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Abstract. This study investigated the computational benefits of using multi-fidelity statistical estimation (MFSE) algorithms

to quantify uncertainty in the mass change of Humboldt Glacier, Greenland, between 2007 and 2100 using a single climate

change scenario. The goal of this study was to determine whether MFSE can use multiple models of varying cost and accuracy

to reduce the computational cost of estimating the mean and variance of the projected mass change of a glacier. The problem

size and complexity were chosen to reflect the challenges posed by future continental scale studies while still facilitating a5

computationally feasible investigation of MFSE methods. When quantifying uncertainty introduced by a high-dimensional

parameterization of basal friction field, MFSE was able to reduce the mean-squared error in the estimates of the statistics by

well over an order of magnitude when compared to a single-fidelity approach that only used the highest-fidelity model. This

significant reduction in computational cost was achieved despite the low-fidelity models used being incapable of capturing

the local features of the ice flow fields predicted by the high-fidelity model. The MFSE algorithms were able to effectively10

leverage the high correlation between each model’s predictions of mass change, which all responded similarly to perturbations

in the model inputs. Consequently, our results suggest that MFSE could be highly useful for reducing the cost of computing

continental scale probabilistic projections of sea-level rise due to ice-sheet mass change.

1 Introduction

The most recent Intergovernmental Panel on Climate Change (IPCC) report predicts that the melting of ice sheets will con-15

tribute significantly to future rises in sea level (Masson-Delmotte et al., 2021), but the amount of sea-level rise is subject to a

large degree of uncertainty. For example, estimates of the sea-level rise in 2100, caused by melting of the Greenland Ice Sheet,

range from 0.01 m to 0.18 m. Moreover, projections of the Antarctic Ice Sheet’s contribution to sea-level rise are subject to

even larger uncertainty (Bakker et al., 2017; Masson-Delmotte et al., 2021; Edwards et al., 2019). Consequently, there is a

strong need to accompany recent improvements in the numerical modeling of ice-sheet dynamics with rigorous methods that20

quantify uncertainty in model predictions.
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Accurately quantifying uncertainty in ice-sheet predictions requires estimating the impacts of all sources of model variability.

Prediction uncertainty is caused by three main factors: 1) the inadequacy of the governing equations used by the model to

approximate reality; 2) the errors introduced by the numerical discretization used to solve the governing equations; and 3)

the uncertainty in model parameters used to parameterize future climate forcing and the current condition of the ice sheet,25

among others. Several studies have demonstrated that model discretization significantly affects model predictions (Cornford

et al., 2013; Durand et al., 2009), but the impact of discretization errors has not been explicitly considered with other sources

of uncertainty. In addition, while the comparison of model outputs has been used to estimate uncertainty arising from model

inadequacy (Goelzer et al., 2018), such studies are not guaranteed to estimate the true model inadequacy (Knutti et al., 2010).

Consequently, several recent efforts have focused solely on quantifying parametric uncertainty (Nias et al., 2023; Edwards30

et al., 2021; Ritz et al., 2015; Schlegel et al., 2018; Recinos et al., 2023), as we do in this study.

Parametric uncertainty is often estimated using Monte Carlo (MC) statistical estimation methods, which compute statistics

or construct probability densities using a large number of model simulations evaluated at different random realizations of the

uncertain model parameters. However, the substantial computational cost of evaluating ice-sheet models limits the number

of model simulations that can be run, and thus the precision of uncertainty estimates. For example, when estimating the35

mean of a model with MC, the mean squared error (MSE) in the estimated value only decreases linearly as the number of

model simulations increases. Therefore, recent UQ efforts constructed emulators (also known as surrogates) of the numerical

model from a limited amount of simulation data, and then sampled the surrogate to quantify uncertainty (Berdahl et al., 2021;

Bulthuis et al., 2019; Edwards et al., 2019; Jantre et al., 2024). While surrogates can improve the computational tractability

of UQ when uncertainty is parameterized by a small number of parameters, their application becomes impractical when there40

are more than 10-20 variables. This limitation arises because the amount of simulation data required to build these surrogates

grows exponentially with the number of parameters (Jakeman, 2023). Consequently, there is a need for methods capable of

quantifying uncertainty in ice-sheet models parameterized by a large number of uncertain parameters, such as a those used to

characterize a spatially varying basal friction field.

Most recent studies have focused on estimating uncertainty in the predictions of ice-sheet model with small numbers of45

parameters, e.g. (Nias et al., 2023; Ritz et al., 2015; Schlegel et al., 2018; Jantre et al., 2024), despite large numbers of

parameters being necessary to calibrate ice sheet model to observations (Barnes et al., 2021; Johnson et al., 2023; Perego et al.,

2014). However, recently Recinos et al. (2023) used the adjoint sensitivity method to construct a linear approximation of the

map from a high-dimensional parameterization of uncertain basal friction coefficient and ice stiffness, to quantities of interest

(QoI) – specifically the loss of ice volume above flotation predicted by a shallow-shelf approximation model at various future50

times. The linearized map and the Gaussian characterization of the distribution of the parameter uncertainty was then exploited

to estimate statistics of the QoI. While this method is very computationally efficient, linearizing the parameter-to-QoI map will

introduce errors (bias) into estimates of uncertainty, which will depend on how accurately the linearized parameter-to-QoI map

approximates the true map (Koziol et al., 2021). Moreover, the approach requires using adjoints or automatic differentiation

to estimate gradients, which many ice-sheet models do not support. Consequently, in this study we focused on Multi-fidelity55

statistical estimation (MFSE) methods that do not require gradients.
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MFSE methods (Giles, 2015; Peherstorfer et al., 2016; Gorodetsky et al., 2020; Schaden and Ullmann, 2020) utilize models

of varying fidelity, that is models with different inadequacy, numerical discretization and computational cost, to efficiently

and accurately quantify parameteric uncertainty. Specifically, MFSE methods produce unbiased statistics of a trusted highest-

fidelity model by combining a small number of simulations of that model with larger amounts of data from multiple lower-60

cost models. Note that while low-fidelity models with different discretization and inadequacy error are used, MFSE does not

quantify the impact of these two types of errors on the high-fidelity statistics. Furthermore, provided the low-fidelity models are

highly correlated with the high-fidelity model and are substantially cheaper to simulate, the mean squared error (MSE) of the

