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Abstract.  

The concentration of particulate organic nitrogen (PON) in seawater plays a central role in ocean biogeochemistry. Limited 

availability of PON data obtained directly from in situ sampling methods hinders development of thorough understanding and 

characterization of spatio-temporal variability of PON and associated source and sink processes within the global ocean. 15 

Measurements of seawater inherent optical properties (IOPs) that can be performed over extended temporal and spatial scales 

from various in situ and remote-sensing platforms represent a valuable approach to address this gap. We present the analysis 

of relationships between PON and particulate IOPs including the absorption coefficients of total particulate matter, ap(λ), 

phytoplankton, aph(λ), and non-algal particles, ad(λ), as well as the particulate backscattering coefficient, bbp(λ). This analysis 

is based on an extensive field dataset of concurrent measurements of PON and particulate IOPs in the near-surface oceanic 20 

waters and shows that reasonably strong relationships hold across a range of diverse oceanic and coastal marine environments. 

The coefficient ap(λ) and aph(λ) show the best ability to serve as PON proxies over a broad range of PON from open ocean 

oligotrophic to coastal waters. The particulate backscattering coefficient can also provide a good proxy of PON in open ocean 

environments. The presented relationships demonstrate a promising means to assess PON from optical measurements 

conducted from spaceborne and airborne remote-sensing platforms and in situ autonomous platforms. In support of this 25 

potential application, we provide the relationships between PON and spectral IOPs at light wavelengths consistent with those 

used by satellite ocean color sensors. 
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1 Introduction 

Oceanic organic matter consists of dissolved (Dissolved Organic Matter, DOM) and particulate (Particulate Organic Matter, 30 

POM) constituents which span a wide range of sizes from the molecular scale to large particles suspended in water (Verdugo 

et al., 2004). POM, defined operationally as organic material captured on filters with nominal pore sizes ranging from 0.2 to 

0.7 µm, includes large viruses, bacteria, phytoplankton, zooplankton as well as detrital material (Riley, 1971; Eppley et al., 

1977; Eppley et al., 1983; Morel and Ahn, 1991; Stramski et al., 2004; Karhbush et al., 2020). The elemental composition of 

the POM pool is made up of, among other constituents, particulate organic carbon, nitrogen, and phosphorus. Despite their 35 

important roles in ocean biogeochemistry, observations of mass concentrations of particulate organic carbon (POC), particulate 

organic nitrogen (PON), and particulate organic phosphorus (POP) obtained from direct measurement methods are relatively 

scarce, especially in terms of representing extended temporal and spatial scales of variability within the global ocean (Martiny 

et al., 2013). 

To overcome these limitations, the seawater inherent optical properties (IOPs) such as the spectral particulate beam 40 

attenuation cp(λ), spectral particulate scattering bp(λ), spectral particulate backscattering bbp(λ), and spectral particulate 

absorption ap(λ) coefficients, measured in situ or estimated from spaceborne remote-sensing platforms using Ocean Color 

Radiometry (OCR), have been used as proxies of some ocean biogeochemical parameters, including POC and the mass 

concentration of suspended particulate matter, SPM. All these IOP coefficients are in units of m-1, λ represents the wavelength 

of light in vacuum in units of nm, the subscript “p” indicates that the IOP coefficients are associated with suspended particles 45 

in water, and the mass concentrations of particulate matter or its organic components are typically expressed in units of mg m-

3. To the first order, the variability in particulate IOPs is driven by total concentration of suspended particulate matter as well 

as composition and size distribution of suspended particles. Therefore, relationships between particulate IOPs representing the 

effects of all suspended particles and some measures of concentration of organic particles such as POC exhibit large variations 

across diverse water bodies within the global ocean because of large changes in composition and size distribution of particulate 50 

matter. For example, large variations were demonstrated in the relationships between POC and bp(λ), bbp(λ), and ap(λ) across 

marine environments with highly variable proportions of organic and mineral particulate matter (Woźniak et al., 2010; 

Reynolds et al., 2016; Koestner et al., 2022; Stramski et al., 2023; Koestner et al., 2024). These studies indicated a need and 

proposed some approaches to account for variations in particulate composition when particulate IOPs are intended to be used 

as proxies for POC, especially when a wide range of aquatic environments with highly variable characteristics of particulate 55 

assemblages is considered. 

Notwithstanding these challenges, many studies in the past have used in situ measurements conducted in different 

geographically restricted regions of the global ocean to demonstrate that the relationships between POC and particulate IOPs 

can be reasonably good under conditions which are regionally or environmentally constrained in terms of ocean bio-optical 

properties. For example, such relationships were examined between POC and cp(λ) (e.g., Marra et al., 1995; Loisel and Morel, 60 

1998; Bishop, 1999; Claustre et al., 1999; Stramska and Stramski, 2005; Gardner et al., 2006; Bishop and Wood, 2008; Cetinić 
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et al., 2012), between POC and bbp(λ) (e.g., Stramski et al., 1999; Stramski et al., 2008; Allison et al., 2010; Loisel et al., 2011; 

Cetinić et al., 2012; Kheireddine et al., 2020; Qiu et al., 2021; Barbieux et al., 2022), and between POC and ap(λ) (e.g., Woźniak 

et al., 2011; Rasse et al., 2017). While recognizing that single empirical relationships for estimating POC from particulate 

IOPs are expected to work best if they are region-specific or formulated over a restricted range of marine bio-optical 65 

environments, it is also reasonable to assume that such relationships can be useful for applications across vast areas of open-

ocean pelagic environments because the variations in particulate characteristics in these environments are expected to be 

constrained to a significant degree compared to variations observed across all diverse water bodies. For example, these 

relationships have been used to assess carbon community production from in situ cp(λ) or bbp(λ) measurements in the tropical 

Pacific (Claustre et al., 1999), the South Pacific gyre (Claustre et al., 2008), and the Mediterranean Sea (Loisel et al.,  2011; 70 

Barbieux et al., 2022). Vertical fluxes of POC have been described and quantified using POC vs. bbp relationships applied to 

in situ bbp(λ) measurements acquired from autonomous platforms during a sub-polar North Atlantic spring bloom (Briggs et 

al., 2011) and in the Red Sea (Kheiredinne et al., 2020). Based on the POC vs. bbp(λ) relationships the ocean color algorithms 

have also been developed (e.g., Stramski et al., 1999; Loisel et al., 2001; Loisel et al., 2002; Stramska and Stramski, 2005; 

Allison et al., 2010; Duforet et al., 2010) to enhance the capabilities and complement other algorithms that have been used for 75 

estimating POC in surface waters of the global ocean from satellite ocean color observations (Stramski et al., 2008; Stramski 

et al. 2022). 

Considering the interest of developing a capability to estimate PON from optical measurements along with the existing 

algorithms that allow the estimation of POC from optical measurements, it is relevant to comment on the canonical Redfield 

ratio which describes a consistent atomic ratio of carbon, C, nitrogen, N, and phosphorus, P, in marine plankton, namely C:N:P 80 

of 106:16:1 (Redfield et al., 1934; 1963). This ratio could potentially serve as a means to estimate PON from POC. However, 

it is well recognized that the C:N:P ratios for natural particulate organic matter can vary considerably in the ocean, and thus 

deviate from the canonical Redfield ratio (Copin-Montegut and Copin-Montegut, 1983; Diaz et al, 2001; Körtzinger et al., 

2001; Geider and Laroche, 2002; Weber and Deutsch, 2010; White et al., 2006). For example, strong latitudinal patterns in 

these elemental ratios of marine plankton and particulate organic matter that includes also non-living particles, such as detritus 85 

generated from the decay of phytoplankton cells and zooplankton grazing activity, has been documented (Martiny et al., 2013). 

Therefore, the subject of estimating PON from optical measurements requires separate dedicated studies and this paper is a 

contribution to this line of research. 

