

1	Water Vapor Transport and its Influence on Water Stable Isotope in
2	Dongting Lake Basin
3	Xiong Xiao ¹ , Xinping Zhang ^{1,2*} , Zhuoyong Xiao ¹ , Zhongli Liu ¹ , Dizhou Wang ¹ ,
4	Cicheng Zhang ¹ , Zhiguo Rao ¹ , Xinguang He ^{1,2} , Huade Guan ³
5	¹ College of Geographic Science, Hunan Normal University, Changsha 410081, China
6	² Key Laboratory of Geospatial Big Data Mining and Applications in Hunan Province,
7	Hunan Normal University, Changsha 410081, China
8	³ College of Science and Engineering, Flinders University, Adelaide SA 5001, Australia
9	ABSTRACT: Understanding water vapor sources and transport paths is essential for
10	assessing the water cycle and predicting precipitation accurately. Utilizing water vapor
11	diagnosis and calculations, this study determined the water vapor sources and transport
12	paths leading to precipitation in the Dongting Lake Basin in four seasons (represented
13	by January, April, June, and October). In January, the water vapor generating
14	precipitation originated from the Arabian Peninsula, driven by the southern branch of
15	the westerlies over the southern side of the Tibetan Plateau, along the northern side of
16	the Indian Peninsula through southwest China to reach the Dongting Lake Basin. In
17	April, two transport paths emerged: one aligned closely with the January transport path
18	but the location shifted slightly northward by one degree of latitude, and another was
19	driven by the weak subtropical high over the southwestern Pacific, bringing moist air
20	from the western Pacific via the South China Sea and Indochinese Peninsula. In June,
21	the Dongting precipitation sourced from the northern branch of the South Indian Ocean

^{*} Corresponding author. Tel.: +86-13308486020; E-mail address: zxp@hunnu.edu.cn

- 22 subtropical high, crossed the equator and transported through various water bodies to 23 southwestern China, finally reaching the basin. October saw a water vapor transport path from the western Pacific, crossing the South China Sea, and entering the Dongting 24 Lake Basin influenced by the East Asian monsoon system. In different seasons, the 25 26 variations in water stable isotopes along water vapor transport paths adhered to Rayleigh fractionation and water balance principles. These findings highlight the 27 28 impact of atmospheric circulation on precipitation and isotopes, providing a framework 29 for understanding water vapor isotope mechanisms and reconstructing past atmospheric 30 conditions.
- 31 **Keywords:** Dongting Lake Basin; Water vapor sources; Transport paths; Precipitation
- 32 isotopes; Precipitation amount.

33 Significance Statement

34 This research explores how water vapor transports and contributes to precipitation in the Dongting Lake Basin throughout different seasons. Understanding these paths is 35 crucial because it helps us predict and manage water resources better, which is vital for 36 37 agriculture, ecosystems, and communities relying on this water. By identifying the origins and paths of water vapor, we gain insights into how global climate patterns 38 influence local weather. This knowledge is not only critical for accurate weather 39 forecasting but also for preparing for future climate changes. Our findings highlight the 40 41 complex interactions between the atmosphere and water cycle, offering a clearer picture of how seasonal shifts in atmospheric circulation impact regional precipitation patterns. 42

43 **1. Introduction**

44	Diagnosing water vapor sources and analyzing water vapor transport are routine
45	and foundational tasks, particularly within hydrometeorological services (Gimeno et al.,
46	2020; Xu et al., 2020). A correct understanding of water vapor sources and transport is
47	crucial for accurately evaluating the hydrological cycle and effectively predicting
48	precipitation. For instance, in weather forecasting for the East Asian region, an essential
49	condition for the occurrence of precipitation is the presence of sufficiently warm and
50	moist air from low latitudes (Barker, et al., 2015; Tang et al., 2015; Hu et al., 2021).
51	Moreover, the primary cause of meteorological drought in the East Asian monsoon
52	region is often attributed to an anomalous decrease in water vapor sourced from the
53	Bay of Bengal (He et al., 2022; Liu et al., 2023). Additionally, studies have shown that
54	the abundance of stable isotopes in speleothems is related to monsoon intensity and is
55	consequently linked to water vapor transport (Rao et al., 2013; 2016; Liang et al., 2020).
56	Over the past few decades, the employment of diverse mathematical models has
57	been the crucial approach to track and deduce atmospheric water vapor sources and
58	transport paths (Gimeno et al., 2020; Xu et al., 2020; Pranindita et al., 2022; Lekshmy
59	et al., 2022). For instance, Pranindita et al. (2022) employed the water vapor tracking
60	model WAM-2layers to trace back the water vapor sources during heatwaves in
61	northern, western, and southern Europe, the reasons for the reduction of the local
62	precipitation can be attributed to a significant reduction in water vapor supply from the
63	North Atlantic due to anticyclonic patterns, along with the increased water vapor fluxes
64	from eastern Eurasia and local regions. Utilizing the Lagrangian model FLEXPART
65	v9.0, Pérez-Alarcón et al. (2023) identified precipitation water vapor sources associated

66	with the development of Indian Ocean tropical cyclones. Results showed that the water
67	vapor sources and transport mechanisms were different during different lifecycle stages
68	of tropical cyclones. Among numerous methods, the use of HYSPLIT for tracking water
69	vapor sources is widespread, which employs backward trajectory calculations and
70	atmospheric wind field information to derive water vapor transport trajectories at given
71	heights during a precipitation event, making it commonly used for tracing water vapor
72	during short-duration precipitation events (Draxler and Hess, 1998; Esquivel-
73	Hernández et al., 2019; Nie and Sun, 2022; Liu et al., 2023). However, due to inherent
74	model structure and tracking principles, derived water vapor transport paths at different
75	heights may vary or even be opposite. Moreover, this method cannot ascertain whether
76	the tracked water vapor indeed causes precipitation, nor can it provide information on
77	the magnitude of water vapor transport (Wu et al., 2015; Wu et al., 2022; Deng et al.,
78	2024).

With the continuous improvement of observational techniques and analytical 79 80 methods, utilizing reanalysis data to determine the water vapor sources that cause precipitation has become a common practice (Sun et al., 2011; Hoffmann et al., 2019; 81 Guo et al., 2019). For instance, Sun et al. (2011) investigated the climatic characteristics 82 83 and decadal variations in water vapor transport in Eastern China based on NCEP/NCAR reanalysis data from 1979 to 2009. The results revealed that the variability in water 84 vapor transport in the region is attributed to the combined influences of the Indian 85 summer monsoon and the East Asian summer monsoon. Based on the dataset from 86 ERA5 and isoGSM2, Xiao et al. (submitted) found a strong positive correlation 87

88	between seasonal precipitation and seasonal water vapor budget in the Changsha region.
89	They noted that southwestward water vapor transport contributes significantly to water
90	vapor input in all seasons, and only southwestward water vapor flux exhibits a highly
91	significant positive correlation with regional precipitation amount. Although water
92	vapor input from the northwest direction exists, there is no correlation between water
93	vapor transport in that direction and water vapor budget or precipitation amount, while
94	it even shows a negative correlation in some cases. Since the direction of water vapor
95	transport has an important influence on regional precipitation, it is necessary to reveal
96	the influences of atmospheric circulation such as the water vapor source regions and
97	water vapor transport paths, which determine the water vapor transport direction.

Water vapor transport controlled by atmospheric circulation not only determines 98 99 precipitation events but also directly influences the precipitation isotopes, thus analyzing the water vapor sources and water vapor transport paths, as well as their 100 influences on stable isotopes under different seasons, can elucidate the mechanisms 101 influencing the atmospheric stable isotopes (Zhou et al., 2019; Dahinden et al., 2021; 102 103 Zhan et al., 2023). For instance, Risi et al. (2010) conducted an analysis of water vapor and precipitation isotopes in the Sahelian region by combining water vapor budget and 104 water vapor transport calculations, revealing that the isotopic composition of 105 precipitation and atmospheric water vapor in the region is controlled by the intensity of 106 air dehydration and changes in convection. Similarly, Sengupta et al. (2006) quantified 107 the influences of different water vapor source regions on precipitation in the northern 108 Indian monsoon region, finding that the isotopic composition of precipitation in the 109

110	region is influenced by changes in water vapor source and atmospheric circulations over
111	India. Moreover, Zhou et al. (2019) separately computed the correlations between $\delta^{18}O$
112	values of precipitation at different sites and found that during the prevalence of the
113	summer monsoon (April to September) and winter monsoon (October to March), the
114	key upstream regions influencing the precipitation isotopes in the Dongting Lake Basin
115	located in south-central China are the Bay of Bengal and southwestern China,
116	respectively. However, as the critical regions influencing regional precipitation isotopes
117	may not necessarily be the water vapor source regions, these studies are yet to
118	definitively determine the water vapor source regions and water vapor transport paths.
119	Existing studies indicate that in the East Asian monsoon region, including the
120	Dongting Lake Basin, differences in the water vapor sources and transport direction
121	during different seasons are the primary drivers of seasonal variations in precipitation
122	isotopes (Araguás-Araguás et al., 1998; Zhang et al., 2016; Wei et al., 2018; Chiang et
123	al., 2020). Typically, during the summer monsoon, prevailing southeast or southwest
124	winds dominate the East Asian monsoon region, with water vapor for precipitation
125	originating from low-latitude oceans (Barker, et al., 2015; Wu et al., 2015; Tang et al.,
126	2015), while precipitation isotopes are significantly depleted influenced by intense
127	rainout effects along the water vapor transport paths during this period (Zhou et al.,
128	2019; Wu et al., 2022). Conversely, during the winter monsoon, northwest or northeast
129	winds prevail in the East Asian monsoon region, by simple deduction, the precipitation
130	isotopes should be more enriched if water vapor for precipitation is carried by westerlies
131	or originates from the evaporation of inland regions (e.g., Liu et al., 2011; Wu et al.,

132	2015; Shi et al., 2021). However, both actual observations from the Global Network of
133	Isotopes in Precipitation (GNIP) and simulations from isotope-enabled General
134	Circulation Models (isoGCMs) consistently demonstrate that, whether during the
135	summer or winter monsoon, the spatial distribution of precipitation isotopes in the East
136	Asian monsoon region exhibits significant latitudinal and continental effects-that is,
137	the precipitation isotopes become more depleted with the increases of latitude or
138	distance from the ocean (Feng et al., 2009; Zhang et al., 2012; Zhang et al., 2016).
139	Consequently, the observed water vapor transport during the summer monsoon aligns
140	with the spatial distribution of precipitation isotopes under the influence of latitudinal
141	and continental effects and is consistent with the Rayleigh distillation principle for
142	water stable isotopes, however, water vapor transport during the winter monsoon does
143	not follow the above spatial distribution and Rayleigh distillation principle (Tang et al.,
144	2015; Zhou et al., 2019; Wu et al., 2022).