MFSE statistic will often be an order of magnitude smaller than the estimate obtained using solely high-fidelity evaluations, for

a fixed computational budget. However, such gains have yet to be realized when quantifying uncertainty in ice-sheet models.65

This study investigated the efficacy of using MFSE methods to reduce the computational cost needed to estimate statistics

summarizing the uncertainty in predictions of sea-level change obtained using ice-sheet models parameterized by large num-

bers of parameters. To facilitate a computationally feasible investigation, we focused on reducing the computational cost

of estimating the mean and variance of mass change in the Humboldt Glacier in northern Greenland. This mass change

was driven by uncertainty in the spatially varying basal friction between the ice sheet and land mass, under a single cli-70

mate change scenario between 2007 and 2100. Specifically, letting f denote the mass change at 2100 computed by a mono-

layer higher-order (MOLHO) (Dias dos Santos et al., 2022) model M, θ denote the parameters of the model characteriz-

ing the |revbasal friction field, and y denote the observational data, we estimated the mean and variance of the distribution

p(f | M,y) = p(f | θ)p(θ | M,y) in two steps. First, using a piecewise linear discretization of a log-normal basal friction

field, we used Bayesian inference to calibrate the resulting 11,536 dimensional uncertain variable to match available observa-75

tions of glacier surface velocity. Specifically, we constructed a low-rank Gaussian approximation (Isaac et al., 2015; Recinos

et al., 2023; Barnes et al., 2021; Johnson et al., 2023; Perego et al., 2014) of the Bayesian posterior distribution of the model

parameters p(θ | M,y) using a Blatter-Pattyn model (Hoffman et al., 2018). Second, we estimated the mean and variance of

glacier mass change using 13 different model fidelities (including the highest-fidelity model), based on different numerical

discretizations of the MOLHO and shallow-shelf (SSA) physics approximations (Morland and Johnson, 1980; Weis et al.,80

1999).

Our study makes two novel contributions to previously published glaciology literature. First, it represents the first application

of MFSE methods to quantify the impact of high-dimensional parameter uncertainty on transient projections of ice-sheet

models defined on a realistic physical domain. Our results demonstrate that MFSE can reduce the serial computational time

required for a precise UQ study of ice-sheet contribution to sea-level rise from years to a month. Note, Gruber et al. (2022)85

previously applied MFSE to an ice-sheet model; however, their study was highly simplified, as it only quantified uncertainty

arising from two uncertain scalar parameters of an ice-sheet model defined on a simple geometric domain. Second, our paper

provides a comprehensive discussion of the practical issues that arise when using MFSE, which are often overlooked in MFSE

literature.

This paper is organized as follows. First, Section 2 details the different ice-sheet models considered by this study and the90

parameterization of uncertainty employed. Second, Section 3 presents the calibration of the ice sheet model and how the
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posterior samples were generated. Third, Section 4 presents the MFSE methods that were used to quantify uncertainty. Fourth,

Section 5 presents the numerical results of the study and Section 6 presents our findings. Finally, conclusions are drawn in

Section 7.

2 Methods95

This section presents the model formulations (Section 2.1) and the numerical discretization of these models (Section 2.2) we

used to model ice-sheet evolution, as well as the sources of model uncertainty we considered (Section 2.3) when quantifying

uncertainty in the mass change from Humboldt Glacier between 2007 and 2100.

2.1 Model Formulations

Ice-sheets behave as a shear thinning fluid and can be modeled with the nonlinear Stokes equation (Cuffey and Paterson, 2010).100

This section details the Stokes equations and two computationally less expensive simplifications, MOLHO (Dias dos Santos

et al., 2022) and SSA (Morland and Johnson, 1980; Weis et al., 1999) which were used to quantify uncertainty in predictions

of the contribution of Humboldt glacier to sea-level rise.

Let x and y denote the horizontal coordinates and z the vertical coordinate, chosen such that the sea level, assumed to remain

constant during the period of interest, corresponds to z = 0. We approximated the ice domain at time t as a vertically extruded

domain Ω defined as

Ω(t) := {(x,y,z) s.t. (x,y) ∈ Σ, and l(x,y, t)< z < s(x,y, t)},

where Σ⊂ R2 denotes the horizontal extent of the ice, Γl(t) := {(x,y,z) s.t. z = l(x,y, t), (x,y) ∈ Σ} denotes the lower sur-

face of the ice at time t, and Γs(t) := {(x,y,z) s.t. z = s(x,y, t), (x,y) ∈ Σ} denotes the upper surface of the ice1.105

The Stokes, MOLHO, and SSA models defined the thickness of the ice H(x,y, t) = s(x,y, t)− l(x,y, t) as the difference

between the ice-sheet surface s(x,y, t) and the bottom of the ice-sheet l(x,y, t). The bottom of the ice-sheet was allowed to

be both grounded to the bed topography b(x,y), such that l(x,y, t) = b(x,y), or floating such that l(x,y, t) =− ρ
ρw
H(x,y, t),

where ρ and ρw are the densities of ice and ocean water, respectively. Different boundary conditions were then applied on the

grounded portion Γg of the ice bottom and on the floating portion Γf of the ice bottom, where Γg ∩Γf = ∅ and the ice bottom110

was given by Γg ∪Γf . The lateral boundary of Ω was also partitioned into the ice-sheet margin (either terrestrial or marine

margin) Γm and an internal (artificial) boundary Γd marking the interior extent of the Humboldt Glacier that was considered.

The relevant domains of the ice-sheet are depicted in Figure 1.

The Stokes equations model the horizontal ice velocities (u(x,y,z, t),v(x,y,z, t)), vertical ice velocity w(x,y,z, t) and

thickness H(x,y, t) of an ice-sheet as a function of the three spatial dimensions (x,y,z). In contrast, the MOLHO model115

makes simplifications based on the observation that ice-sheets are typically shallow, i.e. their horizontal extent is much greater

than their thickness. These simplifications lead to a model that does not explicitly estimate the vertical velocity w and only

1For simplicity here we assume that Σ does not change in time. This implies that the ice-sheet cannot extend beyond Σ but it can become thicker or thinner

(to the point of disappearing in some regions).
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Figure 1. (Left) Conceptual model of an ice sheet in the x− z plane. (Right) The boundaries (blue lines) of Humboldt Glacier in Greenland.

simulates the horizontal velocities u(x,y,z, t), v(x,y,z, t) as functions of the three spatial coordinates. Contrasting again, the

SSA model makes the additional assumption that the horizontal components of velocity do not vary with thickness (a reasonable

approximation in regions where motion is dominated by basal slip) so that the horizontal velocities u(x,y, t),v(x,y, t) are120

solved for only as functions of (x,y).