Recently, a reasonably good relationship between PON and bbp was demonstrated based on field measurements made in 

oligotrophic waters of the western tropical South Pacific (Fumenia et al., 2020). Furthermore, this study used the bbp 90 

measurements from Biogeochemical-Argo (BGC-Argo) floats to quantify new production of phytoplankton biomass likely 

related to intense biological nitrogen (N2) fixation in this tropical oceanic environment. It is worth noting that at the scale of 

the global ocean, the biological N2 fixation is a major source of new nitrogen in the euphotic layer, followed by atmospheric 

and terrestrial deposition (Dugdale, 1961; Karl et al., 2002; Capone et al., 2005). Also, different models utilizing a combination 

of in situ PON measurements and satellite ocean color observations, including satellite-derived ocean remote-sensing 95 
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reflectance Rrs(λ) as well as satellite-derived IOPs such as bbp(λ) and the total absorption coefficient of seawater a(λ), have 

been developed for applications at the global oceanic scale (Wang et al., 2022). Although the study of Wang et al. (2022) 

suggests that PON can be estimated from satellite ocean color products, the PON vs. IOPs relationships have not yet been 

investigated using field measurements collected over a broad range of oceanic and coastal marine environments. 

The main objective of the present study is to examine the relationships between the PON and particulate IOPs, including 100 

bbp(λ), ap(λ), aph(λ), and ad(λ), from in situ near-surface measurements collected over a broad range of marine bio-optical 

environments. For this purpose, we assembled datasets of concurrent PON and IOP measurements from the open-ocean pelagic 

environments, Arctic seas, and coastal waters around Europe. The relationships between PON and spectral IOPs are presented 

and discussed in terms of variability and its sources as observed in the examined relationships across the different marine 

environments. This analysis provides insights into the potential applicability of different particulate IOPs to serve as proxies 105 

for PON. 

2 Materials and methods 

2.1 Geographic locations of in situ measurements 

A dataset of in situ biogeochemical and optical measurements was assembled from multiple field experiments performed in 

various open ocean and coastal regions covering a broad range of PON, POC, and particulate IOPs collected at depths between 110 

the sea surface and 10 m (Fig. 1; Table 1). The whole dataset (referred to as WD) consists of three subsets of data collected in 

different regions which generally represent different marine bio-optical environments. 

The first subset of data (referred to as OOD for the open-ocean dataset) includes measurements made during three cruises 

conducted in open ocean waters in the Pacific and Atlantic Oceans. The BIOSOPE (Biogeochemistry and Optics South Pacific 

Experiment) cruise took place from October to December 2004 in the eastern South Pacific Ocean along an east-to-west 115 

transect from the Marquesas Islands to the coast of Chile (Claustre et al., 2008; Stramski et al., 2008). The KM12-10 cruise 

was carried out in June 2012 in tropical waters off the Hawaiian Islands (Johnsen et al., 2014; Reynolds and Stramski, 2021). 

The ANTXXVI/4 cruise was conducted in April and May 2010 along a south-to-north transect in the Atlantic Ocean between 

Chile and Germany (Uitz et al., 2015). 

The second subset of data (referred to as AOD for the Arctic Ocean dataset) includes measurements collected in the 120 

western Arctic seas, specifically in the Chukchi Sea and western Beaufort Sea during three cruises, HLY1001 in June-July 

2010, HLY1101 in June-July 2011, and MR17-05C in August-September 2017 (Arrigo, 2015; Reynolds and Stramski, 2019; 

Shiozaki et al., 2019). The data collected in these high latitude environments are characterized by the presence of specific 

phytoplankton communities and a relatively high contribution of dissolved organic matter (CDOM) and nonalgal particulate 

matter to IOPs of seawater (Reynolds and Stramski, 2019). 125 

The third subset of data (referred to as CWD for the coastal-water dataset) consists of data collected as part of the 

COASTlOOC (Coastal Surveillance Through Observation of Ocean Color) research project which involved numerous 
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experiments in various coastal waters around Europe in 1997 and 1998 (Massicotte et al., 2023). This dataset represents the 

bio-optical variability encountered across diverse coastal waters including shelf and relatively shallow environments in the 

Baltic Sea, North Sea, Wadden Sea, English Channel, and Adriatic Sea as well as waters affected by many river plumes around 130 

Europe (Babin et al., 2003a; 2003b). A small fraction of CWD (< 3 % of COASTlOOC data) includes measurements collected 

in open ocean waters in the Atlantic Ocean between the Bay of Biscay and the Canary Islands and off the shelf in the 

Mediterranean Sea, where the bio-optical variability is expected to be driven primarily by phytoplankton and associated 

material. 

The total number of concurrent POC and PON measurements, NPOM, in the whole dataset WD is 432 (Table 1). The 135 

contributions of OOD, AOD, and CWD to this total number are 18.8 %, 25.2 %, and 57.4 %, respectively. These measurements 

of PON and POC are used to discuss the variability in the POC/PON ratio in Sect. 3.1. The number of concurrent measurements 

of PON and IOPs which are used to examine the relationships between these variables is smaller than NPOM. Specifically, the 

presented relationship between PON and the backscattering coefficient bbp is based on 284 measurements in the whole dataset 

WD (Sect. 3.2.1) and the relationships between PON and the absorption coefficients, ap, aph, and ad, are based on 392 140 

measurements (Sect. 3.2.2). 

 

Figure 1. (a) Geographical locations of oceanographic stations shown as color coded symbols according to the three subsets of data 

from different oceanic regions. OOD, AOD, and CWD refer to the datasets for the open-ocean Pacific and Atlantic waters, western 

Arctic seas, and European coastal waters, respectively. (b) Near-surface PON measured at all stations in the whole dataset (WD).  145 
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Table 1. The values of the minimum-to-maximum range (in brackets) and median (in parentheses) for the whole dataset (WD) and 

different subsets of data used in this study. The data subsets are OOD (open-ocean dataset), AOD (Arctic Ocean dataset), and CWD 150 
(coastal-water dataset). The results are also shown for the three oceanic regions which are part of OOD. NPOM is the number of PON 

or POC measurements. Nbbp is the number of concurrent PON and bbp() measurements. Nap is the number of concurrent PON 

and ap(510), aph(510), and ad(442) measurements. 
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2.2 Measurement Methods 155 

The measurement and data processing protocols are described in detail in the references cited in Sect. 2.1. Here we provide a 

brief summary. Samples for POC and PON determinations were collected by filtration of seawater through pre-combusted 25-

mm Whatman GF/F filters. After filtration, the samples were transferred into glass vials, dried at 55°C, and stored until post-

cruise analysis. The mass of particulate organic carbon and nitrogen on the sample filters was determined by high temperature 

combustion via standard CHN analysis following the JGOFS (Joint Global Ocean Flux Study) protocols (Knap et al., 1996). 160 

The samples were acid-treated prior to the CHN analysis to remove inorganic carbon. The mass concentration of suspended 

particulate matter (SPM) was determined gravimetrically by measuring the dry mass of particles collected on GF/F filters. The 

filters were pre-rinsed, pre-combusted, and pre-weighed using a protocol described in Van der Linde (1998). More details on 

the methodology of CHN analysis and SPM determinations are provided in Babin et al. (2003a), Reynolds et al. (2016), and 

Stramski et al. (2008). 165 

The spectral particulate absorption coefficient, ap(λ), was determined on samples collected on 25-mm GF/F filters using 

a spectrophotometric filter-pad method. The ap(λ) spectra included in OOD and AOD were measured mostly with a Perkin-

Elmer Lambda18 spectrophotometer equipped with a 15-cm integrating sphere using the inside integrating sphere (IS) 

configuration of measurement which is considered to provide the best accuracy of measurements with a filter-pad method 

