

1 Critical Load Exceedances for North America and Europe using an
2 Ensemble of Models and an Investigation of Causes for Environmental
3 Impact Estimate Variability: An AQMEII4 Study

4 Paul A. Makar¹, Philip Cheung¹, Christian Hogrefe², Ayodeji Akingunola¹, Ummugulsum Alyuz³, Jesse
5 O. Bash², Michael D. Bell⁴, Roberto Bellasio⁵, Roberto Bianconi⁵, Tim Butler⁶, Hazel Cathcart¹, Olivia
6 E. Clifton^{7,8}, Alma Hodzic⁹, Iannis Kioutsoukis¹⁰, Richard Kranenburg¹¹, Aura Lupascu^{6,12}, Jason A.
7 Lynch¹³, Kester Momoh³, Juan Luis Perez-Camanyo¹⁴, Jonathan Pleim², Young-Hee Ryu¹⁵, Roberto San
8 Jose¹⁴, Donna Schwede^{2,16}, Thomas Scheuschner¹⁷, Mark W. Shephard¹, Ranjeet S. Sokhi³, Stefano
9 Galmarini¹⁸

10 [1] Environment and Climate Change Canada, Toronto, Canada

11 [2] ORD, U.S. EPA, Research Triangle Park, NC, USA

12 [3] Centre for Climate Change Research (C3R), U. Hertfordshire, UK

13 [4] Air Resources Division, US National Park Service, USA

14 [5] Enviroware srl, Concorezzo, MB, Italy

15 [6] Research Institute for Sustainability – Helmholtz Centre Potsdam, Germany

16 [7] NASA Goddard Institute for Space Studies, New York, NY, USA

17 [8] Center for Climate Systems Research, Columbia University, New York, NY, USA

18 [9] NCAR, Boulder, CO, USA

19 [10] Department of Physics, University of Patras, Patras, Greece

20 [11] NOASR, Utrecht, the Netherlands

21 [12] ECMWF, Bonn, Germany

22 [13] OAR, US EPA, USA

23 [14] Tech. U. of Madrid (UPM), Madrid, Spain

24 [15] Yonsei University, Seoul, South Korea

25 [16] (Retired)

26 [17] CCE/Federal Environment Agency, Germany

27 [18] JRC, European Commission, Ispra, Italy

28

29 Correspondence to: Paul Andrew Makar (paul.makar@ec.gc.ca)

30 **Abstract**

31 Exceedances of critical loads for deposition of sulphur (S) and nitrogen (N) to different ecosystems were
32 estimated using European and North American ensembles of air quality models, under Phase 4 of the Air
33 Quality Model Evaluation International Initiative (AQMEII4), to identify where risk of ecosystem harm is
34 expected to occur based on model deposition estimates. The ensembles were driven by common
35 emissions and lateral boundary condition inputs. Model output was regridded to common North
36 American and Europe 0.125° resolution domains, which were then used to calculate critical load
37 exceedances. Targeted deposition diagnostics implemented in AQMEII4 allowed an unprecedented level
38 of post-simulation analysis to be carried out and facilitated the identification of specific causes of model-
39 to-model variability in critical load exceedance estimates.

40 Datasets for North American critical loads for acidity for forest soil water and aquatic ecosystems were
41 created for this analysis. These were combined with the ensemble deposition predictions to show a
42 substantial decrease in the area and number of locations in exceedance between 2010 and 2016 (forest
43 soils: 13.2% to 6.1%; aquatic ecosystems: 21.2% to 11.4%). All models agreed in the direction of the

44 ensemble exceedance change between 2010 and 2016. The North American ensemble also predicted a
45 decrease in both severity and total area in exceedance between the years 2010 and 2016 for
46 eutrophication-impacted ecosystems in the USA (sensitive epiphytic lichen: 81.5% to 75.8%). The
47 exceedances for herbaceous community richness also decreased between 2010 and 2016, from 13.9% to
48 3.9%. The uncertainty associated with the North American eutrophication results is high; there were
49 sharp differences between the models in both predictions of total N deposition and the change in N
50 deposition, and hence in the predicted eutrophication exceedances between the two years. The European
51 ensemble was used to predict relatively static exceedances of critical loads with respect to acidification
52 (4.48% to 4.32% from 2009 to 2010) while eutrophication exceedance increased slightly (60.2% to
53 62.2%).

54 While most models showed the same changes in critical load exceedances as the ensemble between the
55 two years, the spatial extent and magnitude of exceedances varied significantly between the models. The
56 reasons for this variation were examined in detail by first ranking the relative contribution of different
57 sources of sulphur and nitrogen deposition in terms of deposited mass and model-to-model variability in
58 that deposited mass, followed by their analysis using AQMEII4 diagnostics, along with evaluation of the
59 most recent literature.

60 All models in both the North American and European ensembles had net annual negative biases with
61 respect to observed wet deposition of sulphate, nitrate and ammonium. Diagnostics and recent literature
62 suggest that this bias may stem from insufficient cloud scavenging of aerosols and gases, and may be
63 improved through the incorporation of multiphase hydrometeor scavenging within the modelling
64 frameworks. The inability of North American models to predict the timing of the seasonal peak in wet
65 ammonium ion deposition (observed maximum was in April, while all models predicted a June
66 maximum) may also relate to the need for multiphase hydrometeor scavenging (absence of snow
67 scavenging in all models employed here). High variability in the relative importance of particulate
68 sulphate, nitrate and ammonium deposition fluxes between models was linked to the use of updated
69 particle dry deposition parameterizations in some models. However, recent literature and further
70 development of some of the models within the ensemble suggests these particulate biases may also be
71 ameliorated via the incorporation of multiphase hydrometeor scavenging. Annual sulphur and nitrogen
72 deposition prediction variability was linked to SO_2 and HNO_3 dry deposition parameterizations, and
73 diagnostic analysis showed that the cuticle and soil deposition pathways dominate the deposition mass
74 flux of these species. Further work improving parameterizations for these deposition pathways should
75 reduce variability in model acidifying gas deposition estimates. The absence of base cation chemistry in
76 some models was shown to be a major factor in positive biases in fine mode particulate ammonium and
77 particle nitrate concentrations. Models employing ammonia bidirectional fluxes had both the largest and
78 the smallest magnitude biases, depending on the model and bidirectional flux algorithm employed. A
79 careful analysis of bidirectional flux models suggests that those with poor NH_3 performance may
80 underestimate the extent of NH_3 emissions fluxes from forested areas.

81 Model-measurement fusion in the form of a simple bias correction was applied to the 2016 critical loads.
82 This generally reduced variability between models. However, the bias correction exercise illustrated the
83 need for observations which close the sulphur and nitrogen budgets in carrying out model-measurement
84 fusion. Chemical transformations between different forms of sulphur and nitrogen in the atmosphere
85 sometimes result in compensating biases in the resulting total sulphur and nitrogen deposition flux fields.
86 If model-measurement fusion is only applied to some but not all of the fields contributing to total
87 deposition of sulphur or nitrogen, the corrections may result in greater variability between models, or less

88 accurate results for an ensemble of models, for those cases where an unobserved or unused observed
89 component contributes significantly to predicted total deposition.

90 Based on these results, an increased process-research focus is therefore recommended for the following
91 model processes and on observations which may assist in model evaluation and improvement:
92 multiphase hydrometeor scavenging combined with updated particle dry deposition, cuticle and soil
93 deposition pathway algorithms for acidifying gases, base cation chemistry and emissions, and NH_3
94 bidirectional fluxes. Comparisons with satellite observations suggest that oceanic NH_3 emissions sources
95 should be included in regional chemical transport models. The choice of land use database employed
96 within any given model was shown to significantly influence deposition totals in several instances, and
97 employing a common land use database across chemical transport models and critical load calculations is
98 recommended for future work

99 Introduction

100 The concept of a Critical load (CL) was first proposed as a means for evaluating the ecosystem impacts of
101 the deposition of sulphur and nitrogen in response to the Convention on Long-Range Transboundary Air
102 Pollution (CLRTAP), an international agreement for mitigation and control of acidifying pollution, which
103 entered into force in 1983 (CLRTAP, 2023). The Convention provided some of the initial impetus for the
104 development of comprehensive air-quality models. The models provide a means of estimating the
105 deposition fluxes of sulphur- and nitrogen-containing chemicals of anthropogenic origin, which may then
106 be used to estimate the corresponding ecosystem impacts. Critical load exceedance estimates are the
107 broadly accepted methodology for estimating the potential for ecosystem harm related to acidification and
108 eutrophication. A critical load in this context was defined (Nilsson and Grennfelt, 1988) as “A
109 quantitative estimate of an exposure to one or more pollutants below which significant harmful effects on
110 specified sensitive elements of the environment do not occur, according to present knowledge”. This
111 definition is parsed in detail for readers unfamiliar with the Critical Load concept, in the Supplemental
112 Information (SI).

113 The creation of critical loads for acidification, and the calculation of their exceedances is based on the
114 concept of chemical charge balance steady-state within soil water or aquatic ecosystems. The fluxes of
115 anions and cations entering or leaving an ecosystem are used to determine whether an excess cation flux
116 is available to the ecosystem, which could balance anion fluxes associated with acidifying deposition.
117 Anion fluxes added to the system from anthropogenic sources include forms of deposited sulphur and
118 nitrogen noted above. The S-containing forms of deposition (S_{dep}) are assumed to rapidly oxidize and are
119 treated within critical load calculations as the sulphate ion. Every mole of deposited sulphur is assumed
120 to be associated with two negative charges as the sulphate ion, $\text{SO}_4^{2-}(\text{aq})$, hence the deposition flux is
121 tracked as *charge equivalents per hectare per year*; $\text{eq ha}^{-1} \text{ yr}^{-1}$. N-containing forms of deposition (N_{dep})
122 are assumed to rapidly oxidize and are treated as the nitrate ion - every mole of deposited nitrogen
123 (including those of ammonia and ammonium) is assumed to be associated with one negative charge of
124 nitrate ion deposition, $\text{NO}_3^-(\text{aq})$. Base cations and their deposition (Ca^{2+} , Mg^{2+} , K^+ , and Na^+) are
125 included in critical load calculations (collectively, BC_{dep}), and may incorporate anthropogenic base cation
126 fluxes. The anthropogenic deposition fluxes to the ecosystem from the atmosphere are used in
127 calculations of critical load exceedances. The critical loads themselves include estimates of natural
128 atmospheric fluxes as well as other terms for fluxes of anions and cations. For example, in the steady-
129 state or simple mass balance (SMB) model often used to define surface water critical loads for terrestrial
130 ecosystems (Sverdrup and DeVries, 1994), BC_{dep} includes the release of soil base cations due to
131 weathering, non-marine chloride deposition, harvesting of base cation and/or nitrogen-containing

132 biomass, denitrification, nitrogen immobilization in the rooting zone, run-off volume, and a critical value
133 of the non-sodium base cation to aluminum ion ratio. Aquatic ecosystem critical loads with respect to
134 acidity are usually calculated using the steady-state water chemistry (SSWC) or the first-order acidity
135 balance (FAB) methodologies (Henriksen and Posch, 2001; CLRTAP 2023, de Vries *et al.*, 2015), or other
136 similar approaches (McDonnell *et al.*, 2014). The SSWC makes use of the difference between an
137 estimate of the sea-salt corrected pre-acidification concentration of base cations in the surface water, and
138 a specified biological indicator species' acid neutralizing capacity limit above which no significant
139 damage is expected to occur. The FAB methodology assumes the runoff fluxes at a lake outlet are charge-
140 balanced, relates these runoff terms to fluxes of ions entering the lake and dimensionless retention factors
141 and to terms for nitrogen immobilization, nitrogen growth uptake into vegetation, denitrification,
142 atmospheric deposition, and weathering. An overview of the above methods for critical load (CL)
143 estimation, and how they are used in estimating exceedances, may be found in CLRTAP (2023), Makar *et*
144 *al.* (2018) and the references therein.

145 Critical loads of nutrient nitrogen and their exceedances are used to address the issue of the influx of
146 airborne nitrogen resulting in changes in soil-based processes, plant growth and inter-species
147 relationships. Nitrogen-containing gases and aerosol components may be directly toxic to sensitive
148 individual plant and animal species, while the accumulation of nitrogen (increased nitrogen availability)
149 may also change species composition or relative abundance. Soil-mediated effects of acidification may
150 include eutrophication, and species may have increased susceptibility to secondary stressors such as
151 drought, frost, pathogens or herbivores (CLRTAP, 2023). Critical loads for the eutrophication processes
152 associated with nutrient nitrogen in terrestrial ecosystems may also make use of a version of the SMB
153 model. This critical load model balances the input fluxes of all forms of nitrogen deposition plus
154 biological fixation and soil nitrogen adsorption against ecosystem nitrogen losses (immobilization in soil
155 organic matter, removal via harvesting of vegetation and animals, fluxes to the atmosphere
156 (denitrification), erosion, combustion, ammonia volatilization, and leaching below the root zone).
157 Biological fixation, soil adsorption, combustion, erosion and ammonium leaching are usually considered
158 negligible, and denitrification is assumed to be linearly dependent on the net input of nitrogen, leading to
159 critical loads of nutrient nitrogen dependent only on immobilization, harvesting removal, a sensitive plant
160 or animal species acceptable limit for nitrogen leaching (nitrogen in soil water), and an ecosystem-
161 dependent denitrification fraction (CLRTAP, 2023). The acceptable limits for nitrogen concentrations in
162 soil can range from 6.5 down to 0.2 mg N l⁻¹, depending on vegetation type (CLRTAP, 2023). A further
163 means of estimating eutrophication is via comparison of measured nitrogen deposition with observed
164 ecosystem damage over a large number of sites (Geiser *et al.* 2019; Simkin *et al.* 2016). Exceedances for
165 eutrophication in this case may be estimated as the differences between the estimated nitrogen deposition
166 and the observation-based critical load.

167 As noted in the Supplement, critical load exceedance calculations are carried out on an ongoing basis due
168 to the ongoing cycle of chemical transport model (CTM) process improvement. The results of our
169 analyses should thus be considered a “snapshot” of the state of both CTM science and critical load (CL)
170 knowledge at the time the simulations and critical load data collection took place (2021). CTMs
171 numerically integrate the system of time-dependent differential equations describing the rates of change
172 of chemical species in the atmosphere, in order to predict the changes in chemical concentrations and
173 deposition over time. This is usually done by breaking the net differential equation for the rates of change
174 into component processes (e.g. advection, diffusion, gas-phase chemistry, inorganic particle chemistry,
175 dry deposition, particle microphysics treating the nucleation, condensation of gases, coagulation of
176 particles, cloud processing of gases and aerosols including wet deposition), with the processes being
177 solved in sequence to determine the future state of the atmosphere (Marchuk, 1990). However, there is

178 usually not a complete scientific consensus on the best numerical methods to carry out the time-stepping
179 for each of these processes, and the level of detail in process representation in the models may also vary
180 considerably, depending at times on external constraints such as the processing time available for CTM
181 simulations. The individual processes are usually evaluated based on laboratory or other process-specific
182 data wherever possible, but often the selection of a specific process representation within a CTM is often
183 based on comparisons of the output of entire CTM relative to surface or satellite monitoring data. This
184 latter approach may allow compensating errors in process representation to take place (c.f. Makar *et al.*,
185 2014; Hyder *et al.*, 2018; Huang *et al.*, 2021; Vizuete *et al.*, 2022). These considerations may contribute
186 to the resulting variability in deposition estimates from the different modelling frameworks. The work
187 conducted here uses analysis of new model diagnostic outputs added for AQMEII-4 to attempt to
188 determine the key causes of these model deposition estimate differences.

189 The ongoing reevaluation and improvement of CTMs is aided by ensemble model comparisons, where
190 models driven by the same lateral boundary and emissions inputs are cross-compared and evaluated
191 against observations. The Air-Quality Model Evaluation International Initiative (AQMEII) has comprised
192 model CTM ensemble evaluation studies, to date in four phases. The initial phase of AQMEII utilized
193 largely off-line regional models used for research and public policy support to simulate a common year,
194 2006, with common emissions inputs, in both North America and Europe, with 22 modelling groups
195 participating (Galmarini *et al.*, 2012). Subsequent phases of AQMEII examined specific issues within the
196 CTM community: AQMEII-2 had as its focus the evaluation of both weather and air-quality predictions
197 for fully coupled, on-line air-quality models, where the particulate matter generated by the models on any
198 given timestep feeds back into the coupled models' weather forecast radiative transfer and cloud
199 formation processes (Galmarini *et al.*, 2015). AQMEII-3 addressed questions of hemispheric transport of
200 air pollutants – the relative contributions of local versus long-range transport towards predicted pollutant
201 concentrations, and their impacts on ecosystem and human health (Galmarini *et al.*, 2017).

202 The variety in underlying scientific theory encapsulated within CTMs and their process representation
203 implies the need for cross-comparison of critical load exceedance predictions from a variety of models.
204 As part of AQMEII-3, 14 air-quality models were used to calculate oxidized sulphur and oxidized and
205 reduced nitrogen deposition, and hence EU critical load exceedances (Vivanco *et al.*, 2018). This
206 comparison revealed a high degree of variability in simulated wet and dry deposition fluxes. The models
207 with the best performance relative to observations were used to provide ensemble critical loads – a
208 “reduced ensemble” in that not all models submitting output for the study were used in generating
209 ensemble critical loads. However, even within this reduced ensemble, local variations of over a factor of
210 four in both sulphur and nitrogen deposition could be seen between the ensemble members, and the
211 predicted percent area in exceedance for sensitive ecosystems varied by more than a factor of two for the
212 best performing models (Vivanco *et al.*, 2018). These results highlighted the large range of model-
213 dependent variability possible in critical load exceedance estimates – but the causes for that variability,
214 and how it might be reduced, were not investigated to any significant extent.

215 The study protocols of AQMEII phase four (AQMEII4) were designed partly in response to the large
216 variation in model sulphur and nitrogen deposition estimates noted in Vivanco *et al.* (2018), Solazzo *et al.*
217 (2018) and Hogrefe *et al.* (2020). AQMEII4 protocols were also motivated by a similarly large variation
218 in simulated ozone deposition velocities (Hardacre *et al.*, 2015; Zhiyong Wu *et al.*, 2018), and renewed
219 emphasis on the importance of specific ozone deposition pathways (Clifton *et al.*, 2017, 2020a,b).

220 AQMEII4 has two main activities: a regional model intercomparison with enhanced diagnostics for gas-
221 phase dry deposition (Galmarini *et al.*, 2021), and an observation-driven single-point model
222 intercomparison study for ozone dry deposition at sites with ozone flux records (Clifton *et al.*, 2023). The

223 current work continues the regional model intercomparison driven by common boundary conditions, with
224 a focus here on critical load exceedances for acidity and eutrophication, and the use of additional
225 diagnostics to determine the underlying causes for the model-to-model variability in these exceedance
226 estimates.

227 As described later in our analysis, two processes account for much of the variability in CTM predictions
228 of the total deposition of sulphur and nitrogen (S_{dep} and N_{dep}): particle dry deposition and the scavenging
229 of particles by depositing hydrometeors. We note that subsequent to the construction and application of
230 the model versions applied in AQMEII4, new parameterizations for particle dry deposition became
231 available. Emerson *et al.* (2020) compiled multiple particle dry deposition velocity observations and
232 compared these to the predictions of the commonly used Zhang *et al.* (2001) algorithm. Relative to these
233 observations, the Zhang *et al.* (2001) algorithm tended to overestimate deposition velocity on vegetated
234 surfaces at smaller particle sizes ($< 0.4 \mu\text{m}$ diameter), while underestimating the deposition velocity for
235 particles between 1 and $10 \mu\text{m}$. Several papers prior to 2019 noted that the relationship between particle
236 size and deposition velocity did not “capture observed relationships between particle deposition, velocities
237 and particle size, especially around the accumulation mode” (Clifton *et al.*, 2024). Emerson *et al.* (2020)
238 also noted a substantial overestimate of the Zhang *et al.* (2001) particle deposition velocity over water
239 surfaces relative to observations. Emerson *et al.* (2020) proposed a modified version of the Zhang *et al.*
240 (2001) algorithm, demonstrating a better fit to the ensemble of deposition velocity observations. The
241 differences between the two parameterizations were substantial, with decreases in particle deposition
242 velocities in the sub- μm range of one to two orders of magnitude relative to Zhang *et al.* (2001) across
243 multiple land use types, and increases over vegetated surfaces of up to an order of magnitude for particle
244 diameters from 1 to $10 \mu\text{m}$. The decrease in sub- μm deposition velocities might be expected to result in
245 increases in air concentrations of Aitken to mid-Accumulation mode particles, and decreases in those of
246 mid-Accumulation mode to Coarse-mode particles. Ryu and Min (2022) applied the Emerson *et al.*
247 (2020) parameterization to the WRF-Chem model, and found that $\text{PM}_{2.5}$ positive biases increased in
248 magnitude, while PM_{10} negative biases were partially offset with the use of the new algorithm. Pleim *et*
249 *al.* (2022) also re-examined aerosol dry deposition velocities in the context of the CMAQ model, noting
250 an increase in accumulation mode dry deposition velocities of almost an order of magnitude in forested
251 areas, an overall reduction in $\text{PM}_{2.5}$ concentrations, and an improvement in $\text{PM}_{2.5}$ prediction accuracy.
252 The latter work does not necessarily contradict the Emerson *et al.* (2020) results, which imply possible
253 increases in PM mass within the Aitken and Accumulation modes. The increase in the removal of mass
254 between the mid-Accumulation mode to larger sizes may dominate over the particle deposition velocity
255 decreases between the Aitken to mid-Accumulation mode noted in the observations collected by Emerson
256 *et al.* (2020).

257 Studies using sectional aerosol size representations have recently found that improved aerosol deposition
258 velocity algorithms need to be combined with improved wet hydrometeor scavenging, to result in net
259 improvements of regional model performance. Ryu and Min (2022) found that the best overall WRF-
260 Chem performance resulted from a combination of updates (when the new dry deposition algorithm was
261 combined with updates for cloud scavenging employing cloud fractions for rainout and a revised
262 parameterization for below-cloud scavenging incorporating separate terms for rain and snow removal
263 rates). Ghahreman *et al.* (2024), in updating the cloud scavenging parameterization of the GEM-MACH
264 model, noted differences in rain and snow below-cloud scavenging rates of up to two orders of magnitude
265 between the previously applied, temperature-based parameterization Slinn (1984) and the newly
266 implemented parameterization of multiphase scavenging (from both the underlying meteorological model
267 and the empirical scavenging parameterization of Wang *et al.* (2014)). Differences in scavenging rates
268 were found to be strongly dependent on temperature, aerosol size, and the precipitation rate. The revised

269 parameterizations resulted in an overall improvement in performance for wet SO_4^{2-} deposition, where the
270 Emerson *et al.* (2020) algorithm was employed for the particle dry deposition simulation in all the model
271 runs.

272 A large part of the model-to-model variability and uncertainty resides in the above two processes, as
273 demonstrated in our analysis. We next describe our methodology (including an overview of the two
274 AQMEII4 model domains, descriptions of the construction of the critical load data employed herein, and
275 descriptions of the models, their inputs and boundary conditions). Our analysis follows, first presenting
276 estimates of critical load exceedances for two different simulation years in each domain, and the
277 exceedances estimated using ensembles of model deposition predictions. The bulk of the analysis then
278 examines individual contributions of different sulphur and nitrogen species towards their total deposition,
279 for each model, and for the ensemble. The causes of the differences between the models are determined
280 through process analysis. Our concluding section includes research recommendations based on the
281 analysis in order to improve the performance of individual models, and to reduce the variability between
282 their estimates of critical load exceedances.

283 Methodology

284 1.0 Critical Load Data

285 Six critical load (CL) datasets were used in conjunction with our ensembles of CTM deposition
286 estimates. North American CL datasets included terrestrial (forest) ecosystem acidity critical loads for the
287 continent, aquatic ecosystem acidity critical loads combining data from Canada and the USA, and USA-
288 specific sensitive epiphytic lichen species and herbaceous plant species eutrophication critical loads.
289 European CL datasets combined CL information from multiple countries for terrestrial and aquatic
290 ecosystem acidity and terrestrial ecosystem eutrophication. A brief summary of the six CL datasets used
291 in this work is provided here – full descriptions of the methodology used to create the CL data are
292 provided in the Supplement, section 1.

293 North American CL estimates were generated using the Simple Mass Balance model
294 (Sverdrup & Warfvinge, 1990; Sverdrup & De Vries, 1994), employing data from several studies within
295 the U.S. and Canada (McNulty *et al.*, 2007, 2013; Duarte *et al.*, 2011, 2013; Phelan *et al.*, 2014, 2016;
296 Sullivan, 2011; Sullivan *et al.*, 2012; Cathcart *et al.*, 2024) Table S1 (Supplement) provides
297 methodological information for these studies, such as the horizontal spatial resolution, dataset extent,
298 plant-species-specific critical base cation to aluminum soil water ratio values, the approaches used to
299 estimate soil base cation weather rates, losses of (non-sodium) base cations from the ecosystem through
300 uptake via harvesting or grazing, and whether nitrogen uptake via harvesting/grazing was included in the
301 calculation of nitrogen minimum critical loads.

302 The North American *Aquatic Ecosystem* acidity critical load dataset constructed here combined
303 individual datasets from the Canada and the USA, as follows.

304 Environment and Climate Change Canada data corresponding to the subset of 2,997 lake surveys
305 which reside within the common AQMEII4 North American grid were used in conjunction with the
306 Steady-State Water Chemistry (SSWC) critical load model (Sverdrup *et al.*, 1990) as described in Aherne
307 and Jeffries (2015). SSWC is in widespread use for aquatic ecosystem CL (Posch *et al.*, 2001; Cathcart *et*
308 *al.*, 2016; Henriksen *et al.*, 2002; Jeffries *et al.*, 2010; Scott *et al.*, 2010; Whitfield *et al.*, 2006; Williston
309 *et al.*, 2016; Dupont *et al.*, 2005; Miller, 2011). CL calculations for Canada followed a hierarchy based on
310 the available information for individual lakes (for example catchment runoff rates were determined by

311 isotope mass balance estimates in preference to a GIS map based approach using regional datasets, and
312 when dissolved organic carbon estimates were available, an organic acid adjusted limiting value of the
313 acid neutralizing capacity was used to include the influence of organic acids in the lake in preference to a
314 fixed value of 40 $\mu\text{eq L}^{-1}$. Only sulphur deposition was used to determine exceedance, since the SSWC
315 model does not consider non-acidifying nitrogen.

316 Aquatic ecosystem critical loads for the USA were taken from the National Critical Loads
317 Database Version 3.2.1 (NCLDv3.2.1, Lynch *et al.*, 2022), which contains both the critical load data used
318 here and supporting information. A total of 21,667 critical loads were used for 14,334 unique lakes and
319 streams across the USA (a combination of different methods for determining the critical loads were
320 included in the USA values, sometimes resulting in more than one CL estimate for the same water body).
321 Most USA aquatic critical loads (78%) were determined using the SSWC model (Lynch *et al.*, 2022;
322 Scheffe *et al.*, 2014; Dupont *et al.*, 2005, Miller 2011, VDEC (2003, 2004, 2012)), and site-specific
323 catchment runoff rates (US EPA, 2023). The remaining 22% of USA aquatic critical loads were
324 determined by a dynamic modelling approach (Sullivan *et al.*, 2005; Fakhraei *et al.*, 2014; Lawrence *et*
325 *al.*, 2015) and a combination of dynamic modeling with a regionalization approach (McDonnell *et al.*,
326 2012, 2014; Sullivan *et al.*, 2012; and McDonnell *et al.*, 2021). Organic acid-adjusted *limiting acid*
327 *neutralizing capacity* values were not used in generating these USA aquatic CL with respect to acidity
328 datasets, and an average critical load value was used for these waterbodies for which overlapping CL
329 estimates were available. A more detailed description of the USA aquatic critical loads used here can be
330 found in Lynch *et al.*, (2022).

331 North American critical loads for *eutrophication* were estimated using CLE for two ecosystem
332 types, sensitive epiphytic lichen, and herbaceous species richness.

333 CL for sensitive epiphytic lichen species richness made use of 9,000 community surveys across
334 the USA from 1990-2012 (Geiser *et al.* 2019), where a 90% quantile regression was used to model
335 relationships between deposition levels and observed species richness in order to estimate critical loads,
336 and a -20% decline in species richness was used to determine the critical load. These methods resulted in
337 a single critical load of 3.1 $\text{kg-N ha}^{-1} \text{yr}^{-1}$ for sensitive epiphytic lichen, which was applied to all
338 broadleaf, conifer, or mixed forest landcover types.

339 CL for USA herbaceous species richness made use of data developed using over 14,000
340 vegetation survey plots across nitrogen deposition gradients (Simkin *et al.*, 2016). An observation-based
341 approach using median quantile regressions for herbaceous species richness response to deposition was
342 employed, to generate critical loads with respect to nitrogen deposition linked to various atmospheric and
343 soil conditions. Separate CL models were developed for open and closed canopies. The resulting CL of
344 N for open canopy systems ranged from 6.2 to 12.3 $\text{kg-N ha}^{-1} \text{yr}^{-1}$ and the CLs of N for closed canopy
345 systems ranged from 6.1 to 23.7 $\text{kg-N ha}^{-1} \text{yr}^{-1}$.

346 Two EU CL datasets were employed for the AQMEII4 EU domain, for *acidification* and
347 *eutrophication of terrestrial ecosystems*, respectively. The critical load database and the exceedance
348 calculations for Europe were provided by the Coordination Centre for Effects (CCE) under the United
349 Nations Economic Commission for Europe Convention on Long-range Transboundary Air Pollution
350 (UNECE LRTAP Convention), hosted by the Umweltbundesamt (UBA) in Germany, which develops and
351 maintains the European critical loads database (Geupel *et al.*, 2022). The most recent database available
352 was used here, and while country-dependent, all CL estimates made use of the Simple Mass Balance
353 model (Sverdrup & De Vries, 1994; CLRTAP, 2023, Geupel *et al.*, 2022), with gap-filling using the CCE
354 background database (Reinds *et al.*, 2021). Critical loads for EU eutrophication ($CL_{nut N}$) were also

355 based on the SMB method applied to nitrogen deposition, and used two different methodologies to
356 determine the accepted nitrogen leaching. Dependent on the country, empirical values were sometimes
357 used as upper and lower boundaries for the SMB modelling results in order to avoid rather extreme results
358 in ecosystems where the SMB model predicts very high or very low eutrophication CL values (Bobbink *et*
359 *al.*, 2022). The resulting EU CLE were summarized as the share of the receptor area with critical load
360 exceedance (bar charts) and the magnitude of the exceedance within each analysis grid cell (maps). The
361 exceedance in a grid cell is defined as the so-called 'average accumulated exceedance' (AAE), which is
362 calculated as the area-weighted average of the exceedances of the critical loads of all ecosystems in this
363 grid cell.

364

365 2.0 AQMEII4 Overview Description

366 The setup of the AQMEII4 regional model comparison is described in detail in Galmarini *et al.* (2021); a
367 brief overview is provided here. The models within this analysis are a "snapshot" of regional chemical
368 transport model development as of the time simulations were completed (2021).

369 Model simulations were carried out for the years 2010 and 2016 for North America, and 2009 and 2010
370 for the European region. North American years were chosen due to policy relevance, with a significant
371 change in SO₂ emissions controls enacted between the two years. The European years were chosen due to
372 a large difference in meteorology between the years 2009 and 2010, the latter being a year with unusually
373 high summer temperatures eastern Europe and the western side of the Russian Federation (Barriopedro *et*
374 *al.*, 2011) leading to increased European forest fire activity and emissions during that year (JRC, 2011).
375 The July 2009 and July 2010 temperature and precipitation anomalies relative to the base year period
376 1961 to 1990 are shown in Supplemental Information Figure S2 (NCDC, 2024)). The precipitation
377 anomalies in July of each year are less significantly different than the temperature anomalies; similarly,
378 the differences between the annual average temperature and precipitation anomalies between the two
379 years is less significant than the July values. In the analysis which follows, the differences in simulated
380 deposition and critical load exceedances for European region between the two years is shown to be
381 relatively minor, implying that forest fire emissions contributed a relatively small proportion of sulphur
382 and nitrogen deposition in 2010, and that the summer temperature anomalies in 2010 did not result in
383 significant perturbations to total sulphur and nitrogen deposition.

384 Simulations were carried out by making use of the individual models' grid projection and resolution.
385 Mass-conserving interpolation (for concentrations and fluxes) and nearest neighbour interpolation (for
386 diagnostics) were then used to map these "native grid" outputs to corresponding North American and
387 European AQMEII4 grids. The latter have 0.125° x 0.125° resolution (North America: 23.5° N to 58.5°
388 N, 130° W to 59.5° W; Europe 25° N to 70° N, 30° W to 60° E). Values extracted from the AQMEII4
389 grid locations were used for comparison to observations. Models made use of their own meteorological
390 drivers or on-line meteorological components for meteorological field predictions. Models shared
391 common inputs for emissions and chemical lateral boundary conditions. The latter provide a uniform
392 chemical forcing and prevent input variations not associated with the models themselves from influencing
393 simulations results.

394 North American anthropogenic emissions were generated using emissions modelling platforms which
395 included the anthropogenic inventories, temporal and spatial allocation from county or state/province
396 level to native model grids, for each of the two model years, as well as adjustments for specific
397 inventories by year. Emissions processing was carried out by the United States Environmental Protection

398 Agency for the Carbon Bond 6 (revision 3; CB6r3)) and Statewide Air Pollution Research Center -07
399 (SAPRC07) chemical mechanisms (Yarwood *et al.*, 2010; Carter, 2010), and by Environment and Climate
400 Change Canada for the Acid Deposition and Oxidant Mechanism version II (ADOM-II; Stockwell *et al.*,
401 1989). Note that while none of the modelling groups made use of the SAPRC07 mechanism itself within
402 their simulations, this mechanism was sometimes used as a starting point for lumping individual models'
403 VOC species, due to the greater level of detail available within the SAPRC07 speciation. European
404 anthropogenic emissions were prepared for the participating models' chemical mechanisms by the
405 Netherlands Organization for Applied Scientific Research (TNO) as part of the Monitoring Atmospheric
406 Composition and Climate, part 3 (MACC-III) project (Kuenen *et al.*, 2015), with individual groups using
407 their own emissions data for the portion of their native model grids extending beyond the range of
408 MACC-III emissions grid if necessary.

409 North American forest fire emissions were generated by combining the US emissions modelling platform
410 values with Canadian data for 2010, while both USA and Canadian data were based on the 2016
411 emissions modelling platform estimates. These forest fire emissions included criteria air contaminant
412 emission mass, heat flux, and acres burned. Fire plume rise calculations were carried out by individual
413 modeling groups, typically based on large stack plume rise formulae (Briggs, 1971, 1972). European
414 forest fire emissions were provided by the Finnish Meteorological Institute using eight layers from 50 to
415 6200m. Both North American and European forest fire emissions were chemically disaggregated by the
416 participating modelling groups and mapped on a nearest grid cell basis to their native model grids.

417 Lightning NO emissions were also prescribed in both domains, based on GEIA monthly climatology
418 values (Price *et al.*, 1997), diurnally disaggregated following Blakeslee *et al.* (2014) and allocated
419 vertically following Ott *et al.* (2010) by individual modelling groups.

420 Chemical lateral boundary conditions for both EU and NA simulations were taken from 3 hourly, $0.75^\circ \times$
421 0.75° , 54 vertical level ECMWF CAMS EAC4 reanalysis products (Inness *et al.*, 2019), interpolated by
422 participants to their own vertical and horizontal grid structures, and chemically disaggregated to their own
423 chemical speciation.

424 2.1 Common Model Diagnostics

425 The AQMEII4 protocol for ensemble participants included the reporting of gas-phase species'
426 aerodynamic, bulk surface, stomatal, mesophyll, quasi-laminar sub-layer and within-canopy buoyant
427 resistances (when present in the reporting model). Effective conductances (Paulot *et al.*, 2018; Clifton *et*
428 *al.*, 2020) and effective fluxes (Galmarini *et al.*, 2021) were also reported. These latter two diagnostic
429 terms provide the relative contribution of the four main pathways associated with gas-phase deposition
430 towards the deposition velocity and the deposition flux, respectively. The four main pathways include
431 soil, the lower canopy, leaf cuticles, and stomata. Note that not all models specify a separate lower
432 canopy pathway (the conductance associated with this pathway tends to be relatively small, providing
433 justification for its absence). Effective fluxes are of particular interest to criticalload exceedance analysis,
434 since they provide information on the charge equivalents deposited to different component surface types.
435 Effective fluxes include the impact of other processes in addition to deposition on the concentrations and
436 hence on the net flux of the deposited gases, via the net flux term (F). For example, the soil, lower
437 canopy, cuticle and stomatal effective fluxes in the Wesely (1989) dry deposition parameterization are
438 given by:

$$439 DFLX_{SOIL} = \left(\frac{(r_{ac} + r_{gs})^{-1}}{(r_s + r_m)^{-1} + (r_{lu})^{-1} + (r_{dc} + r_{cl})^{-1} + (r_{ac} + r_{gs})^{-1}} \right) F \quad (1)$$

440
$$DFLX_{LCAN} = \left(\frac{(r_{dc}+r_{cl})^{-1}}{(r_s+r_m)^{-1}+(r_{lu})^{-1}+(r_{dc}+r_{cl})^{-1}+(r_{ac}+r_{gs})^{-1}} \right) F \quad (2)$$

441
$$DFLX_{CUT} = \left(\frac{(r_{lu})^{-1}}{(r_s+r_m)^{-1}+(r_{lu})^{-1}+(r_{dc}+r_{cl})^{-1}+(r_{ac}+r_{gs})^{-1}} \right) F \quad (3)$$

442
$$DFLX_{stom} = \left(\frac{(r_s+r_m)^{-1}}{(r_s+r_m)^{-1}+(r_{lu})^{-1}+(r_{dc}+r_{cl})^{-1}+(r_{ac}+r_{gs})^{-1}} \right) F \quad (4)$$

443 Where F is the net flux to the surface, and the r terms are resistances associated with different pathways
444 of gas mass transfer to the four surface components (r_{ac} : aerodynamic mass transfer within canopy,
445 dependent on canopy height and density, r_{gs} : the soil and leaf litter resistance, r_{dc} : canopy buoyant
446 convection resistance, r_{cl} : resistance associated with leaves, twigs, bark and other exposed surface in the
447 lower canopy, r_{lu} : resistance of leaf cuticles in healthy vegetation and other outer surfaces, r_s : leaf
448 stomata, r_m : leaf mesophyll). The effective conductances can be generated from similar formulae, with
449 the F term in equations (1) through (4) being replaced by the deposition velocity of the gas V_d . Note that
450 the formulae for individual models vary from the Wesely (1984) example shown above; see Galmarini *et*
451 *al.* (2021) for details on the formulae for each of the gas-phase deposition algorithms used in the
452 AQMEII4 regional model ensembles analyzed here.

453 *2.2 Model Parameterization Descriptions*

454 The models CMAQ-M3Dry, CMAQ-STAGE, WRF-Chem (IASS), GEM-MACH (Base), GEM-MACH
455 (Zhang), GEM-MACH (Ops), WRF-Chem (UPM), and WRF-Chem (UCAR) provided simulations for
456 AQMEII-4, interpolated to the common the North American domain. The models WRF-Chem (IASS),
457 LOTOS-EUROS (TNO), WRF-Chem (UPM) and CMAQ (Hertfordshire) provided simulations for
458 AQMEII-4, interpolated to the common European domain. Some of the modelling frameworks were
459 repeated, but process implementation details were varied in order for the relative impact of these
460 differences to be examined. We describe each of these models according to the starting framework
461 (CMAQ, GEM-MACH, WRF-Chem, LOTOS-EUROS), below.

462 *2.2.1 CMAQ-M3Dry, CMAQ-STAGE, CMAQ (Hertfordshire) – WRF-CMAQ Implementations*

463 These three models make use of the WRF-CMAQ off-line modelling framework (CMAQ v5.3.2, US EPA
464 (2020)), with the North American implementations (CMAQ-M3Dry, CMAQ-STAGE) employing 12 km
465 cell resolution, and the EU implementation employing 10km cell resolution (Lambert Conformal Conic
466 projection, 459x299 and 500x681 grid cells, respectively). The CMAQ implementations employed 35
467 model layers with the lowest layer thickness of ~20m. Both NA models operate in an off-line
468 configuration using the same driving weather forecast model output (NA: WRF4.1.1, EU: WRF 4.2.1,
469 Skamarock *et al.*, 2019). All three CMAQ model implementations use the same gas-phase chemical
470 mechanism (Carbon Bond 6; Luecken *et al.*, 2018), a modal aerosol size distribution representation with
471 three modes (Binkowski and Roselle, 2003), aerosol microphysics through the AERO7 module (Appel *et*
472 *al.*, 2021; Binkowski and Shankar, 1995; Vehkamaki *et al.*, 2002), and thermodynamic equilibrium
473 partitioning for semivolatile inorganic species between gas and aerosol phases species (involving the
474 components K^+ - Ca^{2+} - Mg^{2+} - NH_4^+ - Na^+ - SO_4^{2-} - NO_3^- - Cl^- - H_2O) using the ISORROPIA II algorithm
475 (Fountoukis and Nenes, 2007). Organic aerosol formation and monoterpene oxidation are modelled as
476 described in AERO7 (Appel *et al.*, 2021, Xu *et al.*, 2018).

477 For all three model implementations, the impact scavenging of aerosols by cloud droplets is carried out
478 for the Aitken mode particles, while accumulation and coarse mode particles may form cloud
479 condensation nuclei, resulting in their scavenging via cloud droplet nucleation (Binkowski and Roselle,
480 2003; Chaumerliac, 1984, Fahey et al., 2017). Aerosol scavenging in the Aitken mode is carried out as a
481 simple exponential decay for number, surface area and mass concentration assuming a cloud droplet
482 settling velocity based on Pruppacher and Klett (1978), and an assumed cloud droplet size distribution.
483 Only Aitken mode particles (roughly 0.01 to 0.1 μm diameter) are impact scavenged, for which only
484 cloud liquid water is included as a scavenging hydrometeor. Wet deposition of all aqueous species is
485 represented as a first-order loss rate based on the precipitation rate and total liquid water content (Fahey et
486 al., 2017). The number of cloud droplets is parameterized following Bower and Choularton (1992) from
487 the cloud liquid water content provided by the meteorological model.

488 The three CMAQ implementations differ in the algorithms employed for aerosol and gas-phase dry
489 deposition algorithms.

490 CMAQ-M3Dry's aerosol dry deposition methodology was based on Binkowski and Shankar (1995), with
491 updates as described in Venkatram and Pleim (1999), Giorgi (1986), and subsequent corrections to
492 include the effect of mode width in the Stokes number (reducing previous large overpredictions in coarse
493 mode deposition velocities). Further modifications included changes to the Stoke's number for vegetated
494 surfaces, modification of the impaction term, scaling of diffusion layer resistance by LAI for the
495 vegetated fraction of each grid cell, and improved mass conservation for the process of gravitational
496 settling (Appel et al., 2021).

497 CMAQ-STAGE and CMAQ (Hertfordshire)'s aerosol dry deposition methodology followed that of
498 CMAQ-M3Dry, but made use of Slinn (1982) and Zhang et al. (2001) for impaction on vegetated
499 surfaces, and Georgi (1986) for water and soil surfaces, with the resulting deposition velocities for
500 smooth and vegetated surfaces weighted by the area of vegetated surface (Appel et al., 2021).

501 The gas-phase dry deposition algorithms and diagnostic equations of CMAQ-M3Dry, CMAQ-STAGE
502 and CMAQ (Hertfordshire) are described in detail elsewhere (Galmarini et al., 2021, Table B2, with other
503 implementation details in Hogrefe et al., 2023). The algorithms follow the original approach of Wesely et
504 al. (1989), but with separate resistance branches for the vegetated and non-vegetated fractions, dry versus
505 wet fractions, and snow-covered versus non-snow covered fractions.