The Stokes, MOLHO, and SSA models all evolve ice thickness H(x,y, t) according to

∂tH +∇ · (ūH) = fH , H ≥ 0, (1)

where ū :=
1

H

s∫
l

udz is the thickness-integrated velocity and fH is a forcing term that accounts for accumulation (e.g. snow

accumulation) and ablation (e.g. melting) at the upper (s) and lower (l) surfaces of the ice sheet. However, each model deter-125

mines the velocities of the ice sheet differently. The following three subsections detail how each model computes the velocity

of the ice sheet.
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2.1.1 Stokes model

This section introduces the Stokes model, which while not used in this study due to its impractical computational cost, forms

the basis of the other three models used in this study. Specifically, the governing equations of the Stokes model are130

−∇ ·σ = ρg (2)

∇ ·u = 0, (3)

where these equations are solved for the velocities u = (u,v,w) and the pressure p. Additionally, ρ denotes the density of ice,

σ = 2µD− pI denotes the stress tensor of the ice and Dij(u) = 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
denotes the strain rate tensor of the ice; here

we used the shorthand u = (u,v,w) = (u1,u2,u3). The stress tensor is dependent on the non-linear viscosity of the ice which135

satisfies

µ=
1

2
A(T )−qDe(u)q−1, (4)

where A is the ice flow factor that depends on the ice temperature T and q ≤ 1; in our study we set q = 1
3 , which is a typical

choice (Hillebrand et al., 2022). In addition, the effective strain rate De(u) satisfies De(u) = 1√
2
|D(u)|, where | · | denotes the

Frobenius norm.140

When used to model ice sheets, the Stokes equation must be accompanied by the following boundary conditions:

σn = 0 on Γs stress free, atmospheric pressure neglected

σn = ρw g min(z,0)n on Γm boundary condition at the ice margin

u = ud on Γd Dirichlet condition at internal boundary (ice-flow divide)

u ·n = 0, (σn)‖ = βu‖ on Γg impenetrability + sliding condition

σn = ρw g zn on Γf hydrostatic pressure of ocean under ice shelves

Here β(x,y) is a linearized sliding (or friction) coefficient and n the unit outward-pointing normal to the boundary and the

subscript ‖ denotes the component tangential to the bed. The boundary condition at the margin includes an ocean back-pressure

term when the margin is partially submerged (z < 0). For a terrestrial margin, z > 0, the boundary condition becomes a stress-

free condition.

2.1.2 Mono-layer higher-order (MOLHO)145

The MOLHO model (Dias dos Santos et al., 2022) is based on the Blatter-Pattyn approximation (Pattyn, 2003; Dukowicz et al.,

2010) which can be derived by neglecting the terms wx and wy (the derivatives of w with respect to x and y, respectively) in

the strain-rate tensor D and using the incompressibility condition (∇·u = 0) such that wz can be expressed solely in terms of

ux and vy and

D =


ux

1
2 (uy + vx) 1

2uz

1
2 (uy + vx) vy

1
2uz

1
2uz

1
2vz −(ux + vy)

 . (5)150
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This leads (Jouvet, 2016) to the following elliptic equations for the horizontal velocities (u,v)

−∇ · (2µD̂) =−ρg∇xy s, (6)

where∇xy := [∂x,∂y]>, and

D̂ =

 2ux + vy
1
2 (uy + vx) 1

2uz
1
2 (uy + vx) ux + 2vy

1
2vz

 . (7)

such that the viscosity µ in Eq. (4) has the effective strain rate

De =

√
u2
x + v2

y +uxvy +
1

4
(uy + vx)2 +

1

4
u2
z +

1

4
v2
z .

MOLHO is derived from the weak form of the Blatter-Pattyn model Eq. (6), with the ansatz that the velocity can be expressed

as

u(x,y,z) = ub(x,y)φb + uv(x,y)φv

(
s− z
H

)
, with φb = 1, and φv(ζ) = 1− ζ 1

q+1,

where the functions φb and φv are also used to define the test functions of the weak formulation of the MOLHO model. This155

ansatz allows the Blatter-Pattyn model to be simplified into a system of two two-dimensional partial differential equations

(PDEs) for ub and uv — Dias dos Santos et al. (2022) give a detailed derivation — such that the thickness-averaged velocity

satisfies ū = ub + (1+q)
(1+2q) uv , where q is the same coefficient appearing in the viscosity definition Eq. (4).

We used the following boundary conditions when using MOLHO to simulate ice-flow

2µD̂n = 0 on Γs stress free, atmospheric pressure neglected

2µD̂n = ψn on Γm boundary condition at at ice margin

u = ud on Γd Dirichlet condition at internal boundary (ice-flow divide)

2µD̂n = βu‖ on Γg sliding condition

2µD̂n = 0 on Γf free slip under ice shelves.

Additionally, we approximated the term ψ = ρg(s− z) + ρw g min(z,0) by its thickness-averaged value ψ̄ = 1
2gH(ρ−r2ρw),

where r = max
(
1− s

H ,0
)

is the the submerged ratio.160

2.1.3 Shallow Shelf Approximation (SSA)

The SSA model (Morland and Johnson, 1980) is a simplification of the Blatter-Pattyn model that assumes the ice-velocity is

uniform in z, so u = ū and thus uz = 0,vz = 0. This simplification yields

D =


ux

1
2 (uy + vx) 0

1
2 (uy + vx) vy 0

0 0 −(ux + vy)

 , D̂ =

 2ux + vy
1
2 (uy + vx) 0

1
2 (uy + vx) ux + 2vy 0

 , (8)
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and De =
√
u2
x + v2

y +uxvy + 1
4 (uy + vx)2. Consequently, the SSA is a single two-dimensional PDE in Σ

−∇ ·
(

2µHD̂(ū)
)

+βū =−ρgH∇xys, in Σ,

where µ̄= 1
2 Ā(T )−qDe(ū)q−1, and Ā is the thickness-averaged flow factor. This study explored the use of SSA with the

boundary conditions  2µHD̂(ū)n =Hψ̄n on Γm boundary condition at ice margin

ū = ūd on Γd Dirichlet condition at internal boundary.