(Stramski et al., 2015; Roesler et al., 2018). The exception is the absorption data from BIOSOPE cruise which were measured 170 

with a Perkin-Elmer Lambda 19 equipped with a 6-cm integrating sphere using a transmittance (T) configuration of 

measurement (Bricaud et al., 2010). The nonalgal particulate absorption coefficient, ad(λ), was also determined from the 

spectrophotometric filter-pad method after extraction of pigments (associated primarily with phytoplankton) in methanol 
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(Kishino et al., 1985). All absorption data in OOD and AOD were acquired between 300 and 800 nm with a 1 nm step. The 

ap(λ) spectra included in CWD were determined from the transmittance-reflectance (T-R) configuration of filter-pad method 175 

in the spectral range 380−750 nm at 1 nm intervals (Babin et al., 2003b). In this dataset, ad(λ) was determined by pigment 

bleaching with sodium hypochlorite (Ferrari and Tassan, 1999). For all absorption samples considered in this study, the spectral 

phytoplankton absorption coefficient, aph(λ), was obtained by subtracting the measured ad(λ) from measured ap(λ). More details 

on the absorption measurement methodology used in our dataset are provided in Babin et al. (2003b), Bricaud et al. (2010), 

Uitz et al. (2015), and Reynolds and Stramski (2019). 180 

The spectral backscattering coefficient bb(λ), which is the sum of particulate bbp(λ) and pure seawater bbw(λ) contributions, 

was calculated from the scattering measurements at a specified backscattering angle (around 140°). After subtraction of bbw(λ) 

from bb(λ), the result was converted to bbp(λ) assuming a coefficient of proportionality between bbp(λ) and scattering at 140°. 

The backscattering measurements for the datasets OOD and AOD were all performed with HydroScat-6 (HOBI Labs, Inc.) 

instruments providing six wavelengths (420, 442, 470, 510, 555, 589 nm) during the BIOSOPE cruise and eleven wavelengths 185 

(394, 420, 442, 510, 532, 550, 589, 620, 640, 671, 730, 852 nm) during the HLY1001, HLY1101, MR17-05C, ANT26, and 

KM12-10 cruises. A more detailed description of the procedure to estimate bbp(λ) from HydroScat-6 measurements is provided 

in Stramski et al. (2008) and Reynolds et al. (2016). 

No in situ measurements of bbp(λ) were performed during the COASTlOOC experiments. However, in situ measurements 

of downwelling, Ed(z, λ), and upwelling, Eu(z, λ), irradiances were conducted within the surface ocean layer at each station 190 

(where z is depth). From these vertical profiles, the irradiance reflectance just beneath the sea surface, R(0-, λ) = Eu(0-, λ)/Ed(0-

, λ), and the average attenuation coefficient for downwelling irradiance, <Kd(λ)>1 = 1/z1, between the surface and the first 

attenuation depth was calculated (0- indicates the depth just beneath the sea surface, and z1 is the first attenuation depth at 

which the downwelling irradiance is reduced to about 36.8 % of its surface value). For the dataset CWD, bbp(λ) was then 

estimated from the LS inverse optical model which uses R(0-, λ), <Kd(λ))>1, and the sun angle as input parameters (Loisel and 195 

Stramski, 2000). As bbp(λ) is driven largely by the concentration of suspended particulate matter, SPM, the reliability of LS-

derived bbp(λ) was assessed through comparison with bbp(555) obtained from a previously developed empirical relationship 

(Neukermans et al., 2012) between bbp and SPM (Fig. 2a). The same inter-comparison exercise was performed using the 

empirical relationship developed by Stramski et al. (2023) between SPM and bbp(555) (Fig. 2b). This comparative analysis 

supports the use of LS-derived bbp(λ) for the COASTlOOC experiments considered in this study (Fig. 2). We note that similar 200 

support was obtained with the use of the LS2 model (Loisel et al., 2018) instead of the LS model (not shown), where the main 

difference is that the application of LS2 model requires the input of remote-sensing reflectance, Rrs(λ), rather than R(0-, λ). 

The measurements of PON, POC, and IOPs are subject to errors which are not amenable to straightforward quantification, 

especially on a sample-by-sample basis. Multiple factors related to measurement methodology, instrumentation, environmental 

conditions, and no knowledge of true values make it challenging to determine the errors. It has been common to use a series 205 

of replicate observations for evaluating one of the components of measurement uncertainty. The precision of POC and PON 

measurements performed during the BIOSOPE cruise has been determined from the analysis of duplicate and triplicate 
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samples. The coefficient of variation (CV) was, on average, about 8.7% and 7.7% for POC and PON, respectively (Stramski 

et al., 2008). For different cruises comprising the AOD dataset the median coefficient of variation for replicate samples of 

POC varied between about 2% and 5% (Stramski et al., 2023) and a similar range of 3% to 4% was observed for PON. For the 210 

COASTlOOC experiment, the CV values were 3.7 % and 6.8 % for POC and PON, respectively (Ferrari et al., 2003). Thus, 

the precision of POC and PON measurements is expected to remain typically below 10%. Regarding the particulate absorption 

measurements, the lowest uncertainties below 10% with a high precision typically of a few percent are expected for the IS 

configuration of the filter pad method and the highest uncertainties are expected for the T configuration of this method 

(Stramski et al., 2015; Roesler et al., 2018). While most absorption data in the OOD and AOD were obtained with the IS 215 

method, the T method was used during the BIOSOPE cruise for which the uncertainty of ap(λ) was estimated at about 15% 

while the precision based on replicate samples at a few percent in the visible spectral range (Bricaud et al., 2010). For the T-

R method used during the the COASTlOOC experiment, the uncertainties are expected to be in between those for the IS and 

T methods (Stramski et al., 2015). Earlier analysis of situ determinations of backscattering coefficient indicated that the 

uncertainty estimates commonly fall in the 10-20% range (e.g., Berthon et al. 2007; Doxaran et al. 2016) but can be reduced 220 

to a few percent under certain circumstances (Sullivan et al. 2013). 

 

Figure 2. (a) Scatter plot of bbp(555) as a function of SPM for the CWD dataset where bbp(555) is estimated from the LS model (green 

circles). The green line refers to the Model-II best linear fit using the log-transformed variables. For comparison, the bbp(555) vs. 

SPM relationship of Neukermans et al. (2012) originally developed at 660 nm and recalculated for 555 nm assuming that bbp() has 225 
a mean spectral dependency of -0.5 (Babin et al., 2003a) is also shown (black line). (b) Same as (a) but for SPM as a function of 

bbp(555) for the CWD dataset. For comparison, the SPM vs. bbp(555) relationship of Stramski et al. (2023) is also shown (black line).  

