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Abstract 44 

The Arctic sea-ice cover and thickness have rapidly declined in the recent past. Snow 45 

cover on sea ice, acting as an insulating barrier, was shown to be instrumental in driving 46 

the variability and trends in sea-ice thickness. Because of this, the ability of climate 47 

models to realistically simulate the present-day annual cycles of  Arctic sea-ice properties 48 

has become a central measure of model performance in Arctic-focused climate model 49 

intercomparisons. However, evaluating free-running model simulations usually requires 50 

multi-year observational datasets, which is challenged by the relatively short-term existing 51 

Arctic measurements particularly sea-ice and snow thickness. In this exploratory study, 52 

we propose a new methodology to improve the meaningfulness of sea ice and snow 53 

comparisons to model data. We make use of the exceptional year-long MOSAiC 54 

observations to examine the simulated Arctic sea-ice and snow thickness in 10 CMIP6 55 

models. To perform meaningful comparisons with the modeled simulations, we define two 56 

“proxy years” selection methods based on sea-ice area and atmospheric criteria, when 57 

these conditions in the Arctic are similar to those during the MOSAiC year. We verify the 58 

capability of the proxy-year composites to capture the atmospheric and sea-ice variability, 59 

by comparing them with the sets of nudged simulations in which the atmospheric 60 

circulation observed during the MOSAiC year is directly imposed. Our results show that 61 

models tend to simulate similar annual cycles compared to the observations however, 62 

with an overestimation in amplitude for snow thickness and a misaligned phase of sea-63 

ice thickness cycles. Overall, the study highlights that regardless of the specific modeled 64 

configurations and conditions within individual proxy years, biases in sea-ice and snow 65 

thickness remain consistent, even when wind conditions are imposed in the nudged 66 

model simulations. This highlights the necessity for a better representation of modeled 67 

processes driving the sea-ice and snow thicknesses which will be instrumental in the next 68 

generation of GCMs. This first MOSAiC-based assessment of the modeled snow and ice 69 

thickness, and the proposed proxy-year-based methodology, pave the way for further 70 

meaningful model evaluation.  71 

 72 
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1. Introduction: 79 

Arctic sea ice, and especially the snow cover on top of it, plays a crucial role in the Arctic 80 

climate system due to its thermal properties as insulator and as reflector of incoming solar 81 

radiation. The Arctic sea ice has been declining rapidly over the recent decades which 82 

has major impacts on the Arctic climate system, on the global atmosphere and ocean 83 

circulation, and on biology (e.g. Hezel et al., 2012). Therefore, it is crucial to continuously 84 

observe changes in the Arctic sea ice and snow cover as well as to simulate those 85 

changes in a realistic way. 86 

Previous studies have recognized several large-scale internal climate variability modes 87 

influencing Arctic sea ice changes. The Arctic Oscillation (AO) induces large-scale 88 

fluctuations in sea level pressure between the Arctic and mid-latitudes (Thompson and 89 

Wallace 1998). AO-related winds impact sea ice motion and export with seasonal lags 90 

(Rigor et al 2002, Ogi et al 2010). Other influential modes include the Quasi-Biennial 91 

Oscillation (QBO) in stratospheric winds and El Niño-Southern Oscillation (ENSO) linked 92 

to equatorial Pacific Ocean temperature fluctuations (Hu et al 2016). Additionally, the 93 

multidecadal Atlantic Multidecadal Oscillation (AMO) and Pacific Decadal Oscillation 94 

(PDO) affect Arctic sea ice trends (Day et al 2012). Among other factors, sub-mesoscale 95 

(Manucharyan et al., 2017) and mesoscale (Gupta et al., 2020) eddy fields rub against 96 

ice at the surface and through Ekman-induced vertical motion can bring warm waters up 97 

to the surface and partially melt the ice. Intense winter storms in the Atlantic sector of the 98 

Arctic can fracture the sea ice cover, intensify ocean-ice-atmosphere heat exchanges, 99 

and render the ice more susceptible to lateral melting (Graham et al., 2019). Anomalous 100 

atmospheric flows of warm and humid air into the Arctic region can further exacerbate 101 

these melt processes (Svensson et al., 2023). 102 

Several studies have investigated Global climate models (GCMs), particularly CMIP6 103 

models’ capability to simulate sea ice and snow on the Arctic-wide basin scales, 104 

evaluating their performance in capturing  snow and ice seasonality and overall volume 105 

distribution (Notz & SIMIP 2020, Zhou et al., 2021, Xu and Li 2023, Watts et al. 2021). 106 

The studies evaluating sea ice thickness (SIT) conclude that the overall seasonality and 107 

trends in simulated SIT agrees well with reanalysis and satellite derived SIT products, 108 

however large regional biases continue to exist (Xu and Li 2023, Watts et al. 2021). Arctic 109 

snow thickness over sea ice has not been assessed as thoroughly as the SIT, probably 110 

due to the fact that Arctic wide snow products over sea ice have only recently become 111 

available (Zhou et al., 2021). To our knowledge, Chen et al., 2021 is the only study which 112 

evaluates basin-wide snow volume from CMIP6 models against observation-based snow 113 

thickness products. They compared a passive microwave-based snow thickness product 114 

with the CMIP6 multi-model mean of snow volume and found that most models simulate 115 

a delayed  snow maximum and an overall thinner snow than the satellite-based 116 

comparison products.  117 
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GCMs in general, usually suffer from very simplified sea ice and snow on sea ice 118 

parameterizations, and often only consist of one layer for sea ice and one layer for snow 119 

with a constant snow density (e.g. Webster et al., 2021; Blanchard-Wrigglesworth et al., 120 

2015; Hezel et al., 2012). Depending on the model, strong positive or negative biases 121 

have been found and simulated snow thickness trends greatly differ between models 122 

(Webster et al., 2021). To better understand the biases identified in the above studies, 123 

more detailed observational studies are needed. Observation-based approaches to 124 

assess sea ice/snow and its variability have been quite limited, especially in the 125 

wintertime, due to the harsh conditions. Efforts have been made to use Operation 126 

IceBridge observations (MacGregor et al., 2021) combined with reanalysis data to 127 

reconstruct snow on Arctic sea ice (Blanchard-Wrigglesworth et al., 2018). However, 128 

existing observations suffer from strong spatio-temporal heterogeneities in the snow 129 

cover both in the thickness and in the density and/or the water content (e.g. Webster et 130 

al., 2018) that affect the thermal properties of the ice and snowpack. Therefore, high-131 

quality sea ice and snow observations are essential to adequately sample the 132 

heterogeneities in the sea ice and snow cover for a thorough evaluation and subsequent 133 

improvement of GCMs.  134 

An unprecedented effort has been made in the year-long MOSAiC expedition (October 135 