With abuse of notation, here Γm and Γd denotes subsets of the boundary of Σ.165

2.2 Numerical discretization

The ability to predict ice-sheet evolution accurately is dictated not only by the governing equations used, but also by the

properties of the numerical methods used to solve the governing equations. In this study, we discretized the thickness and the

velocity equations of the MOLHO and SSA models using the popular Galerkin-based finite element method with piecewise

linear elements, which we implemented in FEniCS (Alnæs et al., 2015). The coupled thickness and velocity equations were170

solved in a semi-implicit fashion using a Backward Euler time discretization for the thickness and lagging the evaluation of

the velocity. The thickness equation was stabilized using the streamline upwind method. Additionally, the advection term was

integrated by parts and the thickness was treated implicitly. The discretized problem was solved using the PETSc (Balay et al.,

1998) SNES nonlinear solver. Using this time evolution process, we did not observe any numerical instabilities when using the

time-step sizes adopted in this study.175

Because the thickness H obtained from Eq. (1) is not guaranteed to be positive due to the forcing term fH and that the

discretization used is not positivity preserving, we adopted two different approaches to guarantee the positivity of the thickness

computed by our finite element models. The first approach involved updating the thickness value at each node so that it was

greater than or equal to a minimum thickness value Hm = 1 m. The second approach used an optimization-based approach

(Bochev et al., 2020) to preserve the thickness constraint (H ≥Hm) and guarantee that the total mass change is always consis-180

tent with the forcing term in regions where the ice is present and with the boundary fluxes. The first approach is computationally

cheaper than the second, but unlike the second method does not conserve mass.

In addition to mass conservation, the number of finite elements and the time-step size both affect the error in the finite

element approximation of the governing equations of the MOLHO and SSA models. In this study we investigated the impact

of the number of finite elements, which we also refer to as the spatial mesh resolution, and time-step size, on the precision of185

statistical estimates of mass-change. Specifically, the MOLHO and SSA models were both used to simulate ice-sheet evolution

with four different finite element meshes and four different time-step sizes. More details on the spatial mesh and time-step sizes

used are given in Section 5.1. Figure 2 compares the four different finite element meshes used to model the Humboldt Glacier.

Due to the differences in the characteristic element size of each mesh, the computational domain of each mesh is different.

However, we will show that this did not prevent the use of these meshes in our study.190
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Figure 2. Comparison of the four finite element meshes used to model the Humboldt Glacier with characteristic finite-element sizes of 1km,

1.5km, 2km, and 3km, shown left to right.

2.3 Parameterization of uncertainty

Many factors introduce parametric uncertainty into the predictions of ice-sheet models, including atmospheric forcing, ice

rheology, basal friction, ice temperature, calving, and submarine melting. While all these sources of parametric uncertainty

may significantly impact predictions of mass change from ice sheets, this study focused on quantifying uncertainty in modeled

ice mass change subject to high-dimensional parameter uncertainty due to unknown basal friction, which is considered one of195

the largest sources of prediction uncertainty after future environmental forcing (Nias et al., 2018; Joughin et al., 2019; Brondex

et al., 2019; Åkesson et al., 2021; Hillebrand et al., 2022; Nias et al., 2023). This singular focus was made to improve our

ability to assess whether MFSE is useful for quantifying uncertain in ice-sheet modeling with high-dimensional parameter

uncertainty, which most existing UQ methods cannot tractably address. By doing so, we ensured that the conclusions drawn by

our study can be plausibly extended to studies considering additional sources of uncertainty. This ensures that the conclusions200

drawn by our study can be plausibly extended to studies considering additional sources of uncertainty.

The uncertainty in basal friction β, which impacts the boundary conditions of the MOLHO and SSA models, can be parame-

terized in a number of ways. For example, a lumped approach would assign a single scalar random variable to the whole domain

or a semi-distributed approach may use different constants in predefined subdomains, e.g. catchments, of the glacier. In this

study, we adopted a fully distributed approach that treated the friction as a log-Gaussian random field that is θ = log(β)∈ RNθ ,205

with a Gaussian prior distribution p(θ)∼N (µ,C) with µ= 0.

Following Isaac et al. (2015), we defined the prior covariance operator C to be an infinite-dimensional Laplacian squared

operator. Specifically, we used a finite-dimensional discretization of the operator Σprior ≈ C with

Σ−1
prior = KM−1K, (9)
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where K∈ RNθ×Nθ and M∈ RNθ×Nθ are finite elements matrices for the elliptic and mass operators, defined as210

Kij = γ

∫
Γl

∇φi(x) · ∇φj(x)dx+ δ

∫
Γl

φi(x) ·φj(x)dx+ ξ

∫
∂Γl

φi(x) ·φj(x)dx, (10)

Mij =

∫
Γl

φi(x) ·φj(x)dx, (11)

and φi are finite element basis functions and x= (x,y). The first term in the definition of K is the Laplacian operator, the

second term is a mass operator representing a source term, and the last term is a boundary mass operator for Robin boundary215

conditions. The ratio of the coefficients γ and δ determines the correlation length l =
√

γ
δ of the covariance. In our simulations,

we set γ = 2000 km, δ = 2 km−1 and ξ = 20, hence l ≈ 31.6 km. These values were found to balance the smoothness of

realizations of the friction field with the ability to capture the fine scale friction features needed to produce an acceptable match

between the model prediction of surface velocity and the observed values. Two random samples from the prior distribution of

the log-friction are depicted in Figure 3.220

Figure 3. Two random samples from the prior distribution of the log-friction p(θ)∼N (0,Σprior), where Σprior is defined in Eq. (9).