506 Bidirectional fluxes of ammonia were found in the analysis which follows to be a major source of model-
507 to-model variability, hence will be described here in more detail.

508 CMAQ-M3Dry simulated bidirectional fluxes of ammonia by first calculating soil ammonia
509 concentrations using the Environmental Policy Integrated Climate (EPIC) agricultural ecosystem model
510 (Williams, 1995; Ran et al., 2018), prior to the CTM simulations being carried out. Typically, the EPIC
511 model simulation requires a model spin-up period of 25 years or more, and requires a prior simulation of
512 N deposition as input information. The soil NH_3 concentrations from this coupled system were then
513 used as inputs for the AQMEII4 run (Pleim et al., 2019). While all dry deposition diagnostics reported to
514 AQMEII4 for CMAQ-M3Dry were computed making use of a post-processor, the post-processing did not
515 include the generation of bidirectional flux calculations, and hence diagnostics such as the net
516 compensation point concentration and the ground compensation point calculation were not provided from
517 CMAQ-M3Dry for AQMEII4.

518 CMAQ-STAGE (Massad et al., 2010; Bash et al., 2013) also simulated bidirectional fluxes following
519 Williams, (1995), using a previous coupled EPIC simulation only for initial conditions, porting

520 methodology and information on daily fertilization and nitrification from EPIC into the CMAQ-STAGE
521 framework while estimating evasion and deposition locally within the chemical transport model. This
522 methodology, which operates on a land-use specific basis and then aggregates to a grid-cell basis, allowed
523 additional AQMEII4 diagnostic to be incorporated into the CMAQ-STAGE simulations. This allows a
524 greater consistency between the CTM and the resulting soil NH_3 calculations (and allows for the output of
525 all of the diagnostics as specified under the AQMEII4 protocol see Hogrefe *et al.*, 2023). However, these
526 calculations do not include other terms in EPIC dealing with N fixation, mineralization, denitrification,
527 runoff, percolation and plant uptake, and hence will diverge from the EPIC simulated soil ammonia
528 concentrations due to the differences in evasion and deposition parameterizations between CMAQ-
529 STAGE and EPIC.

530 *2.2.2 NA WRF-Chem (IASS)/ EU WRF-Chem (IASS), NA WRF-Chem (UPM)/EU WRF-Chem (UPM) ,*
531 *NA WRF-Chem (UCAR): WRF-Chem implementations*

532 All three of these models made use of the WRF-Chem chemical transport modelling framework (Grell *et*
533 *al.*, 2005), employing a 12km Lambert Conformal Conic projection (400x360 grid cells in the European
534 domain, 480x290 grid cells in the North American domain), 2-way coupling between air-quality and
535 meteorology, a sectional aerosol size distribution representation (4 bins), aerosol microphysics and
536 chemistry via the MOSAIC model (Zaveri *et al.*, 2008), organic aerosol formation following Knote *et al.*,
537 (2014, 2015), cloud microphysics following Morrison *et al.* (2009), the Noah land surface model (Noah-
538 MP, Niu *et al.*, 2011), the Rapid Radiative Transfer Model for radiative transfer calculations (RRTM,
539 Iacono *et al.*, 2008), biogenic emissions using the MEGAN model (Guenther *et al.*, 2006, Wiedenmyer *et*
540 *al.*, 2007), and the FAST-J algorithm for photolysis rate calculation (Fast *et al.*, 2009). All three code
541 versions also make use of the Wesely (1989) parameterization for gas dry deposition and the Binkowski
542 and Shankar (1995) approach for aerosol deposition. However, WRF-Chem has a large variety of
543 configurations available for other model processes, allowing the impact of those configurations on
544 deposition results to be studied under AQMEII4. The differences between the model configurations are
545 summarized in Table 1. It should also be noted that WRF-Chem is an on-line modelling framework –
546 differences in the model parameterizations can influence the meteorological predictions through the
547 aerosol direct and indirect effects, and consequently the meteorology generated by the implementations
548 may also differ.

549 Not all of the WRF-Chem model implementations were able to report all of the information required to
550 calculate exceedances: the WRF-Chem (IASS) implementation did not report all of the species
551 contributing to S_{dep} and N_{dep} totals, and also did not report several diagnostics requested under the
552 AQMEII4 protocol. Consequently, the WRF-Chem (IASS) results were not included in ensemble
553 deposition generation and the model ensembles are referred to hereafter as “reduced ensembles”. Our
554 analysis is therefore based on these reduced ensembles, though WRF-Chem (IASS) values for deposition
555 totals have been provided when available in Figures and Tables for comparison purposes.

556

557 Table 1. AQMEII4 WRF-Chem Configuration Differences

Parameterization	WRF-Chem (IASS)	WRF-Chem (UPM)	WRF-Chem (UCAR)
WRF-Chem version number	3.9.1	4.0.3	4.1.2
Wet Deposition	Convective : via Grell and Devenyi (2002); grid-scale following Neu and Prather (2012) for gases, Chapman <i>et al.</i> (2009) for aerosols	Grid scale wet deposition following Easter <i>et al.</i> (2004).	Below cloud: Slinn (1984); in-cloud: Easter <i>et al.</i> (2004)
Land Use/Land Cover Classification	Europe: CORINE 33 classes. North America: USGS-24 (Anderson <i>et al.</i> , 1976), 24 classes	USGS-24 classes, (Anderson <i>et al.</i> , 1976), 24 classes	Modified IGBP MODIS NOAH, 21 classes including oceans and inland water, Friedl <i>et al.</i> (2010);
Cumulus cloud parameterization	Grell and Devenyi, 2002.	Grell and Devenyi, 2002	Grell and Freitas, 2014
Windblown Dust	On-line, Shao- <i>et al.</i> 2011	MOSAIC (Zaveri <i>et al.</i> , 2008)	GOCART, with AFWA modifications Gong <i>et al.</i> (1997), Ginoux <i>et al.</i> (2001).
Gas-Phase Chemistry Mechanism	MOZART, Emmons <i>et al.</i> (2010)	CMBZ, Zaveri and Peters, 1999	MOZART, Emmons <i>et al.</i> (2010)
Vertical resolution	38 levels up to 50 hPa	35 vertical levels	41 vertical levels
PBL Scheme	Mellor–Yamada–Janic, Janic (2001)	Yonsei University (YSU) Hong <i>et al.</i> (2006), Hong (2010)	Mellor–Yamada Nakahashi Niino, level 2.5 Nakanishi and Niino (2006)

558

559 2.2.3 LOTOS-EUROS (TNO): LOTOS-EUROS

560 LOTOS-EUROS (TNO) used in the AQMEII4 EU simulations is an open-source 3D chemistry transport
 561 model used extensively for air-quality forecasts and scenarios for European domains (Timmermans *et al.*,
 562 2022; Manders *et al.*, 2017). Gas dry deposition fluxes made use of the Wesely (1989)-based approach
 563 (DEPosition of Acidifying Compounds; DEPAC, Van Zanten *et al.*, 2010). Particle dry deposition was
 564 carried out using the approach of Zhang (2001). Wet deposition followed the droplet saturation approach,
 565 and cloud chemistry with sulphate formation dependent on cloud liquid water and droplet pH (Banzhaf *et*
 566 *al.*, 2012). The dry deposition of ammonia makes use of a bidirectional flux approach (Wichink Kruit *et*
 567 *al.*, 2012). Gas-phase chemistry was carried out using a modified form of the CBM-IV scheme (Gery *et*
 568 *al.*, 1989; Whitten *et al.*, 1980). N_2O_5 hydrolysis was included following Schaap *et al.* (2004), and
 569 inorganic thermodynamic particle chemistry was solved using the ISORROPIA II module (Fountoukis
 570 and Nenes, 2007). The model operated using 12 layers in the vertical in a hybrid coordinate system, with
 571 the near surface layer having a thickness of ~20m and a model top of approximately 8 km. The
 572 simulations carried out here made use of a 20x20km grid cell size over Europe. Driving meteorology for
 573 the model was from 3-hourly ECMWF short-term forecasts. Land use data for the model comes from the
 574 Corine2000 Land Cover database (EEA, 2000, 2007).

575 2.2.4 GEM-MACH (Base), GEM-MACH (Zhang), GEM-MACH (Ops): GEM-MACH

576 All three of these NA models are variations on the Environment and Climate Change Canada GEM-
 577 MACH model. The first two configurations (GEM-MACH (Base), GEM-MACH (Zhang)) are based on
 578 the “research” version of the model, which has more detailed physical parameterizations, whereas GEM-
 579 MACH (Ops) is based on the “operational forecast” configuration, where more simplified
 580 parameterizations have been employed in order to reduce processing time for operational air-quality
 581 forecast simulations. Common elements across all three implementations include a horizontal grid cell
 582 size of 0.09° in a rotated latitude-longitude domain (~10km), 83 model levels, biogenic VOCs from
 583 BEIS3.09, 3.1.3 (Vukovich and Pierce, 2002; Stroud *et al.*, 2010), a sectional aerosol size distribution (12
 584 bins, Gong *et al.* (2003), the ADOM-II gas-phase mechanism (Stockwell *et al.*, 1989), a modified Odum
 585 approach for SOA formation (Stroud *et al.*, 2018), and an inorganic aerosol chemistry module solving the
 586 thermodynamic equilibrium for the SO_4^{2-} - NO_3^- - NH_4^+ - H_2O system (Makar *et al.*, 2003). The GEM-
 587 MACH implementations also all make use of the GEM weather forecast model v4.9.8 for driving
 588 meteorology (Côté *et al.*, 1998, Girard *et al.*, 2014)), with the ISBA land surface scheme (Belair *et al.*,
 589 2003a,b), and the CCMA Rad2 radiative transfer algorithm (Li and Barker, 2005). As was the case for the
 590 WRF-Chem implementations described above, GEM-MACH has several optional process representations
 591 used in operational forecast versus research versions of the model, hence the relative importance of model
 592 configurations versus deposition parameterizations may be studied. The differences between the
 593 configurations are summarized in Table 2.

594 Collectively, the differences between GEM-MACH (Base) and GEM-MACH (Zhang) provide an estimate
 595 of the relative importance of the gas-phase deposition parameterization towards simulation results, while
 596 comparisons between GEM-MACH (Base or Zhang) and GEM-MACH (Ops) show the relative impact of
 597 the combination of ammonia bidirectional fluxes and the suite of more complex physical
 598 parameterizations used in the former model configurations compared to the operational framework.

599 Table 2. AQMEII4 GEM-MACH Configuration Differences

Parameterization	GEM-MACH (Base)	GEM-MACH (Zhang)	GEM-MACH (Ops)
Gas dry deposition	Makar <i>et al.</i> (2018)	Zhang <i>et al.</i> (2003)	Makar <i>et al.</i> (2018)
Ammonia bidirectional fluxes	Zhang <i>et al.</i> (2010)	As in GEM-MACH (Base)	None
Particulate matter dry deposition	1-D semi-Lagrangian mass transfer (Makar <i>et al.</i> , 2018), using Emerson <i>et al.</i> (2020) correction to Zhang <i>et al.</i> (2001) coefficients	As in GEM-MACH (Base)	Zhang <i>et al.</i> (2001), applied as flux lower boundary condition in the diffusion equation.
Vertical resolution	83 levels plus 3 additional levels for forest canopy processes (Makar <i>et al.</i> , 2017)	As in GEM-MACH (Base)	83 levels
Meteorological model cloud parameterization	P3 explicit hydrometeor scheme (Morrison and Milbrandt, 2015; Milbrandt and Morrison, 2016).	As in GEM-MACH (Base)	Convective: Kain-Fritsch convective parameterization (Kain and Fritsch, 1990, Kain, 2004). Stratiform: Sundqvist <i>et al.</i> (1989)

Land Use/Land Cover Classification	GEM-MACH 15 Land use scheme (Makar <i>et al.</i> , 2018), aggregated from Zhang <i>et al.</i> , (2002, 2003) 26 land use categories.	Zhang <i>et al.</i> (2002, 2003), 26 land-use categories	As in GEM-MACH (Base)
Leaf Area Index data source	Satellite-derived (Zhang <i>et al.</i> , 2020)	As in GEM-MACH (Base)	BEIS-based (Vukovich and Pierces, 2002)
Seasonality for emissions	Based on satellite LAI (Zhang <i>et al.</i> , 2020)	As in GEM-MACH (Base)	Fixed function of latitude and Julian day
Major point source plumerise algorithm	Akingunola <i>et al.</i> , 2018	As in GEM-MACH (Base)	Briggs (1984)
Gas-phase chemistry solver	KPP2.1 (Sandu and Sander, 2006)	As in GEM-MACH (Base)	Young and Boris (1977)
Vehicle Induced Turbulence	Makar <i>et al.</i> (2021)	As in GEM-MACH (Base)	None
Forest Canopy shading and turbulence	Makar <i>et al.</i> (2017)	As in GEM-MACH (Base)	None
CH ₄ as chemically active tracer	Yes	As in GEM-MACH (Base)	No
Aerosol direct and indirect effect feedback	Yes (Makar <i>et al.</i> , 2015a,b)	As in GEM-MACH (Base)	No
Floor (minimum) PBL height imposed	No	As in GEM-MACH (Base)	Yes (100m)
Area source emissions treatment	Flux lower boundary condition on diffusion equation	As in GEM-MACH (Base)	Mass injection into two lowest model layers
Advection mass conservation	ILMC, 3 sweeps (Sorensen <i>et al.</i> , 2013)	As in GEM-MACH (Base)	ILMC, 2 sweeps, followed by Bermejo-Conde (2002) global mass correction

600

601

2.3 Bias Corrected Critical Load Exceedance Estimates

602 As will be discussed in Section 3.2, model results were evaluated using the available data for North
 603 America and Europe (see Supplemental, Section 7 for species contributing significantly to total S and N
 604 deposition). Critical load exceedances were calculated making use of the total sulphur and total nitrogen
 605 deposition for each model in the ensemble, for 2009 and 2010 for Europe, and 2010, 2016 for North
 606 America. In order to make a rough estimate of the impacts of model biases on the resulting exceedance
 607 estimates, a third set of exceedances were calculated for each model and each domain, for the year 2010
 608 for Europe and 2016 for North America. For this last group, the ratio of the observed to model mean
 609 values at the observation station locations for individual species were used as scaling factors on the model
 610 annual deposition flux estimates prior to summation to total sulphur and total nitrogen deposition.
 611 Specifically, for North America, the ratio of the observed to measured mean concentrations of SO₂, NO₂,
 612 PM2.5 sulphate, PM2.5 ammonium, and AMoN network NH₃ were used to scale the corresponding dry
 613 flux variables, and the corresponding ratios for wet deposition of sulphate, nitrate and ammonium ions
 614 were used to scale the wet deposition fluxes. Less observation data were available for Europe than North
 615 America: the ratio of observed to modelled SO₂ and NO₂ gas concentration mean values were used to

616 scale the corresponding dry fluxes, and ratios of observed to modelled wet deposition fluxes for sulphate,
617 nitrate and ammonium were used to scale the modelled wet deposition fluxes.

618 We note that this approach makes simplifying assumptions. The corrections are inherently dependent on
619 the assumption that the monitoring data is sufficiently representative of the model domain for the
620 correction to be meaningful across the domain. While dry deposition fluxes will be proportional to the
621 concentrations in the lowest model layer, allowing an overall mean bias correction, we are also making
622 the assumption that the bias ratios for PM2.5 particulate matter will apply for larger particle sizes as well
623 (note that size-resolved particulate fluxes were not reported under the AQMEII-4 protocol). This form
624 of bias correction is also the simplest possible means of model-measurement fusion; more complex
625 methods appear in the literature. These methodologies for example may make use of a combination of
626 observed wet and adjusted model dry deposition (Schwede and Lear, 2014), inverse distance weighting
627 from observation stations (Rubin et al., 2023) and adjusting modelled wet deposition fluxes by the ratio of
628 observed to simulated precipitation and by kriged observed wet deposition to model predicted ratios
629 (Zhang et al., 2019). An overview of model-measurement fusion approaches including advanced forms of
630 data assimilation may be found in Fu et al., (2022). The methodology used here provides a first order
631 estimate of the impact of model biases with respect to observations on critical load exceedances.

632 3.0 Results

633 3.1 Critical Load Exceedances

634 3.1.1 Europe, Acidification

635 Critical load exceedances for acidification for each of the four European (EU) models are shown in Figure
636 1 for 2010 and in Figure S3 (Supplement) for 2009, and Figure S9 (Supplement) for bias-corrected 2010.
637 Figure 2 shows the reduced ensemble values for 2009 and 2010 (a,b), the bias-corrected value for 2010
638 (c), as well as common AQMEII4 domain total bar charts for all models and the reduced ensemble (d).

639 The EU exceedances for acidity are similar between the two years (compare Figures 1 and S3, and
640 reduced ensemble values for each year in Figure 2). However, differences between models within a
641 given year are larger (especially in an absolute sense; WRF-Chem (IASS) <0.4% in exceedance, WRF-
642 Chem (UPM): ~6.5%). Low WRF-Chem (IASS) exceedance levels are in part due to unreported
643 deposition data (see section 2.2.2); the reduced ensemble maps in Figure 2 show the ensemble average for
644 LOTOS-EUROS (TNO), WRF-Chem (UPM) and CMAQ (Hertfordshire). The EU reduced ensemble
645 shows the greatest extent of exceedance in the Netherlands along the Netherlands/Belgium border, north-
646 western Germany, southern Norway, and along the border between Poland and Germany (Figure 2(a,b)).
647 Individual models in Figure 1 show additional acidity “hotspots” that may appear in one model and not in
648 another (e.g. LOTOS-EUROS (TNO): near Lucerne and Bonn; WRF-Chem (UPM): westernmost
649 Switzerland, south-central Germany, and Belgrade; CMAQ (Hertfordshire): south-west Switzerland,
650 south-central Germany, and south-west Romania). Bias correction for the reduced ensemble for the 2010
651 data resulted in substantial increases in predicted exceedances (compare last two columns of Figure 2(d),
652 and compare Figure 1 to Figure S9). However, we note that the European data did not include speciated
653 particulate matter and hence bias correction was not possible for part of the sulphur budget – much
654 smaller impacts were noted for bias correction in North America where particulate sulphate data were
655 available.

656 The percent area of EU acidification CLE over the region for which CL data was available, for the
657 reduced ensemble, was 4.48% (range 2.37% to 6.85%) in 2009 and 4.32% (2.06 to 6.52%) in 2010.

658 Average reduced ensemble accumulated exceedance for EU acidity was 13.8 (9.7 to 27.1) eq ha⁻¹ yr⁻¹ in
659 2009, and 12.6 (7.8 to 23.7) eq ha⁻¹ yr⁻¹ in 2010. The quoted range is from the highest and lowest
660 members in the 3-member reduced ensemble.

661 *3.1.2 Europe, Eutrophication*

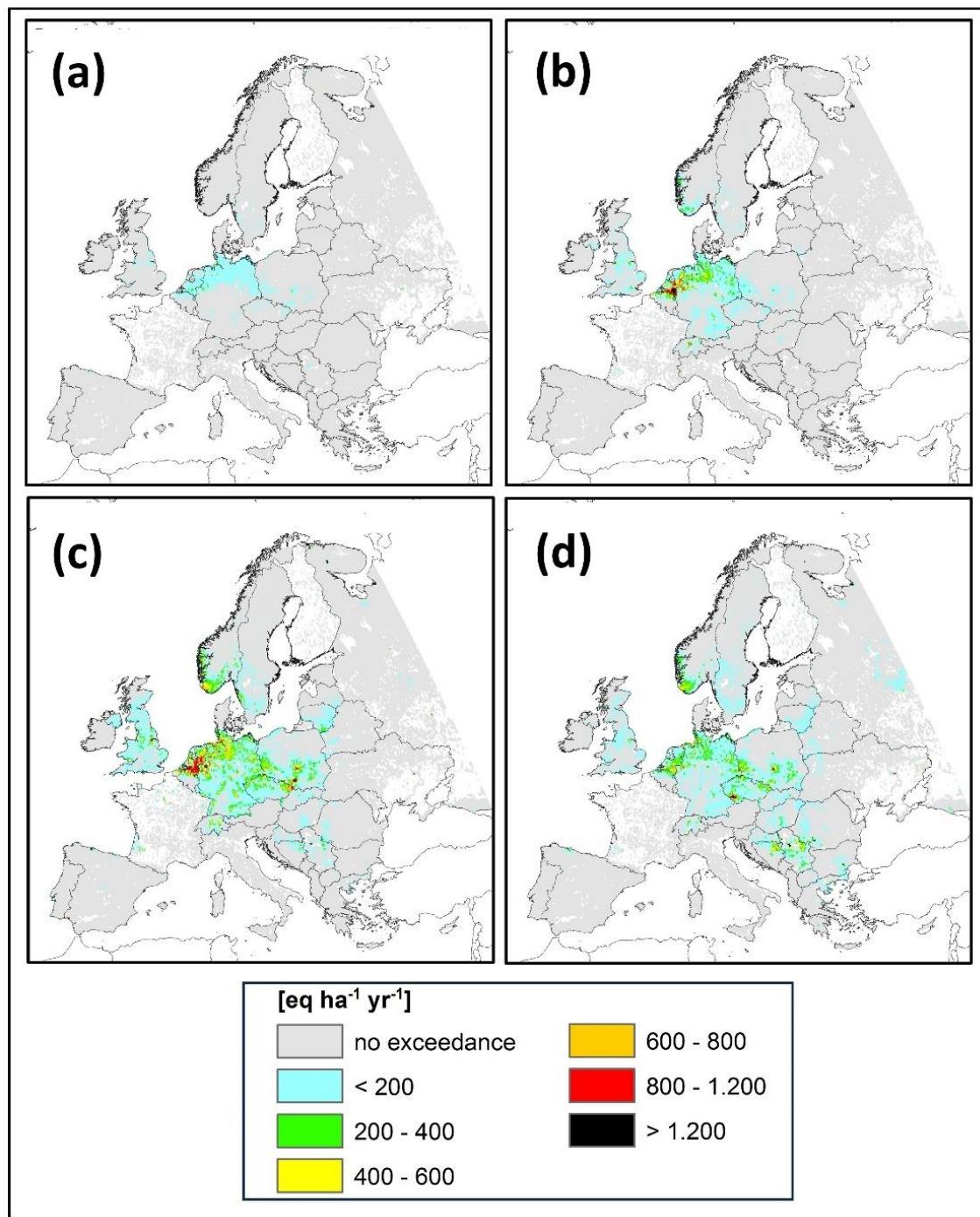
662 Critical load exceedances for eutrophication for each of the four EU models are shown in Figure 3 for
663 2010, in Figure S4 (Supplement) for 2009, and with bias-corrected deposition fields for 2010 in Figure
664 S10 (Supplement). Figure 4 shows the reduced ensemble values for 2009 and 2010 (a,b), the bias-
665 corrected values for 2010 (c), as well as common AQMEII4 domain summaries for all models and the
666 ensembles (d).

667 As for EU Acidity CLE's, the Eutrophication CLE's are very similar between the two model years
668 (compare Figures 3 and S4, and the values for each year in Figure 4). The spatial distribution of the
669 greatest levels of exceedance also varies more strongly between models. All members in the 3-member
670 reduced ensemble identify the Po river valley as reaching the greatest level of exceedance, but LOTOS-
671 EUROS (TNO) also shows high levels of exceedance in Benelux to northern Germany and in the
672 Barcelona area, while WRF-Chem (UPM) shows high levels of exceedance > 800 eq ha⁻¹ yr⁻¹ in multiple
673 hotspots throughout the region. The relative impact of bias correction was smaller than for acidification
674 in terms of the total area in exceedance, but the magnitude of exceedances increased significantly (e.g.
675 larger proportion of red to black areas in Figure 4(c) than Figure 4(b), comparing the last two columns of
676 Figure 4(d), and comparing Figure 4 to Figure S10). Again, the higher levels of exceedance predicted for
677 Europe may reflect the impact of the lack of particulate sulphate and particulate nitrate data for bias
678 correction purposes.

679 The percentage of the area in exceedance for eutrophication is much higher than that of acidification
680 (reduced ensemble CLE 60.2% (47.3 to 73.3%) in 2009, and 62.2% 51.2 to 74.4%) in 2010). The
681 average accumulated exceedance was 156.9 (89.4 to 265.5) eq ha⁻¹ yr⁻¹ in 2009 and 161.4 (109.4 to
682 261.8) eq ha⁻¹ yr⁻¹ in 2010 (Figure 4, the range is from lowest and highest members in the 3-member
683 reduced ensemble).

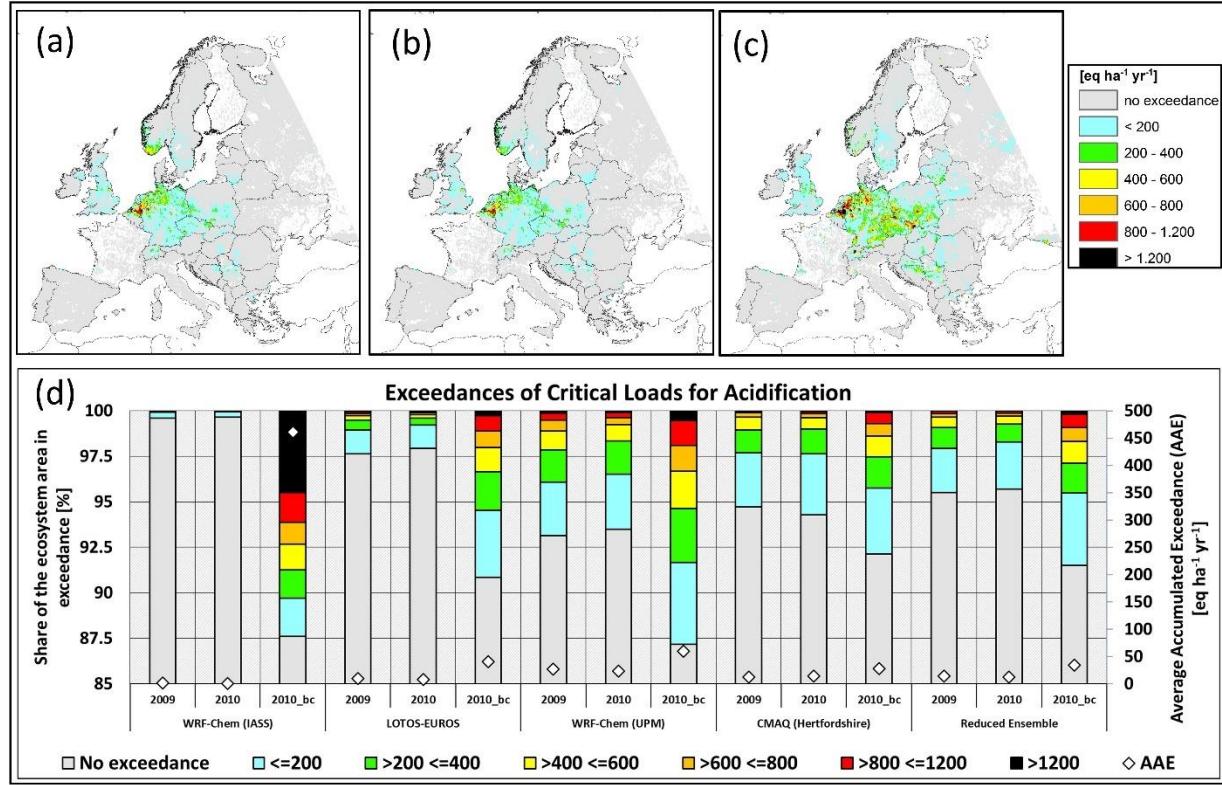
684

685 Figure 1. CLEs for Acidity, EU AQMEII4 common domain, 2010, eq $\text{ha}^{-1}\text{yr}^{-1}$. (a) WRF-Chem (IASS),
686 (b) LOTOS-EUROS (TNO), (c) WRF-Chem (UPM), (d) CMAQ (Hertfordshire). Grey areas indicate regions
687 for which critical load data are available but are not in exceedance of critical loads. Coloured areas indicate exceedance regions.



688
689

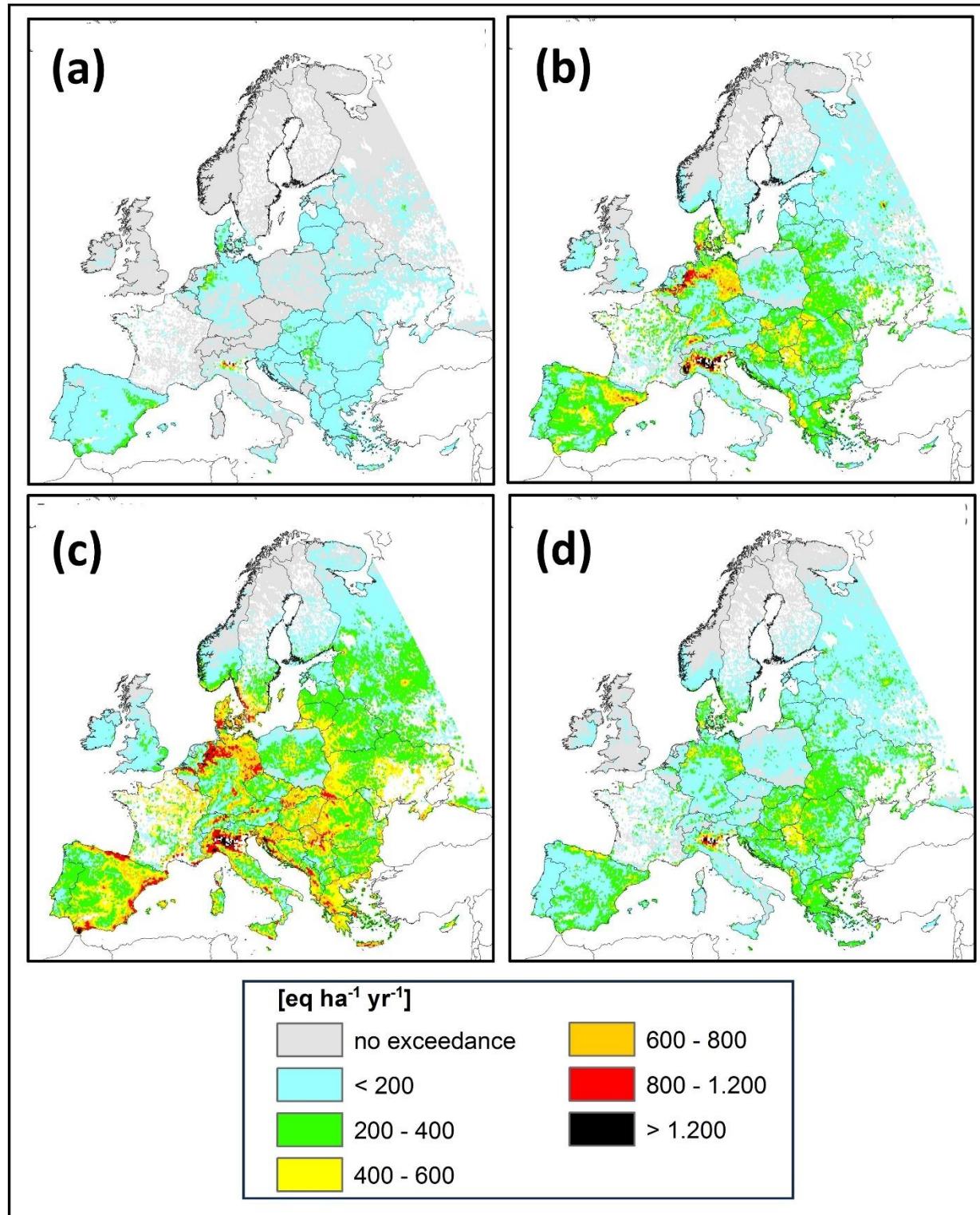
690 Figure 2. Summary CLEs for Acidity, EU AQMEII4 common domain, eq $\text{ha}^{-1}\text{yr}^{-1}$. (a), (b) Spatial distribution of
 691 CLEs for the reduced ensemble for the years 2009 and 2010, respectively. (c) Spatial distribution of CLE for the
 692 bias-corrected reduced ensemble for the year 2010. (d) Percentage of ecosystems for which CL data are available
 693 that are in exceedance by model and year (left axis and colour bar) and average accumulated exceedance (eq $\text{ha}^{-1}\text{yr}^{-1}$)
 694 (right axis and black diamond symbols).



695

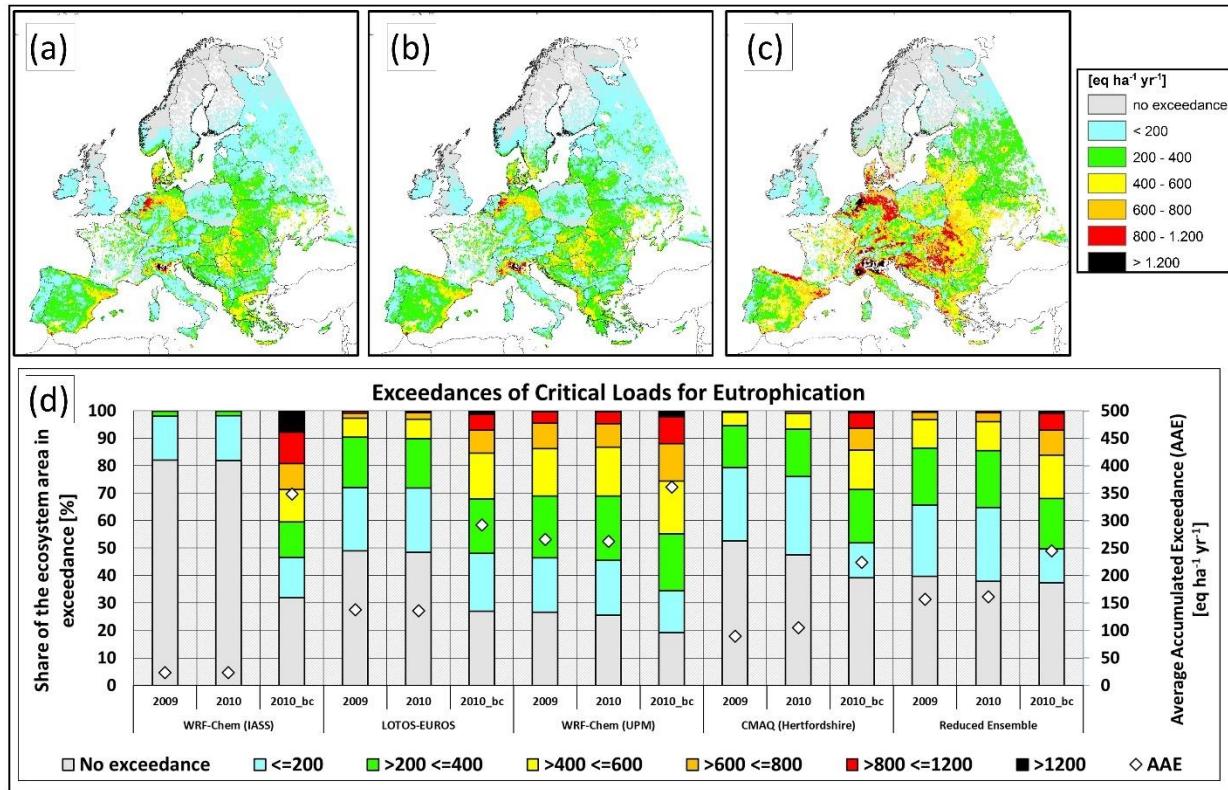
696

697 Figure 3. CLEs for Eutrophication, EU AQMEII4 common domain, 2010, eq $\text{ha}^{-1}\text{yr}^{-1}$. (a) WRF-Chem (IASS), (b)
698 LOTOS-EUROS (TNO), (c) WRF-Chem (UPM), (d) CMAQ (Hertfordshire). Grey areas indicate regions for which
699 critical load data are available but are not in exceedance of critical loads. Coloured areas indicate exceedance
700 regions.



701

702 Figure 4. Summary CLEs for Eutrophication, EU AQMEII4 common domain, eq $\text{ha}^{-1}\text{yr}^{-1}$. (a), (b) Spatial
 703 distribution of CLEs for the reduced ensemble for the years 2009 and 2010, respectively. (c) Spatial distributions of
 704 CLEs for the bias-corrected reduced ensemble for 2010. (d) Percentage of ecosystems for which CL data are
 705 available that are in exceedance by model and year (left axis and colour bar) and average accumulated exceedance
 706 (eq $\text{ha}^{-1}\text{yr}^{-1}$) (right axis and black diamond symbols).



707

708

709

710

711 3.1.3 *North America, Forest Ecosystems Simple Mass Balance Critical Load*

712 Critical load exceedances with respect to the North American (NA) forest soil acidity for the years 2016
713 and 2010 are shown in Figures 5 and S5, respectively, the bias-corrected 2016 maps are in Figure S11,
714 and the reduced ensemble maps for both years, and the domain summaries including bias corrected values
715 for 2016, are shown in Figure 6.

716 Unlike the EU domain comparison, the NA CLEs depicted in Figure 5 show a large difference in the
717 extent of regions in exceedance for the different models. While all models with the exception of WRF-
718 Chem (IASS) identified the regions to the south and west of the Great Lakes, the U.S. east coast, and
719 Florida as being in exceedance, the magnitude of the exceedances varied greatly between the models,
720 with the GEM-MACH models (Figure 5(d-f)) showing large regions with exceedances above 800 eq ha^{-1}
721 yr^{-1} , followed by, in descending order, WRF-Chem (UPM), CMAQ-M3Dry, CMAQ-STAGE, WRF-Chem
722 (UCAR), and WRF-Chem (IASS).

723 The summary reduced ensemble CLE values (Figure 6) show the improvement in CLEs between the
724 years 2010 and 2016, which occurred in response to the legislated reduction in SO_2 emissions during this
725 time period. The summary chart (Figure 6(c)) however shows that the magnitude of the response to the
726 SO_2 reduction was model dependent: the change between 2010 and 2016 was the greatest for GEM-
727 MACH (Base) in an absolute sense, and the greatest for WRF-Chem (UCAR) in a relative sense.

728 Similarly, the average accumulated exceedance (right-hand vertical axis and black diamonds, Figure 6(c))
729 showed decreases in exceedance between 2010 and 2016 for all models, but the extent of these decreases
730 differed, with WRF-Chem (UCAR) showing the smallest decrease in AAE from 2010 to 2016, followed
731 in increasing order of the magnitude of change by CMAQ-STAGE, CMAQ-M3Dry WRF-Chem (UPM),
732 GEM-MACH-Ops, GEM-MACH-Base, and GEM-MACH-Zhang.

733 The effect of bias correction was less pronounced than in Europe, and in general reduced the variability
734 between model results. Note that unlike the European case, North American observation data used for
735 bias correction included corrections for particulate sulphate air concentrations, allowing a greater degree
736 of closure for the sulphur mass deposited. Comparing Figures 5 and S11 it can be seen that the bias
737 correction has increased exceedances for the CMAQ and WRF-Chem simulations, and decreased
738 exceedances for the GEM-MACH simulations, reducing the variability between the models. The extent
739 to which model-to-model variability has been reduced subsequent to bias correction is also apparent in
740 Figure 6(d) (bias correction exceedance bars are closer in size across models compared to pre-bias
741 correction). The net result of bias correction being a slight increase in the area of exceedance in the
742 reduced ensemble, comparing the two right-hand bars of Figure 6(d).

743 The percentage of the NA forested area in exceedance for acidification for the reduced ensemble was
744 13.2% (2.8 to 22.2%) in 2010, and 6.1% (1.0 to 12.9%) in 2016. The ensemble thus shows a
745 considerable improvement in exceedances with respect to acidification between the two years.

746 3.1.4 *North America, Aquatic Ecosystems CL(A)*

747 Exceedances with respect to the North American aquatic ecosystem CL dataset for the years 2016 and
748 2010 are shown in Figures 7 and S6, respectively, the bias-corrected maps for each model for 2016 are in
749 Figure S12, and the reduced ensemble maps for both years and domain summaries including bias
750 correction are shown in Figure 8.

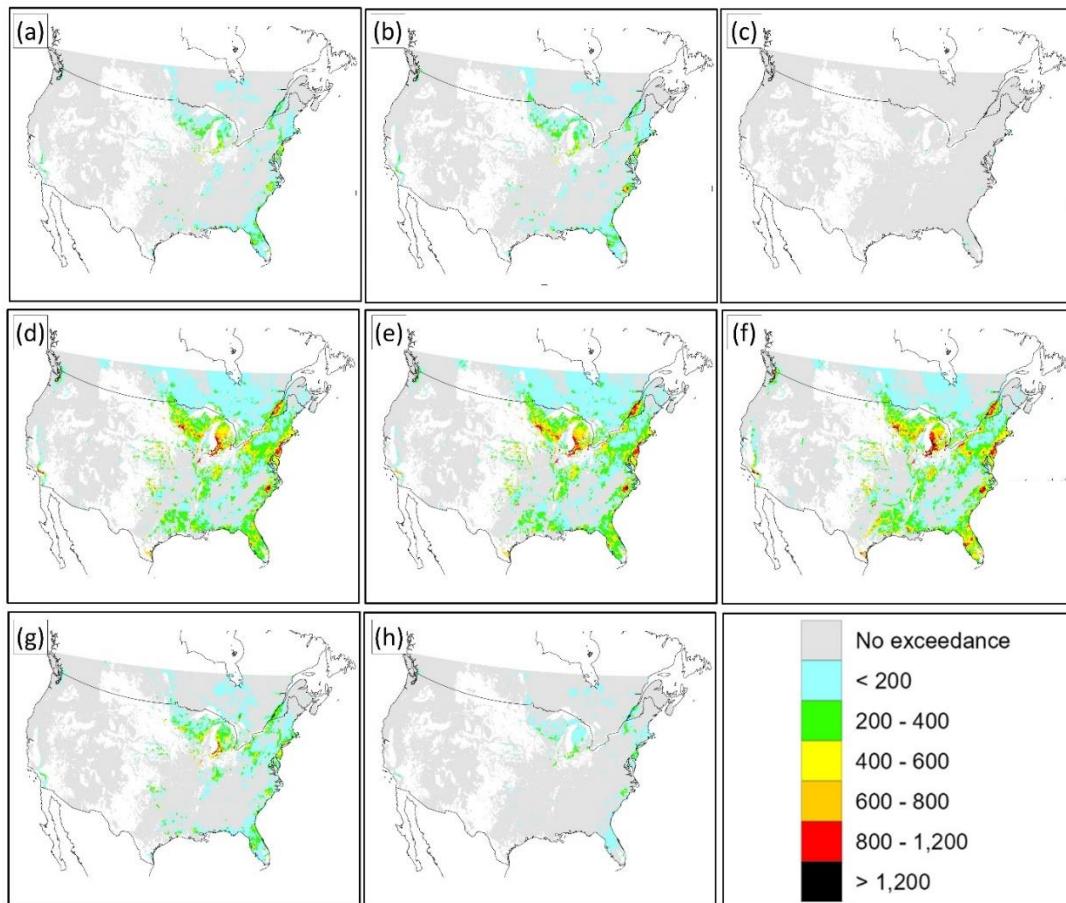
751 Comparison of Figures 5 and 7 shows a similarity in the CLE response of the individual models between
752 forest soil and aquatic ecosystems, with the GEM-MACH models predicting the highest number and

753 magnitude of exceedances, followed by WRF-Chem (UPM), WRF-Chem (UCAR) and the two CMAQ
754 implementations. Figure 8 (a,b) shows the expected decrease of the reduced ensemble's CLE between
755 2010 and 2016, as well as the higher levels of exceedance associated with the GEM-MACH and WRF-
756 CHEM (UPM) models, followed in descending order by the two CMAQ implementations and WRF-
757 CHEM (UCAR) (Figure 8 (c)).