 

2.3 Description of Dataset 

The biogeochemical and optical properties exhibit a large variability in our whole dataset (WD) which is associated with a 230 

range of diverse marine bio-optical and trophic conditions in this dataset (Fig. 3, 4 and Table 1). Overall, PON (Fig. 3a) and 
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POC (Fig. 3b) range over 2 orders of magnitude from 2.4 to 340.0 mg m-3 and 11.9 to 2470.0 mg m-3, respectively. Minimum 

concentrations of these particulate organic pools are found in the subset of open-ocean data (OOD) with the smallest values of 

PON and POC observed in the oligotrophic waters of subtropical gyres in the Pacific and Atlantic Oceans (Table 1). The OOD 

is also characterized by the highest median value of POC/SPM = 0.53 (Table 1) which is indicative of highly organic-235 

dominated particulate assemblages. Maximum values of PON and POC are found in the COASTlOOC subset of data (CWD) 

which also has the lowest median value of POC/SPM = 0.17 (Table 1). This indicates that the coastal waters in the CWD 

generally have significantly smaller contribution of organic particles to SPM compared with the two other subsets of data 

(OOD and AOD). The median values of PON and POC in the European coastal environments are about 5 to 10 times higher 

than those in the Pacific and Atlantic Oceans and twice as high as in the western Arctic seas (Table 1). Generally, the median 240 

values of biogeochemical variables in the Arctic dataset are between those for the open-ocean and coastal-water datasets. The 

range of variation in PON and POC is largest (about 60-fold) in the CWD and AOD whereas OOD has about 30-fold range of 

variation. The median value of POC/PON is 5.8 g/g(gram/gram) (≈ 6.8 mol/mol) for the whole dataset which is very similar 

to the canonical molar Redfield ratio of 6.6 mol/mol. However, the POC/PON ratio exhibits a large range of variability 

(2.0−17.2 g/g) in our dataset (Fig. 3c, more details in Sect. 3.1).  245 
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Figure 3. Frequency distribution of near-surface values of (a) POC, (b) PON (c) POC/PON (g/g, i.e., gram/gram basis), and (d) 

POC/SPM (g/g) for the whole dataset (WD) used in this study. The black solid vertical lines correspond to the median values. The 

red vertical lines in panel (d) refers to the threshold values of POC/SPM of 0.12 and 0.28 which delimit mineral-dominated, mixed, 250 
and organic-dominated particulate assemblages (Stramski et al., 2023). The minimum-to-maximum range (Min-Max), median 

(Med), and coefficient of variation (CV) are also indicated. N is the number of data. 
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The POC/SPM ratio expressed on a g/g basis (Fig. 3d) can be used as a proxy for characterizing the contributions of 

organic versus inorganic particles to SPM. Some threshold values have been proposed to delimit the organic-dominated, mixed, 260 

and mineral-dominated particulate assemblage in previous studies (Woźniak et al., 2010; Lubac and Loisel, 2007; Loisel et 

al., 2023; Stramski et al., 2023). The threshold values established in different studies are similar; for example, Stramski et al. 

(2023) proposed POC/SPM = 0.12 as a boundary between the mineral-dominated and mixed particulate assemblages and 

POC/SPM = 0.28 as a boundary between the mixed and organic-dominated assemblages. Using these threshold values, we 

determined that 43.9 % of our whole dataset is associated with organic-dominated particulate assemblages, 27.4 % with 265 

mineral-dominated assemblages, and 28.7 % with mixed assemblages. 

Similar to the biogeochemical parameters, the particulate IOPs exhibit a large range of variability which is illustrated in 

Fig. 4 for the optical coefficients at selected light wavelengths. As expected, the IOP values are maximum in turbid coastal 

waters included in the CWD dataset and minimum in the subtropical gyres included in the OOD (Table 1). The median value 

of bbp(555) in the European coastal environments (CWD) is one order of magnitude higher than in the western Arctic seas 270 

(AOD) and two orders of magnitude higher than in the open-ocean waters of the Pacific and Atlantic Oceans (OOD). The 

median values of ap(510), aph(510), ad(442) in the CWD are similar to those in the AOD but one order of magnitude higher 

than those in the OOD (Table 1). The aph(510)/ap(510) ratio, which quantifies the proportion of phytoplankton absorption to 

the total particulate absorption at light wavelength of 510 nm, varies by a factor of 83 within the whole dataset (see WD in 

Table 1). Very high variability in this parameter is observed in the Arctic dataset (factor of 78), whereas the variation in the 275 

open-ocean and coastal-water datasets is much smaller (about 4-fold). 
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Figure 4. Frequency distribution of the near-surface values of (a) bbp(555), (b) ap(510), (c) aph(510), and (d) ad(442) for the whole 280 
dataset (WD) used in this study. The black solid vertical lines correspond to the median values. The minimum-to-maximum range 

(Min-Max), median (Med), and coefficient of variation (CV) are indicated. N is the number of data. 
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2.4 Statistical Indicators 

Model-I linear regression can be considered as a valid approach when the primary goal of analysis is to fit a predictive model 

to a dataset of the response (y) and explanatory (x) variables, i.e., to reduce variance in prediction of y from x (Legendre and 

Michaud, 1999; Sokal and Rohlf, 1995). In this study, the analysis of PON (response variable) versus IOPs (explanatory 

variables) is aimed at establishing the predictive relationships. Another alternative of linear regression analysis is Model-II 295 

which typically serves to quantify the strength of the linear relationship between the examined variables but can also be an 

adequate option for predictive purposes, especially when both variables are subject to error and the error in data of x is not 

significantly smaller than the error in data of y (McArdle, 1988). In our study, the uncertainties in the explanatory variables 

(IOPs) are not necessarily much smaller than in PON (see Section 2.2), so we tested both the Model-I and Model-II regressions. 

Specifically, we evaluated: (i) the ordinary least squares Model-I linear regression, (ii) the robust least squares Model-I linear 300 

regression, and (iii) the Model-II linear regression using the major axis method (Kermack and Haldane, 1950; York, 1966). 

These regression models were applied to the log10-transformed PON and IOP data. It should be noted that the Model-II linear 

regression using the major axis method is appropriate when both variables are expressed in the same physical units or are 

dimensionless (e.g., log-transformed variables) (Legendre and Legendre, 2012). 

This analysis was made for the whole dataset, WD, and the three data subsets, OOD, AOD, and CWD. From this analysis 305 

we obtained the best-fit equations in the form of power function and the coefficient of determination (R²) between the log10-

transformed variables. The general formula of the power function is: 

 

PON = A IOP(λ)B                                                                                     (1) 

 310 

where IOP(λ) represents one of the spectral particulate IOPs, A and B are the best-fit coefficients, and PON and IOP(λ) 

variables are expressed in units of mg m-3 and m-1, respectively. For most examined cases, the general pattern of data points 

of PON vs. IOP is consistent with a power function; however, there is an exception for the relationship PON vs. bbp(λ) for the 

whole dataset WD. In this case, we also used a third-degree polynomial function that provided a better fit to data than the 

power function.  315 

To compare the three methods of regression analysis we examined the goodness-of-fit of each regression equation (i.e., 

each PON algorithm utilizing a given particulate IOP as input to the algorithm) through the analysis of algorithm-derived PON 

vs. measured PON using the algorithm development dataset. This evaluation involved the use of Model-II linear regression 

based on the major axis method as applied to data of algorithm-derived vs. measured PON as well as the calculation of several 

statistical metrics that quantify differences between the algorithm-derived and measured values of PON (Table 2). These 320 

statistics include the slope (S) and the intercept (I) obtained from Model-II linear regression applied to log10-transformed 

variables of algorithm-derived vs. measured PON. These parameters are useful to reveal the potential presence of bias across 

the dynamic range of PON. The Median Bias (MdB) and the Median Ratio (MdR) quantify the aggregate systematic deviations 
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between the (non-transformed) algorithm-derived and measured values of PON for the investigated dataset. The Median 

Absolute Percentage Difference (MdAPD) and the Root Mean Square Deviation (RMSD) characterize random deviations 325 

between the algorithm-derived and measured PON. We also use the Median Symmetric Accuracy (MdSA) which can be 

interpreted similarly to MdAPD as a median percentage difference but, unlike MdAPD, MdSA does not penalize over- and 

under-prediction differently (Morley et al., 2018). 

The comparative analysis of algorithm-derived PON vs. measured PON indicated that some statistics are better for the 

predictive regression formulas obtained from the Model-II regression compared with the predictive formulas obtained from 330 

Model-I regression analysis. Specifically, this improvement was observed for the slope (S) and the intercept (I) of log-

transformed algorithm-derived PON vs. measured PON. Other statistics did not reveal any advantage of Model-II over Model-

I regression (or vice versa) for establishing the empirical algorithms for PON vs. IOPs.  As a result of this analysis, in the 

remainder of this study all presented PON vs. IOP algorithms are based on Model-II regression using the major axis method 

as applied to the log10-transformed variables. 335 

 

Table 2. Statistical metrics used in the evaluation of the goodness-of-fit of algorithmic formulas. 