The parameterization of the prior in Eq. (9) has two main advantages. First, computationally efficient linear algebra can be

used to draw samples from the prior distribution. In this study we drew samples from the prior using

θ = µprior + Ln, n∼N (0,INθ )

with µprior = 0, INθ is the identity matrix with Nθ rows, L = K−1M
1
2 , such that Σprior = LL>, and we lump the mass matrix

M. The second advantage is that this Gaussian prior enables an efficient procedure for computing the posterior distribution of225

the friction field constrained by the observations, which we present in Section 3.
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2.4 Additional model setup

Additional details regarding the model setup are as follows. First, the glacier’s bed topography, ice surface elevation, and

ice thickness were obtained from observations (refer to Hillebrand et al. (2022) for details) and interpolated onto the finite

element mesh. Second, the MIROC5 climate forcing from the CMIP5 for the Representative Concentration Pathway (RCP)230

2.6 scenario was used to generate the surface mass balance (difference between ice accumulation and ablation) fH and drive

the ice-sheet evolution from 2007 to 2100. This surface mass balance was provided by the Ice Sheet Model Intercomparison

Project for CMIP6 (ISMIP6), which down-scaled output from Earth system models using the state-of-the-art regional climate

model MAR (Nowicki et al., 2020). Finally, the ice front was kept fixed such that any ice that moved beyond the calving front

is assumed to melt, and any explicit ocean forcing was ignored.235

3 Calibration

The goal of this study was to investigate uncertainty in predictions of the future mass change of Humboldt Glacier. However,

generating realistic predictions with a model requires calibrating that model to available data. Consequently, in this paper we

calibrated the basal friction field of our numerical models to measurements of surface velocity of the ice sheet. We processed

Humboldt Glacier geometry data and surface velocity observations for year 2007 as detailed in Hillebrand et al. (2022). The240

geometry was assumed to be error free and the ice sheet was assumed to be in thermal equilibrium. Thus, we calibrated the

friction field by fitting the outputs of a high-resolution steady-state thermo-coupled flow model to the observational data.

Ice-sheet models are typically calibrated using deterministic optimization methods that find the values of the model param-

eters that lead to the best match between observations and the model prediction of the observations, e.g MacAyeal (1993);

Morlighem et al. (2010); Petra et al. (2012); Perego et al. (2014); Goldberg et al. (2015). However, such approaches produce a245

single optimized parameter value to represent the uncertainty in the model parameters that arises from using a limited amount

of noisy observational data.

Bayesian inference uses Bayes’ Theorem to quantify the probability of the parameters conditioned on the data p(θ | y)∈ R,

known as the posterior distribution, as proportional to the conditional probability of observing the data given the parameters

p(y | θ)∈ R, known as the likelihood, multiplied by the prior probability assigned to the parameters p(θ)∈ R,250

p(θ | y)∝ p(y | θ)p(θ).

In this work we assumed that the observational data (two-dimensional surface velocities y = uobs∈ R2Nobs ), were corrupted

by centered Gaussian noise η ∼N (0,Σnoise)∈ R2Nobs . Specifically, given a Blatter-Pattyn flow model g(θ)∈ R2Nobs that maps

the logarithm of the basal friction to the computed surface velocity, we assumed y = g(θ)+η such that the likelihood function

was given by255

p(y | θ) = (2π|Σnoise|)−
1
2 exp

(
−1

2
(y− g(θ))>Σ−1

noise(y− g(θ))

)
.
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Here, g(θ) denotes the output of the steady-state ice-sheet model at the locations of the observations for a given realization

of the model parameters. We were able to calibrate the model using only a steady model without time-stepping because we

assumed that the velocity data were collected over a short period of time over which the ice sheet state is approximately in

steady-state. We also assumed that the error in the observations were uncorrelated and set260

Σnoise =
1

ξ

 Uerr M
−1
s Uerr

Uerr M
−1
s Uerr

 ∈ R2Nobs×2Nobs , (12)

where Uerr = Diag(uerr) is the diagonal matrix containing the root mean square errors uerr∈ RNobs of the surface velocity

magnitudes, and Ms∈ RNobs is the mass matrix computed on the upper surface Γs and ξ is a scaling term. We set ξ = 8 km−2.

Before continuing, we wish to emphasize two important aspects of the calibration used in this study that mean our results

must be viewed with some caution. First, we assumed the observational data to be uncorrelated, as assumed in most ice-sheet265

inference studies, including (Recinos et al., 2023; Isaac et al., 2015). Moreover, we also assumed our Gaussian error model to

be exact. However, neither of these assumptions are likely to be perfect in reality. For example, Koziol et al. (2021) showed that,

for an idealized problem, ignoring spatial correlation in the observational noise can lead to uncertainty being underestimated.

Second, our optimization of the MAP point was constrained by the coupled velocity flow equations and steady-state enthalpy

equation, which is equivalent to implicitly assume that the ice is in thermal equilibrium. Theoretically, this assumption could270

be avoided if the temperature tendencies were known, but they are not. Alternatively, transient optimization over long time

periods, comparable to the temperature time scales, could be used (Adalgeirsdottir et al., 2014). However, this approach would

be computationally expensive and would require including time-varying temperature data (e.g., inferred by ice cores) which

are very sparse.

Quantifying uncertainty in mass-change projections conditioned on observational data requires drawing samples from the275

posterior of log(β), evaluating the transient model at each sample and computing estimates of statistics summarizing the

prediction uncertainty using those evaluations. Typically, samples are drawn using Markov Chain Monte Carlo (Hoffman and

Gelman, 2014), however such methods can be computationally intractable for high-dimensional uncertain variables (Bui-Thanh

et al., 2013), such as the variable we used to parameterize basal friction. Consequently, we used the two-step method presented

in Bui-Thanh et al. (2013); Isaac et al. (2015) to construct a Laplace approximation of the posterior. Please note that, recently280

variational inference has been used to infer high-dimensional basal friction (Brinkerhoff, 2022), however we did not use such

methods in our study.

First, we performed a PDE-constrained deterministic optimization to compute the maximum a posteriori (MAP) point θMAP

θMAP = argmin
θ

1

2
(y− g(θ))>Σ−1

noise(y− g(θ)) +
1

2
(θ−µprior)

>Σ−1
prior(θ−µprior), (13)

which maximizes the posterior p(θ | y). For linear models and Gaussian priors, the MAP point has close ties with the optimal285

solution obtained using Tikhonov regularization (Stuart, 2010). Specifically, the first term above minimizes the difference

between the model predictions and the observations and the second term penalizes the deviation of the optimal point from the

prior mean.
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Second, we constructed a low-rank quadratic approximation of the log posterior, centered at the MAP point

log(p(θ | y))≈ C − 1

2
(θ−θMAP)>Σ−1

post(θ−θMAP), (14)290

where

Σ−1
post = HMAP + Σ−1

prior (15)

and HMAP∈ RNθ×Nθ is the Hessian of 1
2 (y− g(θ))>Σ−1

noise(y− g(θ)) at θ = θMAP and C is a constant independent of θ.