758 The impact of bias correction on the North American aquatic ecosystems critical load exceedances was
759 relatively minimal for the models included in the reduced ensemble: differences between Figures 7 and
760 S12 are difficult to distinguish, and Figure 8(d) shows slight increases in the exceedances for CMAQ and
761 WRF-Chem simulations, slight increases in GEM-MACH simulations, and a very small change in the
762 reduced ensemble levels of exceedance.

763 The percentage of the NA aquatic ecosystems in exceedance for the reduced ensemble was 21.2% (12.8 to
764 28.9%) in 2010 and 11.4% (7.3 to 15.8%) in 2016. The reduced ensemble thus shows a considerable
765 improvement in exceedances with respect to exceedance of aquatic critical loads between the two years,
766 again by almost a factor of two.

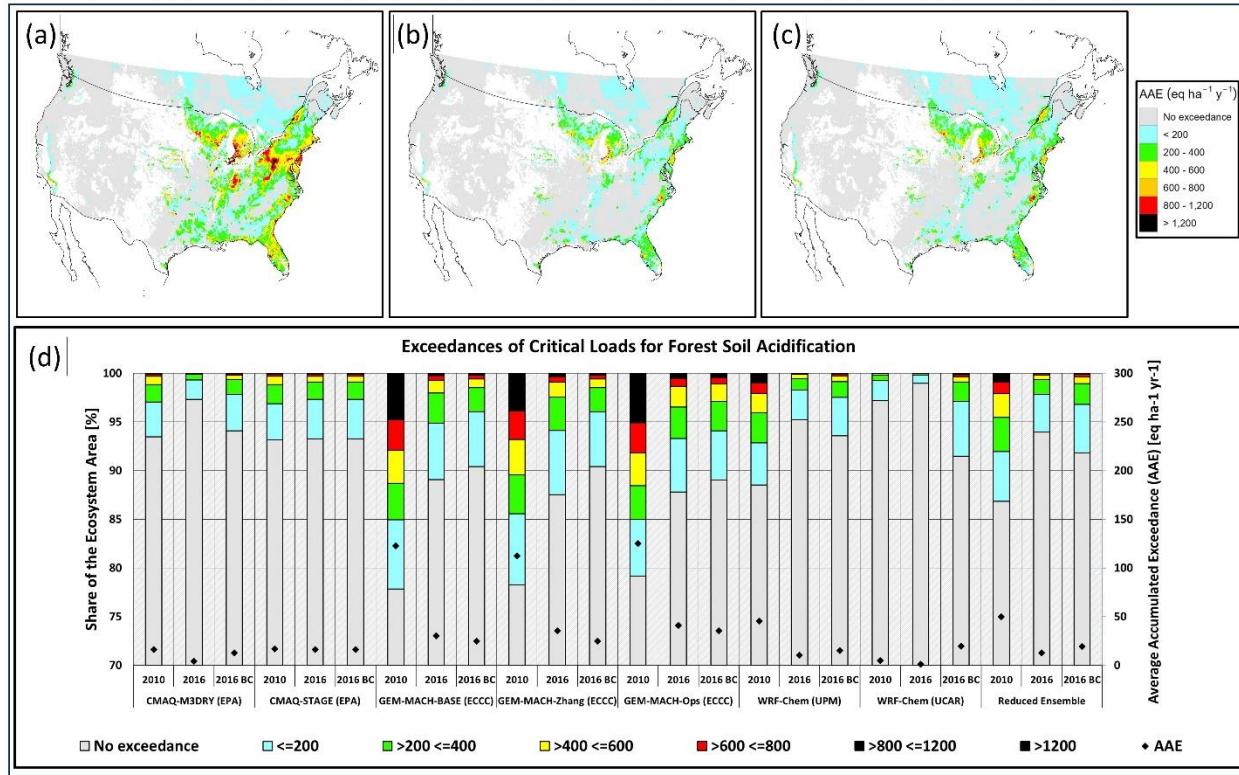
767 Figure 5. CLEs for Forest Soil Acidification, NA AQMEII4 common domain, 2016, eq $\text{ha}^{-1}\text{yr}^{-1}$. (a) CMAQ-M3Dry,
768 (b) CMAQ-STAGE, (c) WRF-Chem (IASS), (d) GEM-MACH (Base), (e) GEM-MACH (Zhang), (f) GEM-MACH
769 (Ops), (g) WRF-Chem (UPM), (h) WRF-Chem (UCAR). Grey areas indicate regions for which critical load data are
770 available but are not in exceedance of critical loads. Coloured areas indicate exceedance regions.



771

772

773 Figure 6. Summary CLEs for Forest Soil Acidification, NA AQMEII4 common domain, eq $\text{ha}^{-1} \text{yr}^{-1}$. (a), (b) Spatial
 774 distribution of CLEs for the reduced ensemble for the years 2010 and 2016, respectively. (c)) Spatial distribution of
 775 CLEs for the reduced ensemble for the year 2016. (d) Percentage of ecosystems for which CL data are available that
 776 are in exceedance by model and year (left axis and colour bar) and average accumulated exceedance (eq $\text{ha}^{-1} \text{yr}^{-1}$)
 777 (right axis and black diamond symbols).

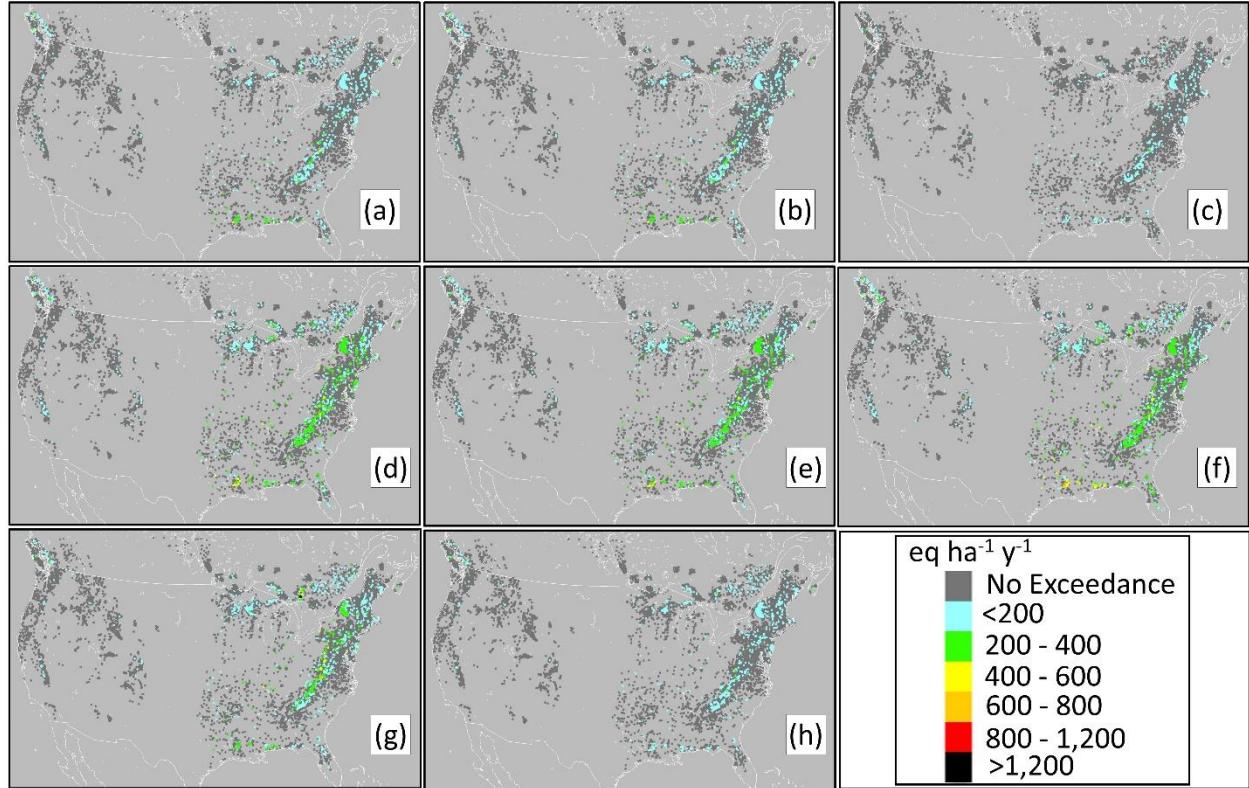


778

779

780

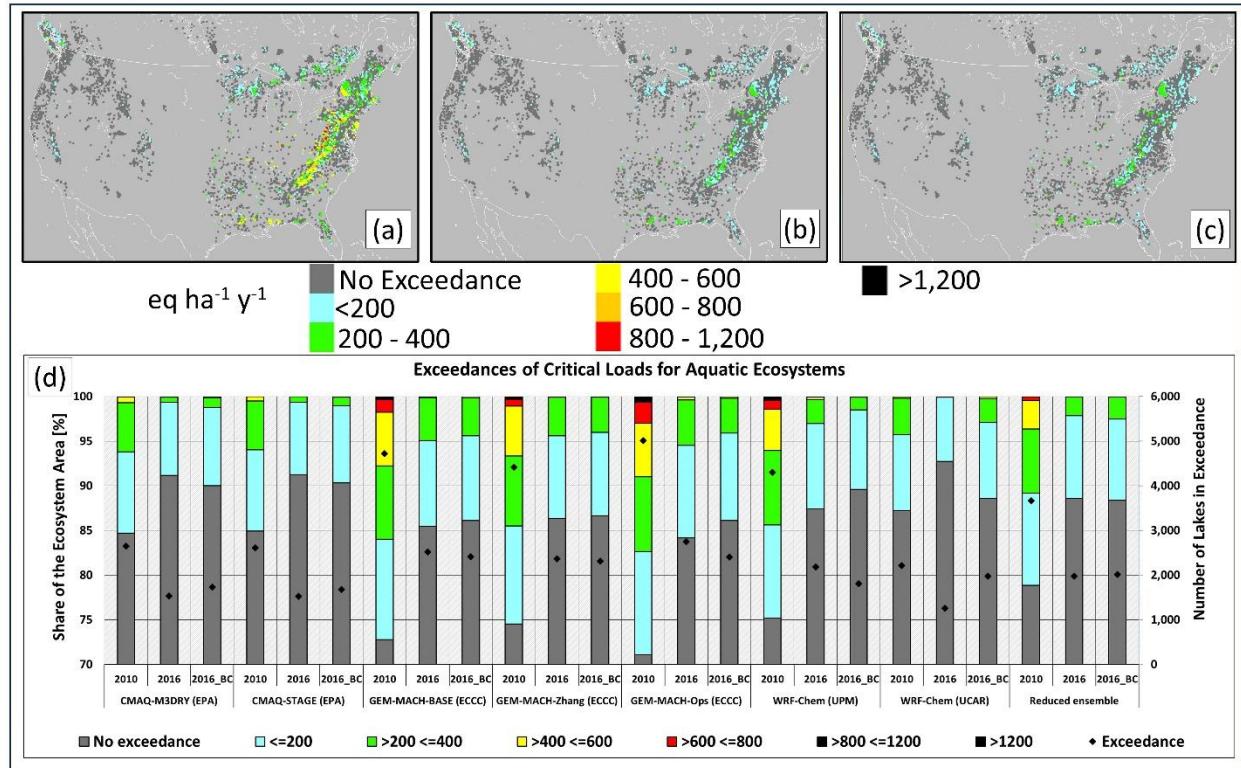
781 Figure 7. CLEs for Aquatic Ecosystems, NA AQMEII4 common domain, 2016, eq $\text{ha}^{-1} \text{yr}^{-1}$. Panels arranged by
782 Model as in Figure 6; individual sites are shown as pixels. Dark grey pixels indicate regions for which critical load
783 data were available but were not in exceedance of critical loads. Coloured areas indicate exceedance regions;
784 overplotting in precedence by the extent of exceedance was carried out for overlapping pixels. Areas of no CL data
785 are shown in lighter grey.



786

787

788 Figure 8. Summary CLEs for Aquatic Ecosystems, NA AQMEII4 common domain. (a), (b) Spatial distribution of
 789 CLEs for the reduced ensemble for the years 2010 and 2016, respectively. (c) Spatial distribution of CLEs for the
 790 bias-corrected reduced ensemble for the year 2016. (d) Percentage of lakes for which CL data are available that are
 791 in exceedance by model and year (left axis and colour bar) and number of lakes in exceedance (right axis and black
 792 diamond symbols).



793

794

795

796 *3.1.5 U.S. N Deposition to Lichen*

797 Exceedances with respect to the USA CL of N for a 20% decline in sensitive epiphytic lichen species
798 richness ($221 \text{ eq-N ha}^{-1} \text{ yr}^{-1}$) dataset for the years 2016 and 2010 are shown in Figures 9 and S7,
799 respectively, bias-corrected 2016 values in Figure S13, and the reduced ensemble maps for both years and
800 domain summaries included bias-corrected 2016 values are shown in Figure 10.

801 The overall pattern of exceedances and their magnitude across models (Figure 9) is similar to that of the
802 Forest Soil exceedances (Figure 5), with the largest magnitudes in the north-eastern continental USA and
803 in North Carolina, though the lichen exceedances are more continuous across the region than for forest
804 soil water acidity impacted ecosystems. GEM-MACH (Base), GEM-MACH (Zhang), and GEM-MACH
805 (Ops) have maximum exceedances usually between 800 and 1,200 $\text{eq ha}^{-1} \text{ yr}^{-1}$, and the exceedances
806 predicted by other models are less than 800 $\text{eq ha}^{-1} \text{ yr}^{-1}$ aside from a North Carolina exceedance hotspot
807 which is predicted by all models. The reduced ensemble overall magnitude of exceedances decreased
808 significantly between 2010 and 2016 (Figure 10(a,b), less black and red regions in the more recent year).
809 The reduced ensemble total area in exceedance has decreased slightly (Figure 10(c), “reduced ensemble”
810 columns). All models show a decreasing levels of exceedance between the two years, and slightly
811 decreasing total area of exceedance. The magnitude of exceedances differs significantly between the
812 models, with the highest magnitude exceedances predicted by the GEM-MACH group of models,
813 followed by WRF-Chem (UPM).

814 Bias correction values varied between the models, with CMAQ exceedances increasing slightly, GEM-
815 MACH exceedances decreasing slightly, WRF-Chem exceedances increasing, and a slight increase in the
816 overall extent and magnitude of the reduced ensemble exceedances in the last two columns of Figure
817 10(d). The similarity in the spatial distribution of exceedances is greater across models following bias
818 correction (compare Figure 9 with Figure S13 (Supplement)).

819 The percentage of the NA sensitive epiphytic lichen ecosystems in exceedance for the reduced ensemble
820 was 81.5% (69.3 to 95.0%) in 2010 and 75.8% (63.7 to 90.7%) in 2016.

821

822 *3.1.6 U.S. N Deposition to Herbaceous Plants*

823 Exceedances with respect to the USA CL of N for a decline in herbaceous species richness (436 to 1693
824 $\text{eq-N ha}^{-1} \text{ yr}^{-1}$) dataset for the years 2016 and 2010 are shown in Figures 11 and S8, respectively, bias-
825 corrected exceedances for 2016 appear in Figure S14 (Supplement), and the reduced ensemble maps for
826 both years and domain summaries including bias correction for 2016 are shown in Figure 12.

827 The spatial distribution of the regions of highest exceedance shares some common features with that of
828 sensitive epiphytic lichen (compare Figure 11 with Figure 9), such as maximum exceedances in NE USA,
829 North Carolina, and extending along a region north of Texas. However, both the magnitude and extent of
830 exceedance is much more varied for herbaceous species richness than for lichen species richness, with the
831 GEM-MACH suite of models (Figure 11 d-f and Figure 12(d)) predicting the highest exceedance levels
832 and up to 18.4% of the area in exceedance in 2016, the CMAQ implementations varying between 0.6%
833 and 0.8%, and WRF-Chem (UCAR) predicting 0.1%.

834 The impacts of bias correction may be more easily distinguished for herbaceous species richness critical
835 load exceedances compared to some of the other exceedance estimates (compare Figures 11 and S14),
836 with the CMAQ and WRF-Chem exceedances increasing, and the GEM-MACH exceedances decreasing.

837 The overall impact was a slight increase in the area and extent of the ensemble average exceedance
838 (Figure 12(d)).

839 The percentage of the NA herbaceous plant ecosystems in exceedance for the reduced ensemble was
840 13.9% (0.4 to 39.5%) in 2010, and 3.9% (0.1 to 18.4%) in 2016, with the higher exceedance levels in the
841 range resulting from the GEM-MACH suite of models. Reduced ensemble herbaceous species richness
842 exceedances have decreased considerably between the two years in all models.

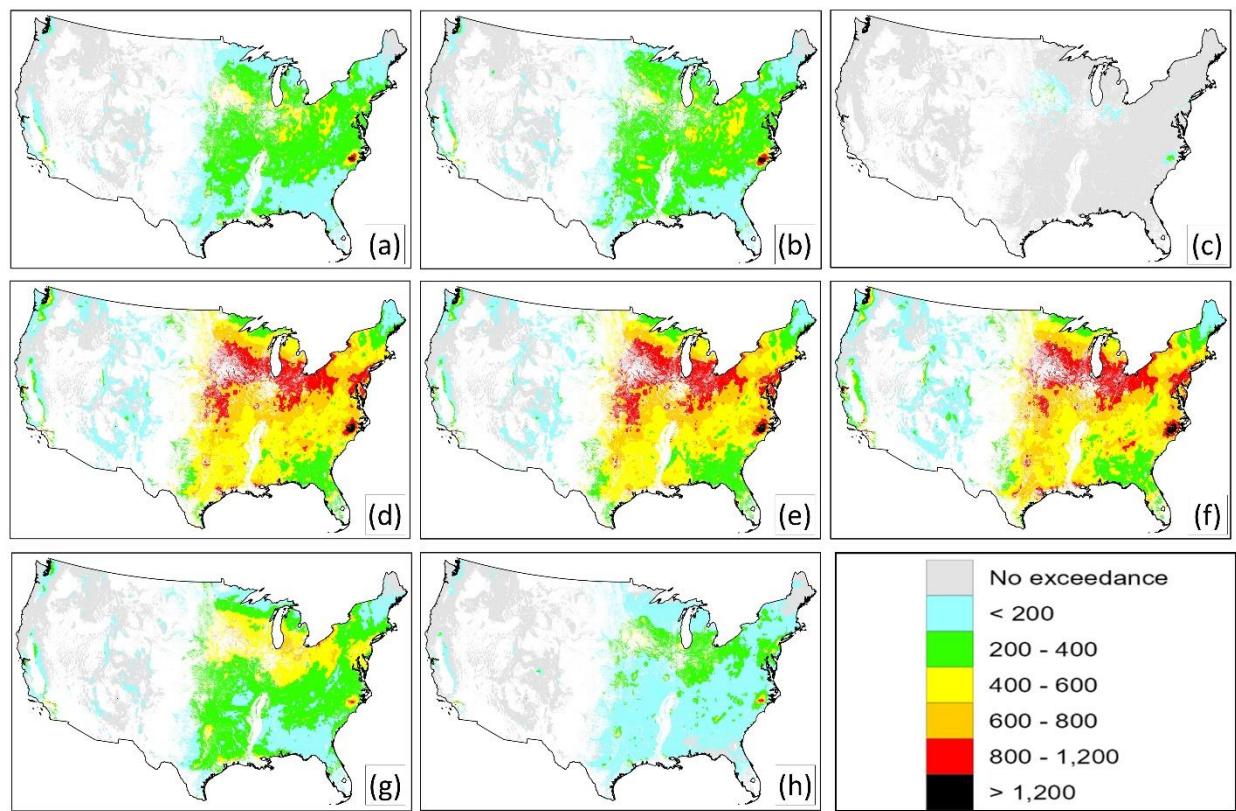
843 3.1.7 Critical Load Exceedances, Key Results

844 The percent exceedance for the reduced ensemble and ranges from the reduced ensembles for the
845 ecosystems examined here are summarized in Table 3. The values suggest acidification in EU will
846 happen over a smaller region than eutrophication at 2009/2010 emissions levels, with a slight decrease in
847 acidification and a slight increase in eutrophication between the two years. About 60% of EU ecosystems
848 would be subject to eutrophication at some point in the future at 2010/2009 emissions levels. One
849 striking difference between the different model estimates of CLE is in the magnitude of exceedances (as
850 opposed to the total area in exceedance). WRF-Chem (UPM) for example in Figures 1 and 3 predicts
851 more severe levels of exceedance across Europe than the other models. The North America results
852 suggest that reductions in SO₂ and NO_x emissions between 2010 and 2016 resulted in a substantial
853 reduction in the number of forest soil and aquatic ecosystem acidification exceedances (by nearly a factor
854 of two). The impacts of nitrogen deposition on herbaceous species also improved (by nearly a factor of
855 three), while impacts of nitrogen deposition on sensitive lichen had more modest improvement (from 81.5
856 to 75.8% in exceedance). The magnitude and spatial extent of these eutrophication exceedances were
857 highly dependent on the model, and on the variations in the representation of sub-processes within each
858 model, used for predictions. Understanding the large range of model predictions is one of the main aims
859 of the current work. The next section discusses the underlying causes driving the model-to-model
860 differences, using the AQMEII4 deposition diagnostics.

861 Table 3. Summary of reduced ensemble percent exceedance mean values and their range in EU and NA
862 domains, along with Total S deposition and Total N deposition predicted by the ensemble. All models
863 used the same starting inventories for emissions.

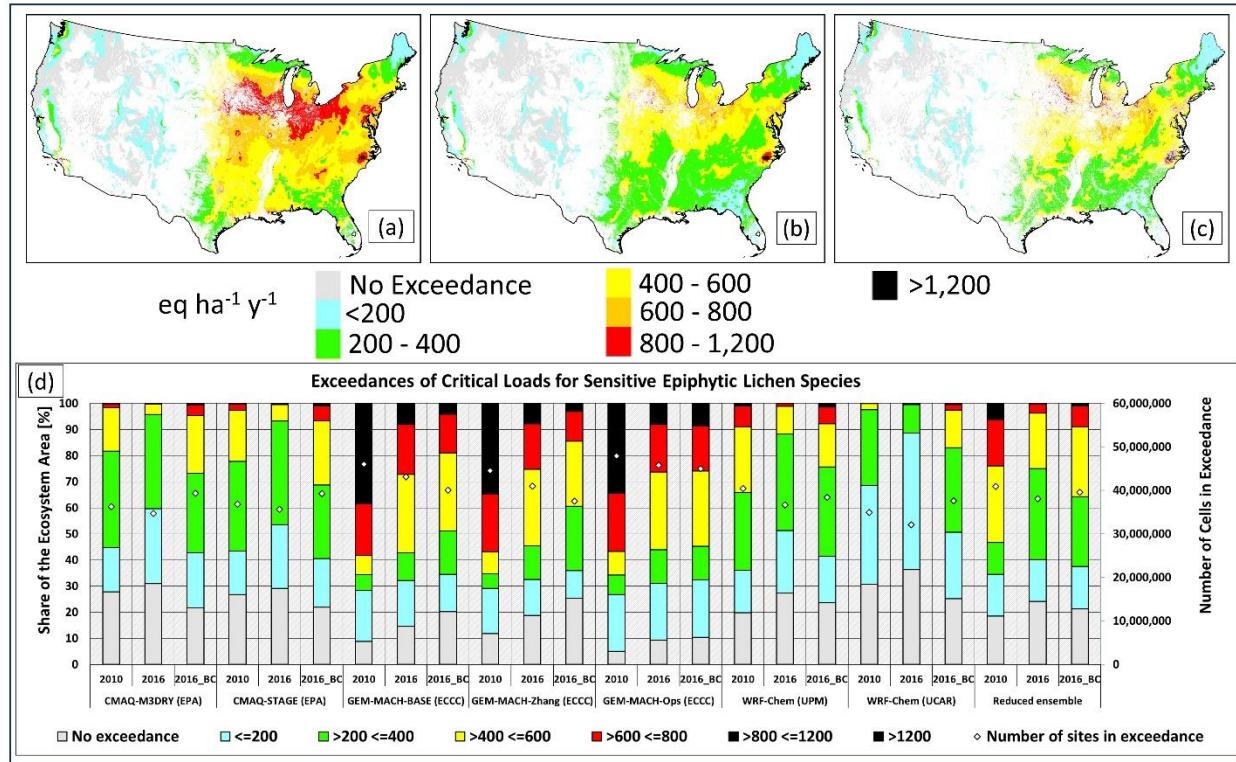
EU Ecosystem	Year 2009 Percent Exceedance (lower to upper bound)	Year 2010 Percent Exceedance (lower to upper bound)	Total S Deposition, 2010 (eq ha ⁻¹ yr ⁻¹)	Total N Deposition, 2010 (eq ha ⁻¹ yr ⁻¹)
Acidification	4.48 (2.37 to 6.85)	4.32 (2.06 to 6.52)	158.4	376.5
Eutrophication	60.2 (47.3 to 73.3)	62.2 (51.2 to 74.4)	(81.5 to 221.6)	(304.8 to 481.9)
NA Ecosystem	Year 2010 Percent Exceedance (lower to upper bound)	Year 2016 Percent Exceedance (lower to upper bound)	Total S Deposition, 2016 (eq ha ⁻¹ yr ⁻¹)	Total N Deposition, 2016 (eq ha ⁻¹ yr ⁻¹)
Forest Soils Acidification	13.2 (2.8 to 22.2)	6.1 (1.0 to 12.9)	135.6 (56.1 to 193.4)	321.7 (182.4 to 430)
Lake Ecosystems	21.2 (12.8 to 28.9)	11.4 (7.3 to 15.8)		
USA N Deposition Lichen	81.5 (69.3 to 95.0)	75.8 (63.7 to 90.7)		
USA N Deposition Herbaceous	13.9 (0.4 to 39.5)	3.9 (0.1 to 18.4)		

864 Figure 9. CLEs for Sensitive Epiphytic Lichen Species, NA AQMEII4 common domain, 2016, eq $\text{ha}^{-1} \text{yr}^{-1}$. Panels
865 arranged by model as in Figure 6. Light grey areas indicate regions for which critical load data were available but
866 were not in exceedance of critical loads. Coloured areas indicate exceedance regions.



867

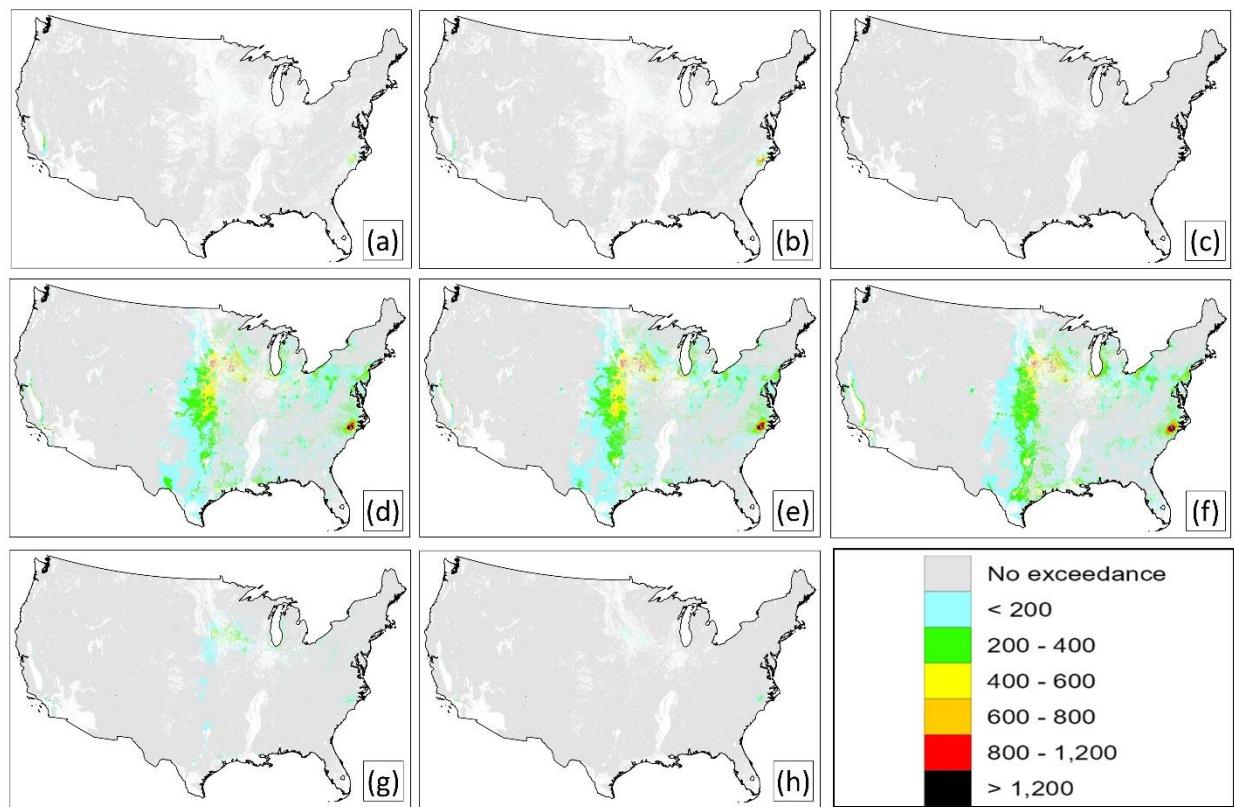
868 Figure 10. Summary CLEs, Sensitive Epiphytic Lichen Species, NA AQMEII4 common domain, $\text{eq ha}^{-1} \text{yr}^{-1}$. (a),
 869 (b) Spatial distribution of CLEs for the reduced ensemble for the years 2010 and 2016, respectively. (c) Spatial
 870 distribution of CLEs for the bias-corrected reduced ensemble for the year 2016. (d) Percentage of sensitive epiphytic
 871 lichen ecosystems for which CL data are available that are also in exceedance, by model and year (left axis and
 872 colour bar) and number of sites in exceedance (right axis and white diamond symbols).



873

874

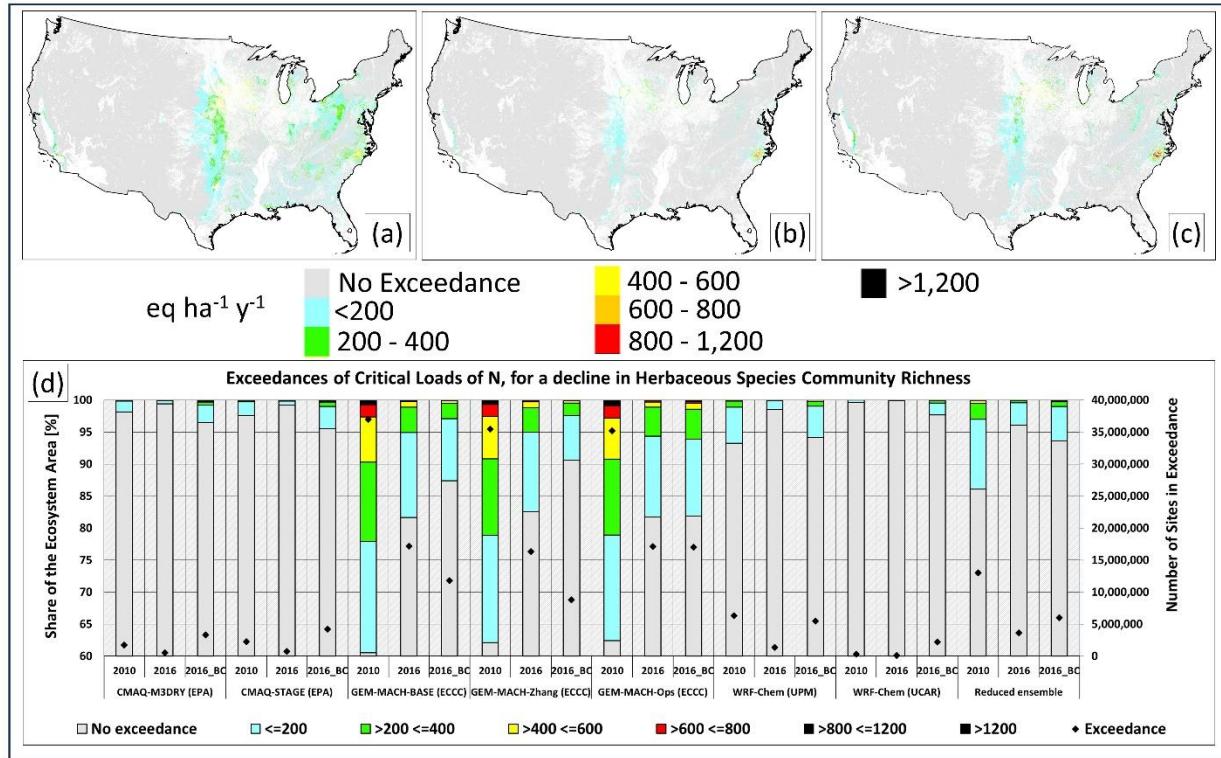
875 Figure 11. CLEs for a decline in Herbaceous Species Community Richness, NA common domain, 2016, eq $\text{ha}^{-1}\text{yr}^{-1}$.
876 Panels arranged by model as in Figure 6. Light grey areas indicate regions for which critical load data were
877 available but were not in exceedance of critical loads. Coloured areas indicate exceedance regions.



878

879

880 Figure 12. Summary CLEs for a decline in Herbaceous Species Community Richness, AQMEII4 NA common
 881 domain, $\text{eq ha}^{-1}\text{yr}^{-1}$. (a), (b) Spatial distribution of CLEs for the reduced ensemble for the years 2010 and 2016,
 882 respectively. (c) Spatial distribution of CLEs for the bias-corrected reduced ensemble for the year 2016. (d)
 883 Percentage of herbaceous species communities for which CL data are available that are also in exceedance, by
 884 model and year (left axis and colour bar) and number of sites in exceedance (right axis and white diamond symbols).



885

886

887

3.2 Analysis of Model Deposition Predictions

888

3.2.1 Causes of S Deposition Variability in North America Domain Simulations

889 The AQMEII4 common grid average, and percent contribution of each depositing species towards total S
 890 deposition in 2016, are given in Table 4. The averages and standard deviation for the reduced ensemble
 891 show that wet deposition of the sum of the sulphate and bisulphite ions ($\text{SO}_4^{(2-)}$ and $\text{HSO}_3^{(-)}$) contributes
 892 more to total S deposition than particulate sulphate dry deposition, which is in turn contributes more than
 893 SO_2 (g) dry deposition. However, the model-to-model variability is also large, particularly for the
 894 contribution of particulate sulphate, which varies by nearly two orders of magnitude between GEM-
 895 MACH (Base, Zhang Ops) and WRF-Chem (UPM). The contributions to the average reduced ensemble
 896 total S deposition are 62.0 ± 19.3 , 44.8 ± 39.0 , and $28.8 \pm 9.9 \text{ eq ha}^{-1} \text{ yr}^{-1}$ for wet, particle dry and gas dry
 897 deposition respectively (\pm ranges in Table 4 are the standard deviation of the component). The greatest
 898 cause of model *variability* in absolute total deposition is associated with the contribution of particulate
 899 sulphate dry deposition, followed by sulphur wet deposition and then gaseous SO_2 dry deposition.

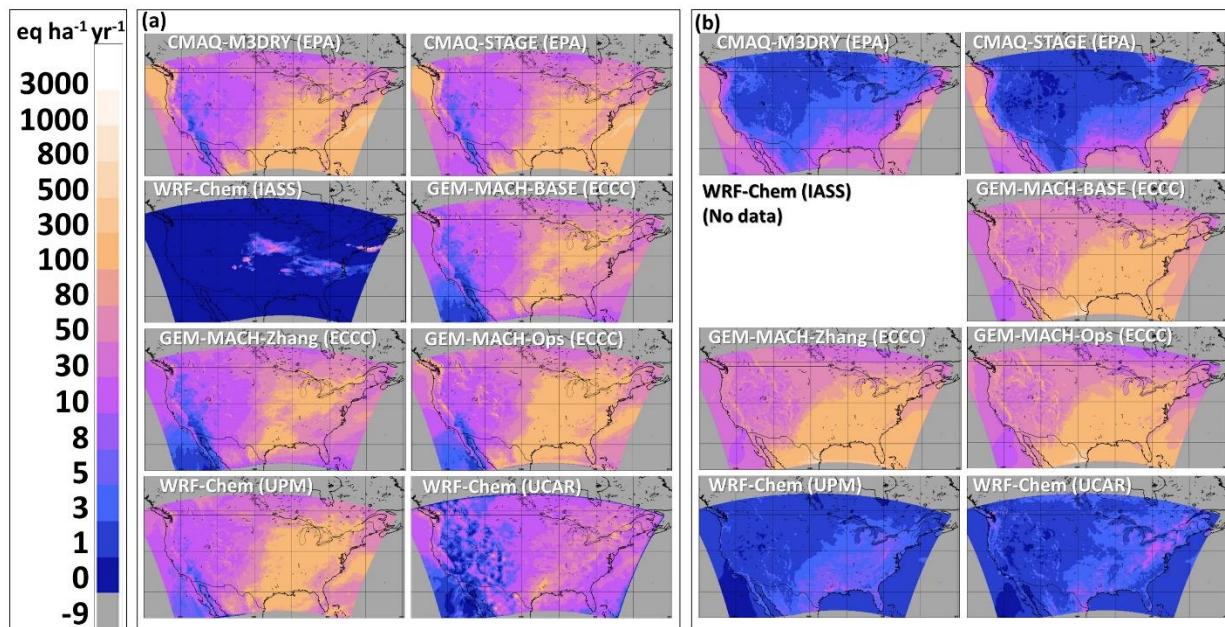
900 Table 4. Average S deposition contributions in common AQMEII4 NA grid area ($\text{eq ha}^{-1} \text{ yr}^{-1}$) and percent
 901 contribution to average total S deposition, 2016. n/d = no data submitted or insufficient data to calculate percentage.

Model Number	Average Deposition ($\text{eq ha}^{-1} \text{ yr}^{-1}$)				Percent of total S deposition		
	$\text{SO}_4^{(2-)} + \text{HSO}_3^{(-)}$ Wet Deposition	Particle Sulphate Dry Deposition	SO_2 (g) Dry Deposition	Total S Deposition	$\text{SO}_4^{(2-)} + \text{HSO}_3^{(-)}$ Wet Deposition	Particle Sulphate Dry Deposition	SO_2 (g) Dry Deposition
CMAQ-M3Dry	79.0	19.0	24.9	122.9	64.3	15.4	20.2
CMAQ-STAGE	79.2	21.0	23.3	123.4	64.2	17.0	18.8
WRF-Chem (IASS)	0.9	nd	26.7	n/d	n/d	n/d	n/d
GEM-MACH (Base)	52.4	90.7	23.0	166.1	31.5	54.6	13.9
GEM-MACH (Zhang)	51.4	88.8	25.1	165.3	31.1	53.7	15.2
GEM-MACH (Ops)	81.3	88.2	23.9	193.4	42.0	45.6	12.4
WRF-Chem (UPM)	66.3	2.8	52.8	121.9	54.4	2.3	43.3
WRF-Chem (UCAR)	24.4	3.0	28.7	56.1	43.5	5.3	51.2
Reduced ensemble average	62.0	44.8	28.8	135.6	45.7	33.0	21.2
Reduced ensemble standard deviation	19.3	39.0	9.9	41.3	13.0	21.2	14.5

903 The spatial distributions of the two largest components of the total S deposition variability (wet S and dry
 904 particle S) are shown in Figure 13. The WRF-Chem (IASS) values did not represent the expected sources
 905 of S deposition over the continent and some deposition fields such as the total particulate sulphate dry
 906 deposition were not submitted. The wet S deposition maps are qualitatively similar between the other
 907 models (note that the colour scale is logarithmic), with WRF-Chem (UCAR) having the lowest values
 908 (Figure 13(a)). As shown in Table 4, the greatest degree of variability between the different modelling
 909 platforms is in the particle deposition fluxes (Figure 13(b)). This variability extends over orders of
 910 magnitude. WRF-Chem (UPM) and WRF-Chem (UCAR) predict the lowest deposition fluxes of dry
 911 particulate sulphate over both land and ocean. CMAQ-STAGE and CMAQ-M3Dry predict higher values
 912 over parts of the ocean, but relatively low values over land. GEM-MACH (Base), GEM-MACH (Zhang)
 913 and GEM-MACH (Ops) have the highest particulate sulphate dry deposition fluxes, roughly equivalent to
 914 the wet deposition fluxes.

915 We next evaluate each of the models' predictions against North American network observations for
 916 concentrations of SO_2 and particulate sulphate, and wet sulphur deposition for the year 2016. The
 917 monitoring network databases employed included the U.S. Environmental Protection Agency's Air
 918 Quality System (AQS; <https://www.epa.gov/aqs>, last access: 7 July 2024), the National Atmospheric
 919 Deposition Program's National Trend Network (NADP NTN;
<https://nadp.slh.wisc.edu/networks/national-trends-network/>, last access 7 July 2024), the Canadian
 920 National Air Pollution Surveillance (NAPS) program (<https://www.canada.ca/en/environment-climate-change/services/air-pollution/monitoring-networks-data/national-air-pollution-program.html>, last access:
 921 7 July 2024), and the Canadian National atmospheric chemistry database (
<https://www.canada.ca/en/environment-climate-change/services/air-pollution/monitoring-networks-data/national-atmospheric-chemistry-database.html>, last access 7 July 2024).
 922
 923
 924
 925

926 Figure 13. 2016 total annual deposition flux ($\text{eq ha}^{-1} \text{yr}^{-1}$) of (a) wet S, and (b) dry particulate sulphate. Note that
 927 regions outside the common AQMEII-4 domain have been assigned an "outside domain" mask value of -9.



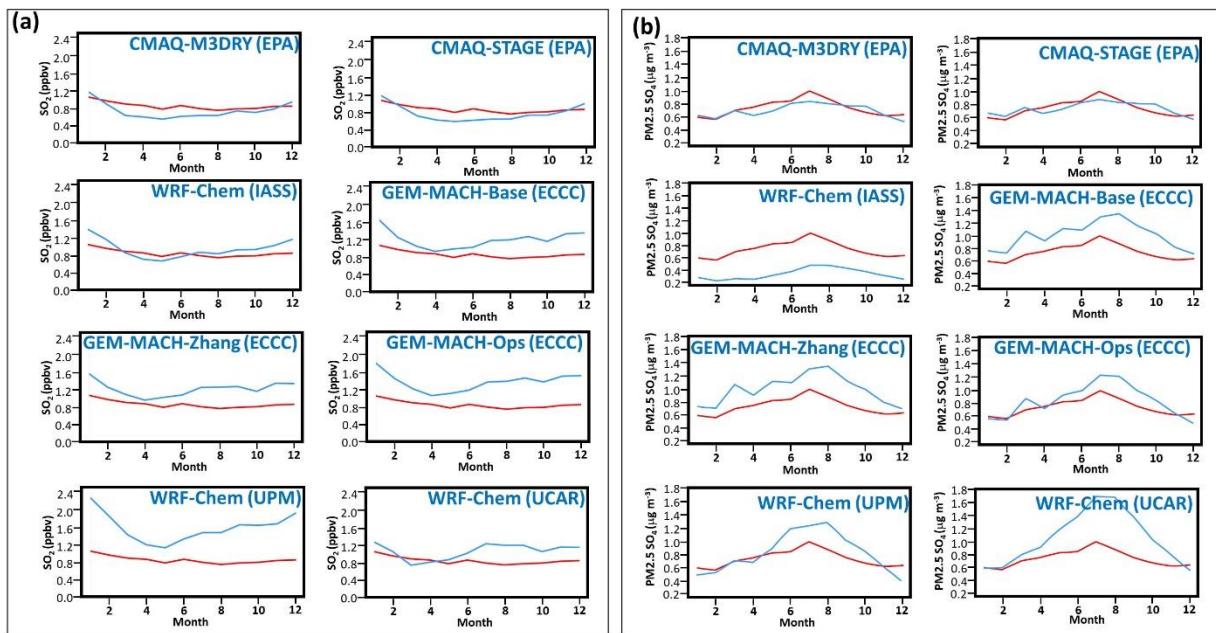
928
 929

930 The NA models' monthly average values of hourly near-surface SO₂ (g) concentrations and daily PM_{2.5}
 931 sulphate concentrations are compared to observations in Figure 14. The monthly averages of daily
 932 (CAPMoN) and weekly (NADP) wet S deposition are shown in Figure 15. Model-observation evaluation
 933 statistics are compared in Table S2 (Supplement). Station locations for the observations are shown in
 934 Supplement Figures S15, S16, and S17.