Based on the understanding outlined above, a thorough investigation into the 145 seasonal variations in water vapor sources and transport paths for precipitation amount 146 147 and isotopes in the East Asian monsoon region is necessary, which may provide significant benefit for accurately understanding regional hydrological mechanisms and 148 elucidating regional climate characteristics. Focusing on the Dongting Lake Basin 149 within the East Asian monsoon area, and drawing upon fundamental theories of 150 meteorology, water vapor diagnostics, and water vapor calculations, this study aims to 151 (1) identify the water vapor sources and transport paths contributing to the Dongting 152 Lake Basin; (2) analyze the variations in meteorological factors and water stable 153

- isotopes along the water vapor transport paths; and (3) reveal the mechanisms by which 154
- water vapor sources and transport paths in the monsoon region influencing precipitation 155
- amounts and isotopes. 156
- 2. Methods and materials 157
- 158 2.1 Study site

Dongting Lake Basin, situated in the south-central region of China (Fig. 1), is a 159 160 basin characterized by a subtropical monsoon climate, marked by distinct four seasons 161 and moderate humidity. Winters are moist and cold, while summers are warm and moist. Based on historical meteorological data from 1960 to 2017, the Dongting Lake Basin 162 experiences an average annual precipitation of 1375.6.0 mm. During the colder months 163 (October to March of the following year), precipitation is relatively low due to the 164 influence of continental air masses. However, from late April onward, influenced by 165 maritime monsoons, precipitation increases significantly, accompanied by a notable 166 rise in temperature, with precipitation predominantly occurring from April to June (Liu 167

- (b) Dongting L 29°N 40 28°N N°72 20 No9 -700 r 10 m/s 109°E 110°E 111°E 112°E 113°E 114°E 10 m/s
- et al., 2023; Xiao et al., 2024). 168

80°F

100°E

169

120°E

140°E

sampling site in the East Asian Monsoon Region. Note that the black arrow and red
arrow in subplot (a) represent the average wind field at 850 hPa in January and June,
respectively.

174 The prevailing wind refers to the wind or wind direction that appears the most 175 frequently in a region during a specific period. Its occurrence is closely related to the atmospheric circulation of the region. In the East Asian monsoon region, which includes 176 177 the Dongting Lake Basin, the strong cold high-pressure system influences the winter 178 season, resulting in prevailing northerly winds near the surface, with northwesterly 179 winds prevailing in the basin as shown by the average wind field at the 850 hPa in January, i.e. the black arrow in Fig. 1a. In the summer, influenced by the Western Pacific 180 Subtropical High and the Indian Low, the near-surface winds are predominantly 181 southerly in the East Asian monsoon region, with southwesterly winds prevailing in the 182 183 Dongting Lake Basin as shown by the average wind field at the 850 hPa in June, i.e. the red arrow in Fig. 1a. Positioned at the convergence of the prevailing northerly winds, 184 prevailing southerly winds, and westerly winds, the Dongting Lake Basin experiences 185 186 complex precipitation processes and different precipitation amounts in different seasons and water vapor transport directions. This complexity results in high variability in the 187 precipitation isotope dynamics (Zhou et al., 2019; Xiao et al., 2024). 188

189 **2.2 Water samples collection and analysis**

From January 1, 2010 to December 31, 2022, precipitation sample sampling has
been conducted at the Meteorological Garden of Hunan Normal University in Changsha
(28°11'N, 112°56'E). The sampling protocol followed the meteorological observation

193	standards of China's meteorological departments, with samples collected at 08:00 and
194	20:00 Beijing time on precipitation days. Liquid precipitation was directly collected in
195	sealed 30 ml polyethylene bottles after measuring the precipitation amount, while solid
196	precipitation was first collected in air-tight plastic bags, then measured for meltwater
197	volume after natural melting, and transferred to the same size polyethylene bottles. All
198	the collected water samples were stored in a refrigerator at 0°C before testing.
199	Precipitation sample analysis from 2010 to 2013 was conducted using a Liquid
200	Water Isotope Analyzer (DLT-100, Model: 908-0008) from Los Gatos Research, USA;
201	subsequently, a new generation Liquid and Gas Dual-Mode Stable Isotope Analyzer
202	(IWA-35EP, Model: 912-0026-1000) from the same company was used from 2014 to
203	2022. The oxygen and hydrogen stable isotope ratio in the water samples were
204	expressed in per mil (‰) deviations relative to the Vienna Standard Mean Ocean Water
205	(V-SMOW), calculated using the equation:

206
$$\delta^2 \text{H or } \delta^{18} \text{O} = \begin{bmatrix} R_s \\ R_{\text{V-SMOW}} \end{bmatrix} \times 1000$$
(1)

In the equation, R_s and R_{V-SMOW} represent the oxygen (or hydrogen) stable isotope ratios $^{18}O/^{16}O$ (or $^{2}H/^{1}H$) in the water sample and in Vienna Standard Mean Ocean Water (V-SMOW), respectively. The testing precision averaged $\delta^{18}O \le 0.3\%$ and $\delta^{2}H \le 2\%$ during 2010-2013, and $\delta^{18}O \le 0.2\%$ and $\delta^{2}H \le 0.6\%$ during 2014-2022. If there were two precipitation samples in one day, the precipitation stable isotope values for that day were represented by the volume-weighted average. In total, 1668 precipitation days' $\delta^{18}O$ ($\delta^{2}H$) data were obtained over the past 13 years.

214 2.3 Ancillary data

215	ERAS, produced and released by the European Centre for Medium-Range Weather
216	Forecasts (ECMWF), is the fifth-generation global atmospheric reanalysis data product
217	from the center. Compared to its predecessor ERA-Interim, ERA5 incorporates a state-
218	of-the-art integrated forecasting system, integrates more historical observational data,
219	and reprocesses a large amount of assimilation data, resulting in significantly improved
220	accuracy (Albergel et al., 2018; Hoffmann et al., 2019). Additionally, ERA5 features
221	substantial improvements in temporal and spatial resolution. The temporal resolution
222	has increased from 6 hours in ERA-Interim to 1 hour, while the horizontal resolution
223	has improved from 79 km to 31 km, and the highest vertical extension reaches 0.01 hPa
224	altitude. These enhancements enable ERA5 to capture finer atmospheric details.
225	Moreover, the number of variables provided by ERA5 has increased from over 100 in
226	ERA-Interim to the current 240, and the data release delay has been reduced from 2-3
227	months in ERA-Interim to 5 days (Albergel et al., 2018; Hoffmann et al., 2019). The
228	reanalysis data used in this study include surface pressure, specific humidity at
229	1000/850/700/600/500/400/300 hPa, altitudinal wind, and meridional wind. The
230	horizontal resolution is 1°×1°, with a temporal step of 1 hour. This dataset was used to
231	calculate the vertical integral of water vapor fluxes into a specified region, introduced
232	in section 2.4.

Since the fractionation process of water stable isotopes in the atmosphere cannot be directly observed, analyzing the variations of atmospheric stable isotopes requires the application of stable isotopes fractionation theory along with the fundamental principles and methods of meteorology. In terms of research methods, the introduction

237	of atmospheric circulation models for water stable isotope cycling, such as isoGCMs,
238	provides a unique and effective tool. Among numerous isoGCMs, isoGSM (Isotope-
239	incorporated Global Spectral Model) exhibits relatively good simulation performance
240	in the East Asian region (Zhang et al., 2020; Kathayat et al., 2021). isoGSM is a stable
241	isotope GCM developed by Yoshimura et al. (2008), which integrated water isotope
242	cycling and fractionation processes into the Global Spectral Model at the Scripps
243	Experimental Climate Prediction Center. The driving factors include sea surface
244	temperature, sea ice, and temperature and horizontal wind fields in 28 vertical layers.
245	This model addresses the Gibbs phenomenon in atmospheric circulation models and
246	performs better in simulating water vapor transport processes in arid and high-altitude
247	regions (Yoshimura et al. 2008; Bong et al., 2024). The second-generation isoGSM2
248	has a higher temporal and spatial resolution in simulating water vapor and precipitation
249	isotopes compared to the first-generation (Chiang et al., 2020). It utilizes the NECP-R2
250	(National Centers for Environmental Prediction Reanalysis 2) reanalysis dataset and
251	abandons the NDSL (Non-iteration Dimensional-split Semi-Lagrangian) advection
252	scheme used in the previous generation. By dynamically correcting the model output
253	using reanalysis data, isoGSM2's simulation results are closer to actual atmospheric
254	conditions, thereby improving the accuracy of water vapor and precipitation isotope
255	simulations (Bong et al., 2024).

The water stable isotope simulation data used in this study are from isoGSM2 256 (January 1979 to December 2017, totaling 468 months), including monthly 257 precipitation amount (P), stable isotopes (δ^2 H and δ^{18} O) in the precipitation and vertical 258

259 integral of water vapor ($\delta^2 H_v$, $\delta^{18} O_v$, $\delta^2 H_p$, and $\delta^{18} O_p$), and the calculated deuterium 260 excess in water vapor and in precipitation (Ex d_v and Ex d_p). The spatial scale ranges

- 261 from 30°S to 70°N and 0° to 280°E, with a horizontal resolution of 1°×1° (Chiang et
- 262 al., 2020; Liu et al., 2023).
- 263 2.4 Model Analysis

The water vapor transport flux serves as a metric for both the magnitude and direction of water vapor transport, representing the mass of water vapor passing through a unit cross-section per unit of time (Sun et al., 2011). The specific calculation equation is as follows:

268
$$Q = \frac{1}{g} \int_{p_i}^{p_s} V q \mathrm{d}p \tag{2}$$

Where the meridional component Q_{λ} and the latitudinal component Q_{φ} of the water vapor transport flux are given by:

271
$$Q_{\lambda} = \frac{1}{g} \int_{p_{t}}^{p_{s}} uqdp \qquad (3)$$

272
$$Q_{\varphi} = \frac{1}{g} \int_{p_t}^{p_s} v q dp$$
(4)

Here, Q represents the vertical integral of water vapor flux (kg·m⁻¹·s⁻¹), including the meridional component Q_{λ} and the latitudinal component Q_{φ} . V denotes the vector wind speed (m·s⁻¹), including the latitudinal wind speed (v) and meridional wind (u), qrepresents specific humidity (kg·kg⁻¹), g is the acceleration due to gravity (m·s⁻²), p_s is the lower boundary pressure (hPa), and p_t is the upper boundary pressure (hPa). In the actual atmosphere, water vapor content above 300 hPa is minimal, thus p_t is set to 300 hPa when calculating the vertical integral of water vapor flux through the entire

atmospheric column.