This resulted in a Gaussian approximation of the posterior p(θ | y)≈N (θMAP,Σpost), also known as a Laplace approximation

of the posterior. Naively computing the posterior covariance using the aforementioned formula for Σpost is computationally295

intractable. That approach requires solving 2Nθ linearized (adjoint) flow models to computing and inverting the large dense

matrix HMAP, which require O(Nθ3) operations. For reference, in this study we use Nθ =11,356 variables to parameterize

the basal friction and the adjoints of the flow model had 227,120 unknowns. Consequently, we used a low-rank Laplace

approximation which is detailed in Appendix A to efficiently draw random samples from the posterior distribution.

The posterior characterizes the balance between the prior uncertainty in the friction field and the model-observation mis-300

match, weighted by the observational noise. In the limit of infinite observational data, the posterior distribution will collapse to

a single value. However, in practice when using a finite amount of data, the posterior will only change substantially from the

prior in directions of the parameter space informed by the available data, which were captured by our low-rank approximation.

4 Uncertainty quantification

This study investigated the efficacy of using MFSE to compute the uncertainty in predictions of future mass change from305

Humboldt Glacier. We defined mass change to be the difference between the final mass2 of the glacier at t= 2100 and its

mass at t= 2007. While the mass change is a functional of the ice-sheet thickness H , for simplicity the following discussion

simply refers to the mass change as a scalar function of only the model parameters, that is fα(θ)∈ R, where α indexes the

model fidelity that was used to simulate the ice sheet. Previous UQ studies computed statistics summarizing the uncertainty in

ice-sheet predictions, such as mean and variance, using single-fidelity Monte Carlo (SFMC) quadrature, that is MC quadrature310

applied to a single physics model with a fixed numerical discretization α, for example Ritz et al. (2015); Schlegel et al. (2018).

However, in this study we used MFSE to reduce the computational cost of quantifying uncertainty. Specific details on the

MFSE methods investigated are given in the following subsections.

4.1 Single-fidelity Monte Carlo quadrature

SFMC quadrature is a highly versatile procedure that can be used to estimate a wide range of statistics for nearly any function315

regardless of the number of parameters involved. SFMC can be used used to compute the meanQµ∈ R and varianceQσ
2∈ R of

the Humboldt glacier mass change predicted by a single model using a three-step procedure. The first step randomly samplesN

2In this work, we compute the mass of the glacier considering only the ice above flotation, which is what contributes to sea-level change
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realizations of the the model parameters Θ = {θ(n)}Nn=1 from their posterior distribution. The second step simulates the model

at each realization of the random variable (basal friction field) and computes the mass change at the final time f (n)
α = fα(θ(n)).

The third step approximates the mean and variance using the unbiased estimators320

Eπ [fα]≈Qµα(Θ) =N−1
N∑
n=1

f (n)
α (16)

Vπ [fα]≈Qσ2

α (Θ) = (N − 1)−1
N∑
n=1

(
f (n)
α −Qµα(Θ)

)2

, (17)

where we use the script π on the exact expectation Eπ [fα] and variance Vπ [fα] to make clear these statistics are always

computed by sampling from the distribution of θ. In out study, we sampled from the posterior distribution of the basal friction

parameters, i.e. π(θ) = p(θ | M,y).325

MC estimators converge to the true mean and variance of fα as the number of samples tends to infinity, but using a finite

number of samples N introduces an error into the MC estimator that depends on the sample realizations used to compute the

estimators. That is, two different realizations of N parameter samples Θ, and the associated QoI values, will produce two

different mean and variance estimates (see Figure 4). Consequently, any MC estimator Qα(Θ) of an exact statistic Q, such as

Qµα(Θ) and Qσ
2

α (Θ), is a random variable.330
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Qα(Θ)
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α
(Θ
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Q0

Q1(Θ1000)

Q1

Figure 4. The bias-variance trade-off of MC estimators, stated of the same computational cost is depicted in blue and orange, The blue

represents the true mean of a computationally expensive model f0 and the orange line represents the mean of a model f1 that is 10-times

cheaper but less accurate. The models are only conceptual and not related to the ice-sheet models used in this study and were designed so

that evaluating f0 100 times took the same computational effort as evaluating f1 1000 times. The histograms are constructed by computing

the mean 1000 times using different realizations of the parameters set ΘN , where N denotes the number of parameter samples in ΘN . The

blue and orange histograms were computed using the 1000 different estimates of the means of f0 and f1, respectively.
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The mean-squared error (MSE) is typically used to quantify the error in a MC estimate of a statistic and is given by

EΘ

[
(Qα(Θ)−Q)

2
]

= EΘ

[
(Qα(Θ)−EΘ [Qα(Θ)] +EΘ [Qα(Θ)]−Q)

2
]

= VΘ [Qα(Θ)]︸ ︷︷ ︸
I

+(EΘ [Qα(Θ)]−Q)
2︸ ︷︷ ︸

II

, (18)

where EΘ [·] and VΘ [·] respectively denote taking the expectation and the variance over different realizations of the set of

parameter realizations Θ. The MSE of an MC estimator, Eq. (18), consists of two terms referred to as the estimator variance (I)

and the estimator bias (II). The bias term of the MSE is caused by using a numerical model, with inadequacy and discretization335

errors, to compute the mass change. More specifically, letting Q∞ denote the exact value of the statistic of a numerical model

with zero discretization error but non-zero model inadequacy error, andQ0 denote the highest-fidelity computationally tractable

model approximation of Q∞, then the bias can be decomposed into three terms

(E [Qα(Θ)]−Q) = (EΘ [Qα(Θ)]−Q0 +Q0−Q∞+Q∞−Q) = (EΘ [Qα(Θ)]−Q0) + (Q0−Q∞) + (Q∞−Q) (19)

The first term is caused by using a model fα with numerical discretization that is inferior to that employed by the highest340

fidelity model f0. The second term represents the error in the statistic introduced by the numerical discretization of the highest-

fidelity model. The third term quantifies the model inadequacy error caused by the numerical model being an approximation of

reality. The variance of an MC estimator comes from using a finite number of samples and decreases as the number of samples

increases. For example, the variances of the estimators of mean and variance are, respectively,

VΘ [Qµα(Θ)] =
1

N
Vπ [fα] , VΘ

[
Qσ

2

α (Θ)
]

=
1

N

(
2

(N − 1)
Vπ [fα]

2
+Vπ

[
(fα−Eπ [fα])2

])
, (20)345

where the variances involving fα are exact statistics of the model, which are typically unknown. A detailed derivation of the

expression for Vπ
[
Qσ

2

α (Θ)
]

can be found in Dixon et al. (2023).