935 Table S2 shows that CMAQ-M3Dry and CMAQ-STAGE had the best values for most metrics, for the
 936 concentrations of SO₂ and PM_{2.5} sulphate, and daily wet sulphur deposition. The CMAQ-M3Dry,
 937 CMAQ-STAGE and WRF-Chem (IASS) had predominantly negative biases, and all other models had
 938 positive biases. The same tendency can be seen in Figure 14(a), where CMAQ-M3Dry and CMAQ-
 939 STAGE negative biases can be seen to occur in the warmer months, WRF-Chem (IASS) negative biases
 940 in the spring. Despite these differences, the net contribution of SO₂ dry deposition flux towards total
 941 sulphur deposition on an *annual* basis is relatively similar across the models (Table 4), with the standard
 942 deviation being relatively small, mostly driven by the SO₂ deposition flux for WRF-Chem (UPM) being
 943 higher than for the other models.

944 Particle sulphate (Figure 14(b), and Table S2) values were also closest to monthly observed values for
 945 CMAQ-M3Dry and CMAQ-STAGE, while being biased negative for WRF-Chem (IASS) and biased
 946 positive for the remaining models. The evaluation of total S wet deposition (Figure 15(a), Table S2)
 947 showed that all models with the exception of GEM-MACH (Ops) had negative biases relative to the
 948 Canadian daily wet S deposition observations. Weekly wet S deposition biases are also negative for most
 949 models (Table S2, Figure 15(b)), with only GEM-MACH-Ops having a positive bias in the ensemble.

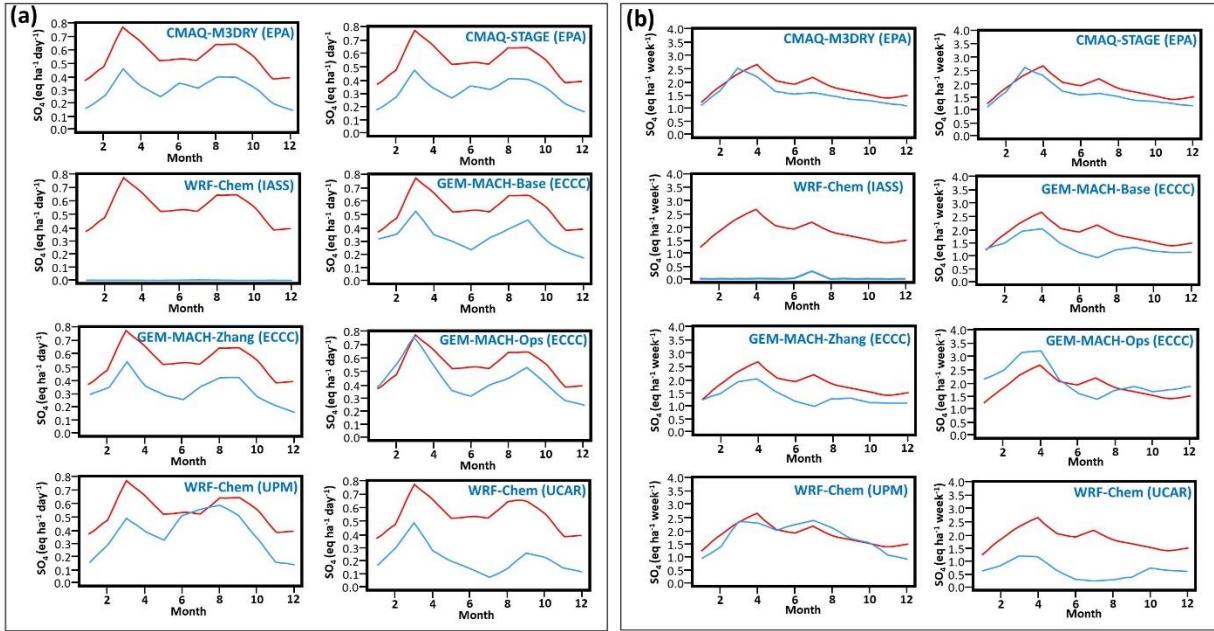
950 Figure 14. Comparison of model (blue line) and observed (red line) monthly average surface concentrations of (a)
 951 hourly SO₂ (ppbv) and (b) daily PM_{2.5} sulphate (ug m⁻³), for the year 2016 (AQS, NAPS data).



952

953

954 Figure 15. Comparison of model (blue line) and observed (red line) monthly average values of wet sulphur
 955 deposition for (a) daily CAPMoN data ($\text{eq ha}^{-1} \text{ day}^{-1}$), (b) weekly NADP data ($\text{eq ha}^{-1} \text{ week}^{-1}$), for the year 2016.



956

957 Factors aside from emissions which affect the SO_2 concentrations within the models are the loss processes
 958 of gas oxidation, uptake into hydrometeor water (and subsequent in-cloud oxidation), and dry deposition.
 959 Both the gas oxidation and hydrometeor uptake pathways may lead to particulate sulphate formation
 960 (through nucleation/condensation of sulphuric acid into particles and through evaporation of
 961 hydrometeors). An underestimate of chemical conversion of SO_2 within hydrometeors may thus be
 962 expected to result in underestimates of particulate sulphate and in sulphate ion wet deposition. However,
 963 Table S2 shows relatively little bias for $\text{PM}_{2.5}$ sulphate relative to observations for CMAQ-M3Dry and
 964 CMAQ-STAGE, and positive biases for the GEM-MACH models and WRF-Chem (UPM); these positive
 965 biases in predicted particulate sulphate would argue against an insufficient conversion of SO_2 to
 966 particulate sulphate in the latter group of models. Rather, the general tendency of negative biases in wet
 967 sulphur deposition may indicate insufficient hydrometeor scavenging and subsequent aqueous-phase
 968 oxidation of aerosols across all models. We also note that the mean bias of SO_2 concentrations for GEM-
 969 MACH (Ops) is more positive than those of GEM-MACH (Base) and GEM-MACH (Zhang), while the
 970 particulate sulphate bias was lower, and the wet sulphate deposition bias was higher. GEM-MACH (Ops)
 971 makes use of an operational weather forecast for cloud fields, while GEM-MACH(Base) and GEM-
 972 MACH(Zhang) make use of an explicit cloud microphysics scheme, which allows weather/air quality
 973 feedbacks to be simulated, but tends to underestimate the cloud amounts when used at lower resolution
 974 such as the 10km grid cell size used in the simulations for these three models in this study. The
 975 differences between {GEM-MACH (Base), GEM-MACH (Zhang)} and GEM-MACH (Ops) may thus
 976 reflect weaker scavenging of aerosols into clouds in the Base and Zhang implementations.

977

978 GEM-MACH (Base), GEM-MACH (Zhang) and WRF-Chem (UCAR) have the most positive biases for
979 particulate sulphate. As noted above, GEM-MACH (Base) and GEM-MACH (Zhang) share a common
980 framework, and unlike other models in the ensemble, they also share an implementation of the updated
981 particle deposition parameters of Emerson *et al.* (2020). The Emerson *et al.* (2020) makes use of
982 extensive measurement data, and compared to earlier parameterizations such as Zhang *et al.* (2001),
983 results in decreased dry deposition velocities for sub-micrometer particles and increased dry deposition
984 velocities for particles larger than 0.2 to 0.8 μm , depending on land use type. The increased $\text{PM}_{2.5}$ SO_4
985 values in GEM-MACH (Base) and GEM-MACH (Zhang) in Figure 14(b) may thus reflect decreases in
986 the deposition removal flux in the sub-micrometer portion of the bins in these 12-bin sectional model
987 framework. WRF-Chem (UPM) and WRF-Chem (UCAR) are also both sectional models making use of a
988 common modelling framework, with WRF-Chem (UPM) being a slightly earlier release than WRF-Chem
989 (UCAR). Neither model made use of the Emerson *et al.* (2020) update at the time the AQMEII4
990 simulations took place. However, this option was later examined for the WRF-Chem (UCAR)
991 configuration by Ryu and Min (2022), who found that the Emerson *et al.* (2020) dry deposition
992 parameterization, applied subsequent to the runs carried out here, resulted in an increase in the positive
993 $\text{PM}_{2.5}$ bias from +4.5 to +6.7 $\mu\text{g m}^{-3}$ and a shift towards less negative biases in PM_{10} , from -19.7 to -1.77
994 $\mu\text{g m}^{-3}$, similar to the biases in particulate sulphate and ammonium observed in Figure 14(b) between
995 {GEM-MACH (Base), GEM-MACH(Zhang)} and GEM-MACH (Ops). Ryu and Min (2022) further
996 found that the additional update of replacing the default Slinn (1984) aerosol cloud scavenging
997 parameterization by the Wang (2014) parameterization offset the increase in $\text{PM}_{2.5}$ SO_4 biases associated
998 with the new particle dry deposition scheme, illustrating the extent to which combinations of
999 parameterizations are sometimes needed to improve model performance. More recent versions of GEM-
1000 MACH also make use of multiphase hydrometeor partitioning, with and without the Wang (2014) semi-
1001 empirical scavenging scheme, with a significant increase in the uptake of particulate sulphate depending
1002 on precipitation rate, and improvements in the wet sulphate performance relative to previous model
1003 versions (Ghahreman *et al.*, 2024). Implementation of both updated particle dry deposition velocities and
1004 wet scavenging methodology have thus resulted in reduced biases for these fields, for several of the
1005 models examined here, in work subsequent to the simulations for AQMEII4.

1006 With regards to wet sulphur deposition, Figure 15(a) and Table S2 shows a tendency of most models
1007 towards negative biases for total *daily* wet S deposition. However, this negative bias is much less
1008 pronounced or even positive in comparison to the *weekly* wet S deposition data. Other metrics of model
1009 performance differed sharply between the two wet deposition observation datasets for some metrics, with
1010 the weekly wet SO_4^{2-} deposition data comparison having higher MGE, NMGE, and RMSE values than the
1011 daily wet SO_4^{2-} deposition data comparison. The overall tendency of the performance was similar for
1012 both datasets, with the CMAQ models having the best scores for metrics other than mean bias. We note
1013 that the daily and weekly NA wet deposition values correspond to monitoring networks in two different
1014 locations (see Figure S15(a)). The daily values are from the Canadian CAPMoN network (stations in the
1015 common AQMEII4 domain are located mostly in south-eastern Canada), while the weekly data from the
1016 US NADP network are distributed throughout the USA. The differences in model performance may thus
1017 reflect regional differences in predicted meteorological and/or emissions fields.

1018 One possible cause for the negative biases in wet deposition common to most models could be
1019 underestimates in the amount of model-predicted precipitation, which in turn would reduce the wet flux.
1020 The net precipitation totals converted to liquid water for the eight NA models and observations are shown
1021 in Figure S18, for both daily (CAPMoN) and weekly(NADP) monthly averages. While the monthly
1022 averages of daily precipitation (Figure S18(b)) suggest a tendency towards negative biases in the summer
1023 months for some models, the time series of the precipitation biases does not follow that of the wet

1024 sulphate deposition biases (for example, the difference relative to wet sulphate observations in Figure
1025 15(a) remains relatively constant for CMAQ-M3Dry and CMAQ-STAGE, while the predicted
1026 precipitation difference relative to observations for the same models in Figure S18(a) shows more
1027 negative biases in the summer than wintertime. Model total precipitation biases thus do not appear to be a
1028 major contributing factor to the sulphur flux biases found in this work.

1029 We also note the potential for the lower magnitude biases in the daily wet SO_4^{2-} evaluation, compared to
1030 the weekly evaluation, to be the result of the respective regions represented by the two monitoring
1031 networks. Figure S16(a) shows that the daily data are derived from a smaller geographic area than the
1032 weekly data, hence regional performance differences may be affecting the two evaluation results.

1033 *Summary, North American S Deposition variability*

1034 Sulphur deposition results from a complex balance between SO_2 oxidation, particulate sulphate formation,
1035 scavenging and release of particles within clouds, in addition to the processes governing deposition of
1036 each of the components. The largest contributing pathways to North American sulphur deposition, in
1037 descending order of importance, were wet deposition ($\text{SO}_4^{2-} + \text{HSO}_3^-$), particulate sulphate dry deposition,
1038 and dry $\text{SO}_2(\text{g})$ deposition in the reduced ensemble of model runs. The largest contributors to model-to-
1039 model variability in sulphur deposition, in descending order of importance, were particulate sulphate dry
1040 deposition, wet deposition ($\text{SO}_4^{2-} + \text{HSO}_3^-$), and dry $\text{SO}_2(\text{g})$ deposition.

1041 CMAQ-M3Dry, CMAQ-STAGE, and GEM-MACH (Ops) had both the highest levels of wet deposition
1042 and also the best scores relative to wet deposition observations. Models with higher $\text{PM}_{2.5}$ sulphate
1043 positive biases relative to observations also had stronger negative biases for wet sulphate deposition,
1044 indicating that the magnitude of particle scavenging into hydrometeors may play a role in both biases in
1045 the models. Comparisons between {GEM-MACH (Base), GEM-MACH (Zhang)} and {GEM-MACH
1046 (Ops)} provide some evidence for this effect. WRF-Chem (UPM) and WRF-Chem (UCAR) have very
1047 low particulate sulphate deposition fluxes relative to the other models, and substantial positive biases in
1048 $\text{PM}_{2.5}$ sulphate and negative biases in wet sulphate deposition, relative to observations, likely related to
1049 insufficient wet scavenging of sulphate particles into hydrometeors (Ryu and Min, 2022)

1050 *3.2.2 Causes of N Deposition Variability in North America Domain Simulations*

1051 The common grid spatial average and percent contribution of each of the species contributing to total
1052 annual N deposition for 2016 are given in Table 5. The columns in the Table are arranged in descending
1053 order from left to right of contribution to the reduced ensemble total nitrogen deposition for each
1054 contributing chemical (“Red. Ens. Avg” row). The impact of variability on the model deposition from
1055 each component for each model is once again shown as the standard deviation across the models used for
1056 the reduced ensemble (“Red. Ens. Std. Dev” row). From the standard deviation row, it can be seen that
1057 the variation (standard deviation) between models for the contributions towards total N deposition are
1058 driven, in descending order, by particle ammonium (DAM column, where the standard deviation for
1059 particle ammonium deposition is larger than the reduced ensemble mean value), followed by wet
1060 ammonium ion (WNH4), wet nitrate ion (WNO3), dry HNO_3 (DHNO₃), dry particle nitrate (DNI), dry
1061 NO_2 (DNO2), dry ammonia gas (DNH3), with the remaining species contributing a small percentage of
1062 the total variability. Both the particle ammonium and wet ammonium variability between the models is
1063 largely driven by the GEM-MACH group of models, which have average dry particle ammonium and wet
1064 ammonium fluxes which are respectively 17.4x and 1.76x higher than the other models.

1065 We next evaluate the models' nitrogen performance using the available concentration and wet deposition
1066 flux data to determine the impact of the parameterization differences on model performance, and hence
1067 identify which components in which models might be improved.

1068 Table 5. Contributions of N species towards total deposition (eq ha⁻¹ yr⁻¹) and percent of total N deposited, over the
 1069 common AQMEII4 NA grid, arranged in descending order of importance to the reduced ensemble average. WNH4:
 1070 wet deposition of NH₄⁺(aq). DHNO3: dry deposition of HNO₃(g). WNO3: wet deposition of NO₃⁻(aq). DAM: dry
 1071 deposition of particulate ammonium. DNH3: dry deposition of NH₃(g). DNI: dry deposition of particulate nitrate.
 1072 DNO2: dry deposition of NO₂(g). DPAN: dry deposition of peroxyacetyl nitrate gas. DRN3: dry deposition of
 1073 gaseous organic nitrate gases. DN2O5: dry deposition of N₂O₅(g). DHNO4: dry deposition of pernitric acid gas.
 1074 DNO: dry deposition of NO(g). WRF-Chem (IASS) did not report dry particle fluxes. The GEM-MACH
 1075 models and WRF-CHEM(UPM) do not include dry deposition of N₂O₅(g), and the GEM-MACH models
 1076 do not dry deposit HNO₄(g).

Average (eq ha ⁻¹ yr ⁻¹)										
Species	Model									
	CMAQ-M3Dry	CMAQ-STAGE	WRF-Chem (IASS)	GEM-MACH (Base)	GEM-MACH (Zhang)	GEM-MACH (Ops)	WRF-Chem (UPM)	WRF-CHEM (UCAR)	Red. Ens. Avg	Red. Ens. Std Dev
WNH4	51	60.4	0.2	129	129	114.2	64.3	29.4	82.5	37.7
DHNO3	52.5	51.9	0	66.9	56.2	62.4	75.1	46.8	58.8	9.1
WNO3	65.6	66.9	0.2	45	51.3	71.9	73.1	33.6	58.2	14
DAM	8.5	8.4	nd	98.5	100.7	82.6	2.7	2	43.3	44.2
DNH3	33.2	29.5	36.3	26.9	26.6	40	40.3	47.2	34.8	7.3
DNI	18.3	18.9	nd	26.8	32.7	19	7.6	7.1	18.6	8.6
DNO2	7.9	7.3	7.7	23.8	21.9	26.7	10.9	10.8	15.6	7.6
DPAN	4.9	4.7	2	7.7	7.4	10	2.7	2	5.6	2.7
DRN3	6.6	4.9	0.4	1.8	2.4	3.1	0.7	3.1	3.2	1.8
DN2O5	1.2	1.1	2.2	nd	nd	nd	nd	nd	1.2	0.1
DHNO4	0.4	0.1	0	nd	nd	nd	0.8	0.4	0.3	0.1
DNO	0.5	0.5	0	0.1	1.2	0.2	0	0	0.4	0.4
Total N	250.7	254.7	49	426.5	429.4	430	278.2	182.4	321.7	96.5
Percent Contribution										
Species	Model									
	CMAQ-M3Dry	CMAQ-STAGE	WRF-Chem (IASS)	GEM-MACH (Base)	GEM-MACH (Zhang)	GEM-MACH (Ops)	WRF-Chem (UPM)	WRF-CHEM (UCAR)	Red. Ens. Avg	Red. Ens. Std Dev
WNH4	20.4	23.7	0.4	30.2	30	26.5	23.1	16.1	25.6	4.7
DHNO3	21	20.4	0	15.7	13.1	14.5	27	25.7	18.3	5
WNO3	26.2	26.3	0.3	10.6	11.9	16.7	26.3	18.4	18.1	6.4
DAM	3.4	3.3	nd	23.1	23.5	19.2	1	1.1	13.5	9.9
DNH3	13.2	11.6	74.2	6.3	6.2	9.3	14.5	25.9	10.8	7.6
DNI	7.3	7.4	nd	6.3	7.6	4.4	2.7	3.9	5.8	1.8
DNO2	3.2	2.9	15.8	5.6	5.1	6.2	3.9	5.9	4.9	1.3
DPAN	1.9	1.9	4.1	1.8	1.7	2.3	1	1.1	1.7	0.5
DRN3	2.6	1.9	0.7	0.4	0.6	0.7	0.2	1.7	1	0.8
DN2O5	0.5	0.4	4.4	nd	nd	nd	nd	nd	0.4	0
DHNO4	0.2	0	0	nd	nd	nd	0.3	0.2	0.1	0.1
DNO	0.2	0.2	0.1	0	0.3	0	0	0	0.1	0.1
WNH4	20.4	23.7	0.4	30.2	30	26.5	23.1	16.1	25.6	4.7

1077

1078 *Dry deposition of particle ammonium*

1079 The largest source of variability between North America models' total N predictions resides in the dry
1080 particle ammonium deposition fluxes, with Table 5 showing that the standard deviation of this deposition
1081 flux across models was essentially as large as the reduced ensemble average. Particle dry ammonium
1082 deposition contributes a disproportionately high contribution to total N *variability* across the North
1083 American ensemble, despite the magnitude of the ensemble average particle ammonium dry deposition
1084 flux being less than the deposition of wet ammonium ion, dry nitric acid gas, or wet nitrate ion,

1085 Figure 16 compares the monthly average PM_{2.5} ammonium concentrations with observations (station
1086 locations appear in Figure S15(b)), and Table S3 provides detailed statistics. From the latter, CMAQ-
1087 M3Dry and CMAQ-STAGE have the best overall performance for particulate ammonium, and GEM-
1088 MACH (Base), GEM-MACH (Zhang) and GEM-MACH (Ops) have the worst performance by the
1089 statistical measures used here. This latter group of models also have the largest magnitude of positive
1090 biases relative to observed PM_{2.5} ammonium concentrations, while the CMAQ implementations have the
1091 negative biases, and the remaining models have smaller magnitude positive biases. Figure 16 shows that
1092 CMAQ-M3Dry, CMAQ-STAGE, WRF-Chem (IASS) and to a lesser extent WRF-Chem (UPM) have a
1093 greater seasonal variability in model particle ammonium (blue line) than observed (red line), with the
1094 difference between summer and winter (months 1 and 12 versus months 5 through 9) being higher in the
1095 models than in observations.

1096 The GEM-MACH contributions to model N variability in critical load exceedances are thus linked to poor
1097 model performance for PM_{2.5} ammonium. This poor performance is likely due to two factors, which can
1098 be deduced from comparing the process representations implemented in the models (section 2.2).

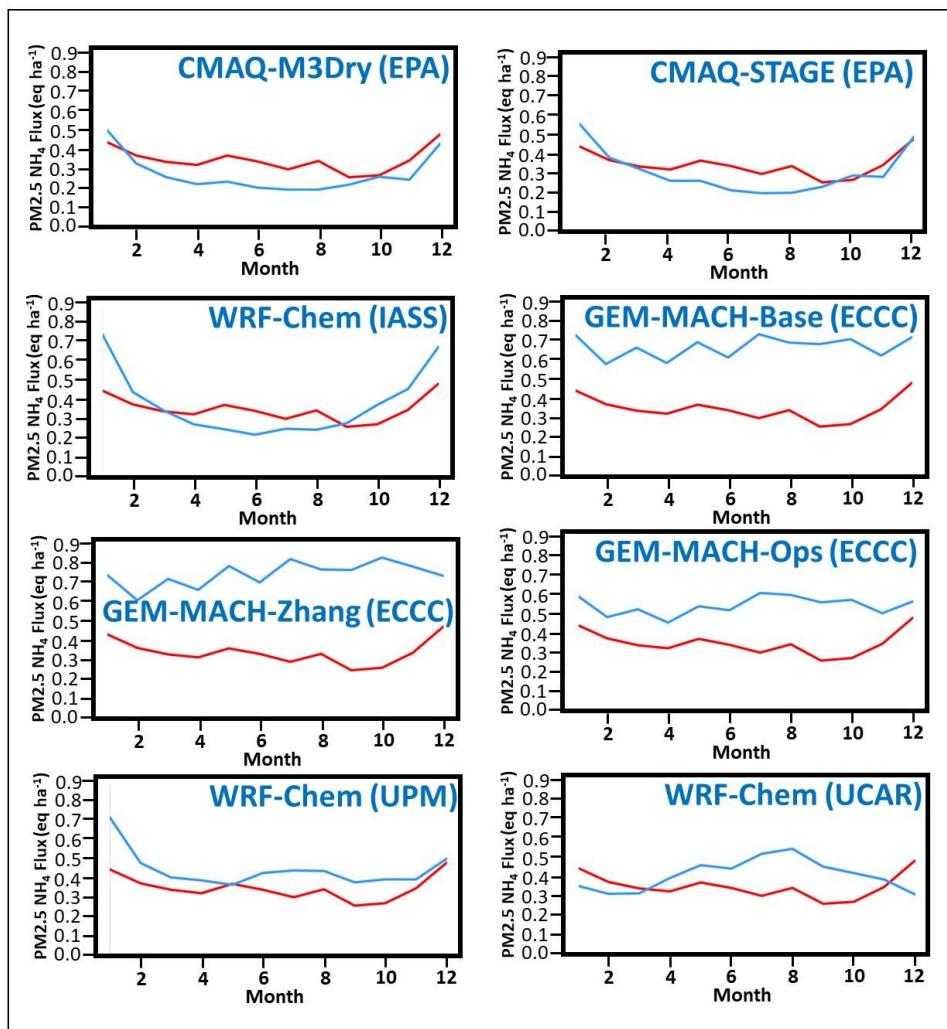
1099 The first factor, which differentiates GEM-MACH (Base), GEM-MACH (Zhang) and GEM-MACH
1100 (Ops) from the other ensemble members relates to how inorganic aerosol thermodynamic partitioning
1101 chemistry has been implemented: while all this process representation in the models of the ensemble is
1102 derived from the ISORROPIA module (Nenes *et al.*, 1998; Fountoukis *et al.*, 2007), the GEM-MACH
1103 implementations in AQMEII-4 employ a partial speciation of SO₄²⁻, NH₄⁺ and NO₃⁻ (Makar *et al.*, 2003),
1104 and do not include the reactions involving particulate base cations (Ca²⁺, Mg²⁺, Na⁺, K⁺). The other
1105 models in the ensemble do include these additional reactions. In the absence of base cation chemistry, the
1106 formation of particle ammonium will be controlled by the availability of ammonia gas in excess of that
1107 required to charge balance particulate sulphate, as well as by the availability of nitric acid gas. In the
1108 presence of base cations, nitric acid gas will preferentially associate with base cations rather than
1109 ammonia, leaving less HNO₃ available for particle ammonium nitrate formation. Several observational
1110 studies have shown that when base cations are present, their peak mass occurs in the coarse particle size
1111 mode (> 2.5 μm diameter), where they will have higher deposition velocities (e.g. inland, agricultural dust
1112 sources, Makar *et al.*, 1998; ocean sources of sea-salt, Anlauf *et al.*, 2006). Base cation inorganic
1113 heterogeneous chemistry thus provides a competing pathway for uptake of nitrate into particles, and when
1114 present, will also reduce the amount of NH₃ that may be taken up by particles, especially in the fine mode.
1115 The positive bias of PM_{2.5} ammonium in Figure 16 for GEM-MACH relative to the other models likely
1116 represents the impact of simplified inorganic aerosol chemistry.

1117 The second factor influencing the GEM-MACH models positive particulate ammonium biases may be
1118 reflected in the biases for GEM-MACH (Base) and GEM-MACH (Zhang), which are 50% to a factor of
1119 two, respectively, higher than that of GEM-MACH (Ops): that is, an additional source of bias resides in
1120 the former two model implementations that is not present in the latter implementation. The likely source
1121 of this additional bias is their use of Emerson *et al.* (2020) particle deposition velocities in these

1122 implementations, in the absence of enhanced wet scavenging of aerosols, as discussed above for PM_{2.5}
 1123 sulphate, and described in Ryu and Min (2022) and Ghahreman *et al.* (2024). Ryu and Min (2022)
 1124 showed that the use of the updated particle deposition velocity as per Emerson *et al.* (2020), when
 1125 implemented in the absence of concurrent multiphase wet scavenging updates led to positive biases in
 1126 PM^{2.5} concentrations in the WRF-Chem model.

1127 We note that the manner in which inorganic heterogeneous chemistry is simulated also differs between the
 1128 models. CMAQ-M3Dry and CMAQ-STAGE calculate local equilibrium concentrations at different
 1129 modes of the size distribution, and WRF-Chem (UPM) and WRF-Chem (UCAR) also calculate the
 1130 equilibrium with respect to specific size bins, while GEM-MACH (Base), GEM-MACH (Zhang) and
 1131 GEM-MACH (Ops) carry out a single bulk calculation across all size bins. The use of a bulk calculation
 1132 is a third simplification for the latter group of models, and may also affect the particulate ammonium
 1133 performance of these models.

1134 Figure 16. PM_{2.5} ammonium compared to observations, North American Model Ensemble, 2016. Red line:
 1135 monthly observed average. Blue line: monthly model average.

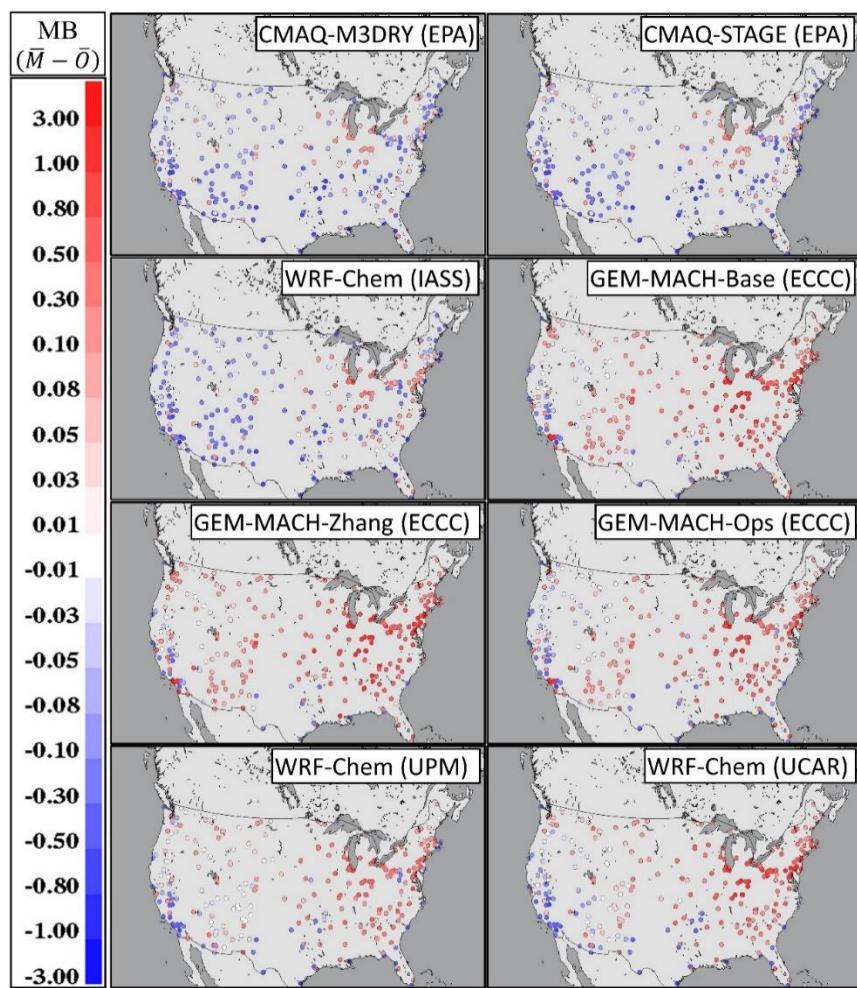


1136

1137

1138 The spatial distribution of PM_{2.5} ammonia biases was examined in Figure 17, for the month of July, 2016
 1139 (July was chosen due to the expectation that bidirectional fluxes would have a higher impact in the
 1140 summer months). The region with the highest positive biases (dark red circles, Figure 17) are in the same
 1141 station locations for all models, in the agricultural region to south of the Great Lakes. Positive PM_{2.5}
 1142 ammonium MB also occur near urban regions in western USA (Seattle/Tacoma, Yakima, Portland,
 1143 Sacramento, San Jose, Boise, Butte, Helena, Denver, Boulder, and Albuquerque) and at one eastern site
 1144 Miami. A re-examination of ammonia gas deposition and emissions parameters and primary particle
 1145 ammonium emissions inventories are recommended for these locations, given that they are likely having a
 1146 large impact on model performance statistics. The CMAQ models and WRF-Chem (IASS) have negative
 1147 to minimal biases along the coastlines and SW USA (regions of sea-spray NaCl and wind-blown base
 1148 cation containing dust, respectively), while WRF-Chem (UPM) and WRF-Chem (UCAR) have small
 1149 negative to positive biases in these regions, and the GEM-MACH models are uniformly biased positive in
 1150 these regions. This provides support to the possibility that the GEM-MACH positive bias in particulate
 1151 ammonium concentrations is due to missing particulate base cation chemistry; the regions where
 1152 particulate base cations would be expected to contribute significantly to total particulate mass are also the
 1153 regions where the GEM-MACH models have positive biases, and the biases in the other model biases are
 1154 not as significant.

1155 Figure 17. Mean Biases, PM_{2.5} NH₄, July, 2016, by station ($\mu\text{g m}^{-3}$). Negative values given in blue, positive biases
 1156 given in red. Note that colour scale is logarithmic.

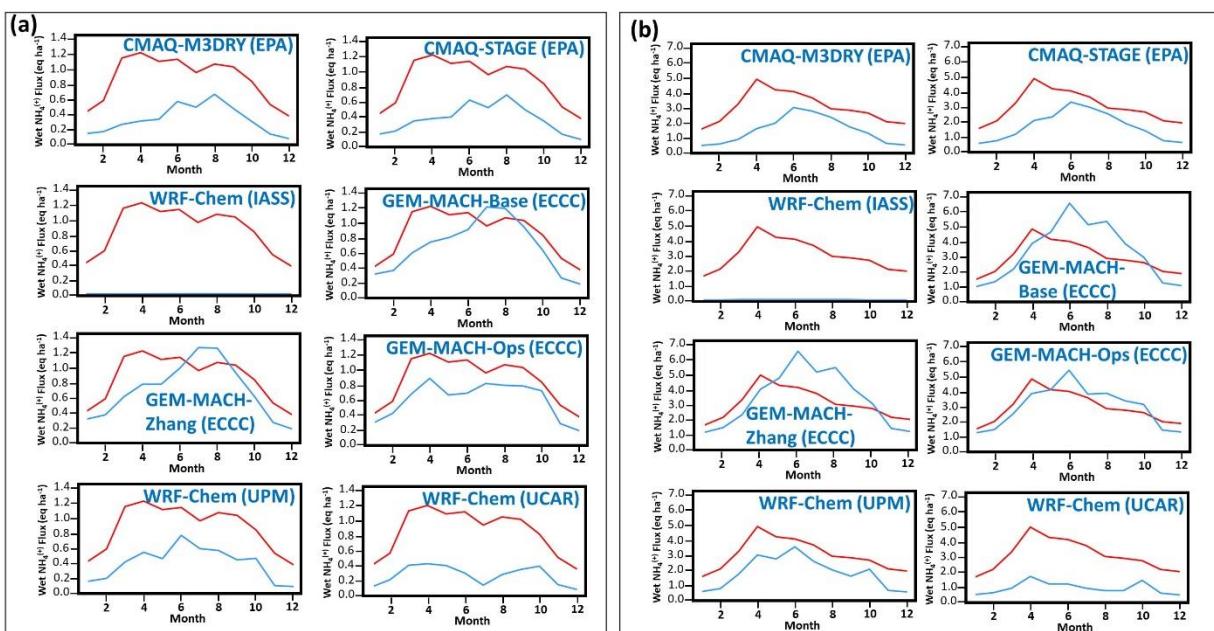


1157

1158 *Wet deposition of ammonium and nitrate ions.*

1159 Wet deposition of ammonium ion is the largest contributor to the North America reduced ensemble N_{dep} ,
1160 and the second largest contributor to model-to-model variability in N deposition (Table 5). Wet
1161 deposition of nitrate ion is the third largest contributor to both the NA ensemble total N deposition and
1162 model-to-model variability in N deposition. Time series of the monthly averages of observed and
1163 modelled daily (CAPMoN) and weekly (NADP) wet NH_4^+ deposition fluxes are shown in Figure 18. The
1164 monthly mean of modelled daily values (Figure 18(a)) are generally biased negative, with the exceptions
1165 of the months of July and August for GEM-MACH (Base) and GEM-MACH (Zhang). The observed
1166 maximum in NH_4^+ wet deposition occurs in April (Figure 18(a), red line, month 4) – this seasonal
1167 variation is captured only by GEM-MACH (Ops) and WRF-Chem (UCAR), with the other models
1168 predicting peak deposition in between June through August. The monthly average of the weekly wet
1169 NH_4^+ deposition fluxes (Figure 18(b)) shows a similar pattern, with the observed values (red lines, Figure
1170 18(b)) peaking in April, and all of the models except for WRF-Chem (UCAR) peaking in June. As was
1171 the case for wet sulphate deposition, the observed seasonal variation is apparently not connected with
1172 biases in precipitation predictions (see Figure S18(a,b), supplemental information), with the possible
1173 exception of WRF-Chem (UCAR), for which total precipitation is biased substantially negative
1174 throughout the year.

1175 Figure 18. Time series of monthly average observed (red line) and modelled (blue line) wet ammonium deposition
1176 fluxes, for (a) Daily CAPMoN data (eq ha^{-1} day $^{-1}$), and (b) Weekly NADP data (eq ha^{-1} week $^{-1}$).



1177

1178 As noted above, the models taking part in this ensemble did not make use of multiphase hydrometeor
1179 scavenging in precipitation. The maximum wet NH_4^+ deposition negative bias in April featuring for
1180 several models may reflect the absence of this level of detail in hydrometeor scavenging, with the absence
1181 of snow scavenging potentially impacting early spring deposition. We note that the weekly and daily
1182 monitoring networks cover different geographical regions, hence the differences in model performance
1183 relative to the two observation datasets (compare the CAPMoN and NADP station locations in yellow and
1184 green circles respectively, Figure S15(a)).

1185 The mean biases in average daily and weekly wet NH_4^+ deposition for the month of April are shown in
1186 Figure 19. WRF-Chem (IASS), CMAQ-M3Dry, and CMAQ-STAGE have predominantly negative biases
1187 throughout the region, WRF-Chem (UCAR) and WRF-Chem (UPM) have a few stations with more
1188 positive biases, and the GEM-MACH models have both positive and negative biases throughout the
1189 domain. Insight into the differences in model performance can be gained through reviewing the manner
1190 in which each model parameterizes aerosol activation and scavenging:

- 1191 (1) GEM-MACH (Base), GEM-MACH (Zhang), GEM-MACH (Ops), WRF-Chem (UPM), and
1192 WRF-Chem (UCAR) make use of the aerosol activation scheme of Abdul-Razzak and Ghan
1193 (2000), and the Slinn (1984) approach to aerosol scavenging.
- 1194 (2) In GEM-MACH (Ops), the aerosol activation and scavenging schemes are decoupled from
1195 meteorological feedbacks, while GEM-MACH (Base), GEM-MACH (Zhang), WRF-Chem
1196 (UPM) and WRF-Chem (UCAR) are “aerosol-aware”/full feedback models incorporating
1197 parameterizations for the aerosol direct and indirect effects. The latter will result in cloud
1198 formation from model-produced aerosols acting as cloud-condensation nuclei; clouds are more
1199 likely to form where aerosol concentrations are high (and thus more likely to scavenge aerosols
1200 below the clouds as well), compared to offline models. Very high aerosol concentrations may
1201 also reduce cloud droplet size and cloud to precipitation conversion, potentially making clouds
1202 more persistent, while reducing precipitation.
- 1203 (3) WRF-Chem (IASS) also makes use of aerosol direct and indirect effect feedbacks, but employs
1204 the approach of Chapman *et al.* (2009) for aerosol scavenging.
- 1205 (4) CMAQ-M3Dry and CMAQ-STAGE are off-line models (no feedbacks between aerosols, cloud
1206 formation and radiative transfer takes place), where interstitial and nucleation aerosol scavenging
1207 by cloud droplets is modelled following Binkowski and Roselle (2003), and the wet deposition
1208 rate is a simple parameterization dependent on the cloud total liquid water content, cloud
1209 thickness, and cloud precipitation rate (Fahey *et al.*, 2017).

1210 The Slinn (1984) aerosol scavenging approach makes use of different observation-based aerosol
1211 collection efficiency formulae for rain and snow, respectively, where temperature dependence in the
1212 collection efficiency such as a 0 C may be used to distinguish between liquid and solid hydrometeor
1213 collection efficiencies. Subsequent to the AQMEII-4 simulations carried out here, parameterizations that
1214 utilize multiphase precipitation data with multiple hydrometeor classes, such as that of Wang *et al.*
1215 (2014), have been tested within the modelling framework of GEM-MACH (Gahreman *et al.*, 2024). Similarly,
1216 Ryu and Min (2022) describes the impact of multiphase hydrometeor scavenging as
1217 implemented in the WRF-Chem modelling framework. These tests resulted in significant improvements
1218 in particulate concentrations and wet deposition compared to previous implementations employing the
1219 approach of Slinn (1984). The approach for scavenging in Binkowski and Roselle (2003) assumes
1220 scavenging only occurs to cloud droplets; snow scavenging is not considered. However, snow scavenging
1221 at higher precipitation rates is known to be one to two orders of magnitude more efficient than scavenging
1222 by rain. Hence the use of the (Slinn (1984) parameterization instead of multiphase hydrometeor
1223 scavenging and the ; Wang, (2014) parameterization in GEM-MACH, and the omission of multiphase
1224 hydrometeor scavenging in CMAQ, may account for the springtime bias in all models noted here.

1225 The causes for the differences in wet deposition of NH_4 between WRF-Chem (IASS), WRF-Chem (UPM)
1226 and WRF-Chem (UCAR) may result from the use of the Chapman *et al.* (2009) wet scavenging approach
1227 in the first model, and the implementation of Abdul-Razzak and Ghan (2000), and the Slinn (1984)
1228 approaches in the latter two models. All three models make use of the Morrison Two-Moment cloud
1229 microphysics scheme and (Morrison *et al.*, 2009), though WRF-Chem (IASS and WRF-Chem (UPM)

1230 differ from WRF-Chem (UCAR) in the parameterization of convective clouds (See Table 1). Differences
1231 in aerosol scavenging implementations may account for some of the differences in wet ammonium
1232 deposition between these models, as may the manner in which convective clouds identify cloud
1233 condensation nuclei from aerosol size distribution and speciation within their convective
1234 parameterizations.

1235 Wet nitrate ion deposition is the third largest source of N deposition in the North American ensemble as
1236 well as the third largest source of model-to-model variability (Table 5). CMAQ-M3Dry, CMAQ-STAGE
1237 and GEM-MACH (Ops) have the best performance scores for wet nitrate deposition (Table S3
1238 (Supplement)). GEM-MACH (Base) and GEM-MACH (Zhang) have larger magnitude and more
1239 negative biases than GEM-MACH (Ops), despite all three models making use of the same modelling
1240 framework. The only difference between GEM-MACH (Base) and GEM-MACH (Zhang) is the gas-
1241 phase dry deposition algorithm employed (see Table 2). The increase in wet deposition negative bias
1242 magnitude going from GEM-MACH (Zhang) to GEM-MACH (Base) in Table S3 (from -0.19 to -0.26 eq
1243 $ha^{-1} d^{-1}$ for daily CAPMoN data, and from -0.41 to -0.64 for weekly NADP data) is therefore attributable
1244 to gas-phase deposition differences. This is also reflected in the HNO_3 dry deposition flux for the two
1245 models in Table 5, with the deposition flux for GEM-MACH (Base) at $66.9 eq ha^{-1} yr^{-1}$ being 19% higher
1246 than the GEM-MACH (Zhang) value of $56.2 eq ha^{-1} yr^{-1}$.