281	3.	Results

- 282 3.1 Seasonal Variation Characteristics of Precipitation Isotopes in the Changsha
- 283 Region

300

284 The monthly weighted average and total monthly calculations were performed on the daily δ^{18} O_p, daily Ex_d_p, and daily *P* collected from the Hunan Normal University 285 286 and the Changsha National Meteorological Reference Station, yielding the seasonal variations of multi-year monthly weighted average $\delta^{18}O_p$, monthly weighted average 287 Ex d_p, and monthly average P in the Changsha region (Fig. 2a). The δ^{18} O_p, Ex d_p, and 288 289 P in Changsha exhibited significant seasonal variations—that is, the maximum value of $\delta^{18}O_p$ appeared in March and April, both at -3.57%, but did not correspond to the 290 months with the lowest precipitation amounts. The three lowest values of $\delta^{18}O_p$ 291 occurred in July, August, and September, respectively at -9.45‰, -8.93‰, and 292 -9.42%, with a simple arithmetic average of -9.27%, which also did not correspond 293 to the months with the highest precipitation amounts. The maximum value of Ex d_p 294 295 (20.05‰) appeared in January, and the minimum value (9.29‰) appeared in August, both of which were months with relatively low precipitation. Due to these significant 296 differences in the phases of precipitation isotopes and amounts, it is apparent that 297 explaining the variations in local precipitation stable isotopes solely based on the 298 299 seasonal variations in local precipitation amounts is insufficient.

302 Fig. 2 Comparisons between seasonal variations of precipitation $\delta^{18}O(\delta^{18}O_p)$,

303precipitation excess deuterium (Ex_d_p) , and precipitation amount (P) measured at the304Changsha station (a) and simulated by isoGSM2 or driven from the RA5 reanalysis305dataset at the corresponding grid (b).

Monthly weighted average calculation was performed on the monthly $\delta^{18}O_p$ and 306 307 Ex_dp simulated by isoGSM2 at the Changsha grid, and the monthly average calculation was performed on the P from ERA5, yielding the seasonal variations of 308 simulated monthly weighted average $\delta^{18}O_p$ and Ex_d_p and ERA5 monthly average P at 309 the Changsha grid (Fig. 2b). The simulated and calculated $\delta^{18}O_p$, Ex_d_p, and P in 310 311 Changsha all effectively reproduced the seasonal variations of the corresponding observations. The root mean square errors (RMSE) between simulated and observed 312 values were 0.54‰, 2.78‰, and 59.7 mm, respectively. Corresponding to the observed 313 seasonal variations, the two maximum values of the simulated $\delta^{18}O_p$ occurred in March 314 315 and April, at -3.29% and -3.31%, respectively, with very small differences from the observed values. The three lowest values of simulated $\delta^{18}O_p$ also occurred in July, 316 August, and September, at -8.84‰, -9.92‰, and -9.00‰, respectively, with a simple 317 318 arithmetic average of -9.25‰, which was consistent with the observed values. The maximum value of simulated Ex_dp (16.05‰) appeared in January, and the minimum 319

value (7.97‰) appeared in August (Fig. 2b), both consistent with the observed values
(Fig. 2a). These comparisons indicated that isoGSM2 exhibited strong capabilities in
simulating the spatial distribution and temporal variations of atmospheric water stable
isotopes.

324 To analyze the seasonal variation in the atmospheric water vapor transport and its influences on the regional precipitation isotopes, and taking into account the hydro-325 326 climatic characteristics of the study region (Fig. 2), four representative months 327 including January, April, June, and October were selected as the study seasons. Among 328 these representative months, January in the Changsha region represents winter, characterized by the lowest temperatures and relatively low precipitation throughout 329 the year. April signifies spring, with rapidly increasing precipitation amounts and 330 frequent fluctuations between warm and cold air masses. June represents the peak of 331 332 the summer monsoon season, with the highest monthly precipitation amount of the year. October represents autumn, characterized by clear and cool weather and the second-333 lowest precipitation throughout the year under the influence of the West Pacific 334 335 Subtropical High.

336 **3.2 Water Vapor Transport in the Dongting Lake Basin in Different Seasons**

337 **3.2.1** Average Water Vapor Transport Path in the Dongting Lake Basin in January 338 Based on the ERA5 reanalysis data, we calculated and plotted the spatial 339 distribution of the 500 hPa average geopotential height (H_{500}) and average Q (Fig. 3a), 340 multi-year average P (Fig. 3b) in January. Moreover, based on the isoGSM2 simulation 341 data, we plotted the spatial distributions of the average $\delta^{18}O_v$ (Fig. 3c), $\delta^{18}O_p$ (Fig. 3d),

342 Ex_d_v (Fig. 3e), and Ex_d_p (Fig. 3f) in January.

351	the East coast, and the strong Ural Ridge in the mid-high latitudes of 70°E to 90°E (Fig.
352	3a). Influenced by the northwest airflow behind the trough and ahead of the ridge, the
353	northwest winds prevailed in most parts of East Asia. In the Dongting Lake Basin
354	(highlighted in the red box in Fig. 3), influenced by the middle-latitude westerly belt,
355	water vapor transport mainly was from west to east. Under the control of the cold
356	continental high, precipitation was relatively low over the entire East Asia and South
357	Asia, while the regions with high P values were mainly distributed in the equatorial
358	convergence zone and the North Pacific located ahead of the East Asian Trough (Fig.
359	3b). Unlike most regions of the East Asian continent, the Dongting Lake Basin lied on
360	a wet tongue, benefiting from the Southwest Vortex in the eastern Tibetan Plateau (Lai
361	et al., 2023; Huang and Li, 2023).

The $\delta^{18}O_v$ and $\delta^{18}O_p$ in January exhibited significant continental effects (Figs. 3c 362 and 3d). Under the control of continental cold air masses, the centers of minimum $\delta^{18}O_{\nu}$ 363 and $\delta^{18}O_p$ values were located in the mid-high latitudes of Eastern Siberia. Due to the 364 influence of topography, the $\delta^{18}O_v$ tended to be negative over the Tibetan Plateau. These 365 two low-value regions correspond to the cold pole of Eurasia and the Earth's third pole, 366 respectively. Regions enriched in atmospheric water isotopes were mainly distributed 367 over vast oceans and Western Asia. In the equatorial convergence zone, due to the 368 rainout effects, both water vapor isotopes and precipitation isotopes were depleted to 369 some extent. Along with the surrounding the Dongting Lake Basin, the abundance of 370 371 water vapor isotopes and precipitation isotopes in the Dongting Lake Basin were comparable to those of the middle-low latitude oceans in January. 372

070

3/3	The spatial distributions of the Ex_{u_v} and Ex_{u_p} exhibited the characteristics of
374	low in the ocean and high in the land, but the regions where their maximum values
375	occurred did not completely correspond (Figs. 3e and 3f). The maximum value of the
376	Ex_d_{v} mainly appeared in Eastern Siberia and the Tibetan Plateau, showing a
377	meridional distribution from northeast to southwest, while the high values of the Ex_d_p
378	mainly occurred in mid-latitude inland regions, showing a latitudinal distribution from
379	west to east. The Ex_{d_v} and Ex_{d_p} values in the Dongting Lake Basin lay exactly in the
380	transition region from low to high values. Typically, the Ex_d_p largely depended on the
381	Ex_d_v , but processes such as condensation in clouds, secondary evaporation below
382	clouds, evaporation from underlying surfaces, and the exchange and diffusion of water
383	vapor isotopes could cause precipitation isotopes to deviate to varying degrees from
384	atmospheric water vapor isotopes (Zhang et al., 2016).

The motion distributions of the Ex. d. and Ex. d. ayhibited the abarestonistics of

In the Q field (Fig. 3a), a vector interpolation method was applied regarding the 385 Changsha site as the endpoint, as well as based on the drawing of streamlines, the 386 average water vapor transport path in January was obtained (black arrow lines in Fig. 387 388 3). This transport path originated near the Arabian Peninsula. Driven by the southern branch of the westerly stream jet on the southern side of the Tibetan Plateau, water 389 vapor transported along the southern side of the Tibetan Plateau, passed through 390 southwestern China via the northern part of the Indian Peninsula, and reached the 391 Dongting Lake Basin. It can be seen that this water vapor transport path was not 392 consistent with the prevailing wind direction in January as shown in Fig. 1a. Six series 393 of factors at the grid points along the water vapor transport path were derived from each 394

factor field in January, including the variations of $Q, P, \delta^{18}O_v, \delta^{18}O_p$, Ex d_v, and Ex d_p. 395 As shown in Fig. 4, both the Q and P were relatively low, while increased to some 396 extent due to the converging effect of Southwest Vortex after entering the Dongting 397 Lake Basin (Figs. 4a and 4b). Under the weak atmospheric meridional disturbances in 398 January, the changes in $\delta^{18}O_v$ and Ex d_v were minor, fluctuating slightly around -19.06‰ 399 and 18.16‰, respectively (Figs. 4c and 4e). Due to the low precipitation amount, the 400 $\delta^{18}O_p$ values were relatively positive in the first half of the water vapor transport path, 401 402 and then became more negative in the latter half with the enhanced rainout effect, while 403 the Ex d_p became more positive (Figs. 4d and 4f).