Constructing a SFMC estimator of statistics, such as the mean Eq. (16) or variance Eq. (17), with a small MSE ensures that

the value of the estimator will be likely close to the true value, for any set of model parameters samples. However, when using

numerical models approximating a physical system, constructing an unbiased estimator of Q is not possible. All models are350

approximations of reality and thus the model inadequacy contribution Q∞−Q to the bias decomposition in Eq. (19) can never

be driven to zero. Additionally, it is impractical to quantify the discretization error Q0−Q∞. Consequently, SFUQ methods

focus on producing unbiased estimators of Q0, such that EΘ [Qα(Θ)] =Q0.

Unfortunately, even when ignoring inadequacy and discretization errors, constructing a SFMC estimator with a small MSE,

Eq. (18), using a computationally expensive high-fidelity model is computationally demanding. The cost is high because the355

variance term of the MSE of an estimator, Eq. (18), only decreases linearly with the number of samples. In contrast, N can be

significantly increased if a cheaper, lower-fidelity model is used, but the corresponding decrease in the estimator variance will

be offset by an increase in its bias. Consequently, the bias and variance of any estimator (see Figure 4) should be balanced, but

most SFMC analyses do not consider this trade-off explicitly when choosing the fidelity of the model used. In the following

section we detail how to use MFSE to substantially improve the precision of estimated statistics for a fixed computational cost.360
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4.2 Two-model multi-fidelity uncertainty quantification

MFSE leverages the correlation between models of varying cost and fidelity to reduce the computational cost of constructing

MC estimators with a desired MSE. While various multi-fidelity estimators have been developed, this study used approximate

control variate (ACV) estimators (implemented in PyApprox (Jakeman, 2023)), which include most existing estimators, in-

cluding Multi-level Monte Carlo (MLMC) (Giles, 2015) and Multi-fidelity Monte Carlo (MFMC) (Peherstorfer et al., 2016),365

as special cases. 3 In this section, we describe how to construct an ACV estimate of the mean of a model using two models.

We then introduce the ACV procedure we used to compute the mean and variance of our our highest-fidelity ice-sheet model

using an ensemble of 13 models.

Using only high-fidelity model simulations to estimate a statistic with single-fidelity MC produces an unbiased estimator

of Q0. However, when the computational cost of running a high-fidelity model limits the number of model simulations that370

can be used, the variance and thus the MSE, of the MC estimator will be large. Fortunately, the MSE of the estimator can

be reduced by correcting the high-fidelity estimator with statistics computed using lower-fidelity models. For example, given

a high-fidelity model f0(θ) and a single low-fidelity model f1(θ), an MFMC ACV estimator approximates the mean of the

high-fidelity model using

QµACV(Θ0,Θ1) =N−1
0

N0∑
n=1

f0(θ
(n)
0 ) + η

N−1
0

N0∑
n=1

f1(θ
(n)
0 )−N−1

1

N1∑
j=1

f1(θ
(j)
1 )

 (21)375

=Qµ0 (Θ0) + η(Qµ1 (Θ0)−Qµ1 (Θ1))≈ EΘ [f0] . (22)

The two-model ACV estimator in Eq.(21) uses a weighted combination of a high-fidelity MC estimator and two low-fidelity

estimators. The high-fidelity model evaluations are used to ensure the ACV estimator is unbiased, i.e. EΘ [QµACV(Θ0,Θ1)] =

Eπ [f0], while the low-fidelity evaluations are used to reduce the variance of the estimator. The estimator of the low-fidelity

mean Qµ1 (Θ0) is referred to as a control variate because it is a random variable, which is correlated with the random estimator380

Qµ0 (Θ0), and can be used to control the variance of that high-fidelity estimator. The term Qµ1 (Θ1)≈Qµ1 is an approxima-

tion of the true low-fidelity statistic Q1 that is used to ensure that the ACV estimator is unbiased, i.e. EΘ [QµACV(Θ0,Θ1)] =

EΘ [Qµ0 (Θ)]+η (EΘ [Qµ1 (Θ0)]−EΘ [Qµ1 (Θ1)]) =Qµ0 +η (Qµ1 −Qµ1 ) =Qµ0 . The weight η can either be fixed, e.g. MLMC sets

η =−1, or optimized to minimize the MSE of the estimator. However, an ACV estimator will always be unbiased, with respect

to Q0, regardless of the value of η, because the expected values of the second and third terms will always cancel.385

Computing the ACV estimate of the high-fidelity mean in Eq. (21) requires two different sets of model evaluations. These

evaluations must be obtained by first drawing two sets of samples Θ0 = {θ(n)
0 }N0

n=1,Θ1 = {θ(n)
1 }N1

n=1 from the distribution

of the random variables. In our study, we draw random samples from the posterior distribution of the log basal friction, i.e

p(θ | M,y). The high-fidelity model must be evaluated on all the samples in Θ0 and the low-fidelity model must be evaluated

on both the sets Θ0 and Θ1. Typically N0 <N1. In most practical applications, such as this study, the model f0 used with an390

3Multilevel Best Linear Unbiased Estimators] Recently, multilevel best linear unbiased estimators (MLBLUEs) Schaden and Ullmann (2020) were de-

veloped as an alternative to ACV estimators to estimate the expectation of a high-fidelity model using an ensemble of models of varying cost and fidelity.

However, we did not use MBLUEs in this study because they can only be used to estimate the mass-change mean and not its variance.
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ACV estimate is chosen to be the highest-fidelity model that can be simulated O(10) times. However, when a model utilizes a

numerical discretization that can be refined indefinitely, MLMC can be used to adaptively set Q0 such that the discretization

errorQ0−Q∞, in Eq. (19), is equal to the variance VΘ [QACV] of the MLMC estimator. Balancing these two errors ensures that

computational effort is not wasted on resolving one source of error more than the other. However, in practice, the geometric

complexity of many spatial domains makes generating large numbers of meshes impractical, and estimating the discretization395

error using techniques like posterior error estimation can be challenging.