1247 The remainder of the difference in wet nitrate deposition bias between (GEM-MACH (Base, Zhang) and
1248 GEM-MACH (Ops) must be due to other factors in the model configuration as described in Table 2.
1249 Based on the $PM_{2.5}$ sulphate and $PM_{2.5}$ nitrate evaluations (Table S2, Table S3), as well as the work of
1250 Ghahreman *et al.* (2024) and Ryu and Min (2022), we believe that the cause of the additional wet nitrate
1251 negative bias resides in the use of the new particle deposition velocity algorithm in the absence of a
1252 simultaneous update in the wet deposition algorithm to make use of multiphase hydrometeor scavenging
1253 of aerosols. For example, the particulate matter scavenging coefficients for snow are one to two orders of
1254 magnitude more efficient than for rain – including snow scavenging (which may occur at higher
1255 elevations even in the summer) will lead to greater uptake of particles (Ghahreman *et al.*, 2024). The
1256 Emerson *et al.* 2020 parameterization will lead to less particle deposition in sub-micrometer particle sizes
1257 (and hence would otherwise increase $PM_{2.5}$ concentrations – the increased scavenging associated with
1258 multiphase hydrometeors will offset this effect.

1259 *Dry Deposition of HNO_3*

1260 Dry deposition of HNO_3 is the 2nd largest source of N_{dep} in the reduced ensemble, and the 4th largest
1261 source of model-to-model variability.

1262 The spatial variation of the annual sum of the effective deposition fluxes for HNO_3 dry deposition are
1263 shown in Figure S19, Figure S20, Figure S21 and Figure S22, representing the mass of HNO_3 transferred
1264 to the surface via the cuticle, soil, stomatal and lower canopy pathways respectively, and are summarized
1265 as common grid totals in Figure 20. Effective fluxes build on the concept of effective conductance: the
1266 product of the hourly deposition flux with the ratio of specific pathway conductance to total deposition
1267 velocity, for each of the four pathways (Galmarini *et al.*, 2021). The Figures thus depict the contributions
1268 of each pathway towards the HNO_3 dry deposition mass flux for each model¹. Effective fluxes
1269 incorporate changes in the flux resulting from changes in chemical concentration associated with factors
1270 in addition to deposition. However, comparison of the effective flux values of Figure 20 to effective

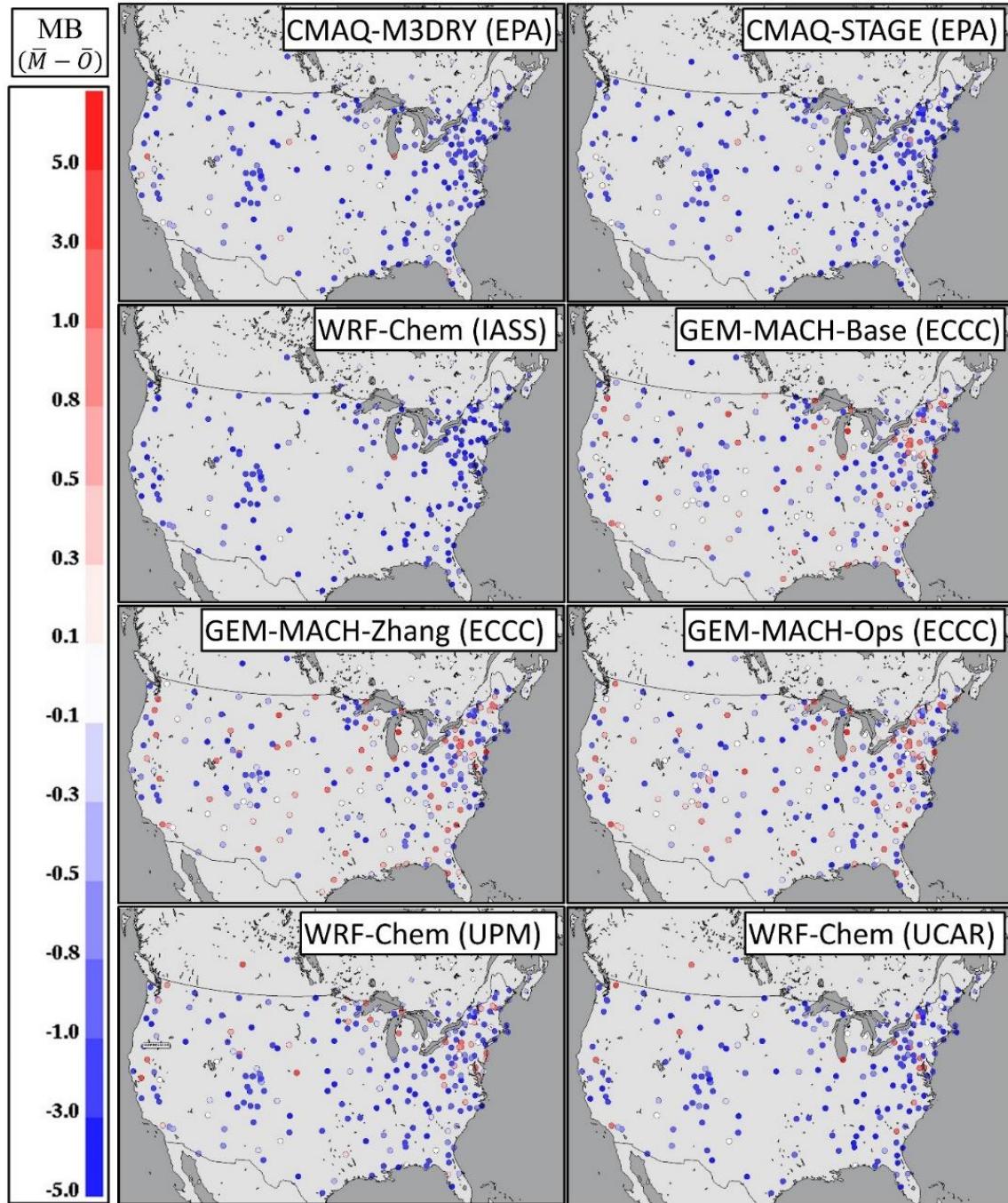
¹ Note that the CMAQ-M3dry and CMAQ-STAGE models incorporate the lower canopy pathway into the soil pathway; the lower canopy effects are not *absent* in these models, but form part of the soil pathway, and hence are reported here as part of the soil pathway.

1271 conductances (not shown) has a similar pattern, implying that the deposition velocity is the dominating
1272 factor in the HNO_3 deposition flux. The HNO_3 mass flux is dominated by the cuticle pathway (Figures
1273 S19, 20), followed by the soil pathway (Figures S20, 20). All models show a similar pattern in HNO_3
1274 annual cuticle flux (largest fluxes in the south-eastern USA, lowest fluxes over the western mountain
1275 ranges and the Canadian boreal forest), though the magnitudes of the fluxes vary, with WRF-Chem
1276 (UPM) having the highest flux, GEM-MACH (Zhang) showing much lower fluxes for specific land use
1277 types over the western mountains compared to the other models.

1278 The HNO_3 dry deposition velocity parameterizations in the GEM-MACH models depends in part on
1279 deposition pathway parameterizations employing functions of the ozone and sulphur dioxide pathway
1280 values (Makar *et al.*, 2018; Zhang *et al.*, 2003). Other recent AQMEII4 work for ozone dry deposition
1281 using an observation-driven single-point modeling framework (Clifton *et al.*, 2023) found that the ozone
1282 deposition velocity for GEM-MACH (Base) has positive biases in the summer months (average across 8
1283 sites +73%), negative in the winter months (8 site average of -33%), while GEM-MACH (Zhang) has
1284 smaller summer biases (+3%) and high winter biases (+50%). This is consistent with the increase in dry
1285 HNO_3 deposition flux going from GEM-MACH (Zhang) to GEM-MACH (Base) though HNO_3 also
1286 deposits via dissociation (sulphur dioxide pathway); not all of the observed effects can be attributed to the
1287 use of O_3 as a proxy in part of the deposition algorithm.. A portion of the increase in the negative bias in
1288 wet nitrate deposition going from GEM-MACH (Zhang) to GEM-MACH (Base) is thus the result of
1289 higher HNO_3 dry deposition removal of the available nitrate which would otherwise be taken up into
1290 clouds.

1291

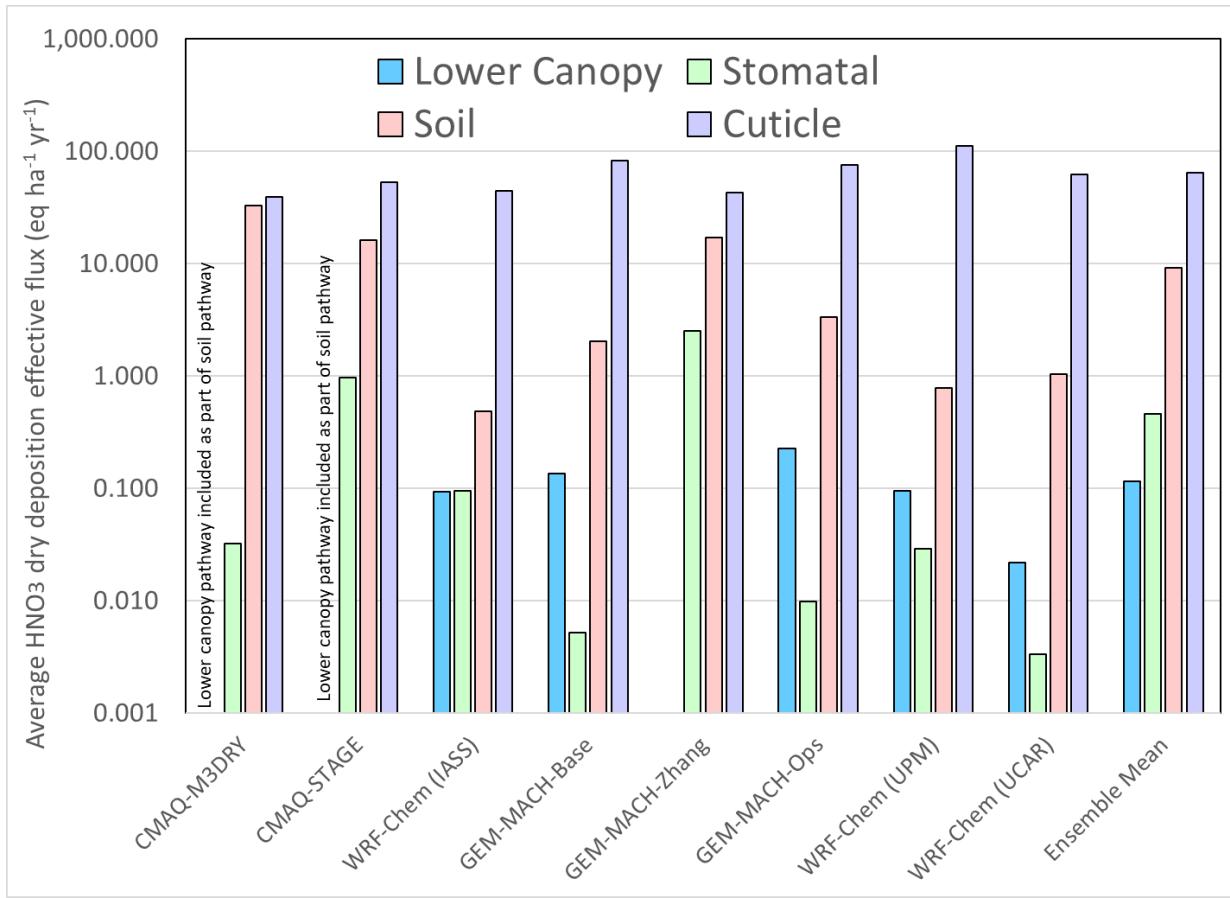
1292 Figure 19. Model mean biases in wet ammonium deposition for the month of April, 2016, North America (eq ha⁻¹
 1293 yr⁻¹). Daily station values of the mean bias (CAPMoN network) shown as diamond symbols, weekly station values
 1294 (NADP network) as circles. Positive biases shown in red, negative biases shown in blue; note that colour scale
 1295 intervals are logarithmic.



1296

1297

1298 Figure 20. Averages of flux pathway contributions to HNO_3 dry deposition, AQMEII4 common NA grid, 2016 (eq
 1299 $\text{ha}^{-1} \text{yr}^{-1}$).



1300

1301 NH_3 and the role of bidirectional flux algorithms

1302 NH_3 deposition fluxes were the fifth largest driver of ensemble nitrogen deposition, and the 7th largest
 1303 driver of N_{dep} variability in North America. Two different observation datasets for the year 2016 were
 1304 used to evaluate model NH_3 concentration performance, Cross-track Infrared Sounding (CrIS) satellite
 1305 retrievals of NH_3 (see Supplement for retrieval procedure and references) and AMoN (Chen *et al.*, 2014;
 1306 AMoN, 2024) surface monitoring network observations (see Supplement Figure S16(b) for AMoN
 1307 measurement locations). The two datasets evaluate model NH_3 performance in different ways. The CrIS
 1308 observations (and model values extracted for evaluation) correspond to the specific time-of-day of the
 1309 satellite overpass, for the polar orbiting platform upon which the CrIS instrument is based. The
 1310 evaluation against CrIS data is thus a measure of the model performance at early afternoon local time.
 1311 The AMoN observations in contrast are two-week integrated average concentrations; the AMoN
 1312 comparison evaluates average model performance on this integrated time scale, and hence includes into
 1313 that average diurnal variations in NH_3 concentrations not available in the CrIS observations.

1314 The evaluation of the models' NH_3 against CrIS observations at overpass time is shown in Table S4
 1315 (Supplement) and Figure 21. The general trend for the models is one of negative biases in NH_3
 1316 concentrations. CMAQ-M3Dry and CMAQ-STAGE, have the largest negative NH_3 biases, lowest FAC2,
 1317 highest MGE, lowest R, lowest COE and lowest IOA scores in Table S4. This suggests that the
 1318 magnitude of the fluxes and/or the balance between positive (downward; deposition) and negative

1319 (upward; emission) fluxes for CMAQ-M3Dry and CMAQ-STAGE are the cause of the model's relatively
1320 poor performance for NH_3 . GEM-MACH (Base) and GEM-MACH (Zhang) have the smallest (and
1321 positive) baises compared to the other models, and these two models as well as WRF-Chem (UPM) and
1322 WRF-Chem (UCAR) have the best overall scores for NH_3 against satellite data.

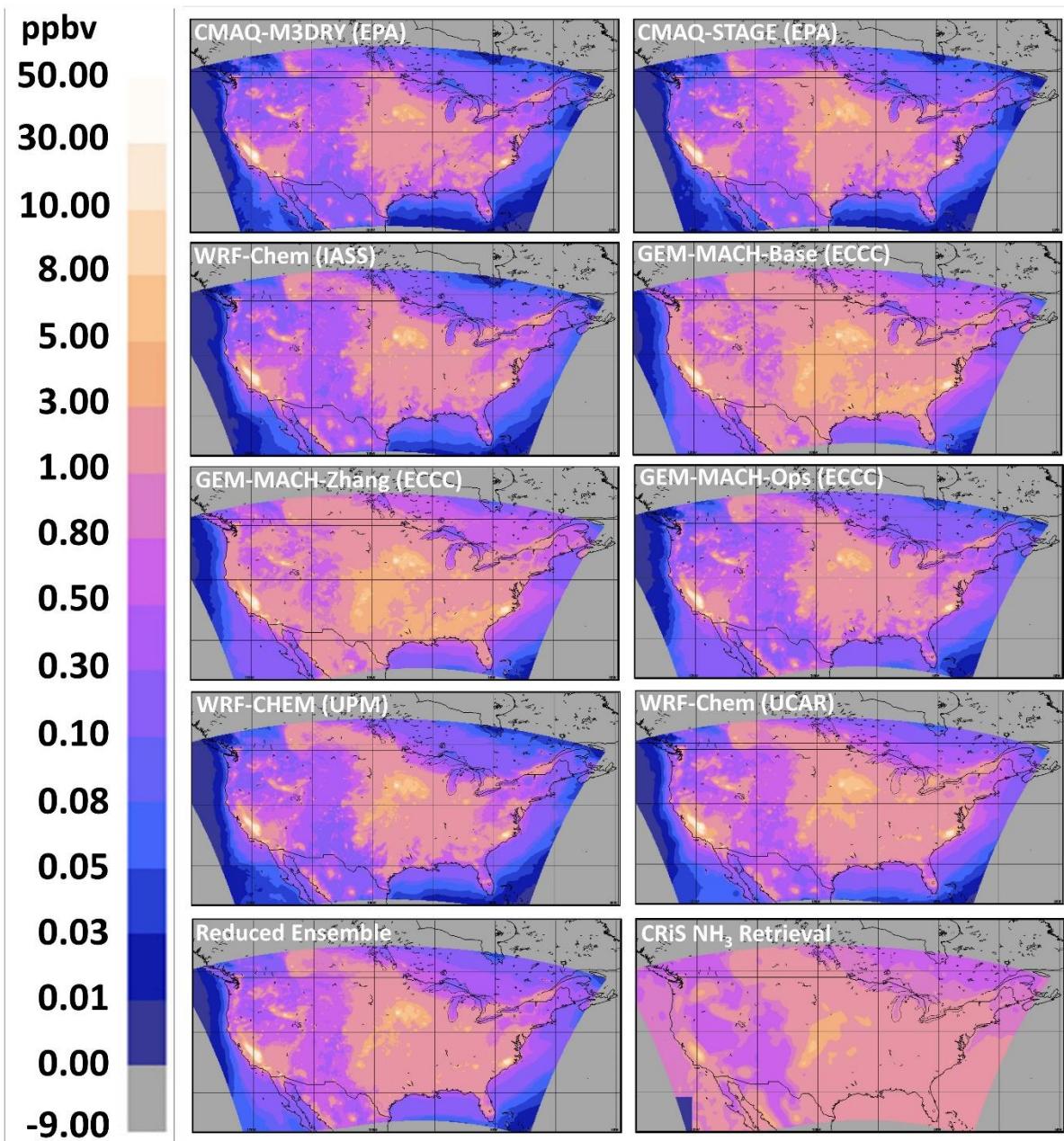
1323 The satellite data comparison of Figure 21 also shows some significant differences between observed
1324 ammonia and all models' predicted ammonia, particularly over water bodies (oceans, Great Lakes), with
1325 observed NH_3 in the range 1-3 ppbv in the Atlantic and near Baja California, while the models all show
1326 NH_3 over the oceans always below 0.3 to 0.5 ppbv, and decreasing with increasing distance from the
1327 shoreline. All models reach 0.0 – 0.01 ppbv at the greatest distances from the shoreline, while the satellite
1328 observations are above 0.5 ppbv (lower detection limit ~0.3 ppbv) throughout the common AQMEII4
1329 domain.

1330 NH_3 emissions from natural sources has been a source of ongoing interest in the global modelling
1331 community due to its properties as a greenhouse gas. Paulot *et al.* (2015) reviewed estimates of global
1332 oceanic NH_3 emissions, with a range of 7 – 23 Tg N yr^{-1} and their own estimate being lower at 2.5 Tg N
1333 yr^{-1} . Their estimated maps of NH_3 emissions showed relatively lower values on the western shoreline of
1334 North America (Pacific coast) than on eastern shoreline (Atlantic coast), and high emissions in three out
1335 of the four oceanic NH_3 flux models tested, in the Gulf of Mexico and along the Gulf stream between
1336 North America and Europe (their Figure 3). Subsequent simulations of oceanic outgassing (Paulot *et al.*,
1337 2020) showed oceanic outgassing in the Gulf of Mexico in excess of 0.03 g N $\text{m}^{-2} \text{yr}^{-1}$ (17.6 eq $\text{ha}^{-1} \text{yr}^{-1}$),
1338 and between 0.01 and 0.02 g N $\text{m}^{-2} \text{yr}^{-1}$ (5.9 to 11.8 eq $\text{ha}^{-1} \text{yr}^{-1}$) in the Gulf Stream. The oceanic
1339 emissions model of Paulot *et al.* (2020) would be relatively straightforward to implement in a regional
1340 modelling context; our work suggests that a considerable deficit in oceanic NH_3 may be occurring in the
1341 current regional air-quality models.

1342 The evaluation of the models' NH_3 against biweekly surface observations at the AMoN sites is shown in
1343 Table S5 (Supplement), where biweekly values have been used to create annual averages from both model
1344 and observed values at observation sites. GEM-MACH (Base) and GEM-MACH (Zhang) once again
1345 have the lowest magnitude (and positive) biases relative to observations, CMAQ-M3Dry and CMAQ-
1346 STAGE have the most negative biases, though CMAQ-STAGE has the best correlation coefficient score,
1347 and WRF-Chem (UPM) has the best scores overall aside from mean bias and correlation coefficient.

1348

1349 Figure 21. Comparison of annual average surface NH_3 concentrations at CrIS overpass times, participating models,
 1350 reduced ensemble, and corresponding CrIS observed average NH_3 at overpass time. Note that regions outside the
 1351 common AQMEII-4 domain have been assigned an “outside domain” mask value of -9.



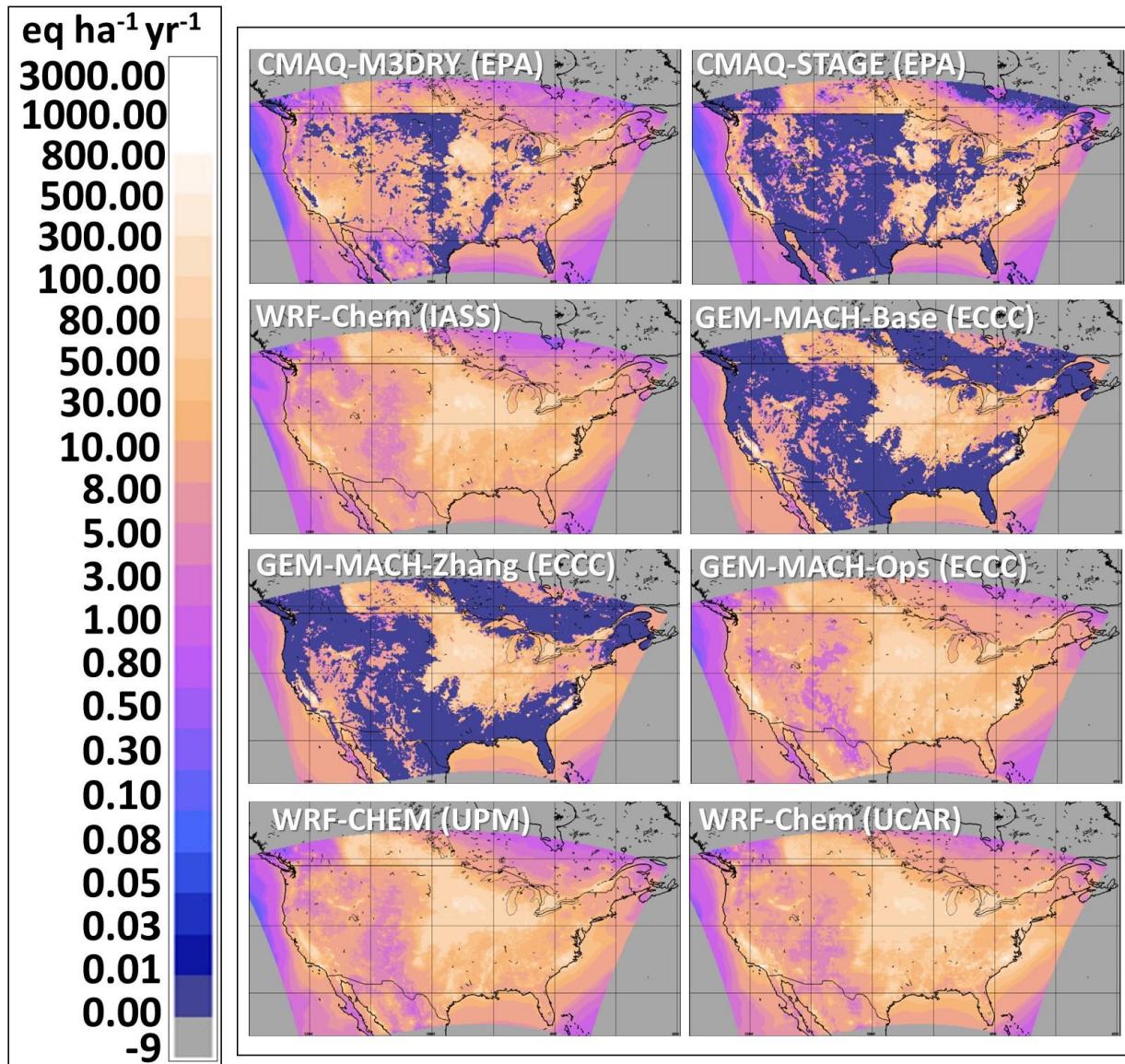
1352

1353

1354 Figure 22 shows the contributions to total N deposition flux from dry deposition of $\text{NH}_3(\text{g})$, and the
1355 difference in overall deposition patterns between the models employing bidirectional NH_3 flux
1356 parameterizations (CMAQ-M3Dry, CMAQ-STAGE, GEM-MACH (Base), and GEM-MACH (Zhang))
1357 and the models which do not employ such a parameterization (WRF-Chem (IASS), GEM-MACH (Ops),
1358 WRF-Chem (UPM), WRF-Chem (UCAR)). The models utilizing bidirectional fluxes have large regions
1359 where the net downward flux is given as zero in the panels of Figure 22 (dark blue regions, CMAQ-
1360 M3Dry, CMAQ-STAGE, GEM-MACH-Base, GEM-MACH Zhang models) – these are locations where
1361 the annual total NH_3 flux is *upward*; net *emissions* of NH_3 when summed over the course of the year. The
1362 size of these regions differs between CMAQ-M3Dry and CMAQ-STAGE, indicating differences in the
1363 bidirectional flux parameterizations between these models. GEM-MACH (Base) and GEM-MACH
1364 (Zhang) also use a bidirectional flux parameterization, which differs from those of CMAQ-M3Dry and
1365 CMAQ-STAGE, and consequently have relatively similar patterns of net NH_3 dry deposition versus
1366 emissions. Differences in land-use data as well as country-specific differences in the level of details
1367 utilized in the bidirectional flux schemes also are resulting in differences between the two modelling
1368 platforms (e.g. the north-western USA/south-western Canada border shows up as a sharp contrast in the
1369 CMAQ models NH_3 fluxes that utilize information from EPIC over the US and less detailed information
1370 outside the US while this differences is much less pronounced in the GEM-MACH models).

1371

1372 Figure 22. 2016 N dry deposition fluxes (eq ha⁻¹ yr⁻¹) for NH₃(g) (eq ha⁻¹ yr⁻¹). Note that regions outside the
 1373 common AQMEII-4 domain have been assigned an “outside domain” mask value of -9.



1385 the aerodynamic resistance of ammonia gas (r_a). As can be seen from equation (5), if the atmospheric
1386 concentration is greater than the compensation point concentration, the flux will be positive (downward).
1387 If the atmospheric concentration is less than the compensation point concentration, the flux will be
1388 negative (upward). Galmarini *et al.* (2021, Appendix C) gives the detailed formulae for the terms in
1389 equation (5), for the bidirectional flux models participating in AQMEII4. A comparison of r_a , r_{sum} , c_a , c_c ,
1390 c_g , and c_s may thus provide insight into the differences in the predicted NH_3 dry deposition
1391 fluxes for the models employing bidirectional flux parameterizations for the AQMEII4 North American
1392 ensemble. These terms were reported by AQMEII4 participants as the diurnal median (50th percentile) at
1393 each UT hour within each month. The median values for 16UT (noon EDT) for July 2016 are shown in
1394 Figure 23. It is important to note that the median values for a given UT hour may correspond to different
1395 days within a given month. For example, the median values of r_{sum} and r_a at 16 UT in July may not occur
1396 on the same day, and hence the median value of r_{sum} will not necessarily be greater than the median value
1397 of r_a , as might be expected from the equations governing the resistances as given in Appendix C of
1398 Galmarini *et al.* (2021). Also, not all models were able to report all variables (as noted above, for
1399 CMAQ-M3Dry, the net and ground compensation point concentrations were calculated off-line of the
1400 model simulation, and could not be included as AQMEII4 diagnostic parameters). However, substantial
1401 differences between the panels of Figure 23 provide a useful indication of relative importance of different
1402 pathways in the participating models.

1403 From Figure 23, we note:

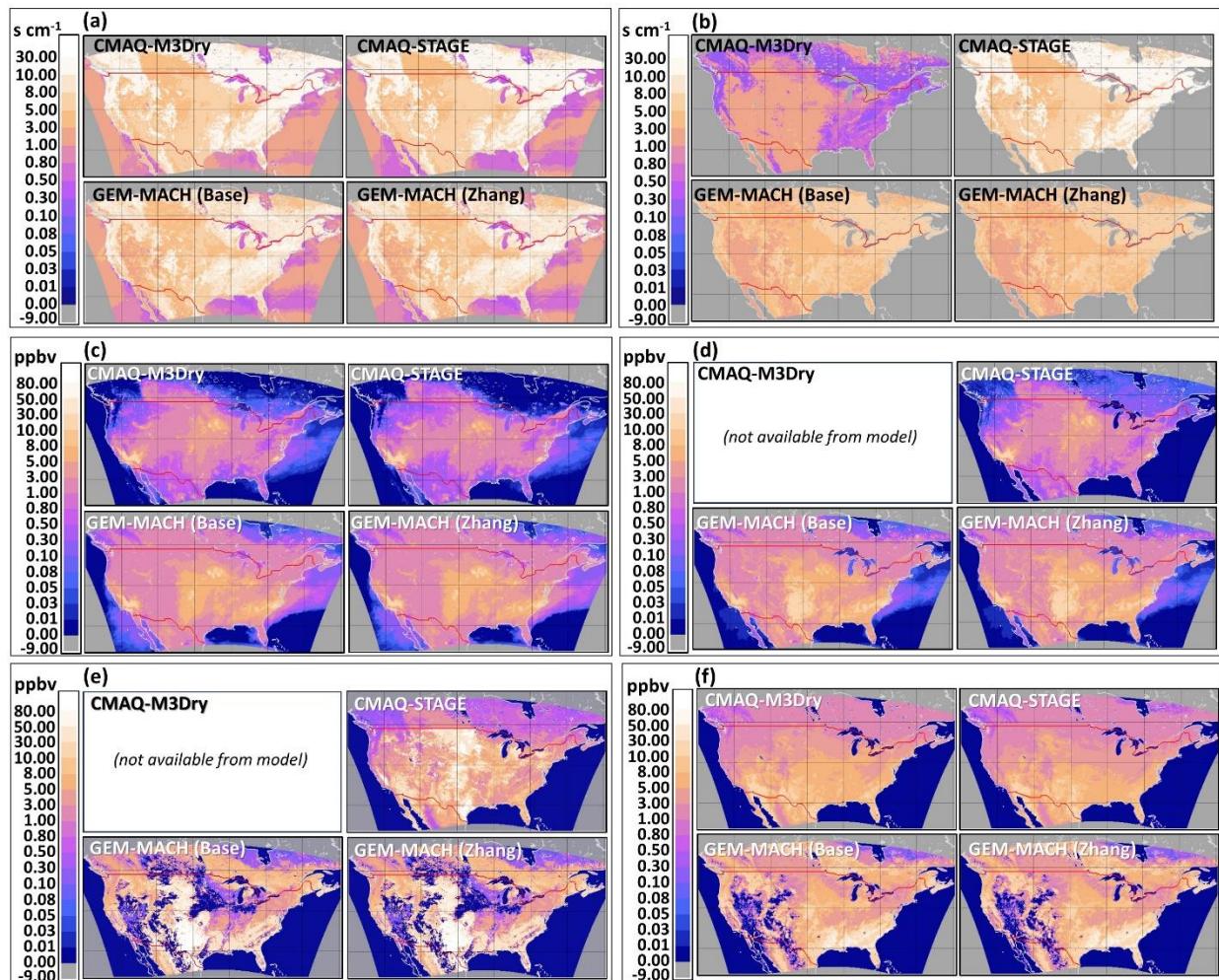
- 1404 (1) The 2016 July, 16 UT median aerodynamic resistance r_a is similar for all four models (Figure
1405 23(a)) – consequently, differences in r_a are unlikely to be the cause of the model flux differences.
- 1406 (2) The 2016 July, 16 UT median r_{sum} values (Figure 23(b)) for CMAQ-M3Dry is considerably
1407 smaller than for other models – at least some relatively high fluxes for CMAQ-M3Dry are due to
1408 these smaller r_{sum} values (which, appearing in the denominator for equation (5), will increase the
1409 magnitude of the fluxes). *et al.*
- 1410 (3) The 2016 July, 16 UT median r_{sum} values for CMAQ-STAGE over land are equal to those for r_a
1411 for this model. This is expected ($r_{sum} = r_a$ for this model, Galmarini *et al.*, 2021); other terms
1412 influence the magnitude and direction of the fluxes.
- 1413 (4) The 2016 July, 16 UT median values of the air concentrations of NH_3 , c_a (Figure 23(c)) are lower
1414 for CMAQ-M3Dry and CMAQ-STAGE than for GEM-MACH (Base) and GEM-MACH
1415 (Zhang), as might be expected from the above-mentioned bias calculations relative to CrIS and
1416 AMoN data.
- 1417 (5) The 2016 July, 16 UT median net compensation point concentration c_c (Figure 23(d)) for CMAQ-
1418 STAGE is an order of magnitude smaller than for GEM-MACH (Base) and GEM-MACH
1419 (Zhang). From equation (5), this likely drives much of the large NH_3 flux for this model and its
1420 negative bias values; smaller c_c values will result in larger positive (downward) net fluxes F_T .
- 1421 (6) Some of the locations where CMAQ-STAGE's 2016 July, 16 UT median ground compensation
1422 point concentration (c_g) has maximized are where GEM-MACH (Base) and GEM-MACH
1423 (Zhang) have zero to near-zero ground compensation point values (Figure 23(e) – e.g. Rocky
1424 mountains, north-central USA agricultural region – dark blue areas in the GEM-MACH results
1425 compared to much lighter values in the CMAQ-STAGE results). The larger CMAQ-STAGE c_g
1426 values (local values were up to 1E4 ppbv for this model), if dominant, would be expected to
1427 result in larger c_c values in equation (5) (see Galmarini *et al.* 2021) and hence a tendency towards
1428 smaller downward fluxes. This is not the case from the above analysis (DNH₃ values in Table 5
1429 for CMAQ-STAGE are greater than those of the GEM-MACH models, and CMAQ-STAGE NH3
1430 concentrations have more negative biases than the two GEM-MACH models), suggesting that the

1431 ground pathway is not the main term affecting the differences in model NH_3 dry deposition
 1432 fluxes.

1433 (7) For much of the AQMEII4 common domain (aside from SW USA), CMAQ-M3Dry and CMAQ-
 1434 STAGE have lower 2016 July, 16 UT median stomatal compensation point concentrations than
 1435 either GEM-MACH (Base) or GEM-MACH (Zhang) (Figure 23(f)). This in turn implies that the
 1436 difference in model dry deposition fluxes is via the stomatal pathway.

1437 The main factors resulting in higher magnitude downward fluxes in CMAQ-M3Dry and CMAQ-STAGE
 1438 relative to GEM-MACH (Base) and GEM-MACH (Zhang) are thus lower net compensation point
 1439 concentrations (CMAQ-STAGE), lower stomatal compensation point concentrations (CMAQ-M3Dry,
 1440 CMAQ-STAGE), and lower r_{sum} values (CMAQ-M3Dry).

1441 Figure 23. 2016 Spatial distribution of 2016 July, 16 UT median n values for key bidirectional flux diagnostic
 1442 variables. (a) Aerodynamic resistance (s cm^{-1}), r_a . (b) Sum resistance (s cm^{-1}), r_{sum} . (c) Air Concentration of NH_3
 1443 (ppbv), c_a . (d) Net compensation point concentration (ppbv), c_c . (e) Ground compensation point concentration
 1444 (ppbv), c_g . (f) Stomatal compensation point concentration (ppbv), c_s . Note that regions outside the common
 1445 AQMEII-4 domain have been assigned an “outside domain” mask value of -9.



1446
 1447 All four bidirectional flux models calculate fluxes on specific land use types within each grid cell and use
 1448 some form of land use fraction weighting to generate the values of the key parameters in the bidirectional

1449 flux equations. The native land-use types used by each modelling platform were converted to a common
1450 set of 16 AQMEII4 land use types (see Galmarini *et al.*, 2021). We investigated the CMAQ and GEM-
1451 MACH spatial and temporal patterns of ammonia bidirectional fluxes in the context of the AQMEII4
1452 land-use types, along with the relationship to the highest regions of nitrogen CLE. This is shown in
1453 Figures 24 and 25, where Figure 24 panels (a and b) are the sum of AQMEII4 land use types 11 and 12
1454 (i.e. the sum of “planted/cultivated” and “grassland” land use types) used in CMAQ and GEM-MACH
1455 respectively. Figure 24 panels (c and d) are the sum of AQMEII4 land use fractions for land use types 6, 7, 8
1456 and 13 (evergreen broadleaf forest, deciduous broadleaf forest, mixed forest, and savanna, respectively),
1457 for CMAQ and GEM-MACH respectively. We note that these forested areas are the ecosystems of
1458 interest for many of the CLE values calculated earlier in this work. The land use summations of Figure
1459 25 are also worth noting in the context of the typical timing of the direction of NH_3 fluxes during the
1460 course of a day. Figure 25 shows an example of this diurnal behaviour of the NH_3 bidirectional fluxes
1461 for the CMAQ and GEM-MACH models, at (a) 15:00 CDT and (b) 7:00 CDT. Mid-afternoon fluxes
1462 (Figure 26(a)) tended to be largely negative (upward; emissions; blue colours). However, the spatial
1463 location of the fluxes differs between the models even within a given model framework. CMAQ-M3Dry
1464 predicts afternoon emissions (blue colours) largely restricted to the combined grassland and agricultural
1465 land use types, with deposition (red colours) to the forested areas in south-east Canada and south-east
1466 USA. CMAQ-STAGE predicts mid-afternoon emissions throughout western North America, though a
1467 similar pattern of deposition as CMAQ-M3Dry in south-east Canada and south-east USA. The GEM-
1468 MACH bidirectional fluxes in afternoon are mostly negative (emissions; blue). All three models show
1469 midafternoon NH_3 deposition in the north-central USA, corresponding to a known region of high NH_3
1470 concentrations (Figure 21, CrIS NH_3 retrieval maximum). In contrast, early morning fluxes (Figure
1471 25(b)) predicted by both CMAQ implementations are largely positive (downward; deposition; red
1472 colours), across all land use types., while GEM-MACH predicts deposition in agricultural areas, and
1473 emissions further downwind in south-east Canada and south-east USA.

1474 The generic diurnal sign changes in the direction of the ammonia flux across all four models is easily
1475 explained with reference to equation (5): in mid-afternoon (Figure 25(a)), both the height of the planetary
1476 boundary layer and the magnitude of thermal coefficients of diffusivity are relatively high, reducing the
1477 ambient air concentration of ammonia gas (c_a in equation 5), resulting in negative fluxes (emissions; blue
1478 colours). In the early morning (Figure 25(b)), both the boundary layer height and the magnitude of
1479 thermal coefficients of diffusivity are lower, hence increasing the ambient air concentrations of ammonia
1480 gas, resulting in more positive fluxes and prevalent deposition. However, the different bidirectional flux
1481 models show differences in diurnal behaviour by land use type. CMAQ-M3Dry and CMAQ-STAGE
1482 show a diurnal pattern of afternoon emissions from agricultural and grassland areas, and deposition in
1483 forested regions downwind, and early morning deposition irrespective of land-use type. GEM-MACH
1484 shows stronger afternoon emissions regardless of land-use type, and morning lower magnitude emissions
1485 in forested areas and deposition only in agricultural areas and the western USA.

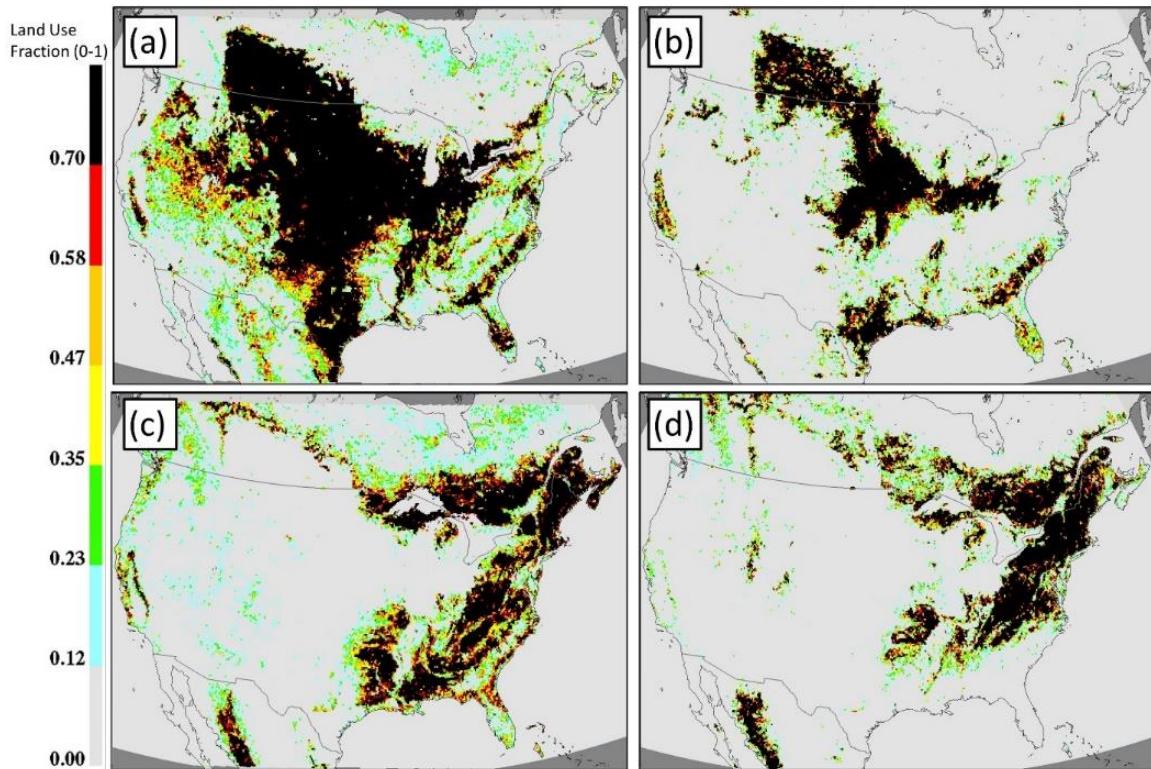
1486 We note that Table S4 measures model performance specifically at satellite overpass time in the afternoon
1487 – i.e. at close to the time shown in Figure 25(a), and that the performance of CMAQ-M3Dry and CMAQ-
1488 STAGE is lower than the other models at this time, while the differences between the models aside from
1489 magnitude of the bias is less pronounced in the integrated surface observations of Table S4. This analysis
1490 thus suggests that the CMAQ negative biases may be reduced in magnitude by re-examining the factors
1491 contributing to compensation point concentrations in forested areas in the day; c_c values (equation 5) are
1492 probably too low in these regions at these times, leading to excessive positive (downward) fluxes. That
1493 is, the analysis suggests that the CMAQ negative NH_3 biases may be the result of excessive deposition
1494 and/or insufficient emissions, in forested areas, in both the daytime and early morning, with the effect

1495 most noticeable in the afternoon. The bulk of the differences likely resides in the stomatal deposition
1496 pathway. Conversely, we note that the GEM-MACH bidirectional flux algorithm is overestimating
1497 midafternoon ammonia in the SE USA relative to satellite observations (Figure 21), indicating that
1498 compensation point concentrations may be overestimated in this region.