2019 - September 2020) to sample an annual cycle of simultaneous observations in the 136 

ocean, atmosphere, ice and snow, including throughout the Arctic winter season (Rabe 137 

et al., 2022, 2024; Shupe et al., 2022; Nicolaus et al., 2022; Macfarlane et al., 2023). The 138 

research vessel Polarstern (Alfred-Wegener-Institut, 2017) was frozen in the Arctic sea 139 

ice and left drifting on an ice flow. Extensive measurements have been made in the 140 

surroundings of the research vessel (for snow and sea ice; see Nicolaus et al., 2022, 141 

Wagner et al., 2022), providing a unique dataset of year-long sea ice and snow-thickness 142 

data distributed over the size of a typical GCM grid cell. The snow thickness is especially 143 

valuable as this is difficult to retrieve from satellite data unless one has reliable reference 144 

observation data or uses a triple collocation method (He et al., 2023). There remain 145 

certain challenges in using the MOSAiC-derived SIT and snow data for a comparison with 146 

coarse resolution GCM simulations: 147 

1. The spatial difference between measurements of sea ice and snow and their 148 

representation in GCMs (a point value in the former while averaged values at grid 149 

cell resolution in the latter).             150 

2. The fact that the MOSAiC ice flow is drifting in space during the year. 151 

3. The MOSAiC year is one realization of natural variability; while freely running 152 

climate models are not designed to simulate the characteristics of a specific year 153 

(e.g. atmosphere and ocean circulation that may lead to certain sea ice and snow 154 

patterns). 155 
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In this methodology-oriented study, we aim to address the above challenges by proposing 156 

a simple approach to perform meaningful comparisons of CMIP6 models with the field 157 

observations. We propose two proxy-year selection methods based on sea-ice area (SIA) 158 

and via atmospheric criteria (using AO) for a comparison of MOSAiC dataset with the 159 

historical experiments in 10 CMIP6 climate models. Furthermore, we perform another set 160 

of comparisons using nudging atmospheric circulations in a GCM during the MOSAiC 161 

year. We have divided this paper into five sections: In Sect. 2, we describe the observation 162 

and model data sets. Sect. 3 details the proposed observation - model comparison 163 

methods. Results of the comparison are given in Sect. 4 while Sect. 5 discusses the 164 

proposed methods and results and finishes with concluding remarks and ways forward. 165 

An overall understanding of Arctic sea-ice-snow simulation in coupled climate models 166 

including detailed analysis and explanation of specific critical processes affecting sea ice 167 

and snow thickness remains outside the scope of our study. 168 

 169 

2. Datasets: 170 

2.1. Observations 171 

Our study utilizes observational datasets from the Ocean and Sea-Ice Satellite 172 

Application Facility (OSI-SAF) in the European Organization for the Exploitation of 173 

Meteorological Satellites (EUMETSAT) (Lavergne et al., 2019) for observed SIA over the 174 

pan-Arctic covering the time-period from 1979 to 2015. We further use the observed AO 175 

Index from NOAA’s Climate Prediction Center 176 

(https://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/ao.shtml) (Sect. 177 

3.1.2). 178 

Snow thickness in-situ observations from the MOSAiC drift, used in the model-179 

observation comparison, have been collected by Sonar Snow Buoys (Nicolaus et al. 180 

2021b) and by Sea Ice Mass Balance Buoys (IMB) (Lei et al. 2021). In-situ observations 181 

for SIT are only from IMBs. In total 32 buoys were considered in this study, which were 182 

deployed throughout the year in a 40 km radius around the MOSAiC ice floe (Nicolaus et 183 

al. 2022). 184 

The Snow Buoys measure surface elevation change from the day of deployment. The 185 

distance is measured by four ultrasonic sensors mounted on a square rick on top of a 186 

2.55 m pole. The snow thickness is derived from in situ snow thickness measurements at 187 

deployment and the measured elevation change. In addition to the elevation changes, the 188 

buoy also measures temperature and barometric pressure (Nicolaus et al. 2021b). In this 189 

study the preprocessed data set from Nicolaus et al. (2021a) was used. In the 190 

preprocessing all obvious inconsistencies were removed, and the resulting data comes, 191 
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where available, in 1-h intervals. The Snow Buoys are indicated by red markers in Fig.1 192 

and are partly covered by the IMB buoys displayed in blue.             193 

The IMBs measure snow and SIT taking advantage of their different thermal properties. 194 

To measure the SIT an array of heating elements and temperature sensors is suspended 195 

from the top of the snowpack to the ocean. Through cycles of heating and measuring the 196 

thermal diffusivity the surrounding medium can be determined to be ice, ocean, air or 197 

snow (Jackson et al. 2013). This allows for a simultaneous measurement of both ice and 198 

snow thickness. The data used in this study was processed by Lei et al. 2021. The IMBs 199 

measure at a frequency of 1 day and have an accuracy of 0.02 m.   200 

 201 

                          202 

Figure 1: Location of our study area. This corresponds to the trajectory followed in the MOSAiC 203 

expedition (September 2019 to August 2020). The Snow Buoys and IMB Buoys are indicated by red and 204 

blue markers respectively. 205 

  206 

2.2 CMIP6 Models 207 

We analyze the monthly averaged variables over the sub-period 1979-2014 within the 208 

historical experiments of 10 CMIP6 models (Eyring et al., 2016; Notz et al., 2016) (Table 209 

1). We focus on the “sithick” variable, representing simulated effective floe thickness. We 210 

also incorporate “siconc” viz. sea-ice concentration and “sisdthick” representing the snow 211 

thickness. The SIT values used throughout the study for all the climate models, are 212 

weighted by the “siconc”. Additionally, for the proxy year selection, we use the variables- 213 

“siarean” and “zg” at 1000 hPa, representing the cumulative SIA over the Northern 214 

Hemisphere and the geopotential height, respectively. To not give extra weight to models 215 
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providing multiple ensemble members, and for consistency with previous CMIP6 based 216 

sea-ice comparison studies (SIMIP Community, 2020 and Roach et al., 2020), we 217 

considered the first ensemble member for each selected model (Table 1). This 218 

exploratory study tests our proposed methodology on 10 CMIP6 models and a single 219 

ensemble. For NorESM2-MM, we have utilized the SSP585 scenario for selecting proxy 220 

years according to the SIA based criterion (Fig.5) as its historical values did not reach 221 

observed sea ice characteristics during the historical period but only during the future 222 

scenarios (not shown) (Seland et al., 2020). 223 

  224 

Table 1: Details of the specifications of 10 CMIP6 models used in the study. 225 

Model Name 

Atmospheric 

Model Ocean Model Sea-Ice Model References 

AWI-CM-1-1-MR 

ECHAM6.3.04p1 

[100km] 

FESOM 1.4 

[25km] 

FESIM 1.4 

[25km] 