Symbol Description 

yi, xi (mg m-3) Algorithm-derived PON (yi) and measured PON (xi) for sample i of N 

N Number of samples (data) 

R Pearson’s product moment correlation coefficient between log10-transformed variables used in Model-II linear 

regression 

S and I Slope and intercept obtained from Model-II linear regression  

MdB (mg m-3) Median Bias; median value of (yi – xi)  

MdR Median Ratio of (yi/xi) 

MdAPD (%) Median Absolute Percentage Difference; median value of 100 × [ǀ (yi − xi) / xiǀ] 

MdSA (%) Median Symmetric Accuracy; 100 ×[10median[ǀlog(yi/xi) ǀ] − 1] 

RMSD (mg m-3) Root Mean Square Deviation; [(1/N) ∑N (yi – xi)2]0.5 

 

For the final algorithms based on Model-II regression analysis, we further evaluated the relationships between the 

algorithm-derived and measured PON using the radar charts (Tran et al., 2019). For this purpose, MdB, MdAPD, MdSA, RMSD, 340 

S, and R were normalized as follows: 

 

𝑀𝑑𝐵𝑛𝑜𝑟𝑚(𝑗) =  
|𝑀𝑑𝐵(𝑗)|

max (|𝑀𝑑𝐵(𝑗)|, 𝑗 = 1, 𝑘)
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𝑀𝑑𝐴𝑃𝐷𝑛𝑜𝑟𝑚(𝑗) =  
𝑀𝑑𝐴𝑃𝐷(𝑗)

max (𝑀𝑑𝐴𝑃𝐷(𝑗), 𝑗 = 1, 𝑘)
 345 

 

𝑀𝑑𝑆𝐴𝑛𝑜𝑟𝑚(𝑗) =  
𝑀𝑑𝑆𝐴(𝑗)

max (𝑀𝑑𝑆𝐴(𝑗), 𝑗 = 1, 𝑘)
 

 

𝑅𝑀𝑆𝐷𝑛𝑜𝑟𝑚(𝑗) =  
𝑅𝑀𝑆𝐷(𝑗)

max (𝑅𝑀𝑆𝐷(𝑗), 𝑗 = 1, 𝑘)
 

 350 

𝑆𝑛𝑜𝑟𝑚(𝑗) =  
|1 − 𝑆(𝑗)|

max (|1 − 𝑆(𝑗)|, 𝑗 = 1, 𝑘)
 

 

𝑅𝑛𝑜𝑟𝑚(𝑗) =  
min (𝑅(𝑗), 𝑗 = 1, 𝑘)

R(j)
 

 

where j represents each individual PON algorithm based on a given IOP and k is the number of tested algorithms. In addition, 355 

to facilitate the comparison between the goodness-of-fit of PON algorithms based on different IOPs, the area associated with 

the polygons linking the normalized statistical indicators were computed as: 

 

𝐴𝑟𝑒𝑎 =  
1

2
 ×  

𝜋

6
 × [𝑅𝑀𝑆𝐷𝑛𝑜𝑟𝑚(𝑗) × 𝑀𝑑𝐴𝑃𝐷𝑛𝑜𝑟𝑚(𝑗) +  𝑀𝑑𝐴𝑃𝐷𝑛𝑜𝑟𝑚(𝑗)  × 𝑀𝑑𝑆𝐴𝑛𝑜𝑟𝑚(𝑗)

+ 𝑀𝑑𝑆𝐴𝑛𝑜𝑟𝑚(𝑗)  ×  𝑀𝑑𝐵𝑛𝑜𝑟𝑚(𝑗) + 𝑀𝑑𝐵𝑛𝑜𝑟𝑚(𝑗)  ×  𝑆𝑛𝑜𝑟𝑚(𝑗) + 𝑆𝑛𝑜𝑟𝑚(𝑗)  ×  𝑅𝑛𝑜𝑟𝑚(𝑗)360 

+ 𝑅𝑛𝑜𝑟𝑚(𝑗)  × 𝑅𝑀𝑆𝐷𝑛𝑜𝑟𝑚(𝑗)]  

3 Results and Discussion 

3.1 POC vs. PON Relationship 

The carbon-to-nitrogen ratio of the organic particulate matter, POC/PON, in our dataset and deviations in these data from the 

canonical Redfield ratio of 106/16 mol/mol (approximately 6.6) are depicted in Fig. 5. We note that in this illustration we 365 

present POC and PON in micromolar concentration units because such units were used in the original work on the Redfield 

ratio (Redfield et al., 1934; 1963). POC and PON are generally well correlated with R = 0.85 for the whole dataset (WD) but 

the linear regression fitted to the POC vs. PON data deviates slightly from the relationship corresponding to the canonical 

Redfield ratio (Fig. 5a). For WD the slope S of the best-fit linear function is 6.18 ± 0.18 which is lower than the Redfield ratio 

value. 370 
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When considering the three subsets of data, the open-ocean data (OOD) exhibit the strongest correlation between POC 

and PON (R = 0.99, Fig. 5a) and the lowest variability in POC/PON (coefficient of variation CV = 15.5 %, Fig. 5b). The 

median value of POC/PON for open-ocean data is 5.8 (Table 1, Fig. 5b) which is significantly lower than the Redfield ratio. 

In striking contrast to OOD, the coastal-water dataset (CWD) has the lowest correlation between POC and PON (R = 0.75, 

Fig. 5a) and the highest variability in POC/PON (CV = 38.7 %, Fig. 5d). Moreover, the slope of the best-fit function for CWD 375 

(S = 8.35 ± 0.38) deviates significantly from the relationship corresponding to the canonical Redfield ratio. It is also notable 

that the intercept differs significantly from 0 (I = -5.95 ± 2.20, Fig. 5a) which indicates an excess of PON relative to POC. The 

median of POC/PON for CWD is 7.3 (Table 1, Fig. 5d) which is significantly higher than the Redfield ratio and highest among 

the three data subsets. For the Arctic dataset (AOD), POC and PON are highly correlated (R = 0.91, Fig. 5a). The variation in 

POC/PON is large with the CV value of 30.9 % (Fig. 5c), which is twice as high as in the open-ocean dataset but somewhat 380 

lower than in the coastal-water dataset. The median of POC/PON for AOD is 6.9 which is closer to the Redfield ratio than the 

median values for OOD and CWD. 
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 385 

Figure 5. (a) Scatter plot of PON as a function of POC where the data points are color coded to distinguish between the three data 

subsets OOD, AOD, and CWD. The blue, red, and green solid lines define the Model-II best-fit linear regression functions calculated 

for the OOD, AOD and CWD datasets, respectively. The black solid line denotes the best-fit function for the whole dataset WD. The 

black dashed line shows the Redfield ratio (POC/PON = 106/16 mol/mol). The number of data points, N, the coefficient of correlation, 

R, and the slope, S, and intercept I of the best-fit linear functions are indicated. The standard deviation of the slope, S, and intercept, 390 
I, is indicated. (b) Frequency distribution of the POC/PON ratio (mol/mol) for the open-ocean dataset OOW, (c) same as panel (b) 

but for the Arctic Ocean dataset AOD, and (d) same as panel (b) but for the coastal-water dataset CWD. In panels (b), (c), and (d) 

the vertical black solid lines correspond to the median values. The vertical black dashed line refers to the Redfield ratio value of 

6.625. The values for the minimum-to-maximum range (Min-Max), median (Med), and coefficient of variation (CV) are also 

provided. 395 

The results presented in Fig. 5 are consistent with expectations regarding the variability in POC/PON in aquatic 

environments and previous reports on such variability. For example, Geider and Laroche (2002) compiled data on oceanic 

