict the observed summertime maximum of wet ammonium deposition.  Given that this negative bias 1843 
has its maximum in the summer, when agricultural NH3 emissions are also likely to maximize, evaluation 1844 
in more recent years of NH3 predictions against satellite data is recommended.     1845 

In accord with the NA ensemble, those EU models which reported effective flux diagnostics for all four 1846 
HNO3 dry deposition effective flux pathways showed the cuticle and soil pathways dominating.  The 1847 
details of the individual land-use database may be seen in the HNO3 deposition flux diagnostics (Figures 1848 
S25 and S26), with differences in the amount of inland water being apparent.  Furthermore, we note that 1849 
the land-use databases employed in critical load exceedance calculations may also differ from those used 1850 
in individual models.  Such mismatches are another source of uncertainty in the estimation the critical 1851 
load exceedances for the dry deposition portions of total S and N deposition. The effect of land-use type 1852 
classifications on model deposition fluxes for ozone will be examined in more detail in a companion 1853 
paper (Hogrefe et al., 2024, ACPD, in preparation). 1854 

Impact of Bias Correction as a Simple Form of Model-Measurement Fusion 1855 

A simple form of model-measurement fusion (bias correction) was applied to each of the models’ species 1856 
contributing to total sulphur and nitrogen deposition, for those component species for which observations 1857 
were available, and corresponding bias-corrected critical load estimates were generated.    This sometimes 1858 
resulted in substantial decreases in model-to-model variability in the CLEs generated, indicating that 1859 
model-measurement fusion will decrease model-to-model variability, and improved CLE estimates, 1860 
provided sufficient data is available on the main contributors to total sulphur and total nitrogen 1861 
deposition.  In the case of Europe, the application of bias-correction increased CLE variability for 1862 
acidification, likely due to the lack of particulate sulphate observations in Europe for the years simulated. 1863 
The substantial contrast to North American bias-corrected values suggests that the bias corrections for 1864 
individual species contributing to total sulphur deposition may offset each other (e.g. positive biases in 1865 
particle sulphate may be offset by negative biases in wet deposition).  In the absence of speciated particle 1866 
observation data in Europe, this compensating effect could not be captured using bias correction, and 1867 
hence the European CLE variability increased with bias correction.    1868 
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An important implication of the bias correction exercise conducted here is the need for observation data 1869 
which close the sulphur and nitrogen deposition budgets to the greatest extent possible, when carrying out 1870 
model-measurement fusion.  The biases with respect to observations for sulphur species may reflect 1871 
inaccuracies in the transformation of one species to another for example – if model-measurement fusion is 1872 
applied to only some of the species contributing to sulphur deposition, the resulting total sulphur 1873 
deposition field and exceedance estimates may be less accurate than the original model fields.  Similarly, 1874 
we note that the observations available here did not include particle nitrate or nitric acid data – and hence 1875 
the impacts of model measurement fusion on total nitrogen deposition may potentially lead to less 1876 
accurate estimates than the original model values. 1877 

Recommendations:  Air-Quality Modelling Needs Identified by the Analysis 1878 

Our analysis suggests that model biases and model-to-model variability may be reduced through targeted 1879 
research into specific model process components. These include: 1880 

Multiphase hydrometeor scavenging of gases and aerosols into clouds to reduce the magnitude of wet 1881 
deposition and particle concentration biases. 1882 

Incorporation of improved particle deposition velocity algorithms (e.g Emerson et al., 2020) – but only in 1883 
combination with multiphase wet scavenging (Ryu and Min, 2022, Ghahreman et al., 2024.) 1884 

Incorporation of base cation inorganic chemistry (if not already present) (Fountoukis and Nenes, 2007; 1885 
Miller et al., 2024) and improved base cation emissions inventory development.   1886 

NH3 bidirectional fluxes evaluated using satellite data, with particular reference to improving 1887 
compensation point estimates for forested areas.   1888 

Land use type database harmonization across models and between models and critical load databases. 1889 
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