406

along the vapor transport path in January

407 **3.2.2** Average Water Vapor Transport Path in the Dongting Lake Basin in April

408 Based on the ERA5 reanalysis data and the isoGSM2 simulation data, the spatial

409	distributions of H_{500} , Q , P , $\delta^{18}O_v$, $\delta^{18}O_p$, Ex_d _v , and Ex_d _p were calculated and plotted
410	in April (Fig. 5). At the H_{500} field (Fig. 5a), the East Asian Trough and Ural Ridge were
411	still present in the mid-to-high latitudes. The East Asian mid-to-high latitude regions
412	were still influenced by the winter monsoon, while its intensity was significantly
413	weakened. In the mid-to-low latitudes, the Western Pacific subtropical high has
414	strengthened and expanded northward, with the ridge line located approximately near
415	15°N. A shallow trough appeared in the northern part of the Bay of Bengal, indicating
416	the beginning of tropical systems influencing the mid-to-low latitude regions of East
417	Asia. In the Dongting Lake Basin, influenced by the westerlies and low-latitude
418	atmospheric systems, the water vapor transport shifted to the domination by the
419	southwestward direction. Most continental regions of East Asia and South Asia
420	experienced a certain degree of precipitation increase, with the rainy band caused by
421	the intertropical convergence zone, previously located in the Southern Hemisphere,
422	moving to the Northern Hemisphere (Fig. 5b). The Dongting Lake Basin also entered
423	the spring flood season in April, while the Changsha region was situated in a center
424	with an above-average spring precipitation amount compared to the surrounding
425	regions in this period (Fig. 5b).

427 Fig. 5 Mean vapor transport paths to the Dongting Lake Basin and the spatial 428 distributions of Q with H_{500} (a), P (b), $\delta^{18}O_v$ (c), $\delta^{18}O_p$ (d), Ex d_v (e), and Ex d_p (f) in

429

426

April.

430 Compared to the situations in January, there were no major changes in the spatial 431 distributions of $\delta^{18}O_v$ and $\delta^{18}O_p$ in April (Figs. 5c and 5d). In the regions with low $\delta^{18}O_v$ 432 and $\delta^{18}O_p$ values, previously located in Eastern Siberia and the Tibetan Plateau, 433 atmospheric stable isotopes have significantly enriched. Due to temperature rise and 434 enhanced evaporation, the regions with high levels of $\delta^{18}O_v$ and $\delta^{18}O_p$ in the mid-to-

435	low latitudes showed continual increases in the $\delta^{18}O_v$ and $\delta^{10}O_p$ values. With the
436	strengthening of water vapor convergence in the Dongting Lake Basin, the $\delta^{18}O_{\nu}$ in the
437	Dongting Lake Basin showed significant increases in April, leading to an isotopic
438	enrichment in precipitation. Compared to the large-scale region, the water isotope
439	composition in the Dongting Lake Basin, was not significantly different from that of
440	the mid-to-low latitude ocean, indicating the controls by the maritime air masses (Figs.
441	5c and 5d).

In April, the spatial distributions of Ex_{d_v} and Ex_{d_p} were comparable to the 442 situations in January (Figs. 5e and 5f). The regions with high-value Ex d_v, previously 443 located in Eastern Siberia and the Tibetan Plateau, respectively, showed significant 444 reductions in range and intensity, but the regions with low-value Ex dv in the Western 445 Pacific expanded, thereby reducing the differences between land and sea. With the 446 447 continuous inland influx of maritime water vapor from the Western Pacific Ocean, the range of low-value regions of the Ex d_p has expanded. Influencing by the increasing 448 precipitation, the range of high-value regions of the Ex_dp in mid-latitude inland 449 450 regions has narrowed, but the intensity has increased to varying degrees, especially in West Asia. Finally, both the Ex_dv and Ex_dp in the Dongting Lake Basin showed 451 decreases, which were influenced by the gradually strengthening summer monsoon and 452 the situation of water vapor transport (Figs. 5e and 5f). 453

Based on the vector interpolation method, two water vapor transport paths were obtained regarding the Changsha site as the endpoint (Fig. 5a). The first water vapor transport path—that is, the Path I (represented by black arrow lines in Fig. 5), was

457 essentially consistent with the water vapor transport path in January, but it is slightly shifted northward by one degree of latitude. The second water vapor transport path-458 that is, Path II (represented by red arrow lines in Fig. 5), driven by the weak Western 459 Pacific subtropical high, guided warm and moist water vapor from the low latitudes of 460 461 the Western Pacific along the outer edge of the subtropical high, passing through the South China Sea and the Indochinese Peninsula and finally reached into the Dongting 462 463 Lake Basin. Corresponding data at the grid points along two water vapor transport paths were extracted and plotted for the Q, P, $\delta^{18}O_v$, $\delta^{18}O_p$, Ex d_v, and Ex d_p (Fig. 6). 464

466 Fig. 6 Mean variations of Q (a), P (b), $\delta^{18}O_v$ (c), $\delta^{18}O_p$ (d), Ex_d_v (e), and Ex_d_p (f)

465

along the vapor transport paths in April.

Along Path I, both the Q and P showed slight increases compared to the situations in January (Figs. 6a and 6b), with the average values in the first half of the water vapor transport path before entering the Dongting Lake Basin were 128.23 kg m⁻¹ s⁻¹ and 10.5

⁴⁶⁷

471	mm, respectively, still at relatively low levels. After entering the Dongting Lake Basin,
472	the average Q and P increased to 180.13 kg m ⁻¹ s ⁻¹ and 135.0 mm, respectively. Under
473	the transport of latitudinal water vapor, the $\delta^{18}O_v$ increased slightly from –15.83‰ to
474	–14.85‰, while the $\delta^{18}O_p$ decreased slightly from –2.06‰ to –3.28‰ (Figs. 6c and
475	6d). The corresponding Ex_d_v decreased from 16.45‰ to 14.26‰, and the Ex_d_p
476	decreased from 16.60‰ to 14.97‰, indicating the input of oceanic water vapor (Figs.
477	6e and 6f).

478 Along Path II, both the Q and P were significantly larger than those along the 479 latitudinal Path I (Figs. 6a and 6b), with the average values before entering the Dongting Lake Basin were 226.6 kg m⁻¹ s⁻¹ and 108.2 mm, respectively. After entering the 480 Dongting Lake Basin, these values increased to 269.2 kg m⁻¹ s⁻¹ and 148.6 mm, 481 respectively. The area where Q decreased significantly corresponds to a water vapor 482 divergence region at the southwest corner of the Indochinese Peninsula. Under the 483 meridional water vapor transport, the $\delta^{18}O_v$ increased from -18.21% to -14.86%, 484 while the $\delta^{18}O_p$ from -5.50% to -3.15% (Figs. 6c and 6d); correspondingly, the Ex d_v 485 486 decreased from 14.61‰ to 13.50‰, while the Ex d_p increased from 8.32‰ to 11.81‰ (Figs. 6e and 6f), following the variation rule of excess deuterium during water vapor 487 transport (Vasil'chuk, 2014). 488

489 **3.2.3** Average Water Vapor Transport Path in the Dongting Lake Basin in June

Based on the ERA5 reanalysis data and isoGSM2 simulation data, the spatial distributions of the average H_{500} , Q, P, $\delta^{18}O_v$, $\delta^{18}O_p$, Ex_d_v, and Ex_d_p were respectively calculated and plotted in June (Fig. 7). At the H_{500} field (Fig. 7a), the East

493	Asian Trough continues to stably exist in June, but the position of trough line shifted
494	eastward over the North Pacific Ocean. The high-pressure ridge in the eastern part of
495	the Ural Mountains weakened and shifted eastward over Lake Baikal. The rapidly
496	intensifying western Pacific subtropical high expanded westward and northward, with
497	its ridge line located at approximately 22~23°N, while the India-Burma Trough in the
498	northern Bay of Bengal strengthened continuously. The atmospheric circulation
499	situation indicated that most of East Asia, including the south of the Yangtze River, has
500	entered the prevailing period of summer monsoon (Fig. 7a). The warm and moist water
501	vapor from the Arabian Sea and the Bay of Bengal driven by the India-Burma Trough
502	as well as along the outer edge of the subtropical high from the western Pacific met the
503	cold air moving southward behind the East Asian Trough and thus generated an
504	extremely long rain belt spanning 20 degrees of latitude and 70 degrees of longitude
505	from India, through the Indochinese Peninsula, to southern China until central Japan
506	(Fig. 7b). In this rain belt, the three largest precipitation centers were located on the
507	west coast of India, the Thai-Myanmar border region, and the Jiangnan region of China.
508	The formation of the first two precipitation centers was related to terrain, while the
509	formation of the precipitation center in the Jiangnan region of China was related to the
510	convergence of warm and moist water vapor from low latitudes to this region (Fig. 7b).

26

514

June.

520	became narrowed, and the low δ^{10} O values in the Indonesia-Philippines region in the
521	western equatorial Pacific were associated with the enhanced water vapor convergence
522	(Figs. 7a, 7c, and 7d). The regional low $\delta^{18}O$ center previously present in the cold
523	season over the Tibetan Plateau had disappeared. In the Jiangnan region of China, the
524	convergence of water vapor from low-latitude oceans led to an isotopic enrichment in
525	water vapor, but the strong rainout effects caused an isotopic depletion in precipitation
526	(Figs. 7c and 7d). The spatial distributions of Ex_d_v and Ex_d_p in June showed no
527	significant differences compared to the situations in April (Figs. 5e, 5f, 7e, and 7f). The
528	high-value regions for the Ex_d_v and Ex_d_p were located in the region stretching from
529	western Asia through the Tibetan Plateau to southwestern China, as well as in the vast
530	oceanic region centered around the Philippines and Indonesia. Under the influence of
531	the summer monsoon, the difference in deuterium excess between East Asia and its
532	water vapor source-that is, the low-latitude ocean, remained relatively small (Figs. 7e
533	and 7f).

534 Based on the vector interpolation of the Q field (Fig. 7a), the water vapor transport path regarding the Dongting Lake Basin as the endpoint was determined in June (shown 535 by the black arrow lines in Fig. 7). This water vapor transport path originated from the 536 northern branch of the South Indian Ocean subtropical high, crossed the equator, and 537 transported through the Somali Sea, the Arabian Sea, the Indian Peninsula, the Bay of 538 Bengal, the Indochinese Peninsula, and entered the southwestern region of China, 539 finally reaching the Dongting Lake Basin. It can be seen that this water vapor transport 540 path was consistent with the prevailing wind direction in June as shown in Fig. 1a. The 541

542 corresponding Q, P, $\delta^{18}O_v$, $\delta^{18}O_p$, Ex_d_v, and Ex_d_p along the water vapor transport

543 path were extracted, and plotted in Fig. 8.

545 Fig. 8 Mean variations of Q (a), P (b), $\delta^{18}O_v$ (c), $\delta^{18}O_p$ (d), Ex_d_v (e), and Ex_d_p (f)

546

544

along the vapor transport path in June.