POC/PON from multiple sources and reported on a large range of variation between 3.4 and 12.5 mol/mol. It has also been 

known that the variation in inland waters is even larger with POC/PON reaching the values that are much higher than the 
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Redfield ratio (Bauer et al., 2013). The compilation of data from different inland aquatic environments showed the POC/PON 400 

range of 7.5−22.6 for lake environments (They et al., 2017) and 6.5−15.7 for rivers (Liu et al., 2020). Many measurements in 

our coastal-water dataset CWD were collected in areas affected by river plumes and associated input of terrestrial particulate 

organic matter which explains the large variability including the presence of high values of POC/PON in this dataset (Fig. 5a, 

5d). The lowest values of this ratio (< 4) in CWD correspond to data collected in the northern Adriatic Sea and are consistent 

with the previously reported values from this environment (Faganeli et al., 1989). The observed general trend of an increase 405 

in POC/PON variability from the open-ocean to coastal-water dataset reflects the increased complexity of the factors that drive 

the variation in the elemental composition of the bulk particulate organic matter. Different patterns of variability and deviations 

of measured POC/PON from the canonical Redfield ratio can be attributed to regional variations in environmental conditions, 

plankton biodiversity (Martiny et al., 2013), and carbon-enriched terrestrial inputs and/or preferential remineralization of PON 

relative to POC (Dauby et al., 1994; Engel et al., 2001; Ferrari et al., 2003). Overall, the results of the PON/POC variability 410 

support the notion that PON cannot be reliably estimated from POC using the assumption of the Redfield ratio. 

3.2 Development of PON vs. IOP Relationships 

The particulate IOPs, bbp(λ), ap(λ), aph(λ), and ad(λ), available in our dataset were measured at multiple light wavelengths as 

described in Sect. 2.2. For development of the relationships between PON and IOPs, our primary interest is in examining the 

IOPs at selected light wavelengths that are consistent with the spectral bands used on several past and current satellite ocean 415 

color sensors. Figure 6 depicts the spectral pattern of the coefficient of determination, R2, between log10-transformed PON and 

the four particulate IOPs at selected light wavelengths. In these calculations, the number of selected wavelengths is smaller for 

bbp(λ) (Fig. 6a) than for the absorption coefficients (Fig. 6b,c,d), which is associated with the spectral coverage of these 

measurements in our dataset. In addition, the results in Fig. 6 are shown for the whole dataset (WD) and separately for the 

three data subsets, OOD, AOD, and CWD. In general, the spectral patterns of R2 for most illustrated cases are relatively flat. 420 

A few exceptions include the spectral variations of R2 for the PON vs. ad(λ) relationship, especially for the open-ocean dataset 

(Fig. 6d), as well as some variations associated with main spectral bands of phytoplankton absorption for the relationships 

involving ap(λ) and aph(λ) (Fig. 6b,c). The R2 values are generally substantially lower for the coastal-water dataset CWD 

compared to the OOD and AOD datasets. This result is expected given the largest variability in PON and IOPs in CWD. 

In subsequent sections we present the relationships between PON and IOPs for a few selected wavelengths, specifically PON 425 

vs. bbp(λ) at 555 nm, and PON vs. ap(λ), aph(λ), and ad(λ) at 442 nm and 510 nm. At these wavelengths, the R2 values in Fig. 6 

are either close to the maximum or remain relatively high within the spectral pattern of R2. A more complete set of the 

relationships for other wavelengths that are commonly used on satellite ocean color sensors is provided in Supplementary 

Material (Tables S1 to S3). 
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 430 

Figure 6. Coefficient of determination (R²) between log10-transformed PON and particulate IOPs as a function of light wavelength. 

(a) PON vs. bbp(λ), (b) PON vs. ap(λ), (c) PON vs. aph(λ), and (d) PON vs. ad(λ). The black, blue, red, and green circles refer to R² 

calculated at selected light wavelengths for the whole dataset (WD), the open-ocean (OOD), Arctic Ocean (AOD), and coastal-water 

(CWD) datasets, respectively. The data points for R2 vs. bbp(λ) in panel (a) are at the following wavelengths: 394, 412, 420, 442, 470, 

490, 510, 532, 550, 555, 560, 589, 640, 665 nm. The selected wavelengths for the absorption coefficients in panels (b), (c), and (d) are: 435 
380, 400, 412, 440, 443, 488, 490, 510, 532, 555, 560, 620, 630, 650, 665, 670, 676, 689 nm. 

3.3 Relationship Between PON and Backscattering Coefficient 

Figure 7a depicts the relationship between PON and bbp(555). When the open-ocean dataset (OOD) is considered, the scatter 

of data is relatively small (blue circles) and the pattern of data suggests that the relationship can be reasonably well described 

by a power function (dark blue line): 440 

 

PON = 105514.11 (± 72139.11) bbp(555)1.31( ± 0.07)        (2) 

 

where the values in parenthesis indicate the standard deviation of the best fit coefficients. For this subset of data, the coefficient 

of determination between the log10-transformed data is high (R2 = 0.84). For comparison, Fig. 7a also includes a relationship 445 

recently established in the open-ocean waters of the western tropical South Pacific using in situ measurements of bbp from 

BGC-Argo floats (Fumenia et al., 2020). While the number of these data is comparatively small and the data cover a relatively 

narrow range of PON from about 0.28 to 13.3 mg m-3, it is notable that this relationship is consistent with the relationship 

described by Eq. (2) for our larger OOD dataset.  

When the Arctic Ocean (AOD) and coastal-water (CWD) datasets are considered, the scatter of data points is much larger 450 

and the relationships between PON and bbp(555) are considerably weaker. The R2 values for these two datasets drop to 0.57 
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and 0.47, respectively. As a result, the relationship for the whole dataset (WD) is also relatively weak with a moderate R² of 

0.63. Importantly, the overall pattern of all data in WD no longer suggests that a single power function of PON vs. bbp(555) 

can provide a reasonable description of the general trend of data observed across this whole dataset. In this case, the pattern of 

data suggests that the relationship can be reasonably well described by a 3rd-degree polynomial function (black line): 455 

 

PON =  10[2.62+1.32 𝑙𝑜𝑔10( 𝑏bp(555))+0.68 [𝑙𝑜𝑔10( 𝑏bp(555))]2+0.14  [𝑙𝑜𝑔10( 𝑏bp(555))]3]     (3) 

 

Comparison of the algorithm-derived with measured values of PON is presented in Fig. 7b. This plot and the associated 

statistical metrics provide a means to evaluate how the best-fit 3rd-degree polynomial function of PON vs. bbp(555) for the 460 

whole dataset WD from Fig. 7a reproduces the PON variability for this algorithm development dataset. Figure 7b shows a 

deviation between the linear fit to data and the 1:1 line which indicates that the bbp(555)-based algorithm overestimates the 

PON values at low PON and tends to underestimate at high PON. Recognizing these biasing effects at different PON ranges 

is important, especially that MdR is very close to 1 indicating that an aggregate bias for the entire dataset WD is very small. 

Other statistical indicators displayed in Fig. 7b are related to significant scatter of data points around the 1:1 line, for example 465 

MdAPD is about 35.9 %. 