1499 While NH_3 fluxes are only the 5th largest source of N deposition in the North American reduced ensemble,
1500 we also note that the manner in which NH_3 bidirectional fluxes are treated in the context of critical load
1501 exceedance calculations may be open to interpretation. Exceedances with respect to critical loads are
1502 calculated with respect to annual *total* deposition of N and S, but what constitutes total N deposition in
1503 the context of bidirectional fluxes is less clear. Here, we have taken the approach of assuming that
1504 negative fluxes (emissions) of NH_3 during the course of a year constitute a loss of N from the ecosystem,
1505 but that NH_3 contained within the ecosystem cannot be converted to other forms of N. Consequently, the
1506 approach taken here was to sum the hourly NH_3 fluxes (positive downward and negative upward) for the
1507 year simulated, with only those grid cells with net positive summations (i.e. net annual deposition fluxes)
1508 adding towards total N deposition. However, other interpretations are possible. For example, only the
1509 positive contributions on an hourly basis could be accumulated, and any losses of N from the same
1510 ecosystems associated with NH_3 emissions could be ignored/excluded from the N balance of the
1511 ecosystem. A third interpretation would be to assume that deposited NH_3 within the ecosystem may be
1512 converted to other forms of N, and hence the net NH_3 flux (which may be positive or negative in different
1513 parts of the region simulated) is added to N_{dep} , with N_{dep} being set to zero only when the NH_3 emissions
1514 flux exceeds the deposition flux of all other forms of N. Here, we have taken the first of these
1515 approaches. We note that the second approach would lead to higher estimates of total N_{dep} than generated
1516 here, while the third approach would result in lower estimates of total N_{dep} . Although NH_3 is the 5th
1517 largest contributor to total N_{dep} across North America, these differences in approach may affect critical
1518 load exceedance estimates in regions of high NH_3 fluxes.

1519

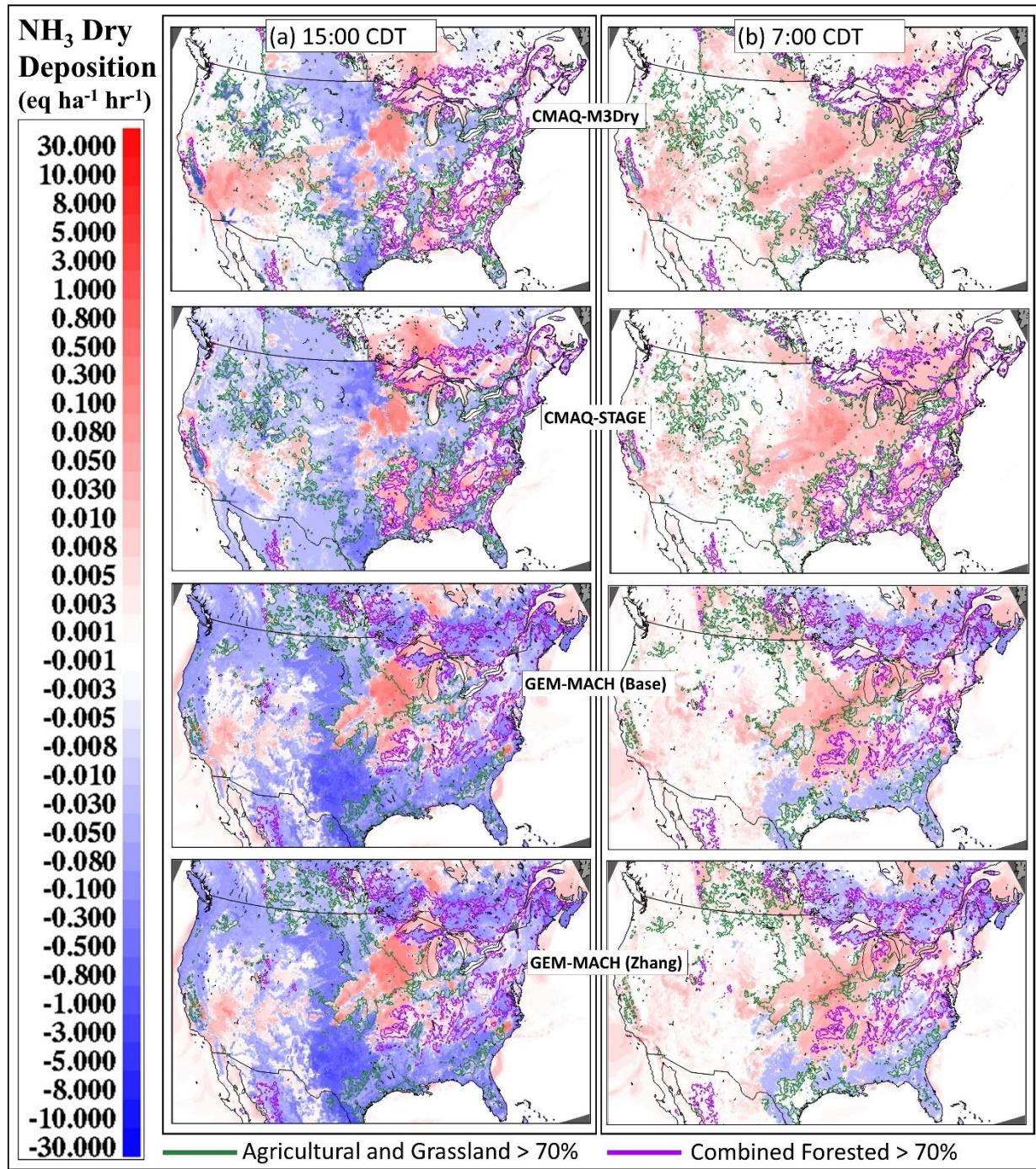
1520 Figure 24. Comparison of AQMEII4 land use type fractions with locations of highest CLE for forest ecosystems,
1521 CMAQ versus GEM-MACH. Upper row: grid cell fractional area composed of sum of AQMEII4 land use types
1522 11+12 (planted/cultivated and grassland), for: (a) CMAQ-M3Dry and CMAQ-STAGE, (b) GEM-MACH (Base) and
1523 GEM-MACH (Zhang). Lower row: grid cell fractional area composed of sum of AQMEII4 land use types
1524 6+7+8+13 (evergreen broadleaf forest, deciduous broadleaf forest, mixed forest, and savanna), for (c) CMAQ-
1525 M3Dry and CMAQ-STAGE, (d) GEM-MACH (Base) and GEM-MACH (Zhang).



1526

1527

1528 Figure 25. $\text{NH}_3(g)$ flux ($\text{eq ha}^{-1} \text{hr}^{-1}$) at (a) 15:00 CDT August 4, 2016 and (b) 7:00 CDT August 5, 2016. Blue lines
 1529 in the CMAQ and GEM-MACH models (horizontal row) panels encloses areas which are predominantly
 1530 agricultural and grassland, red line encloses areas which are predominantly evergreen broadleaf forest, deciduous
 1531 broadleaf forest, mixed forest and savanna, in each model's respective land use databases (see Figure 24). Blue
 1532 shaded regions indicate negative (upward; emissions) NH_3 fluxes, red shaded regions indicate positive (downward;
 1533 deposition) NH_3 fluxes. Green line: boundary of regions where combined Agricultural and Grassland land use
 1534 types comprise greater than 70% of land cover. Purple line: boundary of regions where combined Forest land use
 1535 types comprise greater than 70% of land cover.



1536

1537 *3.2.3 Causes of S Deposition Variability in European Domain Simulations*

1538 The relative contributions of the different sources of S deposition in the AQMEII4 EU common domain
 1539 for the year 2010 are shown in Table 6 and Figure 26.

1540 The European ensemble contributions to total S deposition contrasted with those in North America; both
 1541 the contribution to total S deposition and the magnitude of variability between the models follow the
 1542 same descending order of importance: SO₂ dry deposition followed by wet (SO₄⁽²⁻⁾ + HSO₃⁽⁻⁾) deposition,
 1543 followed by particulate sulphate dry deposition (see Table 6). The relatively higher importance of SO₂ dry
 1544 deposition towards total sulphur deposition, compared to North America, may reflect a denser spatial
 1545 distribution of SO₂ emissions in the EU domain compared to the North American domain, as well as
 1546 higher EU emissions in 2010 compared to the NA 2016 year focused on here for model variability
 1547 analysis. Another potential cause of differences between the two domains may reflect differences in the
 1548 quality of the emissions data (and emissions reporting requirements) between the two jurisdictions. SO₂
 1549 emissions are largely from industrial stacks in both locations. In North America, regulations require that
 1550 facility operators for large stack sources report their emissions and stack parameters making use of
 1551 Continuous Emissions Monitoring, on an hourly basis (USA) or as annual reports (Canada). Plume rise
 1552 algorithms may then be used to distribute the emissions in the vertical within air-quality models. In the
 1553 EU, stack sources are reported as annual totals without stack parameters which could be used for more
 1554 accurate plume rise estimates (e.g. volume flow rates, effluent temperatures); the lack of this more
 1555 detailed data necessitates approximations (either making use of “typical” plume rise rates or treating stack
 1556 sources as surface emissions without plume rise). The larger variation in SO₂ performance in the
 1557 simulations may thus reflect differences in the level of detail available within SO₂ emissions inventories
 1558 in the two regions.

1559 European observation data for model evaluation were taken from the European Monitoring and
 1560 Evaluation Programme (EMEP; <https://www.emep.int/>, last accessed July 11, 2024), and the European
 1561 Air Quality Database (AIRBASE; https://data.europa.eu/data/datasets/data_airbase-the-european-air-quality-database-1?locale=en, last accessed July 11, 2024).

1563 Table 6. Average S deposition contributions in common AQMEII4 EU grid area (eq ha⁻¹ yr⁻¹) and percent
 1564 contribution to average total S deposition, 2010.

Model Number	Average Deposition (eq ha ⁻¹ yr ⁻¹)				Percent of total S deposition		
	SO ₂ (g) Dry Deposition	SO ₄ ⁽²⁻⁾ + HSO ₃ ⁽⁻⁾ Wet Deposition	Particle Sulphate Dry Deposition	Total S Deposition	SO ₂ (g) Dry Deposition	SO ₄ ⁽²⁻⁾ + HSO ₃ ⁽⁻⁾ Wet Deposition	Particle Sulphate Dry Deposition
WRF-Chem (IASS)	92.1	42.1	n.r.	134.2	68.6	31.4	n/d
LOTOS-EUROS (TNO)	38.3	37.9	5.4	81.5	47.0	46.4	6.6
WRF-Chem (UPM)	105.6	63.2	3.2	172.0	61.4	36.7	1.9
CMAQ (Hertfordshire)	125.7	75.9	20.1	221.6	56.7	34.3	9.0
Reduced ensemble average	89.9	59.0	9.5	158.4	56.7	37.2	6.0
Reduced ensemble standard deviation	37.3	15.8	7.5	58.0	23.6	10.0	4.7

1565

1566 *Dry deposition of SO₂*

1567 The model SO₂ performance relative to observations at stations closer to urban centers (AIRBASE
1568 network), and more broadly distributed over the EU region (EMEP network), as well as comparisons to
1569 wet (SO₄²⁻ + HSO₃⁻) deposition (EMEP wet deposition network), are shown in Table S6 (Supplement).
1570 Observation station locations are shown in Figure S17(a). WRF-Chem (IASS) had the best SO₂
1571 performance relative to both networks for most statistics, with the exceptions of a slightly smaller FAC2
1572 score compared to other models for both AIRBASE and EMEP, and the largest negative bias for SO₂
1573 relative to AIRBASE observations. The proximity of AIRBASE station locations to SO₂ sources can also
1574 be seen in Figure 27, where the AIRBASE monthly concentration y-axis (Figure 27(a)) is almost twice
1575 that of the EMEP monthly concentration y-axis (Figure 27(b)). Observed SO₂ close to sources (Figure
1576 27(a), red lines) shows a strong seasonal variability, with concentrations in the winter being a factor of
1577 two higher than in summer, likely showing the effect of increased winter stability on plume rise. This
1578 tendency is greatly reduced at regional stations (Figure 27(b), red lines). LOTOS-EUROS (TNO)
1579 matches the near-source SO₂ time series the most closely, while CMAQ (Hertfordshire) overestimates the
1580 impact of seasonal variability (Figure 27(a)). At regional stations, LOTOS-EUROS (TNO) and CMAQ
1581 (Hertfordshire) overestimate seasonal variation, while WRF-Chem (IASS) most closely matches
1582 observations. At least some of the variation in simulated SO₂ performance relative to observations and
1583 hence in SO₂ deposition fluxes and critical load exceedance estimates is due to some models
1584 overestimating the seasonal variation in SO₂ at regional locations further from cities. This may reflect
1585 differences in atmospheric stability, the seasonal response of the deposition algorithms, or the manner in
1586 which plume rise is simulated between the models.

1587 WRF-Chem (IASS) has the best overall performance for SO₂; while this model's mean bias is the most
1588 negative for observation sites close to the sources (AIRBASE comparison), the remaining statistics are
1589 the best of the ensemble, and the model bias performance is also better than the other models as the
1590 distance from the sources increases (EMEP comparison). The large negative biases in WRF-Chem
1591 (IASS) model values may indicate an overestimate of SO₂ deposition, though other model processes may
1592 also play a role.

1593 *Wet Deposition of Sulphur*

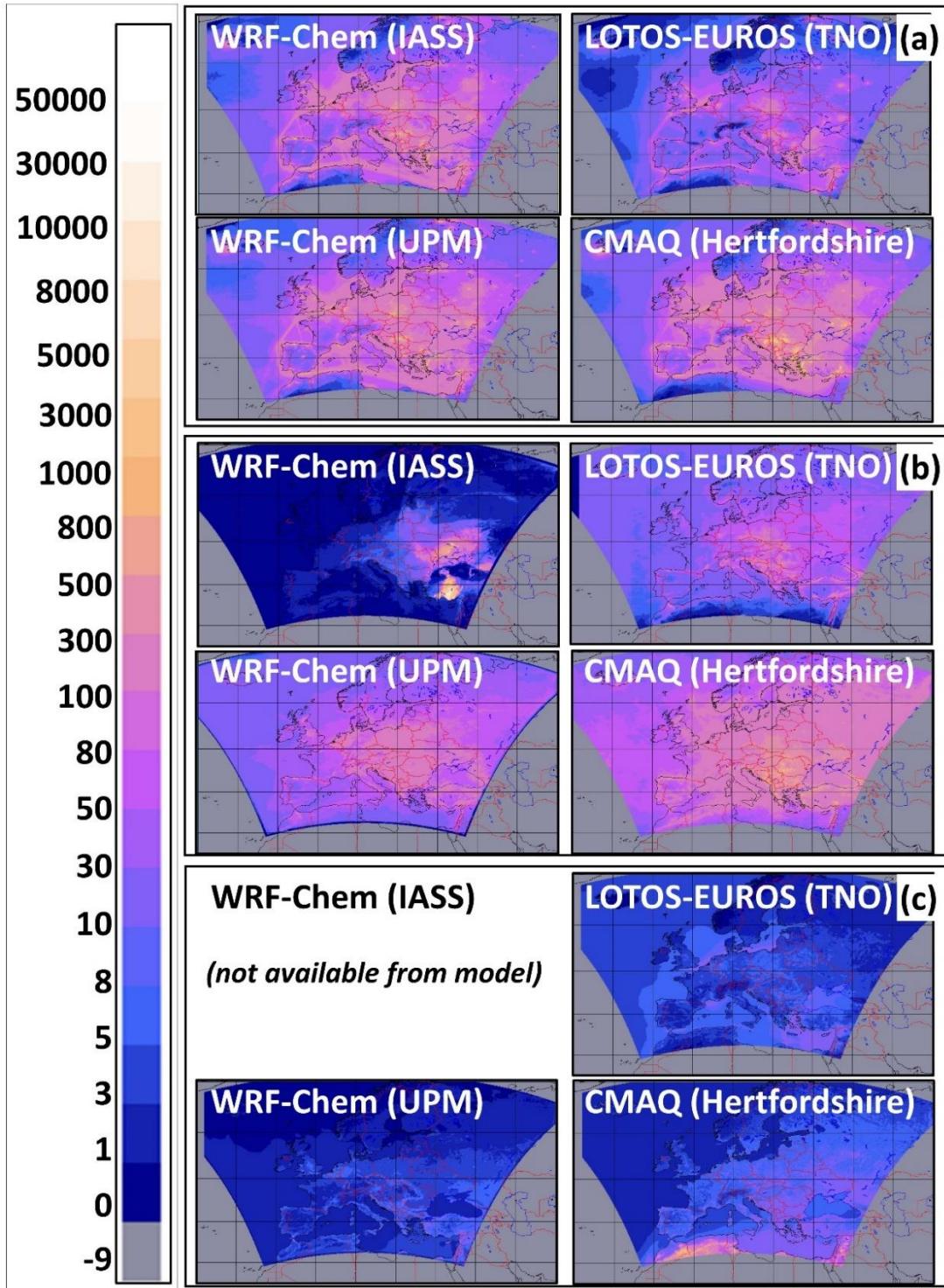
1594 As was the case for most models on the North American domain, all EU domain models underestimated
1595 wet deposition relative to observations (note negative biases in Table S6 and monthly time series
1596 comparison versus observations in Figure 27(c)). CMAQ (Hertfordshire) outperforms the other models
1597 relative to observations, though we note that the wet sulphur deposition bias for this model is nevertheless
1598 -0.39 eq ha⁻¹ yr⁻¹, with a correlation coefficient of 0.15. In contrast to the North American wet sulphur
1599 deposition comparison time series (Figure 15, Table S2), the European wet deposition observations do not
1600 show a spring-time peak in values, rather a seasonality centered around the month of June, with higher
1601 values extending from March to September.

1602

1603 None of the EU models made use of updated particle dry deposition velocities available in more recent
1604 literature; as a result, the relative contribution of particle dry deposition towards EU model-to-model
1605 variability is small. Speciated PM observations were not available for comparison to model predictions in
1606 the EU region.

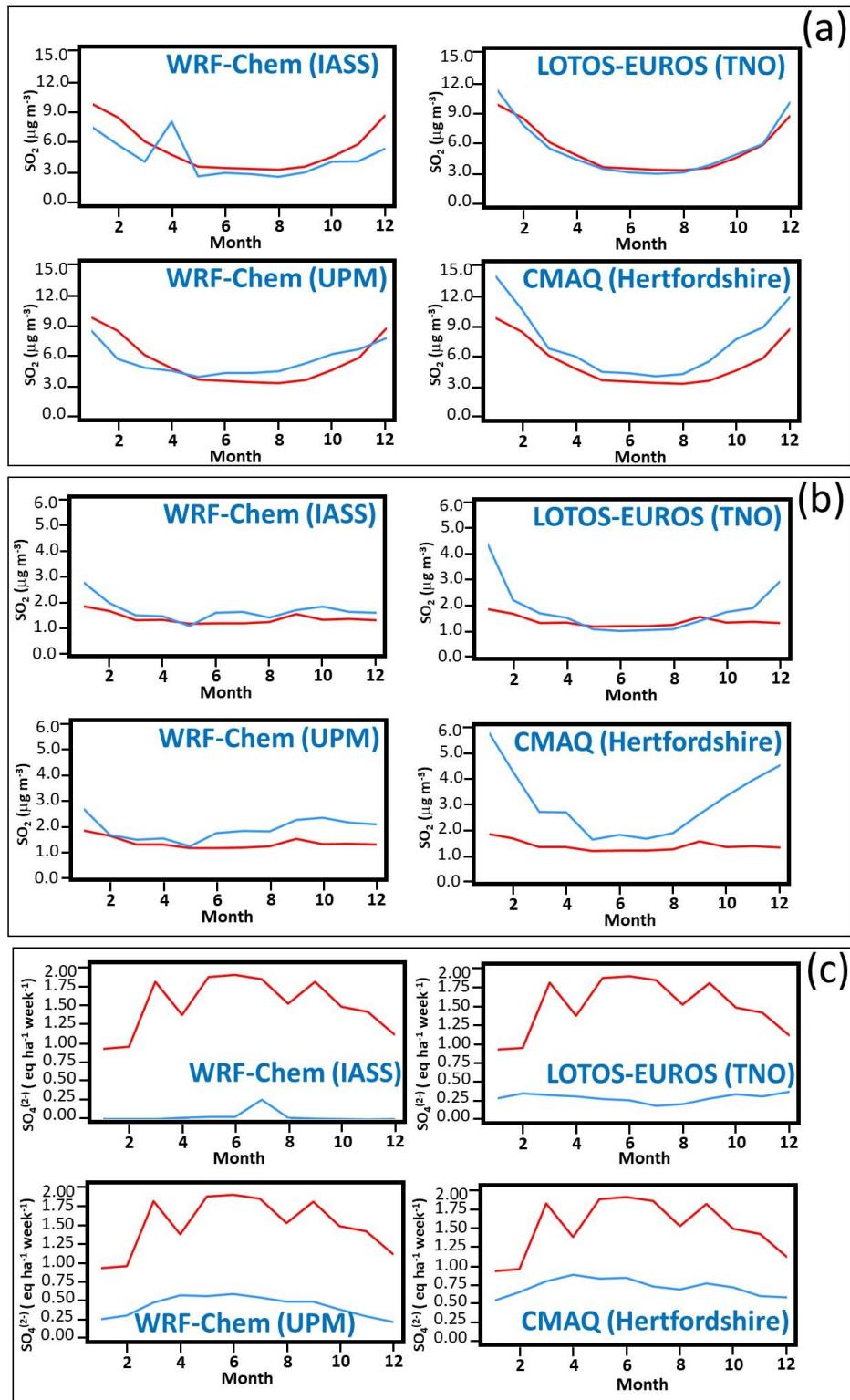
1607 Returning to the spatial distribution of the relative contributions of the three forms of sulphur deposition
1608 for the year 2010 shown in Figure 26, CMAQ (Hertfordshire), with the highest SO₂ deposition flux
1609 (Figure 26(a), see also Table 6, Table S6) also has the most positive SO₂ concentration mean bias. With
1610 increasing distance from the sources, the SO₂ loss or conversion processes of all four models are likely
1611 underestimated (EMEP SO₂ biases are positive for all models, Table S6). In contrast, all models have
1612 significant negative biases in wet sulphur deposition (Table S6), hence at least one reason for this
1613 underestimate may be insufficient conversion of SO₂ to ionic sulphate and bisulphite in simulated cloud
1614 water, through uptake of SO₂ and scavenging of particulate sulphate. The wet deposition of sulphur in
1615 WRF-Chem (IASS) in particular seems anomalously low (Figure 26(c), Figure 27(b)), with much of
1616 Europe having little to no wet sulphate deposition in this model.

1617 Figure 26. Spatial distribution and magnitude of contributions to annual S deposition, AQMEII4 common EU
 1618 domain, 2010 (eq $\text{ha}^{-1} \text{yr}^{-1}$). (a) $\text{SO}_2(\text{g})$ dry deposition. (b) Total wet S deposition. (c) Particle sulphate dry
 1619 deposition. Note that regions outside the common AQMEII-4 domain have been assigned an “outside domain”
 1620 mask value of -9.



1621

1622 Figure 27. Comparison of observed and modelled S, AQMEII4 EU common domain, 2010. (a) AIRBASE SO₂ (ug
 1623 m⁻³). (b) EMEP SO₂ (ug m⁻³). (c) Wet flux of total S deposition (eq ha⁻¹ week⁻¹). Red: observations. Blue: model.

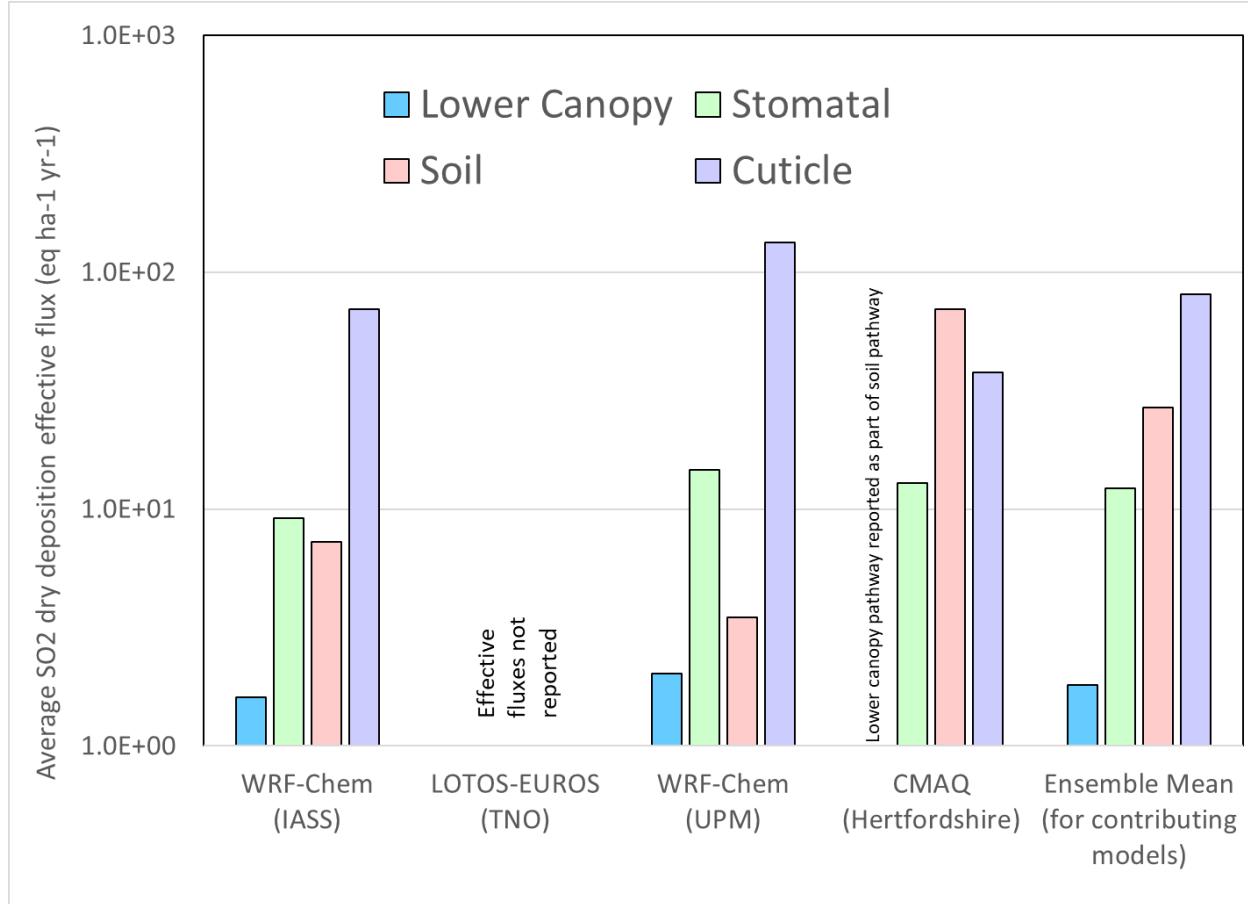


1624

1625

1626 A comparison of the relative differences in the deposition pathway strength for the models may help shed
 1627 light on the causes of SO_2 deposition flux variability between the models. However, no effective fluxes
 1628 were reported by LOTOS-EUROS (TNO). Figures S23 and S24 show the spatial distribution of the
 1629 summed annual effective fluxes for the reporting models, with the results in the common AQMEII4 EU
 1630 domain summarized in Figure 28.

1631 Figure 28. Averages of effective flux pathway contributions to SO_2 dry deposition, AQMEII4 common EU grid,
 1632 2010 (eq $\text{ha}^{-1} \text{yr}^{-1}$).



1633
 1634 Despite having the highest average SO_2 deposition flux (Table 6), CMAQ (Hertfordshire) also has the
 1635 highest positive biases for SO_2 ambient concentrations (Table S6). From Figures S23, S24 and 28, the
 1636 CMAQ (Hertfordshire) positive biases may be the result of spatial variations in deposition, specifically, to
 1637 low contributions to the cuticle effective fluxes in Northern Europe for this model (Figure S23(a)).
 1638 Despite these relatively low values, the SO_2 net dry deposition flux for this model (Table 6) is higher than
 1639 that of the other models, implying that the low northern EU fluxes are being offset by higher values
 1640 elsewhere (eg. via the soil flux, compare soil and cuticle values in Figure 28). We note that the effective
 1641 flux analysis is restricted to grid cells that do not have water as a dominant land use type (a maximum of
 1642 1% water land fraction was used as an exclusion criterion); for grid cells held in common (mostly land),
 1643 the CMAQ (Hertfordshire) the cuticle effective flux pathway specifically is lower than that of the other
 1644 models, while the differences are less noticeable for the other terms, as reflected by the summary values
 1645 in Figure 28. Other than Northern Europe, CMAQ (Hertfordshire) has higher soil fluxes than WRF-
 1646 Chem (IASS). Similar to AQMEII4 analyses for ozone (Hogrefe *et al.*, 2024, under preparation), the

1647 relative importance of the different pathways towards total deposition varies between the models. For
1648 example, WRF-Chem (IASS), with the best overall performance for SO₂ concentrations aside from bias
1649 and factor of 2, has flux contributions in descending order of importance: cuticle, stomatal, soil and lower
1650 canopy. For CMAQ (Hertfordshire), with relatively poor performance and high positive biases (Table S6),
1651 the flux contributions in descending order of importance are soil, cuticle, and stomatal (with lower canopy
1652 being incorporated as part of soil flux, for this model), and the cuticle pathway contributes less to
1653 deposition in northern Europe than the other models.

1654 *3.2.4 Causes of N Deposition Variability in European Domain Simulations*

1655 The common AQMEII4 EU domain relative contributions for each model's deposited species towards
1656 total nitrogen deposition and its variability are shown in Table 7. The contributions towards total N
1657 deposition for the reduced ensemble, in descending order of importance, were wet NO₃⁻, dry HNO₃, wet
1658 NH₄⁺, dry NH₃, dry particulate nitrate, dry NO₂, and dry particle ammonium, with relatively small
1659 contributions from the other depositing N species. The spatial distributions of the four largest
1660 contributions to total N deposition are shown in Figure 29. The largest contributions to model-to-model
1661 variability, in descending order, were wet NO₃⁻, dry HNO₃, dry NH₃, wet NH₄⁺, and dry NO₂, with smaller
1662 contributions towards variability from the other species.

1663 Wet deposition fluxes of NO₃⁻ and NH₄⁺ and the ground-level concentration of NO₂ are evaluated in Table
1664 S7 (Supplement); monthly average time series comparisons wet deposition to the observations are
1665 provided in Figure 30. From Figure 29, WRF-Chem (IASS) predicted much lower magnitude wet NO₃⁻
1666 and wet NH₄⁺ deposition fluxes than the other three models, and from Table S7, these result in larger
1667 negative biases and poor overall performance relative to observations for WRF-Chem (IASS) in
1668 comparison to the other models. LOTOS-EUROS (TNO) had the best overall performance for NH₄⁺ and
1669 NO₃⁻ wet deposition fluxes. However, similar to the case for wet S deposition, all models have significant
1670 negative biases for both nitrogen ion wet fluxes, as can be seen from Table S7 and Figure 30. LOTOS-
1671 EUROS (TNO) has the best performance for statistics relating to the spatial and temporal distribution of
1672 wet deposition, while WRF-Chem (UPM) has the lowest bias for wet NO₃⁻ deposition. A common feature
1673 of the AQMEII4 ensemble of models for both EU and NA domains are these negative biases for wet
1674 deposition of both sulphate and nitrogen species. Also, we note that the observed wet NH₄⁺ deposition
1675 (Figure 30(b), red line) peaks in June, while the model values (blue lines) peak earlier, in March. This in
1676 in contrast to the North American NH₄⁺ comparison (Figure 18), where observed peaks occur in April and
1677 model peaks occur in June.

1678

1679

1680 Table 7. Contributions of N species towards total deposition (eq ha⁻¹ yr⁻¹ and percent of total N deposited, common
 1681 AQMEII4 EU grid, 2010, arranged in descending order of importance to the reduced ensemble average. DNH3: dry
 1682 deposition of NH₃(g). WNH4: wet deposition of NH₄⁺(aq). DHNO3: dry deposition of HNO₃(g). WNO3: wet
 1683 deposition of NO₃⁻(aq). DAM: dry deposition of particulate ammonium. DNI: dry deposition of particulate nitrate.
 1684 DNO₂: dry deposition of NO₂(g). DPAN: dry deposition of peroxyacetyl nitrate gas. DRN3: dry deposition of
 1685 organic nitrate gases. DN2O5: dry deposition of N₂O₅(g). DHNO4: dry deposition of pernitric acid gas. DNO: dry
 1686 deposition of NO(g). nr = not reported. ndd = no dry deposition

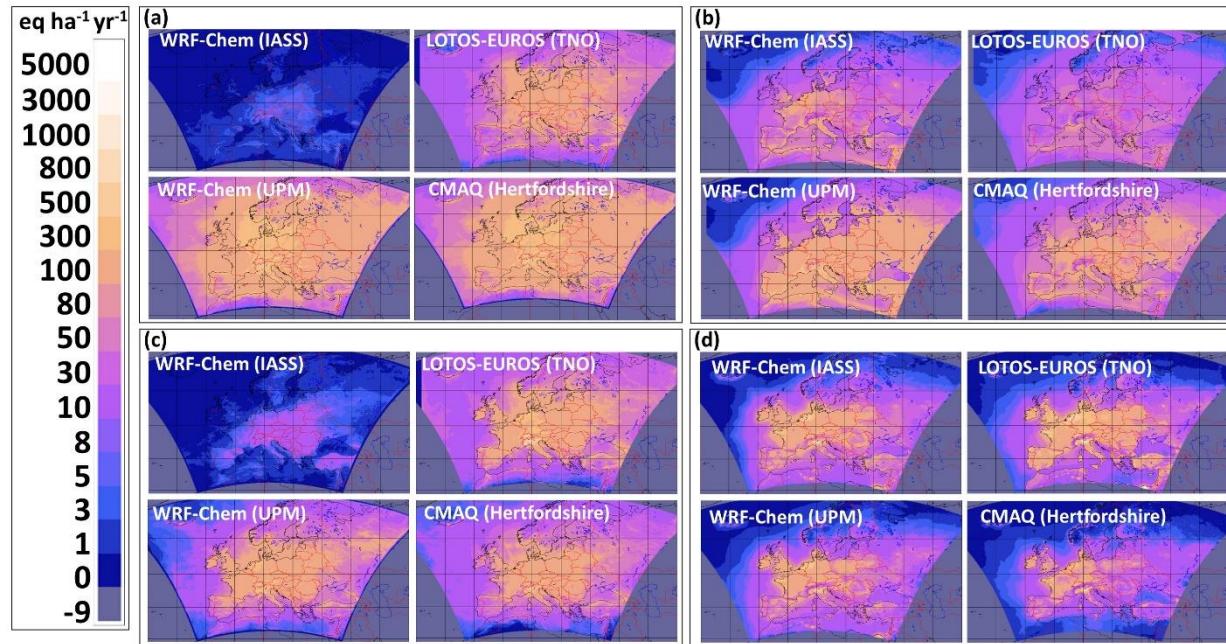
Species	Average (eq ha ⁻¹ yr ⁻¹)					
	Model					
Species	WRF-Chem (IASS)	LOTOS-EUROS	WRF-Chem (UPM)	CMAQ (Hertfordshire)	Red. Ens Avg	Red. Ens. Std Dev
WNO3	1.8	77.8	174.8	96.2	116.2	42
DHNO3	50.2	38.4	120.5	78.6	79.2	33.5
WNH4	4.3	90.3	74.6	64.1	76.3	10.8
DNH3	60.5	76.8	47.9	29.6	51.5	19.4
DNI	nr	18.2	25.9	13.5	19.2	5.1
DNO2	11.6	23.6	27.5	6.3	19.2	9.2
DAM	nr	14.2	6.2	6.6	9	3.7
DPAN	2.3	ndd	2.7	5.2	4	1.2
DN2O5	5.3	1.2	ndd	1	1.1	0.1
DRN3	0.3	ndd	0.6	3.2	1.9	1.3
DHNO4	1.4	ndd	0.9	0.2	0.5	0.4
DNO	0.1	2	0.2	0.4	0.9	0.8
Total N	137.6	342.7	481.9	304.8	376.5	76.1
Percent Contribution						
Species	Model					
	WRF-Chem (IASS)	LOTOS-EUROS	WRF-Chem (UPM)	CMAQ (Hertfordshire)	Red. Ens Avg	Red. Ens. Std Dev
WNO3	1.3	22.7	36.3	31.5	30.9	5.6
DHNO3	36.5	11.2	25	25.8	21	6.7
WNH4	3.1	26.4	15.5	21	20.3	4.4
DNH3	43.9	22.4	9.9	9.7	13.7	5.9
DNI	nr	5.3	5.4	4.4	5.1	0.4
DNO2	8.4	6.9	5.7	2.1	5.1	2.1
DAM	nr	4.1	1.3	2.2	2.4	1.2
DPAN	1.7	nd	0.6	1.7	1.1	0.6
DN2O5	3.8	0.3	nd	0.3	0.3	0
DRN3	0.2	nd	0.1	1.1	0.5	0.5
DHNO4	1	nd	0.2	0.1	0.1	0.1
DNO	0	0.6	0	0.1	0.2	0.2

1687

1688

1689

1690 Figure 29. Spatial distribution of contributions of (a) wet nitrate ion deposition, (b) dry gaseous HNO₃ deposition,
 1691 (c) wet ammonium ion deposition, and (d) dry gaseous ammonia deposition towards total N deposition in the
 1692 common AQMEII4 EU domain, 2010 (eq ha⁻¹ yr⁻¹). Note that regions outside the common AQMEII-4 domain have
 1693 been assigned an “outside domain” mask value of -9.

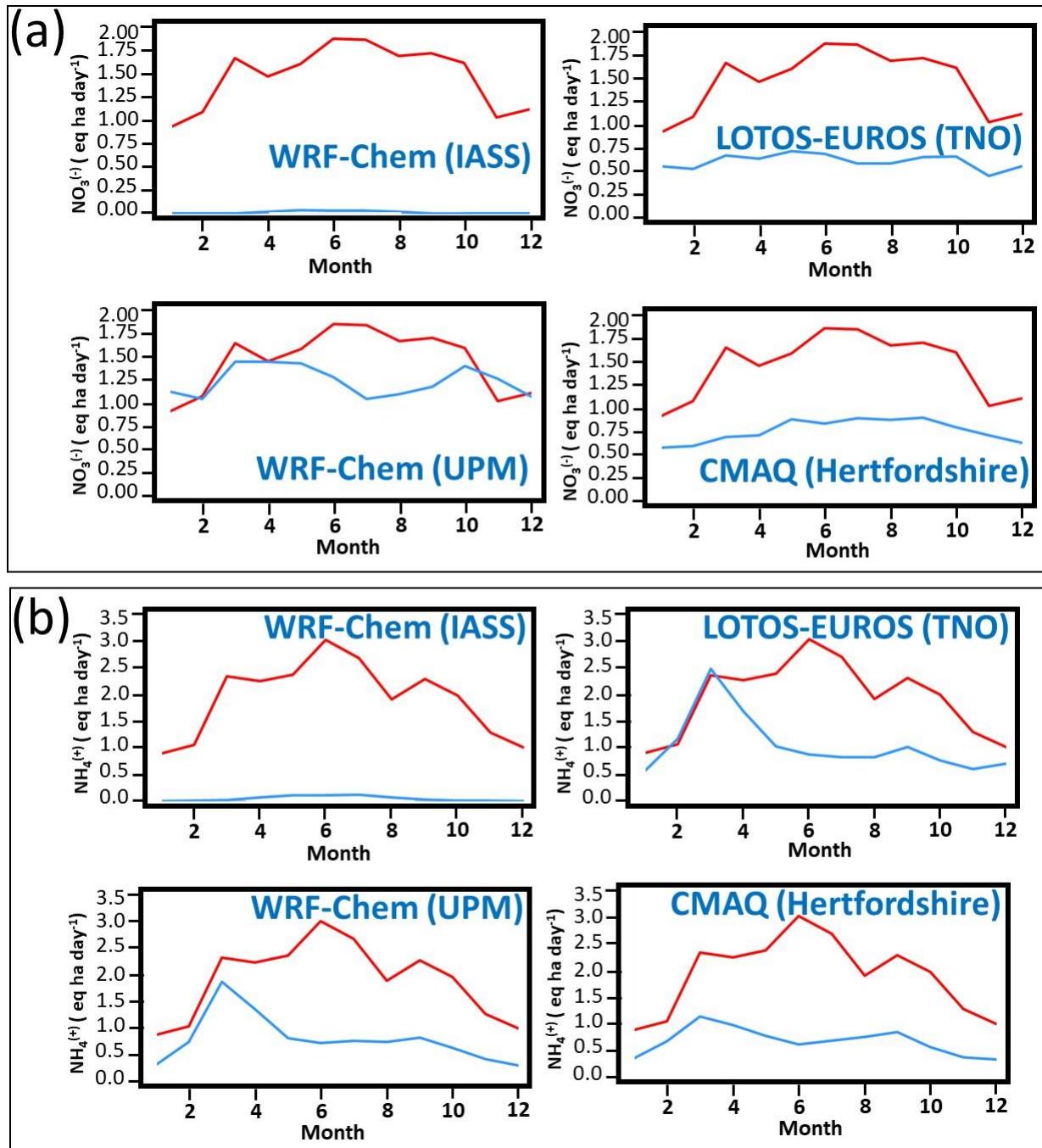


1694
 1695 Dry deposition of HNO₃ was the second largest source of modelled EU nitrogen deposition variability.
 1696 The spatial distribution of the relative contributions of the four pathways towards the mass flux of HNO₃
 1697 is shown in Figures S25 and S26 and are summarized for the entire grid in Figure 31. There is more
 1698 heterogeneity between the EU models regarding the relative importance of the HNO₃ deposition pathways
 1699 than was observed for the North American simulations (compare Figures 20 and 31). In the North
 1700 American simulations, the cuticle deposition pathway also dominated for all models, followed by the soil
 1701 pathways. In the EU simulations, the reported soil pathway for WRF-Chem (UPM) was several orders of
 1702 magnitude smaller than the same pathway for CMAQ (Hertfordshire). The cuticle pathway dominated for
 1703 WRF-Chem (IASS) (not shown) and CMAQ (Hertfordshire). The stomatal pathway magnitude is less
 1704 than the cuticle pathway for the EU models, but greater in general than for the North American models,
 1705 where the stomatal pathway had a smaller contribution to HNO₃ dry deposition than the lower canopy
 1706 pathway.

1707 Observations of 2010 HNO₃(g), NH₃(g), and dry particle nitrate were not available for comparison to the
 1708 model predictions. However, observations of the NO₂ concentrations, the 6th largest contributor to total N
 1709 deposition and the 5th largest contributor to model-to-model variability, were available at near-source
 1710 AIRBASE and regionally distributed EMEP stations (Table S7). Aside from having the 2nd largest
 1711 magnitude mean bias, LOTOS-EUROS (TNO) had the best performance for NO₂ relative to stations
 1712 positioned close to emissions sources (AIRBASE), while WRF-Chem (IASS) and CMAQ (Hertfordshire)
 1713 had the best performance for NO₂ for stations distributed more widely across the region (EMEP).