Along the water vapor transport path, the average Q and P were at their maximum 547 throughout the year, reaching 353.86 kg m⁻¹ s⁻¹ and 236.5 mm, respectively (Figs. 8a 548 and 8b). The three extreme values of the Q along the transport path, or in the process 549 of transitioning from the maximum to minimum values, correspond to three P extremes 550 located at the western coast of the Indian Peninsula, the border region between Thailand 551 and Myanmar, and the region around the Dongting Lake Basin (Fig. 7b), with the values 552 of the three P extremes of 535.1 mm, 627.8 mm, and 341.5 mm, respectively (Fig. 8b). 553 With continuous precipitation especially after experiencing heavy precipitation and the 554 simultaneous persistent rainout processes, the stable isotopes in both water vapor and 555

556

557 continuous water vapor supply from low-latitude oceans, there were no significant changes in both the Ex d_v and Ex d_p (Figs. 8e and 8f). 558 559 3.2.4 Average Water Vapor Transport Path in the Dongting Lake Basin in October The spatial distributions of the average H_{500} , Q, P, δ^{18} Ov, δ^{18} Op, Ex_dv, and Ex_dp 560 in October were shown in Fig. 9. A notable feature at the H_{500} field in October was the 561 562 expansion of the latitudinal westerlies toward lower latitudes (Fig. 9a). In East Asia, 563 westerly winds prevail in the inland regions north of approximately 30°N, while much 564 of the regions south of 30°N were still influenced by the subtropical high-pressure system. Compared to the peak period, the West Pacific subtropical high had 565 significantly weakened in autumn, and its main body had also retreated to the open sea. 566 However, a mesoscale anticyclone split from the high still controlled the Jiangnan 567 568 region of China including the Dongting Lake Basin, creating a climate characterized by clear and crisp autumn (Fig. 9a). Due to the disappearance of the India-Burma Trough 569 and influenced by the anticyclone circulation, the water vapor transport from the 570 571 southwest low-latitude oceans decreased significantly. In the Dongting Lake Basin, both the meridional and latitudinal water vapor transport were even less than the values 572 in January (Fig. 3a and 9a; Xiao et al., submitted). Apart from the autumn rains in 573 western China, precipitation was generally scarce in East Asia in this period, with the 574 575 rain belt shifting southward to lower latitudes corresponding to the convergence zone near the equator, with the largest precipitation regions located respectively south of the 576 577 Equator in the Indian Ocean, the Malay Peninsula, and north of the Equator in the

precipitation exhibit a trend of continuous depletion (Figs. 8c and 8d). However, due to

582

581 distributions of Q with H_{500} (a), P (b), $\delta^{18}O_v$ (c), $\delta^{18}O_p$ (d), Ex_d_v (e), and Ex_d_p (f) in

October.

583 Compared to the situations in June, there were no significant changes in the spatial 584 distribution of the $\delta^{18}O_v$ and $\delta^{18}O_p$ in October, but their differences between land and 585 sea as well as between high and low latitudes increased largely (Figs. 9c and 9d). The 586 stable isotopes in water vapor and precipitation were significantly depleted in Eastern

587	Siberia and the Tibetan Plateau, and accompanied by expansion of ranges. As a result,
588	the $\delta^{18}O_v$ and $\delta^{18}O_p$ showed a significant decrease in the inland regions north of
589	approximately 30°N, but unchanging in most regions south of 30°N. From the spatial
590	distributions in October, both the Ex_d_v and Ex_d_p over the ocean or on land showed
591	increases with varying degrees (Figs. 9e and 9f). The high-value regions of the Ex_d_{v}
592	were distributed along a line from the Arabian Peninsula, West Asia, the Tibetan Plateau,
593	to Eastern Siberia, with the maximum value located in the Tibetan Plateau. The high-
594	value region of Ex_d_p was distributed from the Arabian Peninsula, West Asia, the
595	Tibetan Plateau, to the Yunnan-Guizhou Plateau. With the weakening of the summer
596	monsoon, the Ex_d_v and Ex_d_p were not significantly different in East Asia including
597	the Dongting Lake Basin from those in the surrounding oceans.
598	Based on the vector interpolation of the Q field (Fig. 9a), the water vapor transport
599	path regarding the Changsha site as the endpoint was determined in October (indicated
600	by the black arrow line in Fig. 9). This water vapor transport path originated from the
601	western Pacific, passed through the South China Sea, flowed westward along the
602	easterly jet located in the south of the West Pacific Subtropical High and of the
603	anticyclonic circulation over the Jiangnan region in China, and finally entered the
603 604	anticyclonic circulation over the Jiangnan region in China, and finally entered the Dongting Lake Basin bypassing the southwest of the anticyclone. Although this water
603 604 605	anticyclonic circulation over the Jiangnan region in China, and finally entered the Dongting Lake Basin bypassing the southwest of the anticyclone. Although this water vapor path belonged to the latitudinal transport, the water vapor source originated from

The corresponding Q, P, $\delta^{18}O_p$, $\delta^{18}O_v$, Ex_d_v , and Ex_d_p along the water vapor 607 transport path were derived in October (Fig. 10). Under the stable atmospheric 608

609	circulation conditions, the average water vapor flux steadily decreased from
610	approximately 299.0 kg m ⁻¹ s ⁻¹ in the source region to 168.0 kg m ⁻¹ s ⁻¹ along the water
611	vapor transport path, and further below 100.0 kg m ⁻¹ s ⁻¹ after entering the Dongting Lake
612	Basin (Fig. 10a). The P values changed gradually along the water vapor transport path,
613	decreasing from the initial approximately 145 mm to below 100 mm in the Dongting
614	Lake Basin, and further to 60.5 mm in the Changsha region (Fig. 10b). Both the $\delta^{18}O_{\nu}$
615	and $\delta^{18}O_p$ values showed slow decreases as the ranges within 2.0‰ and 1.0‰
616	respectively (Figs. 10c and 10d). The Ex_{d_v} showed minor fluctuation, stabilizing at
617	approximately 16.8‰, while the corresponding Ex_d _p remained around 8.62‰ before
618	entering the Dongting Lake Basin. Due to the replenishment from the surface
619	evaporation, the Ex_d_p values increased to 11.60‰ after entering the Dongting Lake
620	Basin (Figs. 10e and 10f).

623

624 4. Discussion

625 4.1 The Influences of the Seasonality in Water Vapor Sources on the Precipitation

626 Isotopes.

The comparisons between the Q and $\delta^{18}O_p$ in the representative months indicated 627 628 that there seems to be no obvious correspondence between these two factors: the months with low Q would exhibit either high or low $\delta^{18}O_p$, e.g. January and October, 629 630 respectively (Figs. 3 and 9). Similarly, the months with high Q would exhibit either low or high $\delta^{18}O_p$, for example, June and April, respectively (Figs. 5 and 7). It has been 631 632 found that regardless of the season, the precipitation in the Dongting Lake Basin mainly originated from warm and moist water vapor in low latitudes (Figs. 3, 5, 7, and 9). 633 Therefore, whether the water vapor isotopes at the source regions and along the 634 transport path influence the downstream isotopes of precipitation or water vapor? To 635 636 reveal this causality, after considering the water vapor transport paths and the air mass properties of water vapor in the representative months, the regions corresponding to the 637 Arabian Peninsula (40°E~56°E, 16°N~28°N), the Arabian Sea (56°E~74°E, 638 10°N~20°N), the Bay of Bengal (80°E~98°E, 8°N~18°N), the western Pacific Ocean 639 (120°E~160°E, 6°N~20°N), the Dongting Lake Basin (110°E~114°E, 25°N~30°N), 640 and the inland regions of East Asia monsoon region (110°E~135°E, 42°N~55°N) were 641 labeled as Regions I, II, III, IV, V, and VI, respectively (Fig. 11). The average δ^{18} O and 642 Ex d of water vapor and precipitation for each representative region were calculated in 643 January, April, June, and October, respectively. Since the seasonal variations in the 644 $\delta^{18}O_v$ were similar to that in $\delta^{18}O_p$, Table 1 only provided the average $\delta^{18}O$ and Ex d 645

646 of water vapor for each representative region.

651

Fig. 11 Geographical distribution of representative regions

649 (Region I: Arabian Peninsula, Region II: Arabian Sea, Region III: Bay of Bengal,

- 650 Region IV: Western Pacific, Region V: Dongting Lake Basin, Region VI: Inland of the
 - East Asian monsoon region at middle and high latitudes)
- Not only in Regions I to V located at mid to low latitudes but also in Region VI 652 located in the mid to high latitude inland regions, there were significant seasonal 653 variations in the average $\delta^{18}O_v$ and Ex d_v (Table 1). The seasonal differences in the 654 $\delta^{18}O_v$ (the differences between the monthly maximum and minimum values) in these 655 six representative regions were 2.94‰, 3.34‰, 4.19‰, 5.06‰, 7.18‰, and 18.94‰, 656 respectively, with the largest seasonal difference in $\delta^{18}O_v$ appeared in Region VI (Table 657 1). Except for Region VI, the minimum values of the monthly $\delta^{18}O_v$ in other 658 representative regions, all occurred in October, while the maximum or second 659 maximum values occurred in April. The seasonal differences in the Ex dv in these six 660

661	representative regions were 4.69‰, 5.42‰, 3.56‰, 3.81‰, 3.59‰, and 9.31‰,
662	respectively, with the largest seasonal difference in the Ex_d_{ν} still in Region VI. Except
663	for Region VI, the maximum values of monthly Ex_d_{v} in other representative regions
664	mostly occurred in October, while the minimum or second minimum values occurred
665	in April or June (Table 1). These results indicated significant differences in water vapor
666	isotopes between Region VI and other representative regions.