The results in Fig. 7a,b demonstrate that bbp(555) cannot be used as a good proxy of PON within a wide range of PON 

and bbp(555) variability observed across diverse marine bio-optical environments. This conclusion also holds for the 

backscattering coefficient at other light wavelengths (not shown), and is not surprising because the various physical-chemical 

characteristics of natural particulate assemblages, which affect the optical properties of particles, are highly variable across 470 

diverse environments. Also, this conclusion is consistent with earlier studies that examined the estimation of POC from optical 

measurements, including the backscattering coefficient, across a wide range of aquatic environments. For example, a recent 

study of measurements from the western Arctic seas which exhibit a large range of variability demonstrated that the generally 

poor relationships based indiscriminately on all data can be improved by accounting for variations in the composition of 

particulate matter parameterized in terms of POC/SPM ratio (Stramski et al., 2023). This is because this ratio can serve as a 475 

proxy of the contribution of organic particles to total suspended particulate matter which also includes mineral particles. In 

turn, the proportion of organic and mineral particles is one of important drivers of variations in particle optical properties, for 

example through changes in particle refractive index. Whereas other particle characteristics such as size distribution, shape, or 

degree of aggregation are also important determinants of particle optical properties, the changes in the compositional parameter 

POC/SPM are useful in explaining, at least partly, the variability in the relationships between the measures of particulate 480 

organic concentration, such as PON and POC, and the bulk optical properties of seawater. Figure 7c depicts the variations in 

the PON-specific backscattering coefficient, bbp(555)/PON, as a function of POC/SPM for our whole dataset. The variations 

span 2 orders of magnitude with a clear trend for a large decrease of PON-specific backscattering coefficient with an increase 

in POC/SPM (R = 0.85) which represents an increase in the proportion of organic particles in the suspended particulate matter. 

For data corresponding to mineral-dominated particulate assemblages (POC/SPM < 0.12), the median value of bbp(555)/PON 485 
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= 9.91 × 10-4 m2 mg-1. The median drops by a factor of about 9 to a value of 1.07 × 10-4 m2 mg-1 for data encompassing the 

organic-dominated assemblages (POC/SPM > 0.28). To first order, this trend is attributable to the fact that while organic 

particles contribute to both PON and bbp, the mineral particles contribute only to bbp. Overall, these results support the notion 

that, similar to the POC-specific particulate backscattering coefficient, the PON-specific particulate backscattering coefficient 

is also strongly dependent on particulate composition. 490 

 

Figure 7. (a) Relationships between PON and bbp(555) for different datasets as indicated with black, dark blue, red, and green colors 

corresponding to the whole dataset (WD), open-ocean dataset (OOD), Arctic Ocean dataset (AOD) , and coastal-water dataset 

(CWD), respectively. The solid dark blue, red, and green lines represent the best fit power functions obtained from Model-II linear 495 
regression on log10-transformed data. The solid black line represents the best fit 3rd-degree polynomial function. For comparison, 

data in light blue from Fumenia et al. (2020) are shown after conversion of measured bbp(700) to bbp(555) using a -1 spectral 

dependency. The standard deviation of the best fit coefficients, A and B, is indicated. (b) Comparison of algorithm-derived and 

measured PON where the algorithm is the black line in panel (a) for the whole dataset WD. The black solid line is the best-fit function 

obtained from Model-II linear regression on log10-transformed data. The dashed line represents the 1:1 line. (c) Scatter plot of 500 
bbp(555)/PON vs. POC/SPM. The red vertical lines refer to the threshold values of POC/SPM of 0.12 and 0.28 which delimit the 

mineral-dominated from mixed particulate assemblages and mixed from organic-dominated particulate assemblages, respectively 

(Stramski et al., 2023). Panels (a) and (b) of the figure include the statistical indicators (see Sect. 2.4 for details). 
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3.4 Relationships Between PON and Absorption Coefficients 

We now turn to relationships between PON and absorption coefficients, specifically the total particulate absorption coefficient, 505 

ap(λ), and its phytoplankton aph(λ) and non-algal ad(λ) components. Figure 8a,b depicts data of PON vs. ap(λ) for two selected 

light wavelengths, 442 and 510 nm. In contrast to results for bbp(555) (Fig. 7a), the best-fit power functions for PON vs. ap(λ) 

are similar for the whole dataset WD and its subsets OOD, AOD, and CWD considered separately. This result indicates a 

relatively weak sensitivity of ap-based PON algorithms to natural variability observed across diverse marine bio-optical 

environments. For WD the determination coefficient R2 = 0.82 which is much higher compared with 0.63 for the relationship 510 

based on bbp(555). Also, the scatter of all data points around the best-fit functions of PON vs. ap(442) or ap(510) is largely 

reduced compared to the relationship of PON vs. bbp(555). The best-fit power functions for the whole dataset WD are: 

 

PON = 152.42 (± 9.50) ap(442)0.65 (± 0.02)                                                                   (4) 

PON = 254.27 (± 19.62) ap(510)0.64 (± 0.02)                                                                 (5) 515 

 

It is also notable that if the data subsets OOD, AOD, and CWD are considered separately, the relationships between PON vs. 

ap(λ) are strongest for the open-ocean dataset (R2 = 0.86 or 0.89) and progressively weaken through the Arctic to the coastal-

water dataset (for the latter R2 = 0.60 or 0.58; Fig. 8a,b). 

Figure 8c,d supports a reasonably good agreement between PON derived from the ap-based algorithms and measured PON 520 

over the whole range of variability observed within the WD dataset. The best-fit regression functions of algorithm-derived vs. 

measured PON do not exhibit large deviations from the 1:1 line. The aggregate bias is negligibly small with MdR = 1 or 1.02. 

For all data in WD, ap(442) and ap(510) reproduce the PON variability with MdAPD values slightly below 30.5 %, which is 

an improvement compared with 35.9 % for the PON estimation from bbp(555). 
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Figure 8. (a) Relationships between PON and ap(442) for different datasets as indicated with black, dark blue, red, and green colors 

corresponding to the whole dataset (WD), open-ocean dataset (OOD), Arctic Ocean dataset (AOD), and coastal-water dataset 

(CWD), respectively. The solid lines represent the best-fit power functions obtained from Model-II linear regression on log10-530 
transformed data. The standard deviation of the best fit coefficients, A and B, is indicated. (b) Same as panel (a) but for ap(510). (c) 

Comparison of algorithm-derived and measured PON where the ap(442)-based algorithm is the black line in panel (a) for the whole 

dataset WD. The black solid line is the best-fit function obtained from Model-II linear regression on log10-transformed data. The 

dashed line represents the 1:1 line. (d) Same as panel (c) but for the ap(510)-based algorithm. (e) Scatter plot of ap(442)/PON vs. 

POC/SPM. The red vertical lines refer to the threshold values of POC/SPM of 0.12 and 0.28 which delimit the mineral-dominated 535 
from mixed particulate assemblages and mixed from organic-dominated particulate assemblages, respectively (Stramski et al., 2023). 

(f) Same as panel (e) but for ap(510)/PON. Panels (a), (b), (c), and (d) of the figure include the statistical indicators (see Sect. 2.4 for 

details). 

 

Figure 8e,f shows that the PON-specific particulate absorption coefficients, ap(442)/PON and ap(510)/PON, exhibit 540 

variations spanning more than 1 order of magnitude with a decreasing trend associated with an increase in POC/SPM (R = 

0.66 and 0.63 for two selected light wavelengths, 442 and 510 nm, respectively). The trend is accompanied by about 3-fold 

decrease in the median value of PON-specific ap(λ), for example the median of ap(510)/PON decreases from 5.5 × 10-2 m2 mg-

1 to 1.6 × 10-2 m2 mg-1 as the composition of particulate matter changes from mineral dominated to organic dominated. While 

the variations in PON-specific ap(λ) have impact on the ability to predict PON from ap(λ), these effects are weaker compared 545 

to the case of particulate backscattering coefficient. 