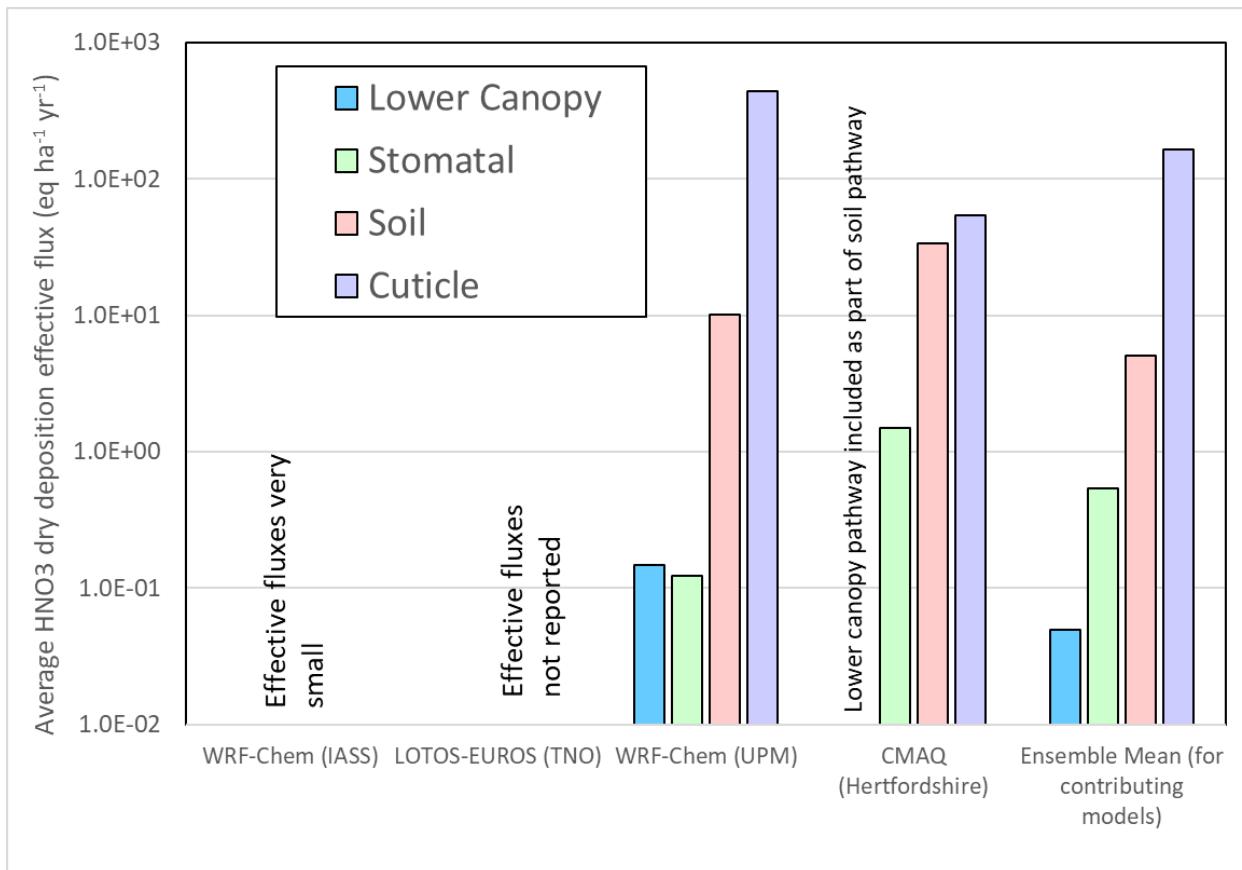
1714

1715 Figure 30. Monthly average comparison of wet nitrogen deposition, AQMEII4 common EU grid, 2010. (a) Average
 1716 flux of NO_3^- (aq). (b) Average flux of NH_4^+ (aq). (eq ha^{-1} day $^{-1}$)



1717
 1718
 1719
 1720

1721 Figure 31. Averages of flux pathway contributions to HNO_3 dry deposition, AQMEII4 common EU grid, 2010 (eq
 1722 $\text{ha}^{-1} \text{yr}^{-1}$).



1723

1724

1725 Conclusions

1726 We have used the AQMEII4 North American and European ensembles to calculate net Sulphur and
 1727 Nitrogen deposition from individual models and a reduced ensemble of all models. These deposition
 1728 estimates were used to calculate exceedances of critical loads for these two regions, using several critical
 1729 load datasets. An in-depth analysis of the causes of model-to-model variability followed, using
 1730 diagnostics designed for AQMEII4. We therefore subdivide these conclusions by the domain simulated,
 1731 and the critical load exceedance and causes of model variability, within each domain.

1732 *North America, Critical Load Exceedances*

1733 All simulations showed a decrease in the size of the area in exceedance and the severity of exceedances
 1734 with respect to acidification of forest ecosystems and aquatic ecosystem acidity between the years 2010
 1735 and 2016. The total area in exceedance for sensitive epiphytic lichen species richness improved slightly,
 1736 but the severity of exceedance was greatly reduced. Given that the lichen community has a dose-response
 1737 relationship with increasing deposition, this indicates reduced harm to forest health, even when the CL is
 1738 still in exceedance. CLEs for herbaceous species community richness had substantial improvements in
 1739 the total area of exceedance and severity of exceedance. The amount of exceedance in any given year and
 1740 the extent of reduction between the two years varied considerably between the models. Any individual

1741 model provided a similar direction of the change between the two years; the range of estimates suggests
1742 the utility of model ensembles where possible in estimating critical load exceedances, as well as model-
1743 measurement fusion, when sufficient S and N species data are available.

1744 *North America, Causes of Model S Deposition Variability*

1745 The total mass of North American Sulphur deposition followed, in decreasing order of importance, wet
1746 deposition of S ($\text{SO}_4^{2-} + \text{HSO}_3^-$), dry deposition of particulate sulphate, and dry deposition of SO_2 . Dry
1747 deposition of particulate sulphate contributed the most to model-to-model variability in total Sulphur
1748 deposition, followed by wet deposition, and dry SO_2 deposition. The models with the highest wet S
1749 deposition levels had the best performance relative to monitoring network observations (CMAQ-M3Dry,
1750 CMAQ-STAGE, GEM-MACH (Ops)), though all models' wet S deposition was biased low relative to
1751 observations. A subgroup of models (GEM-MACH (Base), GEM-MACH (Zhang), GEM-MACH (Ops))
1752 had the highest positive biases in observed $\text{PM}_{2.5}$ sulphate concentrations relative to monitoring network
1753 observations, contributing to the model-to-model variability. Recent work by Ryu and Min (2022) and
1754 Ghahreman *et al.* (2024) suggests that model negative biases for wet deposition may be improved
1755 through incorporation of multiphase hydrometeor scavenging, and this may also reduce positive biases in
1756 particulate mass resulting from the implementation of the Emerson *et al.* (2020) particle dry deposition
1757 algorithm (GEM-MACH (Base) and GEM-MACH (Zhang)). Most North American reduced ensemble
1758 models were in relatively good agreement with regards to their predictions for the total dry deposition
1759 flux of $\text{SO}_2(\text{g})$.

1760 *North America, Causes of N Deposition Variability*

1761 The largest contributors to the average total nitrogen *deposition fluxes* across North America in 2016 were
1762 wet ammonium ion, dry HNO_3 , wet nitrate ion, dry particle ammonium, dry ammonia gas, dry particle
1763 nitrate and dry NO_2 , with relatively minor contributions from the other depositing gases. The largest
1764 contributors to the average total N deposition flux *variability* across models in descending order of
1765 importance were the deposition of dry particulate ammonium, wet ammonium ion, wet nitrate ion, dry
1766 nitric acid, dry particle nitrate, dry NO_2 and dry NH_3 .

1767 The first and second contributions to model-to-model variability between the members of the reduced
1768 North American ensemble were due to the three GEM-MACH implementations (Base, Zhang, and Ops)
1769 all having much higher dry particle ammonium and wet ammonium ion deposition fluxes, zero to
1770 positive biases in wet ammonium ion deposition relative to observations during the summer, and the
1771 largest positive biases for $\text{PM}_{2.5}$ ammonium concentrations relative to observations, as a result of the
1772 simplified sulfate-ammonium-nitrate-water inorganic aerosol thermodynamics algorithm they employed.
1773 The positive biases in fine mode particle ammonium concentrations and positive biases in wet ammonium
1774 ion deposition for this subgroup of models are likely caused by the absence of base cations as an
1775 alternative sink of nitric acid in addition to ammonium nitrate formation. Updates to these model
1776 implementations making use of a new, highly efficient solver for inorganic heterogeneous chemistry
1777 which includes the base cation reactions (Miller *et al.*, 2024) should reduce these positive biases. The
1778 absence of multiphase hydrometeor scavenging of particle mass may also play a role in the particle
1779 ammonium positive biases for these models, and in the negative biases across all North American models
1780 for wet ammonium and wet nitrate deposition (Ghahreman *et al.*, 2024).

1781 Dry deposition of nitric acid was the second largest contributor to total nitrogen deposition fluxes in
1782 North America, and the fourth largest contributor to model-to-model variability, with cuticle and the soil
1783 pathway dominating the HNO_3 mass flux, usually by more than an order of magnitude.

1784 Comparisons of model-predicted 2016 concentrations of NH₃(g) to both CrIS satellite-based observations
1785 (in the afternoon, at overpass time) and ground-based AMON monitoring network values (biweekly
1786 averages) showed that the details of implementation of ammonia bidirectional flux algorithms have a
1787 large impact on model NH₃ performance, with CMAQ-M3Dry and CMAQ-STAGE having the most
1788 negative NH₃ biases in NH₃, and GEM-MACH (Base) and GEM-MACH (Zhang) models having the
1789 smallest magnitude NH₃ biases. A detailed analysis of the magnitude and direction of these models
1790 employing bidirectional flux algorithms showed a common diurnal behaviour of daytime emissions from
1791 agricultural and grassland areas and deposition in downwind forested areas, and nighttime deposition in
1792 all regions. However, the GEM-MACH models predicted low magnitude net emissions from forested
1793 areas downwind of agricultural areas in the early morning, while the CMAQ models predicted net
1794 deposition at all locations. Differences in the relative magnitudes of compensation point concentrations
1795 and the strength of the daytime stomatal deposition pathway were shown to be the cause for these
1796 differences.

1797 *Europe, Critical Load Exceedances*

1798 The AQMEII4 ensemble for Europe predicted similar exceedances with respect to acidity and
1799 eutrophication in 2009 and 2010, with the 3-member reduced ensemble showing slightly reduced
1800 exceedance levels for acidity, and slightly increased exceedance levels for eutrophication, in 2010. We
1801 note that the models used made use of inorganic aerosol thermodynamics algorithms which included
1802 reactions of base cations, and none made use of more recent updates to the particle dry deposition
1803 parameterization (Emerson *et al.*, 2020, Pleim *et al.*, 2022). Consequently, the magnitude of differences
1804 between the models varied from the North American models, as well as the order of importance of
1805 different forms of Sulphur towards total deposition differed from the North American ensemble.

1806 *Europe, Causes of Model S Deposition Variability*

1807 The common domain average reduced ensemble sulphur dry deposition contributions and their variability
1808 followed the same decreasing order of importance (SO₂, Wet S, dry particulate sulphate). WRF-Chem
1809 (IASS) had the best overall performance relative to observations for SO₂ concentrations, while CMAQ
1810 (Hertfordshire) had the best performance for wet S deposition. LOTOS-EUROS (TNO) and CMAQ
1811 (Hertfordshire) tended to overestimate regional SO₂ seasonality, with much higher concentrations in
1812 winter than summer compared to observations in the EMEP SO₂ network. Near-source observations
1813 (AIRBASE network) had higher winter than summer values, though this seasonal variation was largely
1814 absent in the observations for stations more representative of regional conditions (EMEP). The positive
1815 biases in modelled regional SO₂ concentrations for LOTOS-EUROS (TNO) and CMAQ (Hertfordshire)
1816 (the latter relative to both EMEP and AIRBASE stations) may reflect differences in plume rise
1817 distribution between the models, or in their driving meteorology's vertical stability (e.g. the modelled
1818 wintertime atmosphere may be more stable than is observed, for these models). As was the case in the
1819 North America ensemble, all models had negative biases for wet S deposition. As in North America, the
1820 manner in which cloud scavenging of particulate sulphate and SO₂ was implemented in these models may
1821 be the cause of the wet deposition negative biases. Unlike North America, speciated PM measurements
1822 were unavailable for model evaluation and bias correction.

1823 EU SO₂ deposition pathways were investigated with AQMEII4 diagnostics; the soil and cuticle pathways
1824 dominated, and the stomatal pathway was relatively unimportant. This order of importance may reflect
1825 diurnal and seasonal SO₂ concentration variations. SO₂ concentrations are more likely to be high under
1826 more stable atmospheric conditions (these inhibit the rise of buoyant SO₂ plumes from large stack

1827 sources); these conditions are more likely to occur more frequently at night and in the winter, when the
1828 influence of the stomatal pathway is at its minimum.

1829 *Europe, Causes of Model N Deposition Variability*

1830 The relative contributions towards total N deposition and the range in the EU domain were in decreasing
1831 order of importance: wet nitrate ion, dry HNO_3 , wet ammonium ion, dry ammonia gas, dry particle
1832 nitrate, and dry NO_2 . The variations in the N deposition values between models were smaller than in
1833 North America, likely due to the use of base cation-inclusive inorganic aerosol thermodynamic algorithms
1834 in all models, and the use of older implementations of wet scavenging and particle dry deposition than in
1835 the North American models. We note that dry NH_3 deposition was the 4th largest contributor to European
1836 N deposition model-to-model variability, with the model employing a bidirectional flux algorithm
1837 (LOTOS-EUROS) having the highest NH_3 deposition. Satellite-based NH_3 data was unavailable for
1838 Europe for the years simulated, but is recommended for simulation evaluation in more recent years.

1839 LOTOS-EUROS (TNO) had the best overall performance for wet nitrate deposition, wet ammonium
1840 deposition, and near source NO_2 concentrations compared to the other models. However, all EU models
1841 had substantial negative biases in wet nitrate and ammonium deposition, in common with the North
1842 American models. The seasonality of wet N deposition was poorly simulated, with most models failing to
1843 predict the observed summertime maximum of wet ammonium deposition. Given that this negative bias
1844 has its maximum in the summer, when agricultural NH_3 emissions are also likely to maximize, evaluation
1845 in more recent years of NH_3 predictions against satellite data is recommended.

1846 In accord with the NA ensemble, those EU models which reported effective flux diagnostics for all four
1847 HNO_3 dry deposition effective flux pathways showed the cuticle and soil pathways dominating. The
1848 details of the individual land-use database may be seen in the HNO_3 deposition flux diagnostics (Figures
1849 S25 and S26), with differences in the amount of inland water being apparent. Furthermore, we note that
1850 the land-use databases employed in critical load exceedance calculations may *also* differ from those used
1851 in individual models. Such mismatches are another source of uncertainty in the estimation the critical
1852 load exceedances for the dry deposition portions of total S and N deposition. The effect of land-use type
1853 classifications on model deposition fluxes for ozone will be examined in more detail in a companion
1854 paper (Hogrefe *et al.*, 2024, ACPD, in preparation).

1855 *Impact of Bias Correction as a Simple Form of Model-Measurement Fusion*

1856 A simple form of model-measurement fusion (bias correction) was applied to each of the models' species
1857 contributing to total sulphur and nitrogen deposition, for those component species for which observations
1858 were available, and corresponding bias-corrected critical load estimates were generated. This sometimes
1859 resulted in substantial decreases in model-to-model variability in the CLEs generated, indicating that
1860 model-measurement fusion will decrease model-to-model variability, and improved CLE estimates,
1861 provided sufficient data is available on the main contributors to total sulphur and total nitrogen
1862 deposition. In the case of Europe, the application of bias-correction *increased* CLE variability for
1863 acidification, likely due to the lack of particulate sulphate observations in Europe for the years simulated.
1864 The substantial contrast to North American bias-corrected values suggests that the bias corrections for
1865 individual species contributing to total sulphur deposition may offset each other (e.g. positive biases in
1866 particle sulphate may be offset by negative biases in wet deposition). In the absence of speciated particle
1867 observation data in Europe, this compensating effect could not be captured using bias correction, and
1868 hence the European CLE variability increased with bias correction.

1869 An important implication of the bias correction exercise conducted here is the need for observation data
1870 which close the sulphur and nitrogen deposition budgets to the greatest extent possible, when carrying out
1871 model-measurement fusion. The biases with respect to observations for sulphur species may reflect
1872 inaccuracies in the transformation of one species to another for example – if model-measurement fusion is
1873 applied to only some of the species contributing to sulphur deposition, the resulting total sulphur
1874 deposition field and exceedance estimates may be *less* accurate than the original model fields. Similarly,
1875 we note that the observations available here did not include particle nitrate or nitric acid data – and hence
1876 the impacts of model measurement fusion on total nitrogen deposition may potentially lead to *less*
1877 accurate estimates than the original model values.

1878 *Recommendations: Air-Quality Modelling Needs Identified by the Analysis*

1879 Our analysis suggests that model biases and model-to-model variability may be reduced through targeted
1880 research into specific model process components. These include:

1881 *Multiphase hydrometeor scavenging of gases and aerosols into clouds to reduce the magnitude of wet
1882 deposition and particle concentration biases.*

1883 *Incorporation of improved particle deposition velocity algorithms (e.g Emerson et al., 2020) – but only in
1884 combination with multiphase wet scavenging (Ryu and Min, 2022, Ghahreman et al., 2024.)*

1885 *Incorporation of base cation inorganic chemistry (if not already present) (Fountoukis and Nenes, 2007;
1886 Miller et al., 2024) and improved base cation emissions inventory development.*

1887 *NH₃ bidirectional fluxes evaluated using satellite data, with particular reference to improving
1888 compensation point estimates for forested areas.*

1889 *Land use type database harmonization across models and between models and critical load databases.*

1890

1891 *Disclaimer: The views expressed in this article are those of the authors and do not necessarily represent
1892 the views or policies of the U.S. Environmental Protection Agency.*

1893 *Competing Interests: At least one of the co-authors is a member of the editorial board of Atmospheric
1894 Chemistry and Physics*

1895 *Author Contributions:* PAM: study design and analysis, manuscript writing, GEM-MACH simulations,
1896 generation of figures, tables. PC: study analysis support, generation of figures, tables. CH: coordination
1897 of modelling team, CMAQ-M3Dry, CMAQ-STAGE simulations, manuscript writing, analysis checking
1898 and verification. AA: GEM-MACH simulations. UA: WRF-Chem(IASS) simulations , comments on
1899 manuscript. JOB: CMAQ-STAGE (EPA) simulations, comments on manuscript. MDB: Critical load
1900 exceedance generation from model output; US critical loads for lichen and herbaceous community
1901 richness. RB: ENSEMBLE system for submission of model output, coordination of model output library.
1902 RB: ENSEMBLE system for submission of model output, coordination of model output library. T.
1903 Butler: WRF-Chem (IASS) simulations. HC: North American critical load exceedance generation for
1904 aquatic and forest ecosystems, comments on manuscript. OEC: comments on manuscript. AH: WRF-
1905 Chem (UCAR) simulations, comments on manuscript. IK: comments on manuscript, discussions on
1906 observation data. RK: LOTOS-EUROS simulations. AL: WRF-Chem (IASS) simulations, comments on
1907 paper. JAL: US aquatic ecosystem critical loads, contributions to North American critical load
1908 exceedances. KM: WRF-Chem (IASS) simulations. JLPC: WRF-Chem (UPM) simulations. JP:

1909 CMAQ-M3Dry simulations. YHR: WRF-Chem (UCAR) simulations, comments on manuscript. RSJ:
1910 WRF-Chem (UPM) simulations, reanalysis of WRF-Chem output. DS: Discussions on initial AQMEII4
1911 work, including the work described in this manuscript. TS: European critical load exceedance analysis,
1912 design of common format for critical load exceedance bar charts, comments on the manuscript. RSS:
1913 CMAQ(Hertfordshire) simulations, comments on manuscript. SG: ENSEMBLE model output
1914 submission system coordination, co-chairing regular meetings at which the manuscript was discussed.
1915 PAM, CH, OEC, DS, SG: AQMEII4 steering committee coordination, manuscript discussion.

1916 References

1917 Abdul-Razzak, H. and Ghan, S.J.. A parameterization of aerosol activation: 2. Multiple aerosol types. *J.*
1918 *Geophys. Res. Atm.*, 105, 6837-6844, 2000. <https://doi.org/10.1029/1999JD901161>

1919 Aherne, J., & Jeffries, D., Critical Load Assessments and Dynamic WRF-Chem (IASS)pplications for
1920 Lakes in North America. In W. de Vries, J.-P. Hettelingh, & M. Posch (Eds.), Critical Loads and
1921 Dynamic Risk Assessments: Nitrogen, Acidity and Metals in Terrestrial and Aquatic Ecosystems
1922 (pp. 485–503). Springer Netherlands., 2015. https://doi.org/10.1007/978-94-017-9508-1_19

1923 Akingunola, A., Makar, P.A., Zhang, J., Darlington, A., Li, S.-M., Gordon, M., Moran, M.D., and Zheng,
1924 Q., A chemical transport model study of plume-rise and particle size distribution for the
1925 Athabasca oil sands, *Atmos. Chem. Phys.*, 18, 8667–8688, 2018. <https://doi.org/10.5194/acp-18-8667-2018>

1926 AMoN, 2024: <https://nadp2.slh.wisc.edu/data/AMoN/>, with data downloaded from
1927 <https://nadp2.slh.wisc.edu/dataLib/AMoN/csv/all-rep.csv>, and metadata available at
1928 https://nadp.slh.wisc.edu/wp-content/uploads/2022/08/amon_metadata_v2.pdf

1929 Anderson, J., Hardy, E., Roach, J., and Witmer, R., A land use and land cover classification system for
1930 use with remote sensor data. U.S. Geological Survey, Geological survey professional paper 96,
1931 1976. <https://pubs.usgs.gov/publication/pp964>

1932 Anlauf, K., Li, S.-M., Leaitch, R., Brook, J., Hayden, K., Toom-Sauntry, D., Wiebe, A., Ionic
1933 composition and size characteristics of particles in the Lower Fraser Valley: Pacific 2001 field
1934 study, *Atm. Env.*, 40, 2662-2675, 2006. <https://doi.org/10.1016/j.atmosenv.2005.12.027>

1935 Appel, K.W., Bash, J.O., Fahey, K.M., Foley, K.M., Gilliam, R.C., Hogrefe, C., Hutzell, W.T., Kang, D.,
1936 Mathur, R., Murphy, B.N., Napelenok, S.L., Nolte, C.G., Pleim, J.E., Pouliot, G.A., Pye, H.O.T.,
1937 Ran, L., Roselle, S.J., Sarwar, G., Schwede, D.B., Sidi, F.I., Spero, T.L., and Wong, D. C., The
1938 Community Multiscale Air Quality (CMAQ) model versions 5.3 and 5.3.1: system updates and
1939 evaluation, *Geosci. CMAQ (Hertfordshire)ev.*, 14, 2867–2897, 202.
1940 <https://doi.org/10.5194/gmd-14-2867-2021>

1941 Banzhaf, S. , Schaap,M., Kerschbaumer, A., Reimer, E., Stern, R., Van Der Swaluw, E., Builtjes, P.,
1942 Implementation and evaluation of pH-dependent cloud chemistry and wetdeposition in the
1943 chemical transport model REM-Calgrid, *Atmos. Environ.*, 49, 378-390, 2012.
1944 <https://doi.org/10.1016/j.atmosenv.2011.10.069>

1945 Barriopedro, D., Fischer, E.M., Luterbacher, J., Trigo, R.M., and Garcia-Herrera, R., The hot summer of
1946 2010: redrawing the temperature record map of Europe, *Science*, 332, 220-224, 2011.
1947 <https://www.science.org/doi/10.1126/science.1201224>

1948 Bash, J. O., Cooter, E. J., Dennis, R. L., Walker, J. T., & Pleim, J. E., Evaluation of a regional air-quality
1949 model with bidirectional NH₃exchange coupled to an agroecosystem
1950 model. *Biogeosciences*, 10(3), 1635–1645, 2013. <https://doi.org/10.5194/bg-10-1635-2013>

1951 Belair, S., Brown, R., Mailhot, J., Bilodeau, B., Crevier, L.-P., Operational implementation of the ISBA
1952 land surface scheme in the Canadian regional weather forecast model. Part II: cold season results.
1953 *J. Hydrometeor.* 4, 371-386, 2003b. [https://doi.org/10.1175/1525-7541\(2003\)4<371:OIOTIL>2.0.CO;2](https://doi.org/10.1175/1525-7541(2003)4<371:OIOTIL>2.0.CO;2)

1955

1956 Belair, S., Crevier, L.-P., Mailhot, J., Bilodeau, B., Delage, Y., Operational implementation of the ISBA
 1957 land surface scheme in the Canadian regional weather forecast model. Part I: warm season results.
 1958 *J. Hydrometeor.* 4, 352-370, 2003a. [https://doi.org/10.1175/1525-7541\(2003\)4<352:OITIL>2.0.CO;2](https://doi.org/10.1175/1525-7541(2003)4<352:OITIL>2.0.CO;2)

1959 Bermejo, R., and Conde, J., A conservative quasi-monotone semi-Lagrangian scheme, *Mon. Wea. Rev.*,
 1960 130, 423-430, 2002. [https://doi.org/10.1175/1520-0493\(2002\)130<0423:ACQMSL>2.0.CO;2](https://doi.org/10.1175/1520-0493(2002)130<0423:ACQMSL>2.0.CO;2)

1961 Binkowski F.S., and Roselle, S.J., Models-3 Community Multiscale Air Quality(CMAQ) model aerosol
 1962 component1. Model description, *J. Geophys. Res.* 108, No. D6, 4183, 18pp, 2003.
 1963 <https://doi.org/10.1029/2001JD001409>

1964 Binkowski, F.S., and Shankar, U., The Regional Particulate Matter Model: 1. Model description and
 1965 preliminary results, *J. Geophys. Res.*, 100, no D12, 26,191-26,209, 1995.
 1966 <https://doi.org/10.1029/95JD02093>

1967 Bobbink, R., Loran, C., Tomassen, H. (2022). Review and revision of empirical critical loads of nitrogen
 1968 for Europe. *Dessau-Roßlau, UBA TEXTE* 02/2022.
 1969 <https://www.umweltbundesamt.de/en/publikationen/review-revision-of-empirical-critical-loads-of>

1970 Bower, K.N. and T.W. Choularton, A parameterisation of the effective radius of ice free clouds for use in
 1971 global climate models, *Atmospheric Research*, 27, 305-339, 1992. [https://doi.org/10.1016/0169-8095\(92\)90038-C](https://doi.org/10.1016/0169-8095(92)90038-C)

1972 Briggs, G. A.: Plume rise and buoyancy effects, atmospheric sciences and power production, in:
 1973 DOE/TIC-27601 (DE84005177), edited by: Randerson, D., TN, Technical Information Center,
 1974 U.S. Dept. of Energy, Oak Ridge, USA,327–366, 1984

1975 Carter, W.P.L., Development of the SAPRC-07 chemical mechanism, *Atm. Env.*, 44, 5324-5335, 2010.
 1976 <https://doi.org/10.1016/j.atmosenv.2010.01.026>

1977 Cathcart, H., Aherne, J., Moran, M.D., Savic-Jovicic, V., Makar, P.A., and Cole, A., Estimates of critical
 1978 loads and exceedances of acidity and nutrient nitrogen for mineral soils in Canada for 2014–2016
 1979 average annual sulphur and nitrogen atmospheric deposition, EGUsphere [preprint],
 1980 <https://doi.org/10.5194/egusphere-2024-2371>, 2024. (accepted, November 2024).

1981 Cathcart, H., Aherne, J., Jeffries, D. S., & Scott, K. A., Critical loads of acidity for 90,000 lakes in
 1982 northern Saskatchewan: A novel approach for mapping regional sensitivity to acidic deposition.
 1983 *Atm. Env.*, 146, 290–299, 2016. <https://doi.org/10.1016/j.atmosenv.2016.08.048>

1984 Chapman, E. G., Gustafson Jr., W. I., Easter, R. C., Barnard, J. C., Ghan, S. J., Pekour, M. S., and Fast, J.
 1985 D., Coupling aerosol-cloud-radiative processes in the WRF-Chem model: Investigating the
 1986 radiative impact of elevated point sources, *Atmos. Chem. Phys.*, 9, 945–964, 2009.
 1987 <https://doi.org/10.5194/acp-9-945-2009>

1988 Chaumerliac, N., Evaluation des Termes de Captation Dynamique dans un Modele Tridimensionnel à
 1989 Mesoscale de Lessivage de L'Atmo-sphère, thesis, Univ. de Clermont II, U.E.R. de Rech. Sci.
 1990 et Tech.,1984.

1991 Chen, X., Day, D., Schichtel, B., Malm, W., Matzoll, A.K., Mjica., J., McDade, C.E., Hardison, E.D.,
 1992 Hardison, D.L., Walters, S., Van De Water, M., Collett, J.L. Jr., Seasonal ambient ammonia and
 1993 ammonium concentrations in a pilot IMPROVE NH_x monitoring network in the western United
 1994 States, *Atm. Env.*, 91, 118-126, 2104.

1995 Clifton, O. E., Fiore, A. M., Massman, W. J., Baublitz, C. B., Coyle, M., Emberson, L., Fares, S., Farmer,
 1996 D. K., Gentine, P., Gerosa, G., Guenther, A. B., Helmig, D., Lombardozzi, D. L., Munger, J. W.,
 1997 Patton, E. G., Pusede, S. E., Schwede, D. B., Silva, S. J., Sörgel, M., Steiner, A. L., and Tai, A. P.
 1998 K.: Dry deposition of ozone over land: processes, measurement, and modeling, *Rev. Geophys.*,
 1999 58, e2019RG000670, 62pp, , 2020a. <https://doi.org/10.1029/2019RG000670>

2000 Clifton, O. E., Fiore, A. M., Munger, J. W., Malyshev, S., Horowitz, L. W., Shevliakova, E., Paulot, F.,
 2001 Murray, L. T., and Griffin, K. L.: Interannual variability in ozone removal by a temperate
 2002 deciduous forest, *Geophys. Res. Lett.*, 44, 542–552, 2017.
 2003 <https://doi.org/10.1002/2016GL070923>

2006 Clifton, O. E., Paulot, F., Fiore, A. M., Horowitz, L. W., Correa, G., Baublitz, C. B., Fares, S., Goded, I.,
 2007 Goldstein, A. H., Gruening, C., Hogg, A. J., Loubet, B., Mammarella, I., Munger, J. W., Neil, L.,
 2008 Stella, P., Uddling, J., Vesala T., and Weng, E.: Influence of dynamic ozone dry deposition on
 2009 ozone pollution, *J. Geophys. Res.-Atmos.*, 125, e2020JD032398, 2020b.
 2010 <https://doi.org/10.1029/2020JD032398>

2011 Clifton, O.E., Schwede, D., Hogrefe, C., Bash, J.O., Bland, S., Cheung, P., Coyle, M., Emberson, L.,
 2012 Flemming, J., Fredj., E., Galmarini, S., Ganzeveld, L., Gazetas, O., Goded, I., Holmes, C.D.,
 2013 Horváth, L., Huijnen, V., Li, Q., Makar, P.A., Mammarella, I., Manca, G., Munger, J.W., Pérez-
 2014 Camanyo, J.L., Pleim, J., Ran, L., San Jose, R., Silva, S.J., Staebler, R., Sun, S., Tai, A.P.K, Tas,
 2015 E., Vesala, T., Weidinger, T., Wu, Z. and Zhang, L., A single-point modeling approach for the
 2016 intercomparison and evaluation of ozone dry deposition across chemical transport models
 2017 (Activity 2 of AQMEII4), *Atmos. Chem. Phys.*, 23, 9911–9961, 2023.
 2018 <https://acp.copernicus.org/articles/23/9911/2023/>

2019 Clifton, O.E., Bauer, S.E., Tsigaridis, K., Aleinov, I., Cowan, T.G., Faluvegi, G., and Kelley, M.,
 2020 Influence of more mechanistic representation of particle dry deposition on 1850-2000 changes in
 2021 global aerosol burdens and radiative forcing, *J. Adv. Mod. Earth Systems*, 16, e2023MS003952,
 2022 19 pp., 2024. <https://doi.org/10.1029/2023MS003952>

2023 CLRTAP, 2023: UNECE CLRTAP (2023). Manual on Methodologies and Criteria for Modelling and
 2024 Mapping Critical Loads and Levels and Air Pollution Effects, Risks, and Trends. Dessau-Roßlau,
 2025 UBA TEXTE 109/2023. <https://www.umweltbundesamt.de/en/publikationen/manual-on-methodologies-criteria-for-modelling-0>

2027 Côté, J., Gravel, S., Méthot, A., Patoine, A., Roch, M., and Staniforth, A.: The operational CMC/MRB
 2028 global environmental multiscale (GEM) model. Part 1: design considerations and formulation,
 2029 *Mon. Weather Rev.*, 126, 1373–1395, 1998. [https://doi.org/10.1175/1520-0493\(1998\)126<1373:TOCMGE>2.0.CO;2](https://doi.org/10.1175/1520-0493(1998)126<1373:TOCMGE>2.0.CO;2)

2031 <https://rmets.onlinelibrary.wiley.com/doi/10.1002/joc.1688>

2032 de Vries, W., Hettelingh, J.-P., and Posch, M.: Critical Loads and Dynamic Risk Assessments: Nitrogen,
 2033 Acidity and Metals in Terrestrial and Aquatic Ecosystems, Springer, Dordrecht, Netherlands, 647
 2034 pp., 2015. <https://link.springer.com/book/10.1007/978-94-017-9508-1>

2035

2036

2037 Duarte, N., Pardo, L.H., and Robin-Abbott, M.J., Susceptibility of forests in the northeastern USA to
 2038 nitrogen and sulfur deposition: critical load exceedance and forest health, *Water Air Soil
 2039 Pollution*, 22:1355, 21pp, 2013. <https://link.springer.com/article/10.1007/s11270-012-1355-6>

2040 Dupont, J., Clair, T. A., Gagnon, C., Jeffries, D. S., Kahl, J. S., Nelson, S. J., & Peckenham, J. M.,
 2041 Estimation of Critical Loads of Acidity for Lakes in Northeastern United States and Eastern
 2042 Canada. *Environmental Monitoring and Assessment*, 109(1–3), 275–292, 2005.
 2043 <https://doi.org/10.1007/s10661-005-6286-x>

2044

2045 Dupont, J., Clair, T. A., Gagnon, C., Jeffries, D. S., Kahl, J. S., Nelson, S. J., & Peckenham, J. M.,
 2046 Estimation of Critical Loads of Acidity for Lakes in Northeastern United States and Eastern
 2047 Canada. *Environmental Monitoring and Assessment*, 109(1–3), 275–292, 2005.
 2048 <https://doi.org/10.1007/s10661-005-6286-x>

2049 Easter, R.C., Ghan, S.J., Zhang, Y., Saylor, R.D., Chapman, E.G., Laulainen, N.S., Abdul-Razzak, H.,
 2050 Leung, L.R., Bian, X., Zaveri, R.A., 2004. MIRAGE: Model description and evaluation of
 2051 aerosols and trace gases. *Journal of Geophysical Research*, 109, 46 pp., 2004.
 2052 <https://doi.org/10.1029/2004JD004571>

2053 EEA 2000: CORINE Land Cover 2000, <https://trac.osgeo.org/geonetwork/raw-attachment/ticket/650/GeoNetwork-chrome-simple.pdf>, Last accessed December 26, 2023.

2054

2055 EEA: CLC2006 technical guidelines. EEA Technical report 17/2007. ISBN 978-92-9167-968-3,
 2056 https://www.eea.europa.eu/ds_resolveuid/6ee7e1406e694f6adacf6cd349aff89a, 2007.

2057 Emerson, E.W., Hodshire, A.L., DeBolt, H.M., Bilsback, K.R., Pierce, J.R., McMeeking, G.R., and
2058 Farmber, D.K., Revisiting particle dry deposition and its role in radiative effect estimates, Proc.
2059 Nat. Acad. Sci., 117, 26076–26082, 2020. www.pnas.org/cgi/doi/10.1073/pnas.2014761117

2060 Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfister, G. G., Fillmore, D., Granier, C.,
2061 Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C.,
2062 Baugheum, S. L., and Kloster, S.: Description and evaluation of the Model for Ozone and Related
2063 chemical Tracers, version 4 (MOZART-4), Geosci. CMAQ (Hertfordshire)ev., 3, 43–67, 2010.
2064 <https://doi.org/10.5194/gmd-3-43-2010>

2065 Fahey, K.M., Carlton, A.G., Pye, H.O.T., Baeka, J., Hutzell, W.T., Stanier, C.O., Baker, K.R., Appel,
2066 K.W., Jaoui, M. and Offenberg, J.H., A framework for expanding aqueous chemistry in the
2067 Community Multiscale Air Quality (CMAQ) model version 5.1, Geosci. CMAQ
2068 (Hertfordshire)ev., 10, 1587–1605, 2017. <https://doi.org/10.5194/gmd-10-1587-2017>

2069 Fakhraei, H.A., Driscoll, C.T., Selvendiran, P., DePinto, J.V., Bloomfield, J., Quinn, S. and Rowell, H.C.,
2070 Development of a total maximum daily load (TMDL) for acid-impaired lakes in the Adirondack
2071 region of New York, Atm. Env., 95, 277-287, 2014.
2072 <https://doi.org/10.1016/j.atmosenv.2014.06.039>

2073 Fast, J. D.: Coupling aerosol-cloud-radiative processes in the WRF-Chem model: Investigating the
2074 radiative impact of elevated point sources, Atmos. Chem. Phys., 9, 945–964, 2009.
2075 <https://doi.org/10.5194/acp-9-945-2009>

2076 Fountoukis,C. and Nenes A., ISORROPIAII: a computationally efficient thermodynamic equilibrium
2077 model for K^+ - Ca^{2+} - Mg^{2+} - NH^{4+} - Na^+ - SO_4^{2-} - NO_3^- - Cl^- - H_2O aerosols. Atmos. Chem. Phys., 7, 4639-
2078 4659, 2007. <https://doi.org/10.5194/acp-7-4639-2007>

2079 Friedl, M.A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., Huang, X., MODIS
2080 Collection 5 global land cover: Algorithm refinements and characterization of new datasets,
2081 Remote Sensing of Environment, 114, 168-182, 2010. <https://doi.org/10.1016/j.rse.2009.08.016>

2082 Fu, J.S., Carmichael, G.R., Dentener, F., Aas, W., Andersson, C., Barrie, L.A., Cole, A., Galy-Lacaux, C.,
2083 Geddes, J., Itahashi, S., Kanakidou, M., Labrador, L., Paulot, F., Schwede, D., Tan, J., and Vet.,
2084 R., Improving estimates of sulphur, nitrogen and ozone total deposition through multi-model and
2085 measurement-model fusion approaches, Env. Sci. Tech., 56, 2134-2142, 2022.
2086 <https://pubs.acs.org/doi/10.1021/acs.est.1c05929>

2087

2088 Galmarini, S., Hogrefe, C., Brunner, D. Makar, P., Baklanov, A., Preface, Atm. Env., 115, 340-344, 2015.
2089 <https://doi.org/10.1016/j.atmosenv.2015.06.009>

2090 Galmarini, S., Koffi, B., Solazzo, E., Keating, T., Hogrefe, C., Schulz, M., Benedictow, A., Griesfeller,
2091 J.J., Janssens-Maenhout, G., Carmichael, G., Fu, J., and Dentener, F., Technical note:
2092 Coordination and harmonization of the multi-scale, multi-model activities HTAP2, AQMEII3,
2093 and MICS-Asia3: simulations, emission inventories, boundary conditions, and model output
2094 formats, Atmos. Chem. Phys., 17, 1543–1555, 2017. <https://doi.org/10.5194/acp-17-1543-2017>

2095 Galmarini, S., Makar, P., Clifton, O.E., Hogrefe, C., Bash, J.O., Bellasio, R., Bianconi, R., Beiser, J.,
2096 Butler, T., Ducker, J., Flemming, J., Hodzic, A., Holmes, C.D., Kioutsoukis, I., Kranenberg, R.,
2097 Lupascu, A., Perez-Camanyo, J.L., Pleim, J., Ryu, Y-H., San Jose, R., Schwede, D., Silva, S., and
2098 Wolke, R., Technical note: AQMEII4 Activity 1: evaluation of wet and dry deposition schemes
2099 as an integral part of regional-scale air quality models, Atmos. Chem. Phys., 21, 15663–15697,
2100 2021. <https://doi.org/10.5194/acp-21-15663-2021>

2101 Galmarini, S., Rao, S.T., and Steyn, D.G., Preface, Atm. Env., 53, 1-3, 2012.
2102 <https://doi.org/10.1016/j.atmosenv.2012.03.001>

2103 Geiser, L. H., Nelson, P.R., Jovan, S.E., Root, H.T., and Clark, C.M., Assessing Ecological Risks from
2104 Atmospheric Deposition of Nitrogen and Sulfur to US Forests Using Epiphytic Macrolichens,
2105 Diversity 11(6): 87, 2019. <https://doi.org/10.3390/d11060087>

2106 Gery, M. W., Whitten, G. Z., Killus, J. P., and Dodge, M. C.:A photochemical kinetics mechanism for
2107 urban and regional scale computer modeling, *J. Geophys. Res.*, 94, 12925–12956, 1989.
2108 <https://doi.org/10.1029/JD094iD10p12925>

2109 Geupel, M., Loran, C., Scheuschner, T., and Wohlgemuth, L., CCE Status Report. Dessau-Roßlau, UBA
2110 TEXTE 135/2022, 2022. <https://www.umweltbundesamt.de/en/publikationen/cce-status-report-2022>, last accessed December 21, 2023.

2111 Ghahreman, R., Gong, W., Makar, P.A., Lupu, A., Cole, A., Banwait, K., Lee, C., Akingunola, A.,
2112 Modelling below-cloud scavenging of size resolved particles in GEM-MACHv3.1, *Geo. CMAQ*
2113 (Hertfordshire)ev., 17, 685-707, 2024. <https://gmd.copernicus.org/articles/17/685/2024/> .

2114 Giorgi, F., A particle dry-deposition parameterization scheme for use in tracer transport models, *J.
2115 Geophys. Res. Atm.*, 91, 9794–9806, 1986. <https://doi.org/10.1029/JD091iD09p09794>

2116 Ginoux, P., Chin, M., Tegen, I., Prospero, J. M., Holben, B., Dubovik, O., & Lin, S.-J., Sources and
2117 distributions of dust aerosols simulated with the GOCART model. *Journal of Geophysical
2118 Research: Atmospheres*, 106(D17), 20255–20273. <https://doi.org/10.1029/2000JD000053>. 2001.