Semmler et al., 

2018 

CESM2 CAM6  [100km] POP2  [100km] CICE5.1  [100km] 

Danabasoglu et 

al., 2019 

CESM2-FV2 CAM6  [250km] POP2  [100km] CICE5.1  [100km] 

Danabasoglu et 

al., 2019 

CESM2-WACCM-

FV2 WACCM6 [250km] MAM4  [100km] CICE5.1  [100km] 

Danabasoglu et 

al., 2019 

CESM2-WACCM 

WACCM6 

[100km] MAM4  [100km] CICE5.1  [100km] 

Danabasoglu et 

al., 2019 

MPI-ESM-1-2-

HAM 

ECHAM6.3 

[250km] 

MPIOM1.63 

[250km] 

UNNAMED 

(thermodynamic 

(Semtner zero-layer) 

dynamic (Hibler 79) 

[250km] 

Neubauer et al., 

2019 

MPI-ESM1-2-HR 

ECHAM6.3 

[100km] 

MPIOM1.63 

[50km] 

UNNAMED 

(thermodynamic 

(Semtner zero-layer) 

dynamic (Hibler 79) 

[50km] 

von Storch et al., 

2019 

MPI-ESM1-2-LR 

ECHAM6.3 

[250km] 

MPIOM1.63 

[250km] 

UNNAMED 

(thermodynamic 

(Semtner zero-layer) 

dynamic (Hibler 79) 

[250km] 

Wieners et al., 

2019 

NorESM2-LM 

CAM-OSLO 

[250km] 

MICOM 

[100km] CICE [100km] 
Seland et al., 2019 

NorESM2-MM 

CAM-OSLO 

[100km] 

MICOM 

[100km] CICE [100km] 

Bentsen el al., 

2019 

  226 
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2.3 Nudged simulations 227 

  228 

We perform nudged simulations, in which the wind evolution observed before and during 229 

the MOSAiC year is imposed in coupled climate models. In this study, we employ the 230 

nudged simulations to determine whether the atmospheric flow is the dominant driver of 231 

the MOSAIC-year snow and ice variations. Additionally, we use the nudged simulations 232 

to test the skill of the proxy-year selection criteria: we compare the annual cycles of sea-233 

ice and snow thickness obtained using the nudged simulations and using the proxy-year 234 

selection criteria. This reveals whether model-observations discrepancies arise from a 235 

mismatch in anomalous weather conditions, or from insufficient process representations. 236 

 237 

Our nudged simulations are based on two coupled climate models with spectral nudging 238 

capabilities, the AWI-CM-1 (Sidorenko et al., 2015; Rackow et al., 2018) and AWI-CM-3 239 

(Streffing et al., 2022) developed at the Alfred Wegener Institute. The AWI-CM-1 model 240 

is composed of ECHAM6.3.04p1 from MPI-M (Stevens et al., 2013)  for the atmosphere 241 

component, and FESOM1.4 (Wang et al., 2014) for the ocean and sea ice component; 242 

henceforth called ECHAM6/FESOM. As introduced in the previous section, free-running 243 

simulations from ECHAM6/FESOM contributed to CMIP6 (Semmler et al., 2020). In the 244 

more recently developed AWI-CM-3, the atmosphere model OpenIFS 43r3 (ECMWF, 245 

2017) is coupled to the ocean and sea ice model FESOM2 (Danilov et al., 2017; Danilov 246 

et al., 2015), therefore we henceforth refer to this model as OpenIFS/FESOM2. 247 

 248 

In the nudged simulations, we directly impose, via spectral nudging, the evolution of the 249 

atmospheric circulation, characterized by the vorticity and divergence, as observed during 250 

the MOSAIC year (until August 2020) using ERA5 data, with a relaxation timescale 1h 251 

and a spectral truncation 20 (on zonal wavenumbers for ECHAM6/FESOM, on all 252 

wavenumbers for OpenIFS/FESOM2)  (Sanchez-Benitez et al., 2022; Pithan et al., 2023). 253 

Only vertical levels between 700 hPa and 100 hPa are nudged, leaving the atmospheric 254 

boundary layer and the stratosphere, and all other physical parameters (e.g., 255 

temperature, surface pressure, humidity, clouds, precipitation, and sea-ice) to evolve 256 

freely according to the models’ physics. For both models, three ensemble members are 257 

nudged from the 1st of January 2017 onwards, initialized from CMIP-type historical and 258 

subsequent ssp370 scenario forcing simulations. Note that while ECHAM6/FESOM 259 

contributed to CMIP6, OpenIFS/FESOM2 is a prototype post-CMIP6 model and therefore 260 

is not included in the models used for proxy-years selection. 261 

 262 

3. Methods: 263 

This exploratory study attempts to make a step forward in assessing the ability of state-264 

of-the-art global climate models from CMIP6 (Coupled Model Intercomparison Project 6: 265 
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Eyring et al., 2016) to simulate the annual cycle of observed sea-ice and snow thickness. 266 

To address the three challenges mentioned in Sect. 1, we applied following solutions: 267 

● Model-observation spatial scale discrepancies were tackled by averaging over a 268 

large number of snow and SIT autonomous buoy observations recorded during 269 

MOSAiC. Since GCMs provide a single mean value of SIT and snow thickness for 270 

each grid cell, they are assumed to represent the average SIT over the entire area 271 

covered by the GCMs’ grid. In reality, SIT and snow cover can vary greatly within 272 

a typical area of one GCM grid cell (Nicolaus et al. 2022), therefore, averaging 273 

over a large number of observations contributes towards making it comparable. 274 

● To address the flow drift, we collocate the model values with observations per day 275 

(in the daily nudged runs) or month (in monthly CMIP6 runs). 276 

● To address the CMIP6 models’ inability to simulate specific years, we propose 277 

three methods to enable meaningful year-to-year comparisons : (i) a simple proxy 278 

year approach using the simulated sea ice area (SIA) (ii) another proxy year 279 

selection using atmospheric criteria (AO); and (iii) a nudging approach in which the 280 

atmospheric circulation of the GCM is relaxed towards the observed winds in the 281 

mid-troposphere. 282 

 283 

3.1. Selection of proxy years 284 

In the CMIP6 models, proxy years were chosen to align the simulated fields with the sea-285 

ice and atmospheric conditions experienced during the MOSAiC measurement period. 286 

To ensure a thorough evaluation, we employed two distinct selection criteria: one based 287 

on sea-ice conditions and the other on atmospheric circulations observed during the 288 