667 Table 1 Mean $\delta^{18}O_v$ and Ex_d_v for representative regions in the representative months

Factors	Months	Region I	Region II	Region III	Region IV	Region V	Region VI
	January	-19.04	-17.42	-18.72	-17.24	-18.82	-40.93
$\delta^{18}\mathrm{O_v}$	April	-16.22	-15.78	-17.83	-17.94	-14.91	-28.70
/‰	June	-17.10	-14.45	-18.10	-21.92	-20.77	-21.99
	October	-19.16	-17.79	-22.02	-22.30	-22.09	-29.32
	January	18.45	18.51	17.22	14.39	15.21	23.20
Ex_d_v	April	16.93	17.46	17.03	13.91	13.55	15.64
/‰	June	16.04	13.09	13.98	16.25	15.03	13.89
	October	20.73	17.33	17.54	17.72	17.14	18.29

According to the statistics in Table 1, in January, the average $\delta^{18}O_v$ and Ex_d_v were 668 -19.04‰ and 18.45‰, respectively, in Region I under the latitudinal water vapor 669 transport, while -18.82‰ and 15.21‰, respectively, in Region V with their differences 670 only 0.22‰ and 3.24‰, respectively; In April, the average $\delta^{18}O_v$ and Ex_d_v were 671 672 -16.22‰ and 16.93‰, respectively, in Region I also under the latitudinal water vapor transport, while -17.94‰ and 13.91‰, respectively, in Region IV under the meridional 673 water vapor transport, and -14.91‰ and 13.55‰, respectively, in Region V; In June, 674 the average $\delta^{18}O_v$ were -14.45‰ and -18.10‰, respectively, the average Ex d_v values 675

were 13.09‰ and 13.98‰, respectively, in Regions II and III, all under the meridional water vapor transport, while the average $\delta^{18}O_v$ and average Ex_d_v were -20.77‰ and 15.03‰, respectively, in Region V after experiencing intense rainout processes; In October, the average $\delta^{18}O_v$ and Ex_d_v were -22.30‰ and 17.72‰, respectively, in Region IV under the weakened meridional water vapor transport, showing nonsignificantly differences from the values of -22.09‰ and 17.14‰, respectively, in Region V (Table 1).

683 Furtherly, by comparing the water vapor isotopes in Region V with those in Region 684 VI, it can be found that although both regions were all located in the East Asian monsoon region, there were differences in the seasonal variations of water vapor 685 isotopes (Table 1; Fig. 11). For instance, the average $\delta^{18}O_v$ in Regions V and VI in all 686 of the representative months were -19.15‰ and -30.24‰, respectively, with a 687 difference of 11.09‰. Moreover, the average $\delta^{18}O_v$ of these two regions showed the 688 largest differences with a value of 22.11% in January, which represented the peak of 689 the winter monsoon, while in June which represented the peak of the summer monsoon, 690 691 the difference was only 1.22‰. The water vapor isotopes in Region V were consistently enriched compared to those in Region VI. The average Ex dv in Regions V and VI in 692 all of the representative months were 15.23‰ and 17.76‰, respectively, with a 693 difference of -2.52‰, which was not too large. The difference was largest in January, 694 695 reaching -7.99%, while in June, the difference was only 1.14%, indicating that the water vapor sources during the summer monsoon were similar in these two regions 696 697 (Table 1).

698	The above results about the water stable isotope differences between the
699	representative regions conform to the latitudinal and continental effects of water stable
700	isotopes and follow the law of material migration, which states that the composition of
701	water stable isotopes becomes more depleted with increasing latitude and water vapor
702	transport from high to low value regions (Feng et al., 2009; Zhang et al., 2012; Zhang
703	et al., 2016). With emphasis, for the water vapor source of precipitation in the Dongting
704	Lake Basin, the oceanic representative regions located at low latitudes may not
705	necessarily be the initial water vapor source regions, and the relationship between
706	upstream and downstream regions may not entirely be point-to-point, as there were
707	continuous water recycling and rainout processes along the water vapor transport path
708	(Pokam et al., 2012; Risi et al., 2013; Christner et al., 2018). However, through the
709	comparisons above, it can be observed that the influences of upstream regions on the
710	water vapor amount and water vapor isotopes in downstream regions during water
711	vapor transport were significant.

712 4.2 Isotopic Properties of Air Masses

According to the definition of meteorology, air mass refers to a large-scale body of air over land or sea with relatively uniform horizontal physical properties such as temperature, humidity, and atmospheric stability. The horizontal extent of an air mass ranges from 10^2 km to 10^3 km, and the vertical extent ranges from 10^0 km to 10^1 km, while within the same air mass, there is little variation in temperature gradients, atmospheric vertical stability, and weather phenomena (Zhou et al., 1997). Under largescale and relatively uniform underlying surfaces and stable atmospheric circulation

720 conditions, water vapor and its transport belong to the characteristics of air masses or 721 have the properties of the air mass origin regions (Dettinger, 2013; Lavers et al., 2013). Considering the sources and sinks of water vapor, the spatial distribution of water vapor 722 723 isotopes is relatively similar within an air mass. In maritime air masses, water vapor 724 isotopes are relatively enriched, while deuterium excess of water vapor is relatively more negative, while in continental air masses, water vapor isotopes are relatively 725 726 depleted, while excess deuterium of water vapor is relatively more negative (Rozanski 727 et al., 1993; Araguás-Araguás et al., 1998).

728 With the seasonal variation in the position of the sun's orbit, the atmospheric circulation conditions undergo seasonal variations and thus lead to the seasonality of 729 the air masses properties (Qian et al., 2009; Parding et al., 2016). The abundance of 730 water vapor isotopes at a fixed location varies due to variations in circulation conditions 731 732 (Lacour et al., 2018; Dee et al., 2018; Gou et al., 2022). In this study, the isotopic compositions of water vapor in maritime Regions II and IV at low latitudes and in 733 inland Region VI at high latitudes exhibited significant seasonal variations due to 734 735 interactions between tropical continental air masses (located in southern West Asia) and tropical maritime air masses, between tropical maritime air masses and equatorial air 736 masses, and between temperate continental air masses and temperate maritime air 737 masses, respectively (Table 1; Fig. 11). In the process of seasonal changes, as air masses 738 739 move out of their source regions, their physical and weather characteristics also change with the variations in underlying surface properties and large-scale vertical motion 740 conditions. East Asia is primarily controlled by modificatory air masses (Ding, 1990; 741

742	Chang et al., 2012). Whether cold and dry air masses moving southward or warm and
743	moist air masses moving northward, the isotopic composition of water vapor in the
744	modificatory air mass continues to become more negative, while the deuterium excess
745	of water vapor continues to become more positive than the original air mass (Zhou et
746	al., 2019; Xu et al., 2019; Jackisch et al., 2022). In this study, interactions between
747	modificatory marine air mass and modificatory continental air mass result in the water
748	vapor isotope in Region V that differed from maritime air masses and continental air
749	masses (Table 1; Fig. 11). In summary, as an important member of the climate system,
750	air mass possesses not only thermodynamic, dynamic, hydrous and static properties but
751	also isotopic properties.

752 4.3 The Difference Between Water Vapor Field and Wind Field

753 The water vapor flux Q reflects the direction and magnitude of water vapor transport in the atmosphere, while wind V reflects the direction and magnitude of the 754 movement of air particles in the atmosphere (Feng et al., 2009; Zhang et al., 2012; 755 Zhang et al., 2016). There are both differences and connections between the two factors. 756 757 Water vapor is transported by wind, and the wind carries water vapor from one place to another, and the directions of water vapor and wind may be consistent, inconsistent, or 758 even opposite. In the East Asian monsoon region, the prevailing wind direction during 759 the summer monsoon period is generally consistent with the average water vapor 760 transport direction, both being southwest or southeast direction (Barker, et al., 2015; 761 Wu et al., 2015; Tang et al., 2015). In this study, the water vapor transport path was 762 consistent with the prevailing wind direction in June (Figs. 1a and 9). However, during 763

764	the winter monsoon period, the prevailing wind direction may not be consistent with
765	the average transport direction of water vapor-that is, the prevailing wind direction in
766	January was northwest or northeast direction, while the average transport direction of
767	water vapor in this period was southwest or southeast direction (Figs. 1a and 3), and
768	supported by the water vapor transport study focusing on the Changsha region (Xiao et
769	al., submitted).

770 Previous studies have shown that the most common weather systems and most 771 precipitation events in the East Asian monsoon region are caused by cold fronts 772 resulting from the interaction of warm and cold air masses (Chen et al., 2020). According to classical meteorological theory (Zhou et al., 1997), in a cold front system, 773 there appears the wind from the southwest direction blows ahead of the front, and a 774 775 northwest wind blows behind the front as shown in the schematic diagram in Fig. 12a. 776 Warm and moist air from low latitudes lifts along the front and leads to rainfall, while cold and dry air from high latitudes moves southward beneath the front and lifts the 777 warm and moist air. At different altitudes and positions, the directions of air particle 778 779 movement and water vapor transport are different. For example, at the point A located above the warm and moist air side of the cold front surface, both air particles and water 780 vapor are transported by southwest wind. At the point C located below the cold, dry air 781 side of the cold front surface, both air particles and water vapor are transported by 782 783 northwest wind. However, at the point B located within the front zone, the wind direction and speed are uncertain (Fig. 12b). Therefore, the dominant wind directions 784 may not always align with the average water vapor transport direction, especially in 785

786 frontal weather systems that dominate precipitation in the East Asian monsoon region.

787

Fig. 12 Schematic diagram of a cold front system in East Asia (based on Zhou et al.,

1997).