Figure 9 depicts similar results to Fig. 8 but for the phytoplankton absorption coefficients, aph(442) and aph(510). Although 

PON is associated with both phytoplankton and non-algal organic particles and the experimental determinations of aph(λ) are 

intended to represent the light absorption only by phytoplankton pigments, Fig. 9 shows that aph(λ) has the ability to predict 

PON which is comparable to the total particulate absorption coefficient ap(λ). The best-fit functions for the whole dataset WD 550 

are (Fig. 9a,b): 

 

PON = 220.73 (± 16.96) aph(442)0.67 (± 0.02)                                                                   (6) 

PON = 359.60 (± 31.47) aph(510)0.64 (± 0.02)                                                                   (7) 

 555 

For these aph-based algorithms, the statistical metrics based on comparisons of algorithm-derived and measured PON (Fig. 

9c,d) are very similar to those for ap-based algorithms (Fig. 8c,d). For example, the MdR values remain very close to 1 and 

MdAPD is slightly below 30 %. When separate subsets of data are considered, the relationship between PON and aph(λ) is 

strongest for the open-ocean and Arctic datasets and weaker for the coastal-water dataset. As expected, the PON-specific 

phytoplankton absorption coefficient is weakly correlated with the proportion of organic particles in the suspended particulate 560 

matter (R = 0.47 and 0.46 for two selected light wavelengths, 442 and 510 nm, respectively, figure not shown). 
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Figure 9. (a) Relationships between PON and aph(442) for different datasets as indicated with black, dark blue, red, and green colors 

corresponding to the whole dataset (WD), open-ocean dataset (OOD), Arctic Ocean dataset (AOD), and coastal-water dataset 565 
(CWD), respectively. The solid lines represent the best-fit power functions obtained from Model-II linear regression on log10-

transformed data. The standard deviation of the best fit coefficients, A and B, is indicated. (b) Same as panel (a) but for aph(510). (c) 

Comparison of algorithm-derived and measured PON where the aph(442)-based algorithm is the black line in panel (a) for the whole 

dataset WD. The black solid line is the best-fit function obtained from Model-II linear regression on log10-transformed data. The 

dashed line represents the 1:1 line. (d) Same as panel (c) but for the aph(510)-based algorithm. Each panel of the figure includes the 570 
statistical indicators (see Sect. 2.4 for details). 

 

 

 

 575 
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In contrast to ap-based and aph-based PON algorithms, the PON vs. ad(λ) relationships are not as strong although they exhibit 

less inter-dataset variability compared to bbp-based relationships (Fig. 10a,b). In particular, the slope of the best-fit functions 

for the open-ocean dataset (OOD) differs significantly from the best-fit functions for the AOD and CWD datasets. The best-580 

fit functions for the whole dataset WD are: 

 

PON = 223.29 (± 21.18) ad(442)0.55 (± 0.02)                                                                   (8) 

PON = 351.94 (± 42.41) ad(510)0.57 (± 0.02)                                                                   (9) 

 585 

but these ad-based algorithms are inferior to ap-based and aph-based algorithms for estimating PON across a wide dynamic 

range of PON and IOPs observed within the whole dataset. Figure 10c,d shows increased uncertainty of PON predicted from 

Eqs.(7) and (8) for all data included in WD, which is manifested especially through the increased values of MdB, MdAPD, 

MdSA, and RMSD. Variations in the particulate composition, as parameterized by POC/SPM ratio, exert a similar influence 

on the ad(λ)/PON ratio (R = 0.67 and 0.61, for two selected light wavelengths, 442 and 510 nm, respectively, Fig. 10e,f) to the 590 

case of the ap(λ)/PON ratio (Fig. 8e,f). 

 

 

 

 595 

 

 

 

 

 600 
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Figure 10. Same as Figure 8 but for the non-algal particulate absorption coefficients ad(442) and ad(510). 605 
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5 Concluding Remarks 

The analysis of empirical relationships between PON and particulate IOPs indicate that the total particulate, ap(λ), and 

phytoplankton, aph(λ), absorption coefficients have potential to be used as predictive variables in IOP-based algorithms for 

estimating PON over a wide range of oceanic environments. Specifically, the analysis of near-surface measurements from 

various open ocean and coastal regions including Arctic waters show consistent relationships of PON vs. ap(λ) or vs. aph(λ) 610 

across datasets collected in different marine bio-optical environments. For the whole dataset considered in this study to 

formulate the ap-based and aph-based algorithms in the form of power functions, a median absolute percent difference between 

the algorithm-derived and measured PON is slightly less than 30 %. The relationships of PON vs. non-algal particulate 

absorption coefficient, ad(λ), or vs. particulate backscattering coefficient, bbp(λ), are weaker, especially when a wide dynamic 

range of PON and IOPs within the whole dataset is considered. However, for the subset of data from open ocean waters, our 615 

results indicate that bbp(555) can serve as a reasonably good proxy of PON and this result is consistent with earlier data from 

a geographically more restricted region of the western tropical Pacific (Fumenia et al., 2020). 

To further support these conclusions, a comparative assessment of the goodness-of-fit associated with the different versions 

of IOP-based algorithms when evaluated with the whole dataset (WD) as well as its component subsets, open-ocean dataset 

(OOD), Arctic Ocean dataset (AOD), and coastal-water dataset (CWD) is presented in Fig. 11. This figure illustrates the areas 620 

of polygons created by six statistical indicators which include R, S, MdB, MdAPD, MdSA, and RMSD after appropriate 

normalization (Sect. 2.4). The size of the polygon area is related to quality of goodness-of-fit for a given algorithm as evaluated 

with its development dataset. As the area of polygon becomes smaller, the overall representation of PON variability by the 

algorithm improves, and hence the algorithm has greater potential for better performance. Figure 11 supports the conclusion 

that the ap-based and aph-based algorithms best represent the PON variability over a large dynamic range within the whole 625 

dataset WD as well as within separate data subsets OOD, AOD, and CWD. The bbp-based algorithm may perform reasonably 

well only in open ocean waters. This result can be relevant to efforts aiming at estimation of PON from optical sensors deployed 

on in situ autonomous platforms such as BGC-Argo floats. 

Given the relative scarcity of concurrent PON and IOP measurements across a wide range of marine bio-optical 

environments, in the present study all available data were used to examine and formulate the PON vs. IOP relationships and 630 

no independent data were available for validation. In general, the performance of the algorithms is limited by the variability in 

the relationships between PON and particulate IOPs which, in turn, is associated with multiple factors, such as variations in 

the composition and size distribution of suspended particulate matter, which drive variations in PON-specific IOP coefficients. 

In this study we demonstrate these effects by showing the variations in PON-specific IOP coefficients with changes in 

POC/SPM ratio that provides information about relative proportions of organic and mineral particles. Accounting for such 635 

variability appears desirable if further improvements are to be achieved in the performance of optically-based PON algorithms 

across diverse oceanic environments. This research avenue has been recently described in relation to POC algorithms (Stramski 

et al., 2023; Koestner et al., 2024). To further support this research, there is a clear need to collect more concurrent 
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measurements in diverse aquatic environments of seawater optical properties and various characteristics of suspended particles 

including the measures of particulate concentration such as PON, POC, and SPM as well as some measures of particle size 640 

and composition which also play important roles in bio-optical variability. The availability of more extensive datasets can 

serve the purpose of both the improved algorithm development and validation with independent data. 

 

 

Figure 11. Radar plots summarizing the performance of the IOP-based algorithms for deriving PON. The IOPs(λ) considered are 645 
the bbp(555) (blue line), ap(442) (red line), aph(442) (yellow line), and ad(442) (purple line). The smallest area of the polygon associated 

with each algorithm represented in the radar plot corresponds to the best performance. The coefficient of correlation, R, Slope, S, 

Root Mean Square Deviation, RMSD, Median Bias, MdB, Median Absolute Percentage Difference, MdAPD, and Median Symmetric 

Accuracy, MdSA, subject to appropriate normalization (see Sect. 2.4) are indicated (a) for the WD, (b) OOD, (c) AOD, and (d) CWD 

datasets. 650 
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