MOSAiC study period. Ocean currents and heat transports are also important contributors 289 

in decreasing the Arctic sea-ice area and volume; however, contributions from the oceans 290 

in driving sea-ice loss are still uncertain (Docquier et al., 2021). This study does not cover 291 

the role of oceans in influencing sea-ice simulations in the models. 292 

For an accurate and comprehensive selection of proxy years with characteristics similar 293 

to the MOSAiC year, it is crucial to eliminate divergences from observations which arise 294 

from the free-running models’ different realizations of natural variability. Therefore, our 295 

method refines the selection process by excluding conditions (or years) vastly different 296 

from those observed during MOSAiC, ensuring the chosen years mirror the sea-ice and 297 

atmospheric conditions of the study period. This nuanced approach illuminates the 298 

complex dynamics shaping these simulations, empowering us to make informed 299 

decisions about proxy year representation. 300 

 301 
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3.1.1. Proxy Years based on sea-ice conditions: 302 

 303 

304 
Figure 2: a) Selection of sea-ice based proxy years. Colored lines represent the SIA values for different 305 

CMIP6 models while the solid black line represents observations (OSI-SAF). Black dashed line corresponds 306 

to the observed mean SIA value for the MOSAiC year. Secondary x-axis corresponds to the SSP585 307 

scenario selected for the NorESM2-MM (Gold line). b) Heatmap showing the seasonal differences between 308 

each year in the historical CMIP6 models and the SIA values for the MOSAiC year. Highlighted are the 309 

three proxy years with lowest three differences, selected for each model between 1979-2014 based on their 310 

proximity to the annual SIA values.  311 

We selected SIA as a criterion for our proxy year selection instead of SIT due to the limited 312 

availability of Arctic-wide SIT observation data, which primarily relies on radar and laser 313 

altimetry-derived satellite freeboard data. This has high uncertainty due to overlying snow 314 

and inaccurate snow-ice interface (Willatt et al., 2010). Using SIA datasets allows us to 315 

identify similar Arctic-wide conditions and ensures that models remain consistent with 316 

observed sea-ice extent during the MOSAiC period. 317 

The selection of sea-ice based proxy years was conducted using two key indicators: 318 

Firstly, we considered the difference between the maximum (March) and minimum 319 

(September) SIA which served as an estimate of the first-year ice component. Secondly, 320 

we examined the SIA during the minimum period (September) to estimate the contribution 321 

of multi-year ice during those years. We selected three proxy years that satisfied both the 322 
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criteria implying that their SIA values were the closest to the observed values during the 323 

MOSAiC year (Fig.2). By concentrating on these specific proxy years, we aimed to 324 

replicate the contributions of both the first-year and multi-year ice in shaping the sea-ice 325 

and snow distributions in a particular year. 326 

 327 

3.1.2. Proxy Years based on atmospheric (circulation) conditions: 328 

 329 
Figure 3: Atmospheric circulation-based proxy years. Heatmap showing the seasonal differences  330 

between each year in the historical CMIP6 models and the AO values for the MOSAiC year. Highlighted 331 

are the three proxy years with lowest three differences selected for each model between 1979-2014 based 332 

on their proximity to the seasonal AO values.   333 

  334 

The AO refers to an atmospheric circulation pattern over the mid-to-high latitudes of the 335 

Northern Hemisphere. AO is the dominant mode in the central Arctic (Thompson & 336 

Wallace, 1998) playing a major role in shaping the sea-ice/snow distributions (Wang & 337 

Ikeda, 2000). The most obvious reflection of the phase of this oscillation is the north-to-338 

south location of the storm-steering, mid-latitude jet stream. Thus, the AO can have a 339 

strong influence on weather, climate, and the sea-ice variability in the high- to mid-latitude 340 

Northern Hemisphere. During the MOSAIC year, the AO experienced large shifts, ranging 341 

from a highly negative index in November 2019 to an extremely positive index during 342 

January–to–March 2020, marking it as an anomalous year in AO behavior (Dethloff et al., 343 

2022).   344 

 345 

Given this context, our evaluation considered the proximity of the seasonal AO values in 346 

climate models to the corresponding values observed during the MOSAiC year. 347 

Specifically, we compared the simulated AO values during the winter season (January–348 

to–March) of a given year and the November values in the preceding year.  For each 349 

CMIP6 model, we identified three years in the historical period  which exhibited the 350 

smallest differences from the observed seasonal AO indices (capturing extreme AO 351 

trends during both winter and November) (Fig.3).  The selected proxy years are presumed 352 

to replicate the anomalous atmospheric conditions prevalent during the MOSAiC year. 353 

This methodology thus involves comparing AO values in corresponding periods and 354 
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selecting proxy years based on minimizing differences, thereby ensuring a close 355 

alignment with the observed AO dynamics. 356 

 357 

 358 

3.2. Colocation to MOSAIC drift trajectory 359 

In this study, the selection of grid cells in the climate models was based on the MOSAiC 360 

trajectory. This collocation was done by determining the maximum north, south, west, and 361 

east extent of active snow and ice buys within one day/month and selecting the model 362 

grid cells covering this extent. However, it is important to note that due to the varying 363 

resolutions and projections of the original grids used in the CMIP6 models, we selected 364 

a different number of total grid cells per month and model. The modeled area in different 365 

months across selected CMIP6 models following the MOSAiC trajectory shows the grid 366 

areas ranging from a maximum of 3579 km2 (for MPI-ESM-1-2-LR in the month of 367 

November)  and the minimum of 999 km2 (for the CESM2-versions in the month of July) 368 

during the MOSAiC year. In comparison, the distributed network of MOSAIC spanned a 369 

40 km radius. Instruments used in this study drifted throughout the year but remained 370 

within a ~30 km radius, that is, within an area on the order of 2000-3000 km2 assuming a 371 

roughly circular distribution (Rabe et al., 2024). This is thus on the same order of 372 

magnitude as the colocated model cells. Our study, therefore, accounts for variations in 373 

location and covered area to accurately interpret the modeled data and draw meaningful 374 

conclusions (Sect. 3.3). 375 

Following the selection of the three proxy years, we conducted a comprehensive 376 

assessment of the annual cycles averaged over the MOSAiC flow trajectory. This 377 

evaluation served as a critical step in our research, enabling us to investigate the temporal 378 

variability in the Arctic floe and snow thickness simulations and compare them with the 379 

in-situ observation dataset. By employing these data and methods, we have established 380 

an initial step towards comparing the in-situ measurement campaign sea-ice and snow 381 

thicknesses in the GCMs in the Arctic. 382 

 383 

3.3 Processing of snow and ice observations                      384 

The Snow Buoys and SIMBA buoys measure at different frequencies and resolutions. To 385 

get a thickness estimate comparable to model grid cell values, each active buoy was 386 

averaged to a daily value. From this the mean snow and SIT was calculated, shown in 387 

black in Fig. 4a and b. From all buoys that are part of this averaging per day the most 388 

northern, southern, western, and eastern location was determined to estimate the area 389 

over which the buoys were averaged. Fig.4c shows the number of active buoys per day. 390 