789

790 **4. Conclusion**

791 Our findings revealed significant influences of water vapor source and transport on precipitation isotopes in Dongting Lake Basin. Specifically, in January, water vapor 792 contributing to the Dongting precipitation originated near the Arabian Peninsula and 793 was driven by the southern branch of the westerly stream jet on the southern side of the 794 Tibetan Plateau, water vapor transported along the southern side of the Tibetan Plateau, 795 796 passed through southwestern China via the northern part of the Indian Peninsula, and reached the Dongting Lake Basin. In April, two distinct water vapor transport paths 797 contributed to the Dongting precipitation, the first followed a trajectory similar to the 798 average water vapor transport path in January, albeit shifted slightly northward by one 799 degree of latitude. The second transport path, driven by the weak Western Pacific 800 801 subtropical high, guided warm and moist water vapor from the low latitudes of the Western Pacific along the outer edge of the subtropical high, passing through the South 802

803	China Sea and the Indochinese Peninsula and finally reached into the Dongting Lake
804	Basin. In June, the Dongting precipitation was influenced by a water vapor transport
805	path originating from the northern branch of the South Indian Ocean subtropical high,
806	crossed the equator, and transported through the Somali Sea, the Arabian Sea, the Indian
807	Peninsula, the Bay of Bengal, the Indochinese Peninsula, and entered the southwestern
808	region of China, finally reaching the Dongting Lake Basin. In October, the average
809	water vapor transport path originated from the western Pacific, passed through the
810	South China Sea, flowed westward along the easterly jet located in the south of the
811	West Pacific Subtropical High and of the anticyclonic circulation over the Jiangnan
812	region in China, and finally entered the Dongting Lake Basin bypassing the southwest
813	of the anticyclone. Although this water vapor path belonged to the latitudinal transport,
814	the water vapor source originated from the low-latitude oceans of the western Pacific.
815	In these four months that representing different seasons, variations in the $\delta^{18}O$ and Ex_d
816	of precipitation and water vapor along these water vapor transport paths adhered to
817	principles of Rayleigh fractionation and water balance principles, underscoring the
818	complex transport paths and processes that influence isotopic variations in precipitation
819	in the Dongting Lake Basin. However, the prevailing wind direction may not be
820	consistent with the average transport direction of water vapor, especially during the
821	winter monsoon, which can be explained by the water vapor field and wind field in
822	frontal weather systems that dominate precipitation in the East Asian monsoon region.
823	Overall, the approach utilized in this study is grounded in fundamental
824	meteorological theories, specifically involving water vapor diagnosis and calculations

825	(including source regions, transport paths, and transport quantities), this analytical
826	method is robust and has a clear physical basis. The scientific question addressed by
827	this study is not centered on the spatial and temporal variations of water isotopes, but
828	rather on how the seasonal variations in regional precipitation and precipitation isotopes
829	respond to the seasonal variations in water vapor sources and transport.
830	Competing interests
831	The authors declare that they have no known competing financial interests or personal
832	relationships that could have appeared to influence the work reported in this paper.
833	Acknowledgments
834	This study was supported by the Natural Science Foundation of Hunan Province, China
835	(No. 2023JJ40445) the National Natural Science Foundation of China (No. 42101130),
836	and the Aid Program for Science and Technology Innovative Research Team in Higher
837	Educational Institutions of Hunan Province (0531120-4944). We are grateful to the
838	graduate students who laboriously sampled water samples without interruption and
839	tested water stable isotopes for 13 years.
840	Author contribution
841	Xiong Xiao: Methodology, Software, Writing- Original draft preparation, Reviewing
842	and Editing. Xinping Zhang: Supervisor, Guide, Data curation, Methodology, Software,
843	Writing- Original draft preparation, Reviewing and Editing. Zhuoyong Xiao:

- 844 Methodology, Writing-Original draft preparation. Zhongli Liu, Dizhou Wang, Cicheng
- 845 Zhang, Zhiguo Rao, Xinguang He, and Huade Guan: Methodology, Reviewing and
- 846 Editing. All authors made substantial contributions to the discussion of content.

847 Code/Data availability

848	The global atmospheric reanalysis data and water stable isotope simulation data are
849	downloaded from the ECMWF 5th generation atmospheric reanalysis data (ERA5,
850	https://cds.climate.copernicus.eu/) and the second-generation isoGSM2 dataset
851	(https://datadryad.org/stash/dataset/doi:10.6078/D1MM6B), respectively. The stable
852	isotopic data of precipitation and meteorological data at the Changsha station are
853	accessible by emailing the corresponding author (zxp@hunnu.edu.cn) with a
854	reasonable request.

- 855 **References:**
- 856 Albergel, C., Dutra, E., Munier, S., Calvet, J. C., Munoz-Sabater, J., de Rosnay, P., &
- Balsamo, G. (2018). ERA-5 and ERA-Interim driven ISBA land surface model
 simulations: which one performs better?. Hydrology and Earth System Sciences,
 22(6), 3515-3532.
- Araguás-Araguás, L., Froehlich, K., & Rozanski, K. (1998). Stable isotope composition
 of precipitation over southeast Asia. Journal of Geophysical Research:
 Atmospheres, 103(D22), 28721-28742.
- 863 Baker, A. J., Sodemann, H., Baldini, J. U., Breitenbach, S. F., Johnson, K. R., van
- 864 Hunen, J., & Zhang, P. (2015). Seasonality of westerly moisture transport in the
- 865 East Asian summer monsoon and its implications for interpreting precipitation
- 866 δ^{18} O. Journal of Geophysical Research: Atmospheres, 120(12), 5850-5862.
- 867 Bong, H., Cauquoin, A., Okazaki, A., Chang, E. C., Werner, M., Wei, Z., ... &
- 868 Yoshimura, K. (2024). Process-Based Intercomparison of Water Isotope-Enabled

869	Models and Reanalysis Nudging Effects. Journal of Geophysical Research:
870	Atmospheres, 129(1), 1-28.
871	Chang, C. P., Lei, Y., Sui, C. H., Lin, X., & Ren, F. (2012). Tropical cyclone and extreme
872	rainfall trends in East Asian summer monsoon since mid-20th century.
873	Geophysical Research Letters, 39(18), 1-7.
874	Chen, X., Zhang, X. Z., Zhang X. P., & Long X. (2020). Long-term Variation of
875	Regional Extreme Precipitation in jiangnan Area and Its Possible Cause.
876	Resources and Environment in The Yangtze Basin, 29(08),1757-1767.
877	Chiang, J. C., Herman, M. J., Yoshimura, K., & Fung, I. Y. (2020). Enriched East Asian
878	oxygen isotope of precipitation indicates reduced summer seasonality in regional
879	climate and westerlies. Proceedings of the National Academy of Sciences, 117(26),
880	14745-14750.
881	Christner, E., Aemisegger, F., Pfahl, S., Werner, M., Cauquoin, A., Schneider, M., &
882	Schädler, G. (2018). The climatological impacts of continental surface evaporation,
883	rainout, and subcloud processes on δD of water vapor and precipitation in Europe.
884	Journal of Geophysical Research: Atmospheres, 123(8), 4390-4409.
885	Dahinden, F., Aemisegger, F., Wernli, H., Schneider, M., Diekmann, C. J., Ertl, B.,
886	& Pfahl, S. (2021). Disentangling different moisture transport pathways over the
887	eastern subtropical North Atlantic using multi-platform isotope observations and
888	high-resolution numerical modelling. Atmospheric Chemistry and Physics, 21(21),
889	16319-16347.

46

890	Dee, S. G., Nusbaumer, J., Bailey, A., Russell, J. M., Lee, J. E., Konecky, B., &
891	Noone, D. C. (2018). Tracking the strength of the Walker circulation with stable
892	isotopes in water vapor. Journal of Geophysical Research: Atmospheres, 123(14),
893	7254-7270.
894	Deng, H., Wang, Q., Zhao, Y., Zhai, J., Zhu, Y., Gui, Y., & Liu, K. (2024). Effect of
895	water vapor transport and budget on precipitation in the Yangtze-Huang-Huai-
896	Hai River Basin. Journal of Hydrology: Regional Studies, 53, 101787.
897	Dettinger, M. D. (2013). Atmospheric rivers as drought busters on the US West Coast.
898	Journal of Hydrometeorology, 14(6), 1721-1732.
899	Ding, Y., 1990: Build-up, air mass transformation and propagation of Siberian high and
900	its relations to cold surge in East Asia. Meteorology and Atmospheric Physics, 44,
901	281–292.
902	Esquivel-Hernández, G., Mosquera, G. M., Sánchez-Murillo, R., Quesada-Román, A.,
903	Birkel, C., Crespo, P., & Boll, J. (2019). Moisture transport and seasonal
904	variations in the stable isotopic composition of rainfall in Central American and
905	Andean Páramo during El Niño conditions (2015–2016). Hydrological Processes,
906	33(13), 1802-1817.
907	Feng, X., Faiia, A. M., & Posmentier, E. S. (2009). Seasonality of isotopes in
908	precipitation: A global perspective. Journal of Geophysical Research:
909	Atmospheres, 114(D8), 1-13.

910	Gimeno, L., Vázquez, M., Eiras-Barca, J., Sorí, R., Stojanovic, M., Algarra, I., &
911	Dominguez, F. (2020). Recent progress on the sources of continental precipitation
912	as revealed by moisture transport analysis. Earth-Science Reviews, 201, 103070.
913	Gou, J., Qu, S., Guan, H., Shi, P., Su, Z., Lin, Z., & Zhu, J. (2022). Relationship
914	between precipitation isotopic compositions and synoptic atmospheric circulation
915	patterns in the lower reach of the Yangtze River. Journal of Hydrology, 605,
916	127289, 1-15.
917	Guo, L., Van Der Ent, R. J., Klingaman, N. P., Demory, M. E., Vidale, P. L., Turner, A.
918	G., & Chevuturi, A. (2019). Moisture sources for East Asian precipitation: Mean
919	seasonal cycle and interannual variability. Journal of Hydrometeorology, 20(4),
920	657-672.
921	He, H., Cao, R., Wu, Z. Y., Li, Y., Yin, H., & Yuan, F. (2022). Diagnosing anomalous
922	characteristics of atmospheric water cycle structure during seasonal-scale drought
923	events: A case study in middle and lower reaches of Yangtze River. Water Science
924	and Engineering, 15(2), 103-113.
925	Hoffmann, L., Günther, G., Li, D., Stein, O., Wu, X., Griessbach, S., & Wright, J. S.
926	(2019). From ERA-Interim to ERA5: the considerable impact of ECMWF's next-
927	generation reanalysis on Lagrangian transport simulations. Atmospheric
928	Chemistry and Physics, 19(5), 3097-3124.
929	Hu, Q., Jiang, D., Lang, X., & Yao, S. (2021). Moisture sources of summer precipitation
930	over eastern China during 1979-2009: A Lagrangian transient simulation.
0.21	International Journal of Climatology 41(2) 1162-1178

- 932 Huang, H., & Li, L. (2023). A Synchronous Variation Process of Tibetan Plateau Vortex
- and Southwest Vortex (in Chinese). Journal of Applied Meteorological Science,
- 934 34(4), 451-462.
- 935 Jackisch, D., Yeo, B. X., Switzer, A. D., He, S., Cantarero, D. L. M., Siringan, F. P., &
- 936 Goodkin, N. F. (2022). Precipitation stable isotopic signatures of tropical cyclones
- 937 in Metropolitan Manila, Philippines, show significant negative isotopic excursions.