2119 Girard, C., Plante, A., Desgagne, M., McTaggart-Cowan, R., Cote, J., Charron, M., Gravel, S., Lee, V.,
2120 Patoine, A., Qaddouri, A., Roch, M., Spacek, L., Tanguay, M., Vaillancourt, P. A., and Zadra, A.,
2121 Staggered vertical discretization of the Canadian Environmental Multiscale (GEM) model using a
2122 coordinate of the log-hydrostatic-pressure type, *Mon. Weather Rev.*, 142, 1183–1196, 2014.
2123 <https://doi.org/10.1175/MWR-D-13-00255.1>

2124 Gong, S. L. Barrie, L. A., Blanchet, J.-P., von Salzen, K., Lohmann, U., Lesins, G., Spacek, L., Zhang, L.
2125 M., Girard, E., Lin, H., Leaitch, R., Leighton, H., Chylek, P., and Huang, P.: Canadian Aerosol
2126 Module: a size-segregated simulation of atmospheric aerosol processes for climate and air quality
2127 models. 1. Module development, *J. Geophys. Res.*, 108, 4007, 2003.
2128 <https://doi.org/10.1029/2001JD002002>

2129 Gong, S. L., Barrie, L. A., & Blanchet, J.-P., Modeling sea-salt aerosols in the atmosphere: 1. Model
2130 development. *Journal of Geophysical Research: Atmospheres*, 102(D3), 3805–3818, 1997.
2131 <https://doi.org/10.1029/96JD02953>

2132 Grell GA, SE Peckham, R Schmitz, and SA McKeen, G Frost, WC Skamarock, and B Eder, Fully
2133 coupled 'online' chemistry in the WRF model. *Atm. Env.*, 39, 6957-6976, 2005.
2134 <https://doi.org/10.1016/j.atmosenv.2005.04.027>

2135 Grell, G. A. and Devenyi, D.: A generalized approach to parameterizing convection combining ensemble
2136 and data assimilation techniques, *Geophys. Res. Lett.*, 29, 38-1–38-4, 2002.
2137 <https://doi.org/10.1029/2002GL015311>

2138 Grell, G.A. and Freitas, S.R., A scale and aerosol aware stochastic convective parameterization for
2139 weather and air quality modeling, *Atmos. Chem. Phys.*, 14, 5233–5250, 2014.
2140 <https://doi.org/10.5194/acp-14-5233-2014>

2141 Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global
2142 terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from
2143 Nature), *Atmos. Chem. Phys.*, 6, 3181–3210, 2006. <https://doi.org/10.5194/acp-6-3181-2006>

2144 Hardacre, C., Wild, O., and Emberson, L.: An evaluation of ozone dry deposition in global scale
2145 chemistry climate models, *Atmos. Chem. Phys.*, 15, 6419–6436, 2015.
2146 <https://doi.org/10.5194/acp15-6419-2015>

2147 Henriksen, A. and Posch, M., Steady-state models for calculating critical loads of acidity for surface
2148 waters, *Water Air Soil Poll.*, 375–398, 2001. <https://doi.org/10.1023/A:1011523720461>

2149 Henriksen, A., Dillon, P. J., & Aherne, J., *Critical loads of acidity for surface waters in south-central
2150 Ontario, Canada: Regional application of the Steady-State Water Chemistry (SSWC) model*, *Can.
2151 J. Fish. Aquat. Sci.*, 59, 9., 2002. <https://doi.org/10.1139/f02-092>

2152 Hogrefe, C., Bash, J.O., Pleim, J.E., Schwede, D.B., Gilliam, R.C., Foley, K.M., Appel, K.W., and
2153 Mathur, R., An analysis of CMAQ gas-phase dry deposition over North America through grid-
2154 scale and land-use-specific diagnostics in the context of AQMEII4, *Atmos. Chem. Phys.*, 23,
2155 8119-8147, 2023. <https://doi.org/10.5194/acp-23-8119-2023>

2157 Hogrefe, C., Galmarini, S., Solazzo, E., Bianconi, R., Bellasio, R., Liu, P., and Mathur, R.: Continental-
 2158 Scale Analysis of Atmospheric Deposition Over North America and Europe Using the AQMEII
 2159 Database, in: Air Pollution Modeling and its Application XXVI, ITM 2018, edited by: Mensink,
 2160 C., Gong, W., and Hakami, A., Springer Proceedings in Complexity, Springer, Cham, 2020.
 2161 https://doi.org/10.1007/978-3-030-22055-6_48

2162 Hong, S.Y., Noh, Y., and Dudhia, J., A new vertical diffusion package with an explicit treatment of
 2163 entrainment processes, *Mon. Wea. Rev.*, 134, 2318-2341, 2006.
 2164 <https://doi.org/10.1175/MWR3199.1>

2165 Hong, S.Y., A new stable boundary-layer mixing scheme and its impact on the simulated East Asian
 2166 summer monsoon, *Q.J.R. Met. Soc.*, 136, 1481-1496, 2010. <https://doi.org/10.1002/qj.665>

2167 Huang, L., Zhu, Y., Zhai, H., Xue, S., Zhu, T., Shao, Y., Liu, Z., Emery, C., Yarwood, G., Wang, Y., Fu,
 2168 J., Zhang, K., and Li, L., Recommendations on benchmarks for numerical air quality model
 2169 applications in China – Part 1: PM_{2.5} and chemical species, *Atmos. Chem. Phys.*, 21, 2725-2743,
 2170 2021. <https://doi.org/10.5194/acp-21-2725-2021>

2171 Hyder, P., Edwards, J.M., Allan, R.P., Hewitt, H.T., Bracegirdle, T.J., Gregory, J.M., Wood, R.A.,
 2172 Meijers, A.J.S., Mulcahy, J., Field, P., Furtado, K., Bodas-Salcedo, A., Williams, K.D., Copesy,
 2173 D., Josey, S.A., Liu, C., Robverts, C.D., Sanchez, C., Ridley, J., Thrope, L., Hardiman, S.C.,
 2174 Mayer, M., Berry, D.I., and Belcher, S.E., Critical Southern Ocean climate model biases traced to
 2175 atmospheric model cloud errors, *Nat Commun*, 9, 3625 (2018). <https://doi.org/10.1038/s41467-018-05634-2>

2177 Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, Radiative
 2178 forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. *J. Geophys. Res.*, 113, D13103, 2008. <https://doi.org/10.1029/2008JD009944>

2180 Inness, A., Ades, M., Agustí-Panareda, A., Barré, J., Benedictow, A., Blechschmidt, A.-M., Dominguez,
 2181 J. J., Engelen, R., Eskes, H., Flemming, J., Huijnen, V., Jones, L., Kipling, Z., Massart, S.,
 2182 Parrington, M., Peuch, V.-H., Razinger, M., Remy, S., Schulz, M., and Suttie, M.: The CAMS
 2183 reanalysis of atmospheric composition, *Atmos. Chem. Phys.*, 19, 3515–3556, 2019.
 2184 <https://doi.org/10.5194/acp-19-3515-2019>

2185 Janjić, Z.I., Nonsingular Implementation of the Mellor–Yamada Level 2.5 Scheme in the NCEP Meso
 2186 model, Technical Report, National Centers for Environmental Prediction, Office Note No. 437,
 2187 61 pp., 2001. <http://www.emc.ncep.noaa.gov/officenotes/newernotes/on437.pdf>

2188 Jeffries, D. S., Semkin, R. G., Gibson, J. J., & Wong, I., Recently surveyed lakes in northern Manitoba
 2189 and Saskatchewan, Canada: Characteristics and critical loads of acidity. *Journal of Limnology*,
 2190 69(1s), 45, 2010. <https://doi.org/10.4081/jlimnol.2010.s1.45>

2191 Kain, J. S.: The Kain-Fritsch convective parameterization: an update, *J. Appl. Meteorol.*, 43, 170–181,
 2192 2004. [https://doi.org/10.1175/1520-0450\(2004\)043<0170:TKCPAU>2.0.CO;2](https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2)

2193 Kain, J.S. and Fritsch, J.M., A one-dimensional entraining/detraining plume model and its application in
 2194 convective parameterizations, *J. Atmos. Sci.*, 47, 2784-2802, 1990. [https://doi.org/10.1175/1520-0469\(1990\)047<2784:AODEPM>2.0.CO;2](https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2)

2196 Knote, C., Hodzic, A., & Jimenez, J. L., The effect of dry and wet deposition of condensable vapors on
 2197 secondary organic aerosols concentrations over the continental US. *Atmospheric Chemistry and
 2198 Physics*, 15(1), 1– 18, 2015. <https://doi.org/10.5194/acp-15-1-2015>

2199 Knote, C., Hodzic, A., Jimenez, J. L., Volkamer, R., Orlando, J. J., Baidar, S., Brioude, J., Fast, J.,
 2200 Gentner, D.R., Goldstein A.H., Hayes, P.L., Knighton, W.B., Oetjen, H., Setyan, A., Stark, H.,
 2201 Thalman, R., Tyndall, G., Washenfelder, R., Waxman, E., and Zhang, Q., Simulation of semi-
 2202 explicit mechanisms of SOA formation from glyoxal in aerosol in a 3-D model. *Atmospheric
 2203 Chemistry and Physics*, 14(12), 6213– 6239, 2014. <https://doi.org/10.5194/acp-14-6213-2014>

2204 Lawrence, G. B., T. J. Sullivan, D. A. Burns, S. W. Bailey, B. J. Cosby, M. Dovciak, H. A. Ewing, T. C.
 2205 McDonnell, R. Minocha, R. Riemann, J. Quant, K. C. Rice, J. Siemion, and K. Weathers, Acidic
 2206 deposition along the Appalachian Trail corridor and its effects on acid-sensitive terrestrial and
 2207 aquatic resources: Results of the Appalachian Trail MEGA-transect atmospheric deposition

2208 effects study. Natural Resource Report NPS/NRSS/ARD/NRR—2015/996. National Park
 2209 Service, Fort Collins, Colorado, 2015. <https://irma.nps.gov/DataStore/Reference/Profile/2223220>

2210 Li, J. and Barker, H.W., A radiation algorithm with correlated k-distribution. Part I: local thermal
 2211 equilibrium, *J. Atmos. Sci.*, 62, 286-309, 2005. <https://doi.org/10.1175/JAS-3396.1>

2212 Luecken, D.J., Yarwood, G., & Hutzell, W.H., Multipollutant of ozone, reactive nitrogen and HAPs
 2213 across the continental US with CMAQ-CB6. *Atmospheric Environment*, 201, 62-72, 2019.
<https://doi.org/10.1016/j.atmosenv.2018.11.060>

2214 Lynch, J.A., Phelan, J., Pardo, L.H., McDonnell, T.C., Clark, C.M., and Bell, M.D., Detailed
 2215 Documentation of the National Critical Load Database (NCLD) for U.S. Critical Loads of Sulfur
 2216 and Nitrogen, version 3.2.1, National Atmospheric Deposition Program, Wisconsin State
 2217 Laboratory of Hygiene, Madison, WI., 2022.
https://nadp.slh.wisc.edu/filelib/claddb/DB_Version/Documentation/NCLD_Documentation_v32_1.pdf

2218 Makar, P. A., Akingunola, A., Aherne, J., Cole, A. S., Aklilu, Y.-A., Zhang, J., Wong, I., Hayden, K., Li,
 2219 S.-M., Kirk, J., Scott, K., Moran, M. D., Robichaud, A., Cathcart, H., Baratzedah, P., Pabla, B.,
 2220 Cheung, P., Zheng, Q., and Jeffries, D. S., Estimates of exceedances of critical loads for
 2221 acidifying deposition in Alberta and Saskatchewan, *Atmos. Chem. Phys.*, 18, 9897–9927, 2018.
<https://doi.org/10.5194/acp-18-9897-2018>

2222 Makar, P. A., Stroud, C., Akingunola, A., Zhang, J., Ren, S., Cheung, P., and Zheng, Q.: Vehicle-induced
 2223 turbulence and atmospheric pollution, *Atmos. Chem. Phys.*, 21, 12291–12316, 2021.
<https://doi.org/10.5194/acp-21-12291-2021>

2224 Makar, P., Staebler, R., Akingunola, A., Zhang, J., McLinden, C., Kharol, S.K., Pabla, B., Cheung, P.,
 2225 Zheng, Q., The effects of forest canopy shading and turbulence on boundary layer ozone. *Nat
 2226 Commun* 8, 15243, 2017. <https://doi.org/10.1038/ncomms15243>

2227 Makar, P.A., Gong, W., Hogrefe, C., Zhang, Y., Curci, G., Žabkar, R., Milbrandt, J., Im, U., Balzarini,
 2228 A., Baró, R., Bianconi, R., Cheung, P., Forkel, R., Gravel, S., Hirtl, M., Honzak, L., Hou, A.,
 2229 Jiménez-Guerrero, P., Langer, M., Moran, M.D., Pabla, B., Pérez, J.L., Pirovano, G., San José,
 2230 R., Tuccella, P., Werhahn, J., Zhang, J., Galmarini, S., Feedbacks between air pollution and
 2231 weather, part 2: Effects on chemistry, *Atm. Env.*, 115, 499-526, 2015.
<https://doi.org/10.1016/j.atmosenv.2014.10.021>

2232 Makar, P.A., Gong, W., Milbrandt, J., Hogrefe, C., Zhang, Y., Curci, G., Žabkar, R., Im, U., Balzarini, A.,
 2233 Baro, R., Bianconi, R., Cheung, P., Forkel, R., Gravel, S., Hirtl, M., Honzak, L., Hou, A.,
 2234 Jiménez-Guerrero, P., Langer, M., Moran, M.D., Pabla, B., Pérez, J.L., Pirovano, G., San José,
 2235 R., Tuccella, P., Werhahn, J., Zhang, J., and Galmarini, S., Feedbacks between air pollution and
 2236 weather, Part 1: Effects on weather, *Atm. Env.*, 115, 442-469, 2015.
<https://doi.org/10.1016/j.atmosenv.2014.12.003>

2237 Makar, P.A., Nissen, R., Teakles, A., Zhang, J., Zheng, J., Zheng, Q., Moran, M.D., Yau, H., diCenzo, C.,
 2238 Turbulent transport, emissions and the role of compensating errors in chemical transport models,
 2239 *Geosci. CMAQ (Hertfordshire)ev.*, 7, 1001–1024, 2014. <https://doi.org/10.5194/gmd-7-1001-2014>

2240 Makar, P.A., Vouchet, V.S., Nenes, A., Inorganic chemistry calculations using HETV—a vectorized
 2241 solver for the $\text{SO}_4^{2-}\text{-NO}_3^- \text{-NH}_4^+$ system based on the ISORROPIA algorithms, *Atm. Env.*, 37,
 2242 2279-2294, 2003. [https://doi.org/10.1016/S1352-2310\(03\)00074-8](https://doi.org/10.1016/S1352-2310(03)00074-8)

2243 Makar, P.A., Wiebe, H.A., Staebler, R.M., Li, S.M. and Anlauf, K., Measurement and modeling of
 2244 particle nitrate formation, *J. Geophys. Res. Atm.*, 103, 13095-13110, 1998.
<https://doi.org/10.1029/98JD00978>

2245 Manders, A. M. M., Builtjes, P. J. H., Curier, L., Denier van der Gon, H. A. C., Hendriks, C., Jonkers, S.,
 2246 Kranenburg, R., Kuenen, J. J. P., Segers, A. J., Timmermans, R. M. A., Visschedijk, A. J. H.,
 2247 Wichink Kruit, R. J., van Pul, W. A. J., Sauter, F. J., van der Swaluw, E., Swart, D. P. J., Douros,
 2248 J., Eskes, H., van Meijgaard, E., van Ulft, B., van Velthoven, P., Banzhaf, S., Mues, A. C., Stern,
 2249 R., Fu, G., Lu, S., Heemink, A., van Velzen, N., and Schaap, M., Curriculum vitae of the

2259 LOTOS-EUROS (v2.0) chemistry transport model, Geosci. CMAQ (Hertfordshire)ev., 10, 4145–
2260 4173, 2017. <https://doi.org/10.5194/gmd-10-4145-2017>

2261 Marchuk, G.I., Splitting and alternating direction methods, Handbook of Numerical Analysis, 1, 197–462,
2262 1990.

2263 Massad, R. S., Nemitz, E., & Sutton, M. A., Review and parameterization of bi-directional ammonia
2264 exchange between vegetation and the atmosphere. Atmospheric Chemistry and Physics, 10(21),
2265 10,359–10,386, 2010. <https://doi.org/10.5194/acp-10-10359-2010>

2266 McDonnell, T.C., C.T. Driscoll, T.J. Sullivan, D.A. Burns, B.P. Baldigo, S. Shao, G.B. Lawrence,
2267 Regional target loads of atmospheric nitrogen and sulfur deposition for the protection of stream
2268 and watershed soil resources of the Adirondack Mountains, USA. Environmental Pollution 281,
2269 117110, 2021. <https://doi.org/10.1016/j.envpol.2021.117110>

2270 McDonnell, T.C., Cosby, B. J., and Sullivan, T. J., Regionalization of soil base cation weathering for
2271 evaluating stream water acidification in the Appalachian Mountains, USA. Environmental
2272 Pollution, 162: 338–344, 2012. <https://doi.org/10.1016/j.envpol.2011.11.025>

2273 McDonnell, T.D., Sullivan, T. J., Hessburg, P.F., Reynolds, K.M., Povak, N.A., Cosby, B. J., Jackson,
2274 W., and Salter, R.B., Steady-state sulfur critical loads and exceedances for protection of aquatic
2275 ecosystems in the U.S. southern Appalachian Mountains. Journal of Environmental Management
2276 146 (2014) 407–419, 2014. <http://dx.doi.org/10.1016/j.jenvman.2014.07.019>

2277 McNulty, S. G., Cohen, E. C., & Myers, J. A. M., Climate change impacts on forest soil critical acid
2278 loads and exceedances at a national scale. In: Potter, Kevin M.; Conkling, Barbara L., Eds.
2279 Forest Health Monitoring: National Status, Trends, and Analysis 2010. Gen. Tech. Rep. SRS-
2280 GTR-176. Asheville, NC: U.S. Department of Agriculture Forest Service, Southern Research
2281 Station. 95–108., 176, 95–108, 2013.

2282 McNulty, S. G., Cohen, E. C., Moore Myers, J. A., Sullivan, T. J., & Li, H., Estimates of critical acid
2283 loads and exceedances for forest soils across the conterminous United States. Environmental
2284 Pollution, 149(3), 281–292, 2007. <https://doi.org/10.1016/j.envpol.2007.05.025>

2285 Milbrandt, J. A. and Morrison, H., Parameterization of Cloud Microphysics Based on the Prediction of
2286 Bulk Ice Particle Properties. Part III: Introduction of Multiple Free Categories, J. Atmos. Sci., 73,
2287 975–995, 2016. <https://doi.org/10.1175/JAS-D-15-0204.1>

2288 Miller, E., *Steady-state critical loads and exceedances for terrestrial and aquatic ecosystems in the*
2289 *northeastern United States*. Technical report, National Park Service, Air Resources Division,
2290 2011.

2291 Miller, S.J., Makar, P.A., and Lee, C.J., HETerogeneous vectorized or Parallel (HETPV1.0): An updated
2292 inorganic heterogeneous chemistry solver for metastable state NH_4^+ – Na^+ – Ca^{2+} – K^+ – Mg^{2+} – SO_4^{2-} –
2293 NO_3^- – Cl^- based on ISORROPIA II, Geo. Mod. Dev., 17, 2197–2219, 2024.
2294 <https://doi.org/10.5194/gmd-17-2197-2024>.

2295 Morrison, H. and Milbrandt, J. A., Parameterization of Cloud Microphysics Based on the Prediction of
2296 Bulk Ice Particle Properties. Part I: Scheme Description and Idealized Tests, J. Atmos. Sci., 72,
2297 287–311, 2015. <https://doi.org/10.1175/JAS-D-14-0065.1>

2298 Morrison, H., Thompson, G., and Tatarki, V., Impact of cloud microphysics on the development of
2299 trailing stratiform precipitation in a simulated squall line: comparison of one- and two-moment
2300 schemes, Mon. Weather Rev., 137, 991–1007, 2009. <https://doi.org/10.1175/2008MWR2556.1>

2301 Nakanishi, M. and Niino, H., An Improved Mellor–Yamada Level-3 Model: Its Numerical Stability and
2302 Application to a Regional Prediction of Advection Fog, Bound.-Lay. Meteorol., 119, 397–407,
2303 2006. <https://doi.org/10.1007/s10546-005-9030-8>

2304 NCDC, 2024: National Centers for Environmental Information, Gridded Maps,
2305 <https://www.ncei.noaa.gov/access/monitoring/ghcn-gridded-products/maps/>, last accessed
2306 November 19, 2024.

2307 Nenes, A., Pandis, S.N., and Pilinis, C., Isorropia: A new thermodynamic equilibrium model for
2308 multiphase multicomponent inorganic aerosols, Aquatic Geochemistry, 4, 123–152, 1998.
2309 <https://doi.org/10.1023/A:1009604003981>

2310 Neu, J. L. and Prather, M. J., Toward a more physical representation of precipitation scavenging in global
2311 chemistry models: cloud overlap and ice physics and their impact on tropospheric ozone, *Atmos.*
2312 *Chem. Phys.*, 12, 3289–3310, 2012. <https://doi.org/10.5194/acp-12-3289-2012>

2313 Nilsson, J., and Grennfelt, P., Critical loads for sulphur and nitrogen, in: Report from a workshop held at
2314 Skokloster, Sweden 19–24 March 1988, J. Nilsson, Ed., Miljorapport, Volume 15 of Nordic
2315 Council of Ministers-Publications-Nord, 418pp, 1988.

2316 Niu, G-Y., Yang, Z-L., Mitchell, K.E., Ek, M.B., Barlage, M., Kumar, A., Manning, K., Niyogi, D.,
2317 Rosero, E., Tewari, M., Xia, Y., The community Noah land surface model with
2318 multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale
2319 measurements, *J. Geophys. Res.*, 116, D12109, 2011. <https://doi.org/10.1029/2010JD015139>

2320 Ott, L.E., Pickering, K.E., Stenchikov, G.L., Allen, D.J., DeCaria, A.J., Ridley, B., Line, R-F., Lang, S.,
2321 and Tao, W-K., Production of lightning NO_x and its vertical distribution calculated from three-
2322 dimensional cloud-scale chemical transport model simulations, *J. Geophys. Res. Atm.*, 115,
2323 D04301, 2010. <https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2009JD011880>

2324 Paulot, F., Jacob., D.J., Johnson, M.T., Bell, T.G., Baker, A.R., Keene, W.C., Lima, I.D., Doney, S.C.,
2325 Stock, C.A., Global oceanic emission of ammonia: Constraints from seawater and atmospheric
2326 observations, *Global Geochem. Cycles*, 29, 1165-1178, 2015.
<https://doi.org/10.1002/2015GB005106>

2327 Paulot, F., Malyshev, S., Nguyen, T., Crounse, J. D., Shevliakova, E., & Horowitz, L. W., Representing
2328 sub-grid scale variations in nitrogen deposition associated with land use in a global Earth system
2329 model: implications for present and future nitrogen deposition fluxes over North America.
Atmospheric Chemistry and Physics, 18(24), 17963-17978, 2018. <https://doi.org/10.5194/acp-18-17963-2018>

2333 Paulot, F., Stock, C., John, J.G., Zadeh, N., Horowitz, L.W., Ocean Ammonia Outgassing: Modulation by
2334 CO₂ and Anthropogenic Nitrogen Deposition, *J. Adv. Mod. Earth Sys.*, 12, e2019MS002026,
2335 2020. <https://doi.org/10.1029/2019MS002026>

2336 Phelan, J.N., Belazid, S., Kurz., D., Guthrie, S., Estimation of soil base cation weathering rates with the
2337 PROFILE model to determine critical loads of acidity for forested ecosystems in Pennsylvania,
2338 USA: pilot application of a potential national methodology, *Water Air and Soil Pollution*, 225,
2339 2109-2128, 2014. <https://link.springer.com/article/10.1007/s11270-014-2109-4>

2340 Phelan, J., Balzid, S., Jones, P., Cajka, J., Buckley, J., Clark, C., Assessing the effects of climate change
2341 and air pollution on soil properties and plant diversity in sugar maple - beech - yellow birch
2342 hardwood forests in the northeastern United States: model simulations from 1900 to 2100, *Water*
2343 *Air Soil Pollution*, 22:84, 30 pp., 2016. <https://link.springer.com/article/10.1007/s11270-016-2762-x>

2345 Pleim, J. E., Ran, L., Appel, W., Shephard, M. W., & Cady-Pereira, K., New bidirectional ammonia flux
2346 model in an air quality model coupled with an agricultural model, *Journal of Advances in*
2347 *Modeling Earth Systems*, 11, 2934–2957, 2019. <https://doi.org/10.1029/2019MS0017282934>

2348 Pleim, J. E., Ran, L., Saylor, R. D., Willison, J., & Binkowski, F. S. (2022). A new aerosol dry deposition
2349 model for air quality and climate modeling. *Journal of Advances in Modeling Earth Systems*, 14,
2350 e2022MS003050. <https://doi.org/10.1029/2022MS003050>

2351 Posch, M., de Smet, P. A., Hettelingh, J.-P., & Downing, R. J., *Modelling and mapping of critical*
2352 *thresholds in Europe: Status Report 2001*. Citeseer.
2353 <https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=a585c6eff5f0c93938e4ef21874d4dc9425fd282>, last accessed December 22, 2023.

2355 Pruppacher, H.R., Klett, J.D., Growth of Cloud Drops by Collision and Coalescence. In: *Microphysics of*
2356 *Clouds and Precipitation*. Springer, Dordrecht., 1978. https://doi.org/10.1007/978-94-009-9905-3_15

2358 Ran, L., E. Cooter, D. Yang, V. Benson, Y. Yuan, A. Hanna, AND V. Garcia. User's Guide for the
2359 Fertilizer Emission Scenario Tool for CMAQ (FEST-C) Version 1.4. U.S. EPA Office of

2360 Research and Development, Washington, DC, 2018. https://www.cmascenter.org/fest-c/documentation/1.4/FESTC_v1_4_UserManual.pdf

2361 Reinds G.J., Thomas D., Posch M., Slootweg J., Critical loads for eutrophication and acidification for
2362 European terrestrial ecosystems. Final report. Dessau-Roßlau, 2021.
<https://pure.iiasa.ac.at/id/eprint/17341/>

2363 Rubin, H.J., Fu, J.S., Dentener, F., Li, R., Huang, K., and Fu, H., Global nitrogen and sulfur deposition
2364 mapping using a measurement–model fusion approach, *Atm. Chem. Phys.*, 23, 7091–7102, 2023.
<https://doi.org/10.5194/acp-23-7091-2023>

2365 Russell, A.G., McRae, G.J., and Cass, G.R., The dynamics of nitric acid production and the fate of
2366 nitrogen oxides, *Atm. Env.*, (1967) 19893–903, 1985.

2367 Ryu, Y.-H., & Min, S.-K., Improving wet and dry deposition of aerosols in WRF-Chem: Updates to
2368 below-cloud scavenging and coarse-particle dry deposition. *Journal of Advances in Modeling
2369 Earth Systems*, 14, e2021MS002792, 2022. <https://doi.org/10.1029/2021MS002792>

2370 Sandu, A. and Sander, R.: Technical note: Simulating chemical systems in Fortran90 and Matlab with the
2371 Kinetic PreProcessor KPP-2.1, *Atmos. Chem. Phys.*, 6, 187–195, 2006.
<https://doi.org/10.5194/acp-6-187-2006>

2372 Scheffe, R. D., Lynch, J. A., Reff, A., Hubbell, B., Greaver, T. L., and Smith, J. T., The Aquatic
2373 Acidification Index: A New Regulatory Metric Linking Atmospheric and Biogeochemical
2374 Models to Assess Potential Aquatic Ecosystem Recovery. *Water Air Soil Pollution*, 225:1838,
2375 2014. <https://doi.org/10.1007/s11270-013-1838-0>

2376 Schmuck, G., San-Miguel-Ayanz, J., Camia, A., Durrant, T., Santos de Oliviero, S., Boca, R., Whitmore,
2377 C.J., Giovando, C., Liberta', G., Corti, P., Schulte, E., Forest Fires in Europe 2010. EUR 24910
2378 EN. Luxembourg (Luxembourg): Publications Office of the European Union; 2011. JRC66167.
<https://publications.jrc.ec.europa.eu/repository/handle/JRC66167>

2379 Schwede, D.B. and Lear, G.G., A novel hybrid approach for estimating total deposition in the United
2380 States, *Atm. Env.*, 92, 207–220, 2014. <https://doi.org/10.1016/j.atmosenv.2014.04.008>

2381 Scott, K., Wissel, B., Gibson, J., & Birks, S., Chemical characteristics and acid sensitivity of boreal
2382 headwater lakes in northwest Saskatchewan. *Journal of Limnology*, 69, 33–44, 2010.
<https://doi.org/10.4081/jlimnol.2010.s1.33>

2383 Shao, Y., Ishizuka, M., Mikami, M., and Leys, J. F.: Parameterization of size-resolved dust emission and
2384 validation with measurements, *J. Geophys. Res.*, 116, D08203, 2011.
<https://doi.org/10.1029/2010JD014527>

2385 Simkin, S. M., Allen, E.B., Bowman, W.D., Clark, C.M., Belnap, J., Brooks, M.L., Cade, B.S., Collins,
2386 S.L., Geiser, L.H., Gilliam, F.S., Jovan, S.E., Pardo, L.H., Schulz, B.K., Stevens, C.I., Suding,
2387 K.N., Throop, H.L., and Waller, D.M., Conditional vulnerability of plant diversity to atmospheric
2388 nitrogen deposition across the United States, *Proc. Nat. Acad. Sci.*, 113(15), 4086–4091, 2016.
<https://doi.org/10.1073/pnas.1515241113>

2389 Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, Z. Liu, J. Berner, W. Wang, J. G. Powers, M. G.
2390 Duda, D. M. Barker, and X.-Y. Huang, A Description of the Advanced Research WRF Version 4.
2391 NCAR Tech. Note NCAR/TN-556+STR, 145 pp., 2019. <https://doi.org/10.5065/1dfh-6p97>

2392 Slinn, W. G. N., Precipitation Scavenging, in *Atmospheric Science and Power Production*, CH. 11,
2393 edited by: 680 Randerson, D., Tech. Inf. Cent., Off. of Sci. and Techn. Inf., Dep. of Energy,
2394 Washington DC, USA, 466–532, 1984.

2395 Slinn, W. G. N., Predictions for particle deposition to vegetative canopies, *Atmos. Environ.*, 16, 1785–
2396 1794, 1982. [https://doi.org/10.1016/0004-6981\(82\)90271-2](https://doi.org/10.1016/0004-6981(82)90271-2)

2397 Solazzo, E., Riccio, A., Van Dingenen, R., Valentini, L., and Galmarini, S., Evaluation and uncertainty
2398 estimation of the impact of air quality modelling on crop yields and premature deaths using a
2399 multi-model ensemble, *Sci. Total Environ.*, 633, 1437–1452, 2018.
<https://doi.org/10.1016/j.scitotenv.2018.03.317>

2409 Sorensen, B., Kaas, E., Korsholm, U.S., A mass-conserving and multi-tracer efficient transport scheme in
 2410 the online integrated Enviro-HIRLAM model, *Geos. Mod. Dev.*, 6, 1029-1042, 2013.
 2411 <https://doi.org/10.5194/gmd-6-1029-2013>

2412 Stockwell, W. R. and Lurmann, F. W.: Intercomparison of the ADOM and RADM gas-phase chemical
 2413 mechanisms, Electric Power Institute Topical Report, Electric Power Institute, Palo Alto,
 2414 California, 323 pp., 1989.

2415 Stroud, C. A., Makar, P. A., Zhang, J., Moran, M. D., Akingunola, A., Li, S.-M., Leithead, A., Hayden,
 2416 K., and Siu, M.: Improving air quality model predictions of organic species using measurement-
 2417 derived organic gaseous and particle emissions in a petrochemical-dominated region, *Atmos.*
 2418 *Chem. Phys.*, 18, 13531–13545, 2018. <https://doi.org/10.5194/acp-18-13531-2018>

2419 Stroud, C., Moran, M., Makar, P., Gong, W., Gong, S., Mourneau, G., Bouchet, V. Dann, T., Wang, D.,
 2420 and Huang, L, Impact of Updates to BEIS v3 Boreal Forest Emissions on Canadian Air Quality
 2421 Forecasts, 2nd International Workshop on Air Quality Forecasting Research, Quebec, Canada,
 2422 2010.

2423 Sullivan, T.J., Cosby, B.J., McDonnell, T.C., Porter, E.M., Blett, T., Haeuber, R., Huber, C.M., and
 2424 Lynch, J., Critical loads of acidity to protect and restore acid-sensitive streams in Virginia and
 2425 West Virginia. *Water Air Soil Pollution*, 223:5759-5771, 2012. <https://doi.org/10.1007/s11270-012-1312-4>.

2426 Sullivan, T.J., Cosby, B.J., Driscoll, C.T., McDonnell, T.C., and Herlihy, A.T., Target loads of atmospheric
 2427 sulfur deposition to protect terrestrial resources in the Adirondack Mountains, New York against
 2428 biological impacts caused by soil acidification. *J. Environ. Stud. Sci.* 1, 301–314, 2011.
 2429 <https://pmc.ncbi.nlm.nih.gov/articles/PMC10348011/pdf/nihms-1876861.pdf> Sullivan,T.J,
 2430 Cosby, B.J. Tonnessen, K.A. and Clow, D.W., Surface water acidification responses and critical
 2431 loads of sulfur and nitrogen deposition in Loch Vale watershed, Colorado. *WATER RESOURCES
 2432 RESEARCH*, VOL. 41, W01021, 2005. <https://doi.org/10.1029/2004WR003414>

2433 Sundqvist, H., Berge, E., and Kristjansson, J.E., Condensation and cloud parameterization studies with a
 2434 mesoscale numerical weather prediction model. *Mon. Wea. Rev.*, 117, 1641-1657, 1989.
 2435 [https://doi.org/10.1175/1520-0493\(1989\)117<1641:CACPSW>2.0.CO;2](https://doi.org/10.1175/1520-0493(1989)117<1641:CACPSW>2.0.CO;2)

2436 Sverdrup, H. and de Vries, W., Calculating critical loads for acidity with the simple mass balance method,
 2437 *Water Air Soil Poll.*, 72, 143–162, 1994. <https://doi.org/10.1007/BF01257121>

2438 Sverdrup, H., and Warfvinge, P., The role of weathering and forestry in determining the acidity of Lakes
 2439 in Sweden. *Water, Air, and Soil Pollution*, 52(1), 71–78, 1990.
 2440 <https://doi.org/10.1007/BF00283115>

2441 Sverdrup, H., De Vries, W., and Henriksen, A., *Mapping critical loads* (Miljörappart 14). Nordic Council
 2442 of Ministers, 124pp., 1990.

2443 Timmermans, R., van Pinxteren, D. , Kranenburg, R., Hendriks, C., Fomba, K.W., Herrmann, H., Schaap,
 2444 M., Evaluation of modelled LOTOS-EUROS with observational based PM10 source attribution,
 2445 Atm. Env.: X, 14, 100173, 2022. <https://doi.org/10.1016/j.aeaoa.2022.100173>

2446 US EPA 2020: US EPA Office of Research and Development, 2020: CMAQ (5.3.2). Zenodo.
 2447 <https://doi.org/10.5281/zenodo.4081737>

2448 US EPA, 2023: NHDPlus (National Hydrography Dataset Plus), <https://www.epa.gov/waterdata/nhdplus-national-hydrography-dataset-plus> , last accessed December 26, 2023.

2449 Van Zanten, M.C., Sauter, F.J., Wichink Kruit, R.J., Van Jaarsveld, J.A., Van Pul, W.A.J., Description of
 2450 the DEPAC module: dry deposition modelling with DEPAC GCN2010 RIVM Rep., 2010.
 2451 <https://rivm.openrepository.com/handle/10029/256555>

2452 VDEC, 2003: Vermont Department of Environmental Conservation (VDEC), (2003, 2004, 2012).
 2453 TOTAL MAXIMUM DAILY LOADS: Acid Impaired Lakes. Watershed Management
 2454 Division, 103 South Main Street, Building 10 North, Waterbury, VT 05671-0408.

2455 Vehkamaki, H., Kulmala, M., Napari, I., Lehtinen, K.E.J., Timmreck, C., Noppel, M., and Laaksonen, A.
 2456 An improved parameterization for sulfuric acid – water nucleation rates for tropospheric and

2459 stratospheric conditions, *J. Geophys. Res.*, 107(D22), 4622, 2002.
 2460 <https://doi.org/10.1029/2002JD002184>

2461 Venkatram, A., and Pleim, J., The electrical analogy does not apply to modeling dry deposition of
 2462 particles, *Atm. Env.*, 33, 3075-3076, 1999. [https://doi.org/10.1016/S1352-2310\(99\)00094-1](https://doi.org/10.1016/S1352-2310(99)00094-1)

2463 Vivanco, M. G., Theobald, M. R., García-Gómez, H., Garrido, J. L., Prank, M., Aas, W., Adani, M.,
 2464 Alyuz, U., Andersson, C., Bellasio, R., Bessagnet, B., Bianconi, R., Bieser, J., Brandt, J.,
 2465 Briganti, G., Cappelletti, A., Curci, G., Christensen, J. H., Colette, A., Couvidat, F., Cuvelier, C.,
 2466 D'Isidoro, M., Flemming, J., Fraser, A., Geels, C., Hansen, K. M., Hogrefe, C., Im, U., Jorba, O.,
 2467 Kitwiroon, N., Manders, A., Mircea, M., Otero, N., Pay, M.-T., Pozzoli, L., Solazzo, E., Tsyro,
 2468 S., Unal, A., Wind, P., and Galmarini, S., Modeled deposition of nitrogen and sulfur in Europe
 2469 estimated by 14 air quality model systems: evaluation, effects of changes in emissions and
 2470 implications for habitat protection, *Atmos. Chem. Phys.*, 18, 10199– 10218, 2018.
 2471 <https://doi.org/10.5194/acp-18-10199-2018>

2472 Vizuete, W., Nielsen-Gammon, J., Dickey, J., Couzo, E., Blanchard, C., and Breitenbach, P.,
 2473 Meteorological based parameters and ozone exceedances in Houston and other cities in Texas, *J.*
 2474 *Air & Waste Man.*, 72, 969-984, 2002. <https://doi.org/10.1080/10962247.2022.2064004>

2475 Vukovich, J.M., and Pierce, T., The Implementation of BEIS3 within the SMOKE modeling framework,
 2476 Proceedings of the 11th International Emissions Inventory Conference, Atlanta, Georgia, USA ,
 2477 2002. <https://www.epa.gov/sites/default/files/2015-10/documents/vukovich.pdf>

2478 Wang, X., L. Zhang, and M. D.: Moran Development of a new semi-empirical parameterization for
 2479 below-cloud scavenging of size resolved aerosol particles by both rain and snow, *Geosci. CMAQ*
 2480 (Hertfordshire)ev., 7, 799–819, 2014. <https://doi.org/10.5194/gmd-7-799-2014>

2481 Wesely, M. L., Parameterization of surface resistances to gaseous dry deposition in regional-scale
 2482 numerical models. *Atmospheric Environment* (1967), 23(6), 1293– 1304, 1989.
 2483 [https://doi.org/10.1016/0004-6981\(89\)90153-4](https://doi.org/10.1016/0004-6981(89)90153-4)

2484 Wesely, M.L., Parameterization of surface resistances to gaseous dry deposition in regional-scale
 2485 numerical models, *Atmospheric Environment*, 23, 1293-1304, 1989.
 2486 <https://doi.org/10.1016/j.atmosenv.2007.10.058>

2487 Whitfield, C. J., Aherne, J., Watmough, S. A., Dillon, P. J., & Clair, T. A., Recovery from acidification in
 2488 Nova Scotia: Temporal trends and critical loads for 20 headwater lakes. *Canadian Journal of*
 2489 *Fisheries and Aquatic Sciences*, 63(7), 1504–1514, 2006. <https://doi.org/10.1139/f06-053>

2490 Whitten, G., Hogo, H., Killus, J., The carbon bond mechanism for photochemical smog,
 2491 *Environ. Sci. Technol.*, 14, pp. 14690-14700, 1980.

2492 Wichink Kruit, R.J., Schaap, M., Sauter, F.J., van Zanten, W.A.J., van Pul, M.C., Modeling the
 2493 distribution of ammonia across Europe including bi-directional surface–atmosphere exchange
 2494 *Biogeosciences*, 9, 5261-5277, 2012. <https://doi.org/10.5194/bg-9-5261-2012>

2495 Wiedinmyer,C., Sakulyanontvittaya,T., and Guenther, A. , MEGAN FORTRAN code v2.04 User Guide ,
 2496 2007. <https://www.acom.ucar.edu/webt/MEGAN/MEGANguideFORTRAN204.pdf> last accessed
 2497 Dec 12, 2023.

2498 Williams, J. R., The EPIC model. In V. P. Singh (Ed.),Computer models in watershed hydrology(Chapter
 2499 25, (pp. 909–1000), 1995. Littleton, CO: Water Resources Publications.

2500 Williston, P., Aherne, J., Watmough, S., Marmorek, D., Hall, A., de la Cueva Bueno, P., Murray, C.,
 2501 Henolson, A., & Laurence, J. A., Critical levels and loads and the regulation of industrial
 2502 emissions in northwest British Columbia, Canada. *Atmospheric Environment*, 146, 311–323,
 2503 2016,. <https://doi.org/10.1016/j.atmosenv.2016.08.058>

2504 Wu, Z., Schwede D. B., Vet R., Walker J. T., Shaw M., Staebler R., and Zhang L.: Evaluation and
 2505 intercomparison of five North American dry deposition algorithms at a mixed forest site, *J. Adv.*
 2506 *Model. Earth Sy.*, 10, 1571–1586, <https://doi.org/10.1029/2017MS001231>, 2018.

2507 Xu, L., Pye, H. O. T., He, J., Chen, Y. L., Murphy, B. N., Ng, N. L., Experimental and model estimates
 2508 of the contributions from biogenic monoterpenes and sesquiterpenes to secondary organic aerosol

2509 in the southeastern United States. *Atmos. Chem. Phys.*, 18: 12613-12637, 2018.
2510 <https://doi.org/10.5194/acp-18-12613-2018>

2511 Yarwood, G., Jung, J., Whitten, G., Heo, G., J, M., and M, E.: Updates to the Carbon Bond Mechanism
2512 for Version 6 (CB6), in: 9th Annual CMAS Conference, Chapel Hill, NC, 11–13 October 2010,
2513 pp. 1–4, 2010.
https://cmascenter.org/conference/2010/abstracts/emery_updates_carbon_2010.pdf Young, T.R.
2514 and Boris, J.P., A numerical technique for solving stiff ordinary differential equations associated
2515 with the chemical kinetics of reactive-flow problems., *J. Phys. Chem.*, 81, 2424-2427, 1977.

2516 Zaveri, R. A., Easter, R. C., Fast, J. D., and Peters, L. K.: Model for Simulating Aerosol Interactions and
2517 Chemistry (MOSAIC), *Journal of Geophysical Research*, 113, D13 204, 2008.
<https://doi.org/10.1029/2007JD008782>

2518 Zaveri, R.A., and L.K. Peters, A new lumped structure photochemical mechanism for large-scale
2519 applications, *J. Geophys. Res.*, 104, 30,387 - 30,415, 1999.
<https://doi.org/10.1029/1999JD900876>

2520 Zhang, J., Moran, M.D., Makar, P.A., and Kharol, S., Examination of MODIS Leaf Area Index (LAI)
2521 Product for Air Quality Modelling, 19th Annual CMOS Conference, 2020,
https://www.cmascenter.org/conference/2020/slides/ZhangJ_MODIS_LAI_CMAS_2020.pdf, last
2522 accessed December 19, 2023.

2523 Zhang, L., Brook, J. R., and Vet, R.: A revised parameterization for gaseous dry deposition in air-quality
2524 models, *Atmos. Chem. Phys.*, 3(6), 2067–2082, 2003. <https://doi.org/10.5194/acp-3-2067-2003>

2525 Zhang, L., Gong, S., Padro, J., & Barrie, L., A size-segregated particle dry deposition scheme for an
2526 atmospheric aerosol module. *Atmos-pheric Environment*, 35(3), 549–560, 2001.
[https://doi.org/10.1016/S1352-2310\(00\)00326-5](https://doi.org/10.1016/S1352-2310(00)00326-5)

2527 Zhang, L., Moran, M. D., Makar, P. A., Brook, J.R., and Gong, S.: Modelling gaseous dry deposition in
2528 AURAMS: a unified regional air-quality modelling system, *Atmos. Environ.*, 36(3), 537–560,
2529 2002. [https://doi.org/10.1016/S1352-2310\(01\)00447-2](https://doi.org/10.1016/S1352-2310(01)00447-2), 2002.

2530 Zhang, L., Wright, L. P., and Asman, W. A. H.: Bi-directional air-surface exchange of atmospheric
2531 ammonia: A review of measurements and a development of a big-leaf model for applications in
2532 regional-scale air-quality models, *J. Geophys. Res.*, 115, D20310, 2010.
<https://doi.org/10.1029/2009JD013589>

2533 Zhang, Y., Foley, K.M., Schwede, D.B., Bash, J.O., Pinto, J.P. and Dennis, R.L., A measurement-model
2534 fusion approach for improved wet deposition maps and trends, *J. Geophys. Res. Atm.*, 124, 4237-
2535 4251, 2019. <https://doi.org/10.1029/2018JD029051>