Overall, there were 13 Snow Buoys and 19 IMB buoys active throughout the period. The 391 
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maximum number of instruments measuring snow thickness for one day was 23, while 392 

for SIT it was 17. 393 

  394 

The monthly mean was calculated from the daily averaged values in Fig.4. The locations 395 

for the model comparison were selected similarly as the locations for the daily mean, by 396 

selecting the maximal east-west and north south coverage of all observations considered 397 

within one month. 398 

  399 

3.4 Methodology Validation using Monte Carlo Method  400 

Our research methodology integrated the Monte Carlo Method (Sect. 4.3) with a robust 401 

proxy year selection process (described in Sect. 3.1) to assure the reliability of our two 402 

methods (which are physical selections) by comparing them with the random selections. 403 

We utilized the 10 selected historical CMIP6 model simulations (same as described in 404 

Sect. 2.2), for the period 1979 to 2014. We applied the resampling technique known as 405 

bootstrap, which randomly selected three years during each of the 10,000 iterations for 406 

all the selected models. This process generated a multitude of random possible 407 

combinations, encompassing various annual cycles for SIT and Snow Thickness. This 408 

approach served as a validation to investigate if our proxy year selection methods gave 409 

added value compared to randomly selected years. 410 

  411 

4. Results 412 

4.1 Comparisons for different In-situ observations 413 

To bridge the gap between model resolution and point observations a multitude of 414 

observations from the MOSAiC campaign were considered to evaluate the GCMs snow 415 

and ice thickness. The snow thickness observations considered are shown in Fig.4a. Both 416 

Snow Buoys and IMBs were considered in the average, which is calculated as the mean 417 

between the IMB and Snow Buoy measurements, weighted by the number of active buoys 418 

per day shown in Fig.4c. The IMB snow and ice numbers of observations in Fig.4c differ 419 

in summer 2020, because negative snow measurements are excluded. The Snow Buoys 420 

measurements showed an overall lower snow thickness than the IMB buoys for most of 421 

the winter. From November to February, the snow buoys measured a slight decrease in 422 

snow thickness, while the IMB buoy measured a slight increase. This could be due to a 423 

relatively high drop in active sensors in January/February 2020 for the Snow Buoys, as 424 

shown by the red line in Fig.4c. 425 

 426 
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 427 

 428 

Figure 4: Time series of sea-ice and snow parameters along the MOSAIC drift track. (a) Snow 429 

thickness (m) and (b) sea ice thickness (m) (c) Number of active buoys. IMBs measure sea ice and snow 430 

thickness, Snow Buoys measure solely the snow thickness. 431 

The SIT observations considered are shown in Fig.4b. There are less daily SIT 432 

observations than snow observations because the Snow Buoys only measure snow 433 

thickness, so only the IMBs are considered. In the very beginning and end of the 434 

observation period, there are large variations in the mean SIT which result from a fewer 435 

number of active buoys. One IMB buoy measuring about 1.8 m SIT from the beginning of 436 

October is causing the thick sea ice observations in the beginning of the observation 437 

period. This buoy is continuously measuring thick sea ice, but as the number of 438 

observations displayed in Fig.4c rises, the anomalous thick observation loses influence 439 

in the mean. Consequently, this increase in the number of measurements causes an 440 

apparent decrease in SIT from October to November in the monthly mean observed SIT 441 

(Figures 5a, 6a and 8a). As both platforms require sufficient SIT to be deployed, thin and 442 

fragile SIT conditions are thus under-documented in their measurements. This must be 443 

kept in mind when comparing the observations to the model values, mainly in early 444 

autumn or summer. 445 
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4.2 Reproduction of Annual Cycles for sea-ice variables: 446 

4.2.1 Variations in Sea-ice thickness : 447 

448 
Figure 5: Annual cycles for SIT averaged over the three selected years from (a) SIA-based and (b) 449 

AO-based methods. The parameters are averaged along the MOSAiC trajectory. The black solid line 450 

corresponds to the in-situ observations and black dashed shows the Multi-model Means (MMM). The 451 

colored lines represent different CMIP6 models. The shaded red areas represent +-1 Standard Deviation 452 

for the MMM, and the gray shaded areas represent +-1 Standard Deviation for the observations. 453 

In this section, we examine the capability of CMIP6 models to capture the SIT annual 454 

cycles during the MOSAIC year, using proxy years based on the SIA as well as 455 

atmospheric or AO-based criteria. Our observational SIT data reveals a consistent rise 456 

from November to May, followed by a decline. This aligns with the findings using PIOMAS 457 

(Chen et al., 2023), highlighting a peak SIT in May. However, when employing SIA-based 458 

proxy years, CMIP6 models tend to exhibit positive biases during cooler seasons (Fall 459 

and Winter) in SIT, followed by underestimations in warmer periods (Spring and Summer) 460 

(Fig.5a). Some models even indicate an early SIT peak between January and March. This 461 

is because the modeled sea-ice averages build up too quickly in winter and spring and 462 

then melt too rapidly in late spring, as noted by Webster et al., 2021. Consequently, the 463 

multi-model mean (MMM) shows nearly constant SIT values between February (peak) 464 

and June. 465 

Fig.5b shows the annual cycles of SIT derived from monthly means of three proxy years 466 

determined using the AO criterion. Firstly, in comparison to the SIA-based proxy years, 467 

the inter-model spreads remain relatively higher for SIT particularly during the cooler 468 

seasons of Fall and Winter. Secondly, there are also higher biases evident in the models 469 

when compared to the SIA-based proxy years primarily during winters, while maintaining 470 

simulations of thinner sea-ice for the remainder of the year. These exaggerations in the 471 

MMM are caused mainly due to the influence of NorESM2-models. NorESM2-MM 472 

displays substantial positive biases between October-April when compared with the 473 

https://doi.org/10.5194/egusphere-2024-2214
Preprint. Discussion started: 4 September 2024
c© Author(s) 2024. CC BY 4.0 License.