938 Natural Hazards and Earth System Sciences, 22(1), 213-226.

- 939 Kathayat, G., Sinha, A., Tanoue, M., Yoshimura, K., Li, H., Zhang, H., & Cheng, H.
- 940 (2021). Interannual oxygen isotope variability in Indian summer monsoon
- 941 precipitation reflects changes in moisture sources. Communications Earth &942 Environment, 2(1), 1-10.
- 943 Lacour, J. L., Risi, C., Worden, J., Clerbaux, C., & Coheur, P. F. (2018). Importance of
- 944 depth and intensity of convection on the isotopic composition of water vapor as
 945 seen from IASI and TES δD observations. Earth and Planetary Science Letters,
 946 481, 387-394.
- 947 Lai, X., Wang, Q., Huangfu, J., Jiang, X., Wang, L., Chen, W., ... & Tang, Yu. (2023).
- 948 Progress in Climatological Research on the Southwest China Vortex (in Chinese).
- 949 Chinese Journal of Atmospheric Sciences, 47(6), 1983-2000.
- 950 Lavers, D. A., Allan, R. P., Villarini, G., Lloyd-Hughes, B., Brayshaw, D. J., & Wade,
- 951 A. J. (2013). Future changes in atmospheric rivers and their implications for winter
- 952 flooding in Britain. Environmental Research Letters, 8(3), 034010, 1-8.

953	Lekshmy, P. R., Midhun, M., & Ramesh, R. (2022). Role of moisture transport from
954	Western Pacific region on water vapor isotopes over the Bay of Bengal.
955	Atmospheric Research, 265, 105895.
956	Liang, Y., Zhao, K., Edwards, R. L., Wang, Y., Shao, Q., Zhang, Z., & Kong, X.
957	(2020). East Asian monsoon changes early in the last deglaciation and insights into
958	the interpretation of oxygen isotope changes in the Chinese stalagmite record.
959	Quaternary Science Reviews, 250, 106699, 1-5.
960	Liu, J., Song, X., Fu, G., Liu, X., Zhang, Y., & Han, D. (2011). Precipitation isotope
961	characteristics and climatic controls at a continental and an island site in Northeast
962	Asia. Climate Research, 49(1), 29-44.
963	Liu, X., Yang, M., Wang, H., Liu, K., Dong, N., Wang, H., & Fan, W. (2023).
964	Moisture sources and atmospheric circulation associated with the record-breaking
965	rainstorm over Zhengzhou city in July 2021. Natural Hazards, 116(1), 817-836.
966	Liu, Z., Zhang, X., Xiao, Z., He, X., Rao, Z., & Guan, H. (2022). The relationships
967	between summer droughts/floods and oxygen stable isotope composition of
968	precipitation in Dongting Lake Basin. Quaternary Science, 42(2), 472-486.
969	Nie, Y., & Sun, J. (2022). Moisture sources and transport for extreme precipitation over
970	Henan in July 2021. Geophysical Research Letters, 49(4), 1-10.
971	Parding, K., Olseth, J. A., Liepert, B. G., & Dagestad, K. F. (2016). Influence of
972	atmospheric circulation patterns on local cloud and solar variability in Bergen,

973 Norway. Theoretical and Applied Climatology, 125, 625-639.

974

975	Moisture source identification for precipitation associated with tropical cyclone
976	development over the Indian Ocean: a Lagrangian approach. Climate Dynamics,
977	60(9), 2735-2758.
978	Pokam, W. M., Djiotang, L. A. T., & Mkankam, F. K. (2012). Atmospheric water vapor
979	transport and recycling in Equatorial Central Africa through NCEP/NCAR
980	reanalysis data. Climate Dynamics, 38, 1715-1729.
981	Pranindita, A., Wang-Erlandsson, L., Fetzer, I., & Teuling, A. J. (2022). Moisture
982	recycling and the potential role of forests as moisture source during European
983	heatwaves. Climate Dynamics, 58(1), 609-624.
984	Qian, L., Solomon, S. C., & Kane, T. J. (2009). Seasonal variation of thermospheric
985	density and composition. Journal of Geophysical Research: Space Physics,
986	114(A1), 1-15.
987	Rao, Z., Chen, F., Cheng, H., Liu, W., Wang, G. A., Lai, Z., & Bloemendal, J. (2013).
988	High-resolution summer precipitation variations in the western Chinese Loess
989	Plateau during the last glacial. Scientific Reports, 3(1), 2785, 1-6.
990	Rao, Z., Jia, G., Li, Y., Chen, J., Xu, Q., & Chen, F. (2016). Asynchronous evolution of
991	the isotopic composition and amount of precipitation in north China during the
992	Holocene revealed by a record of compound-specific carbon and hydrogen
993	isotopes of long-chain n-alkanes from an alpine lake. Earth and Planetary Science
994	Letters, 446, 68-76.

Pérez-Alarcón, A., Fernández-Alvarez, J. C., Sorí, R., Nieto, R., & Gimeno, L. (2023).

995	Risi, C., Bony, S., Vimeux, F., Frankenberg, C., Noone, D., & Worden, J. (2010).
996	Understanding the Sahelian water budget through the isotopic composition of
997	water vapor and precipitation. Journal of Geophysical Research: Atmospheres,
998	115(D24), 1-23.
999	Risi, C., Noone, D., Frankenberg, C., & Worden, J. (2013). Role of continental
1000	recycling in intraseasonal variations of continental moisture as deduced from
1001	model simulations and water vapor isotopic measurements. Water Resources
1002	Research, 49(7), 4136-4156.
1003	Rozanski, K., Araguás-Araguás, L., & Gonfiantini, R. (1993). Isotopic patterns in
1004	modern global precipitation. Climate change in continental isotopic records, 78,
1005	1-36.
1006	Sengupta, S., & Sarkar, A. (2006). Stable isotope evidence of dual (Arabian Sea and
1007	Bay of Bengal) vapour sources in monsoonal precipitation over north India. Earth
1008	and Planetary Science Letters, 250(3-4), 511-521.
1009	Shi, Y., Jin, Z., Wu, A., Li, G., & Li, F. (2021). Stable isotopic characteristics of
1010	precipitation related to the environmental controlling factors in Ningbo, East
1011	China. Environmental Science and Pollution Research, 28, 10696-10706.
1012	Sun, B., Zhu, Y., & Wang, H. (2011). The recent interdecadal and interannual variation
1013	of water vapor transport over eastern China. Advances in Atmospheric Sciences,
1014	28, 1039-1048.
1015	Tang, Y., Pang, H., Zhang, W., Li, Y., Wu, S., & Hou, S. (2015). Effects of changes in
1016	moisture source and the upstream rainout on stable isotopes in precipitation-a case

- 1017 study in Nanjing, eastern China. Hydrology and Earth System Sciences, 19(10),
- 1018 4293-4306.
- 1019 Vasil'chuk, Y. K. (2014). New data on the tendency and causes of deuterium excess
- 1020 variations during one snowfall. Doklady Earth Sciences 459(1), 1400-1403.
- 1021 Wei, Z., Lee, X., Liu, Z., Seeboonruang, U., Koike, M., & Yoshimura, K. (2018).
- 1022 Influences of large-scale convection and moisture source on monthly precipitation

1023 isotope ratios observed in Thailand, Southeast Asia. Earth and Planetary Science1024 Letters, 488, 181-192.

1025 Wu, H., Fu, C., Zhang, C., Zhang, J., Wei, Z., & Zhang, X. (2022). Temporal variations

of stable isotopes in precipitation from Yungui Plateau: insights from moisture
source and rainout effect. Journal of Hydrometeorology, 23(1), 39-51.

- 1028 Wu, H., Zhang, X., Xiaoyan, L., Li, G., & Huang, Y. (2015). Seasonal variations of
- deuterium and oxygen-18 isotopes and their response to moisture source for
 precipitation events in the subtropical monsoon region. Hydrological Processes,
 29(1), 90-102.
- Xiao, Z., Zhang, X., Xiao, X., Chang, X., & He, X. (2024). The Effect of
 Convective/Advective Precipitation Partitions on the Precipitation Isotopes in the
 Monsoon Regions of China: A Case Study of Changsha. Journal of
 Hydrometeorology, 23(84), 581-590.
- Xu, K., Zhong, L., Ma, Y., Zou, M., & Huang, Z. (2020). A study on the water vapor
 transport trend and water vapor source of the Tibetan Plateau. Theoretical and
 Applied Climatology, 140, 1031-1042.

1039	Xu, T., Sun, X., Hong, H., Wang, X., Cui, M., Lei, G., & Jiang, X. (2019). Stable
1040	isotope ratios of typhoon rains in Fuzhou, Southeast China, during 2013-2017.
1041	Journal of Hydrology, 570, 445-453.
1042	Yoshimura, K., Kanamitsu, M., Noone, D., & Oki, T. (2008). Historical isotope
1043	simulation using reanalysis atmospheric data. Journal of Geophysical Research:
1044	Atmospheres, 113(D19), 1-15.
1045	Zhan, Z., Pang, H., Wu, S., Liu, Z., Zhang, W., Xu, T., & Hou, S. (2023). Determining
1046	key upstream convection and rainout zones affecting $\delta^{18} O$ in water vapor and
1047	precipitation based on 10-year continuous observations in the East Asian Monsoon
1048	region. Earth and Planetary Science Letters, 601, 117912.
1049	Zhang, H., Cheng, H., Cai, Y., Spötl, C., Sinha, A., Kathayat, G., & Li, H. (2020). Effect
1050	of precipitation seasonality on annual oxygen isotopic composition in the area of
1051	spring persistent rain in southeastern China and its paleoclimatic implication.
1052	Climate of the Past, 16(1), 211-225.
1053	Zhang, X., Guan, H., Zhang, X., He, X., Zhang, W., Wang, X., & Yao, T. (2016).
1054	Comparisons and assessment on stable isotopic effects in precipitation simulated
1055	by different models. Quaternary Sciences, 36(6), 1343-1357.
1056	Zhang, X., Sun, Z., Guan, H., Zhang, X., Wu, H., & Huang, Y. (2012). GCM simulations
1057	of stable isotopes in the water cycle in comparison with GNIP observations over
1058	East Asia. Acta Meteorologica Sinica, 26(4), 420-437.
1059	Zhou, H., Zhang, X., Yao, T., Hua, M., Wang, X., Rao, Z., & He, X. (2019). Variation

1060 of δ^{18} O in precipitation and its response to upstream atmospheric convection and

1061	rainout: A case study of Changsha station, south-central China. Science of the total
1062	environment, 659, 1199-1208.
1063	Zhou, S. Z. (1997). Meteorology and Climatology. Higher Education Press, Beijing,

1064 118-222.