 16 

observations as well as its values selected in Fig.5a. These overestimations can be 474 

anticipated to the characteristics of this model making it colder in the Arctic than its lower 475 

resolution counterpart– NorESM2-LM, hence thicker sea-ice in the Arctic Ocean (Seland 476 

et al., 2020). Additionally, when compared to the SIA criteria, the considerably thicker SIT 477 

values as well as the earlier peak observed in the NorESM2-MM for the AO criteria may 478 

arise due to the use of different scenarios. 479 

The inter-model spread between all the models is often used as the metric to quantify the 480 

uncertainty in model simulations. Here, the model spreads for SIT are relatively higher 481 

during the late fall and winter seasons but begin to decrease starting in March. By May to 482 

July, the models exhibit a high degree of agreement in both methods. This result is in line 483 

with the previous studies conducted for the sea-ice extent in the Arctic (Shen et al., 2021). 484 

The inter-model spread of annual mean in SIT is 0.23- and 0.57-meters using SIA- and 485 

AO-based criteria  respectively (Fig.5).  486 

Overall, when compared to the observations, the models struggle to accurately capture 487 

the annual cycle of SIT using both the criteria. Both methods highlight an overestimation 488 

of SIT in Autumn and Winter, and an underestimation in Spring and Summer. Despite 489 

such biases and inter-model spreads, the overall patterns in the annual cycles of SIT look 490 

very similar across both the proxy-year selection criteria. Both the proxy year selection 491 

methods manage to capture annual cycles, albeit at different points in the year. 492 

 493 

4.2.2. Variations in Snow Thickness:  494 

495 
Figure 6: Same as Figure 5. Annual Cycles for Snow Thickness.  496 

The snow thickness obtained with the SIA-based proxy-year selection criterion tends to 497 

be underestimated in all the models between October-January (Fig.6a). Snow thickness 498 

biases become progressively positive till May with notable improvement and 499 
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synchronization with observations starting in June, when a strong decline both in 500 

observations and model is noticed. For the snow thickness, the patterns and biases are 501 

similar across both the proxy methods with greater alignment compared to the SIT cycles. 502 

Particularly for the AO-based proxy method, we find very low values for snow thickness 503 

in October and November which significantly increase in Winter and Spring. Figures 6, 7 504 

and 8 show that the snow growth is overestimated in climate models compared to 505 

observation, which could also explain the comparable lower SIT growth rate. Comparing 506 

the two methods, annual cycles of snow thickness obtained have similar intermodal 507 

spread of 0.03 meters. However there does exist a slightly higher disagreement between 508 

models using the AO-based proxy method particularly between March-June with relatively 509 

greater agreements at the start and the end of the cycles. In summary, annual cycles of 510 

snow thickness show maximum alignment during early Summer and Fall across both the 511 

proxy-year selection methods. 512 

  513 

4.3 Nudged simulations for the MOSAiC period 514 

We use nudged coupled simulations, in which the winds observed during MOSAIC are 515 

imposed (see Sect. 2.3), to examine whether discrepancies in the proxy-based ice and 516 

snow cycles arise from mismatching weather conditions or from insufficient process 517 

representations. 518 

 519 

Figure 7: Annual cycles of sea-ice and snow parameters from the nudged simulations.  (a) Daily SIT 520 

and (b) daily snow thickness along the MOSAiC trajectory; the black line represents in-situ observations, 521 

and rest show nudged simulations in which the evolution of winds observed during the MOSAIC year is 522 

imposed. Climate models used are ECHAM6/FESOM (blue) and OpenIFS/FESOM2 (orange). Shaded 523 

areas are the ensemble range for each set of coupled climate simulations, thick lines are the ensemble 524 

mean. 525 

We find that the nudged simulations reproduce well the MOSAIC SIT annual cycle, 526 

despite a mild underestimation for ECHAM6/FESOM and overestimation for 527 
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OpenIFS/FESOM2 (Fig.7a). This indicates the importance of the atmospheric circulation 528 

in shaping the seasonal variations of SIT along the MOSAIC track. Both nudged 529 

simulations capture a more realistic SIT amplitude and seasonal signal than the AO-530 

based proxy in Fig.6. The monthly AO index is thus likely insufficient to fully capture the 531 

evolution of the atmospheric circulation, and its influence on the SIT variations. In 532 

contrast, the SIA-based proxy demonstrates a comparable performance to the nudged 533 

simulations (compare Figures 5a and 7a). Indeed, the nudged simulations and SIA-based 534 

proxy exhibit a similar range in amplitude (from 0.8 to 2m). Both feature an annual SIT 535 

maximum in the late winter to spring, although it is slightly better captured in nudged 536 

simulations in April to June (Figures 5a and 7a). 537 

  538 

In parallel, the snow thickness in nudged simulations exhibits a persisting too large annual 539 

cycle of snow accumulation, too little snow in the fall-winter and too thick snow in the 540 

spring (Fig.7b). The nudged simulations thus perform similarly to both SIA-based and AO-541 

based proxies in representing the MOSAIC snow thickness annual variations (compare 542 

to Figures 5b and 6b). Yet, we note that precipitation and snowfall in nudged simulations 543 

follow closely the observations, with monthly accumulated values comparable to ERA5 544 

within a 0.005 m difference (not shown). This confirms that biases in snow thickness 545 

accumulation is not primarily driven by the atmospheric flow, which is captured in the 546 

nudged runs, but rather by other processes of snow advection and melt insufficiently 547 

represented in CMIP6 and nudged models. We further discuss these processes in Sect. 548 

5. 549 

We thus conclude that on monthly to seasonal timescales, the SIA-based proxy year 550 

approach performs comparably as well as the nudged simulations approach. The nudged 551 

simulations nevertheless present a notable skill in capturing sea ice and snow variations 552 

on shorter, weekly to daily timescales. Indeed, despite their biases in amplitude, both 553 

nudged models reproduce several observed sudden changes likely linked to atmospheric 554 

conditions. For example, the drop in SIT in July, and peaks in snow thickness in late 555 

February, late April and mid-June, are well represented. Nudged simulations therefore 556 

have potential in supporting the analysis of short-lived events such as heavy snowfall, 557 

storms, or air intrusions, for which the proxy year criteria are limited.  558 

  559 

4.4 Monte Carlo simulations for the annual cycles 560 

Figure 8 illustrates the annual cycles of SIT and snow thickness, derived from a sample 561 

of 10,000 simulations using the Monte Carlo Method, with three years selected randomly. 562 

It shows that the variability in SIT modeled data is relatively high when compared to the 563 

snow thickness. However, this reduces for SIT starting May.  Regarding the seasonal 564 

evolution of SIT, the MMMs derived from proxy years selected using the AO criteria lie 565 

close to the mean of the bootstrap distribution, pointing to a lack of performance of this 566 
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criterion to capture the conditions during the MOSAiC campaign as discussed before and 567 

improved by the use of nudged simulations. Meanwhile, with the SIA selection criterion, 568 

this is not the case, with the period October-February statistically different from the 569 

random distribution and not far from the “extreme limits” for the remaining months. It is 570 

worth pointing out the fact that the SIA-based proxy method produces extreme values 571 

closer to observations, indicating that it tends to select years with unusual or rare 572 

conditions, like the one associated with MOSAiC. This alignment with observations can 573 

be seen as a positive aspect, indicating that our method captures real-world scenarios, 574 

albeit rare ones. When comparing the MMMs from both the proxy-selection methods, 575 

starting in March, the methods align closely, with their values closely matching the 576 

observations.  577 

578 
Figure 8: Annual cycles for MMMs of SIT and Snow Thickness using randomly selected years. The 579 

year selection is made using Monte Carlo Method which randomly selects three years over the contiguous 580 

chunk of 36 years (1979-2014) and the process is repeated 10,000 times. Each gray line represents MMM 581 

calculated over 10 models for 3 random years per iteration with 10,000 total iterations. The black dashed 582 

and dotted lines correspond to the MMM obtained by using the proxy years from AO and sea-ice criteria, 583 

respectively. The solid red lines represent in-situ observations. The orange lines correspond to the 2.5 and 584 

97.5 quantiles for the MMM.   585 

Turning to snow thickness, the models appear to struggle in replicating even a single year 586 

through bootstrapping that closely resembles the observed data, as they consistently 587 

show lower values in autumn and higher values in May. The AO and SIA-based proxy 588 

years, though exhibiting significant similarity throughout the year, do not perform better 589 

than the randomized distribution using the Monte Carlo Method. Notably, the randomized 590 

distribution never includes conditions approaching the observations during the MOSAIC 591 

year conditions. This suggests that, as seen in the nudged simulations as well, the model 592 

discrepancies in simulating snow thickness primarily stem from the inadequate 593 

representation of crucial processes, many of which are either underdeveloped or entirely 594 

absent in current coupled climate models. 595 

  596 
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5. Discussions 597 

This study proposes a new proxy-year selection approach to perform meaningful 598 

comparisons of CMIP6 models’ sea ice and snow data with measurements relatively 599 

localized in time and space – here, using the unique MOSAIC time-period and 600 

observations– tailored to a specific trajectory (and not circumpolar Arctic). We propose 601 

this method in an exploratory study using a first set of 10 selected CMIP6 models. We 602 

employ two proxy-year selection methods: one based on SIA and the other on 603 

atmospheric or AO, to select proxy years with sea-ice and atmospheric conditions similar 604 

to those observed during the MOSAiC year. Both methods account for the observed 605 

spatio-temporal variabilities in the specific criteria used, ensuring a closer approximation 606 

to the sea-ice and atmospheric conditions during the study period. The selected proxy 607 

years are then evaluated in light of atmospherically nudged simulations from two 608 

AOGCMs for the MOSAiC year, and finally validated using Monte Carlo Simulation where 609 

the significance of the annual cycles was tested over 10,000 random iterations. Our two 610 

proxy year selection methods demonstrate performance comparable to that of 611 

atmospherically nudged simulations, underscoring the robustness and usefulness of our 612 

methodology. This finding highlights the effectiveness of our experimental yet relatively 613 

simple approach in using the free-running CMIP6 models to achieve outcomes similar to 614 

the more precise and observationally constrained nudged simulations. Such methods are 615 

particularly valuable for institutions that lack the resources to produce their own nudged 616 

simulations, offering a viable alternative that maintains relatively better accuracy. 617 

Therefore, this study offers a particular methodology that can serve as one of the many 618 

comparison possibilities between coupled climate models and field observations. 619 

Our results highlight biases and seasonal differences in the model simulations of both SIT 620 

and snow thickness along the MOSAiC drift. For the snow thickness, we find that models 621 

overestimate the amplitude of the annual cycle – with quite large, simulated accumulation 622 

and melt. To investigate possible reasons for overestimated snow accumulations, we 623 

compare snowfall in the nudged simulations and ERA-5, which  highlighted a good 624 

agreement (not shown). Furthermore, Wagner et al. (2022) found that snowfall in ERA-5 625 

during the MOSAiC expedition slightly exceeded their observations. This discrepancy was 626 

on a scale similar to what we observed in our comparison, suggesting that difference in 627 

snowfall cannot be the sole cause for the bias in snow thickness. Instead, other processes 628 

such as snow advection and melt, which are insufficiently represented in CMIP6 and 629 

nudged models may likely contribute to this bias (e.g., Chen et al., 2021, Nicolaus et al., 630 

2022, Pithan et al., 2023). Other sources of overestimation could be related to processes 631 

of snow densification. Warren et al. 1999 showed that snow density increases throughout 632 

the winter season, causing its volume to decrease, a process not included in the ice 633 

models to our knowledge. However, accounting for the densification would likely not lead 634 

to a large enough volume decrease to explain the differences between models and 635 
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observation. Another process not included in at least 7 of the 10 models is snow reduction 636 

into leads, which might occur under certain atmospheric conditions and can reduce the 637 

snow thickness by up to 10% (Clemens-Sewall et al. 2023). Further, it should be noted 638 

that the observation stations need to be set up on level ice and that snow is redistributed 639 

towards ridges by wind (Sturm et al. 2002). This might lead to an anomalously thin 640 

observed snow layer, while coarser-scale model grids average the snow cover over both 641 

level and ridged ice.   642 

From the overestimated snow thickness in March, all models progress to an 643 

underestimated snow thickness in July, with melt happening faster and at higher rates 644 

than observed. A study analyzing the mean Arctic-wide snow thickness came to similar 645 

conclusions (Chen et al. 2021), indicating that this is a general feature of CMIP6 models 646 

and not introduced by the comparison methods implemented in this study. The melt of 647 

snow on sea ice is mainly forced by the onset of incoming shortwave radiation, strongly 648 

governed by the albedo. Perovich et al. (2002) describes the albedo evolution of Arctic 649 

snow throughout the melt season. As melt progresses, they describe the albedo as a 650 

highly spatial variable, with a mean of 0.4, with individual values ranging between  0.1 651 

and 0.65. The models are not capable of resolving such local processes at their 652 

resolutions. Furthermore, the albedo is often a parameter tuned to ensure correctly 653 

simulated sea ice extent (Hunke et al. 2010, Losch et al. 2010). In essence, our results 654 

show that the melt of snow is overestimated in the CMIP6 models, and the albedo would 655 

be a good starting point to investigate the origin of this overestimation.  656 

Turning to SIT, our results show that models better reproduce variations in thickness 657 

between March and July compared to that between October and February when the 658 

biases and inter-model spreads are relatively higher. This difference in performance of 659 

CMIP6 models in the two periods may be due to regional or inter-annual differences 660 

caused by the proxy year selection, which may also impose a strong decadal trend 661 

amongst the individual years. Previous studies considering the Arctic-wide sea ice volume 662 

in CMIP6, such as Winkelbauer et al. (2024), do not show compatible patterns. The bias 663 

and model spread in Winkelbauer et al., (2024) are relatively consistent throughout the 664 

year. Our study differs from this previous work in terms of selection of specific proxy years 665 

and the unique MOSAiC trajectory for the comparison. Seasonal variations of biases and 666 

inter-model spread are present in both proxy year sections and the Monte-Carlo method, 667 

with the AO-based method showing the most pronounced variations. The seasonality of 668 

large inter-model spreads and bias in October and February and lower in March and July 669 

is evident in both proxy year selections and the Monte-Carlo method. This underscores 670 

the role of localization when making model-observation comparisons and suggests that 671 

the CMIP models exhibit regional differences in their ice formation processes, which even 672 

out on an Arctic-wide scale. Understanding these differences would help improve the 673 

representation of sea ice in GCMs in general. 674 
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 The regional differences between models and observations may arise due to a variety of 675 

factors: Firstly, the sea ice albedo feedback processes can be a major influence on 676 

seasonal sea ice retreat. (Kashiwase et al., 2017; Thackeray and Hall, 2019). Secondly, 677 

the enhanced heat loss from seawater during the melting season can accelerate the sea 678 

ice growth rate later in the season (Bitz and Roe, 2004; Hezel et al., 2012). Thirdly, the 679 

complexity of ice-ocean  feedback processes related to salinity and the sea-surface 680 

temperatures can complicate the SIT responses to warming climate (Zhang et al., 2018; 681 

Goosse and Zunz, 2014). Lastly, temperature and salinity biases due to the excessively 682 

deep and thick Atlantic Water layer (Khosravi et al., 2022), along with biases in regional 683 

atmospheric temperatures, sea-ice convergence and regional surface wind 684 

inconsistencies in CMIP6 models (Crawford et al., 2023), may account for biases in SIT 685 

simulations. Moreover, unresolved processes in snow cover may also impact the 686 

representation of SIT. For example, the selected CMIP6 models use a uniform snow 687 

distribution over their thickness categories. Yet studies have shown that snow is not 688 

uniformly distributed over the various ice thickness categories but should be varying with 689 

the SIT category (Sturm et. al. 2002, Liston 2004, Castro-Morales et al. 2013). In the 690 

models, an unrealistic uniformly thick snow over all categories could lead to overly 691 

insulated thin ice layers, explaining some of the underestimated ice growth seen in Fig.8. 692 

Overall, the surplus snow in the model simulation might contribute to reduced SIT growth 693 

during late winter–early spring months, particularly evident in OpenIFS/FESOM2 when 694 

compared to the observations (Fig.7).  695 

Increasing model resolution and properly choosing sea ice model physics would have 696 

potential to improve sea ice simulations. A quantitative analysis to distinguish sea ice’s 697 

thermodynamic and dynamic processes might help improve models and also our 698 

understanding of the future Arctic climate and sea ice projections. Future studies will 699 

address this.   700 

 701 

6. Conclusions 702 

While GCMs are not designed to replicate observations, their ability to reproduce the 703 

current polar climate can nevertheless give certain confidence in the projection of the 704 

future evolution of sea ice cover (Notz 2015). Yet, evaluating the skill of GCMs with short-705 

term observational campaigns is challenging. This study proposes two proxy year-based 706 

approaches to perform meaningful model-observation comparisons for two key 707 

parameters of the Arctic system: the sea-ice and snow thicknesses. With this new 708 

evaluation methodology, we demonstrate our efforts to address challenges that are 709 

typically encountered when comparing GCM outputs to in-situ observations: (i) the 710 

difference in spatial coverage of the model values in comparison to the observations, (ii) 711 
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the fact that the observations are drifting with the sea ice during the year, and (iii) the 712 

models’ inability to simulate specific observed years. 713 

Firstly, to address the difference in the spatial disparity between the model values and 714 

observations, we considered an extensive set of MOSAIC observations deployed within 715 

a 40 km radius, comparable to the scale of a GCM grid. Secondly, following previous 716 

studies employing operational or nudged model data (e.g. Athanase et al. 2019; Pithan 717 

et al. 2023), we collocated the CMIP6 model data with observations from each month or 718 

day to address the spatial displacement of the observations. Finally, we addressed the 719 

CMIP6 models’ inability to simulate specific years by proposing for the first time “proxy 720 

years” of the observed conditions for meaningful model-observation comparisons based 721 

on two broad criteria: one based on the AO index, and other on SIA. 722 

Comparing the two proxy-year selection criteria we find that the SIA-based method yields 723 

SIT annual cycles closest to the observations. Annual cycles generated using this 724 

criterion exhibited relatively lower biases and narrower inter-model spreads when 725 

compared to AO-selected proxy years. Further comparing the two proxy-year methods 726 

with nudged simulations highlights whether the latter have skills in capturing the 727 

anomalous atmospheric flow and its influence on the sea ice and snow along the MOSAIC 728 

drift track. We demonstrate that: (a) the proxy year methods effectively capture the 729 

anomalous conditions and realizations of natural variability, and (b) the atmospheric 730 

conditions are not the primary contributors to the model biases. Finally, a validation 731 

experiment was executed to rigorously evaluate the reliability of our proxy year selection 732 

criteria which reaffirmed that SIA-based proxy year selections were statistically 733 

significant. We emphasize that on monthly timescales, our SIA-based criterion performs 734 

equally well as nudged simulations in terms of annual maximum and variations. Our 735 

evaluation reveals that neither the selection method nor the nudged simulations could 736 

accurately replicate the snow thickness annual cycle observed in-situ during MOSAIC, 737 

suggesting unresolved processes in nudged and CMIP6 simulations.  738 

In summary, the CMIP6 models faced challenges in accurately simulating sea-ice and 739 

snow thickness in the Arctic due to the complexity of the underlying processes. 740 

Nevertheless, our two-novel proxy-year selection methods showed modest 741 

enhancements in aligning with observed annual cycles, with the SIA-based criterion 742 

yielding the best results. Our results highlight that regardless of the specific (free-running 743 

or nudged) model configurations, and of conditions within individual proxy years, the 744 

general statements about biases in SIT and snow thickness remain consistent. These 745 

biases most likely originate from an overly uniform winter snow accumulation and a too 746 

rapid snow and sea ice melt. Exploring modeled processes which shape the sea-ice-snow 747 

thickness patterns in depth, in particular the mechanisms suggested hereinabove, might 748 

offer insights into such accumulation and melting biases. Moreover, extending the 749 
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evaluation of model simulations to other datasets, such as observations from Operation 750 

IceBridge (Kurtz and Harbeck, 2015) and ICESat-2 (Kacimi and Kwok, 2022), would help 751 

test our findings in other atmospheric and sea-ice conditions. 752 

Our study introduces a novel proxy-year selection method for model-observation 753 

comparisons, highlighting model biases in simulating Arctic sea ice and reflecting upon 754 

their underlying processes. This initial step is crucial to evaluate the performance of 755 

CMIP6 models and to identify areas for further improvement. Our results demonstrate 756 

that meaningful model evaluation of free-running simulations can be carried out using in-757 

situ datasets with important temporal and spatial constraints, even under strongly 758 

anomalous observed conditions. Better representation of processes driving the SIT and 759 

snow thickness – such as snowfall, snow thinning and redistribution mechanisms, or 760 

albedo – will be instrumental in the next generation of GCMs. 761 

 762 
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