The ACV estimator is an unbiased estimator of the mean high-fidelity model. So the MSE, Eq. (18) ignoring the model

inadequacy and model discretization errors, is equal to the variance of the estimator, which when Θ0 ⊂Θ1 is

VΘ [QµACV(Θ0,Θ1)] =N−1
0 Vπ [f0]

(
1− N1−N0

N1
Corrπ[f0,f1]2

)
(23)

Thus, for fixed N0 and N1, if the high and low-fidelity models are highly correlated, the ACV estimator will be much more400

accurate than the SFMC estimator, see Eq. (20). Moreover, the values of N0,N1 can be optimized to minimize the error of an

ACV estimator given a fixed computational budget. In the following section, we provide more details on how to construct ACV

estimator using more than one-low fidelity model, including information on how to optimize η and the number of samples used

to evaluate each model.

4.3 Many model multi-fidelity uncertainty quantification405

Given an ensemble of M + 1 models {fα(θ)}Mα=0 an ACV MC estimator can be used to compute a vector-valued estimator

Q0 = [Q0,1, · · · ,Q0,K ]> ∈ RK of statistics of the highest fidelity model f0; the specific instances of the ice-sheet models used

by this study are presented in Section 5.1. The vectorQ0 may be comprised of a single type of statistic computed for multiple

quantities of interest (QoI), multiple statistics of a single QoI, or a combination of both. For example, in this study we computed

the ACV estimator of the mean and variance of the mass change, that isQ0 = [Qµ0 ,Q
σ2

0 ]> ∈ R2.410

Any ACV estimatorsQACV = [QµACV,Q
σ2

ACV]> ∈ R2 of the vector-valued high-fidelity statisticQ0 can be expressed as

QACV(Θ0,Θ
∗
1,Θ1, . . . ,Θ

∗
M ,ΘM ) =

Qµ0
Qσ

2

0

+

η1,1 · · · η1,2M

η2,1 · · · η2,2M




Qµ1 (Θ∗1)−Qµ1 (Θ1)

Qσ
2

1 (Θ∗1)−Qσ2

1 (Θ1)
...

QµM (Θ∗M )−QµM (ΘM )

Qσ
2

M (Θ∗M )−Qσ2

M (ΘM )


,

where Qµm(Θ∗m) and Qµm(Θm) are single model MC estimates of the mean, EΘ [fm] Eq.(16), computed using the m-th model,

m= 0, . . . ,M , using different sample sets Θ∗m and Θm. Similarly,Qσ
2

m (Θ∗m) andQσ
2

m (Θm) are estimates of the model variance,

VΘ [fm] Eq.(17), computed using the m-th model, In more compact notation415

QACV(ΘACV) =Q0(Θ0) +η∆(Θ∆), (24)
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where , Θ∆ = {Θ∗1,Θ1, . . . ,Θ
∗
M ,ΘM}, and ΘACV = {Θ0,Θ∆},

∆(Θ∆) =


∆1(Θ∗1,Θ1)

...

∆M (Θ∗M ,ΘM )

∈ R2M ∆m(Θ∗m,Θm) =

Qµm(Θ∗m)−Qµm(Θm)

Qσ
2

m (Θ∗M )−Qσ2

m (Θm)

 ∈ R2, m= 1, . . . ,M (25)

and the entries of η∈ R2×2M are called control variate weights. Formulating the control variate weights as a matrix enables the

ACV estimator to exploit the correlation between the statistics Qµ and Qσ
2

, producing estimates of these individual statistics420

with lower mean squared error (MSE) than would be possible if the two statistics were estimated independently.

A multi-model ACV estimator is constructed by evaluating the highest-fidelity model at a single set of samples Θ0 and

evaluating each low-fidelity model at two sets of samples Θ∗α = {θ(n)}Nα∗
n=1 and Θα = {θ(n)}Nαn=1. Different ACV estimators

can be produced by changing the way each sample set is structured. For example, MFMC estimators sample the uncertain

parameters such that Θ∗α ⊂Θα and Θ∗α = Θα−1 and MLMC estimators sample such that Θ∗α ∩Θα = ∅, and Θ∗α = Θα−1.425

By construction any ACV estimator is an unbiased estimator of Q0 because EΘ [∆α] = 0,α > 0. Consequently, the MSE

of the ACV estimator, Eq. (18), can be minimized by optimizing the determinant of the estimator covariance matrix. When

estimating a single statistic (K = 1), this is equivalent to minimizing the variance of the estimator. Given sample sets ΘACV,

the determinant of the covariance of an ACV estimator, CovΘ [QACV,QACV] in Eq. (27), can be minimized using the optimal

weights430

η(ΘACV) =−CovΘ [Q0,∆]CovΘ [∆,∆]
−1
, CovΘ [Q0,∆] ∈ R2×2M , CovΘ [∆,∆] ∈ R2M×2M , (26)

which produces an ACV estimator with covariance

CovΘ [QACV,QACV] (ΘACV) = CovΘ [Q0,Q0]−CovΘ [Q0,∆]CovΘ [∆,∆]
−1CovΘ [Q0,∆]

>∈ R2×2, (27)

where the dependence of ∆ and Q0 on the sample sets Θ∆ and Θ0 was dropped to improve readability. Note that, in Eq. (26)

and Eq. (27), and the remainder of this paper, we use Cov [v,v] as long hand for V [v] to emphasize that the covariance is a435

matrix when the random variable v is a vector.

4.4 Computational considerations for multi-fidelity uncertainty quantification

The approximation of model statistics using ACV estimators is broken into two steps. The first step, referred to as the pilot

study or exploration phase, involves collecting evaluations of each model on a common set of samples. These evaluations

are used to compute the so called pilot statistics that are needed to evaluate Eq. (26) and Eq. (27). Subsequently, these pilot440

statistics are used to find the optimal sample allocation of the best estimator (see Algorithm 1). The second step, known as the

exploitation phase, involves evaluating each model according to the optimal sample allocation and then computing the model

statistics using Eq. (24). We will discuss the important computational aspects of these two phases in the following subsections.
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4.4.1 Estimating pilot statistics.

Computing the covariance of an ACV estimator, CovΘ [QACV,QACV] in Eq. (27), requires estimates of the covariance between445

the estimator discrepancies ∆, Eq. (25), with each other and the high-fidelity estimator and the covariance of the high-fidelity

estimator, i.e. CovΘ [∆,∆] and CovΘ [Q0,∆]. In practice, these quantities, which we call pilot statistics, are unknown and

must be estimated with a pilot study. Specifically, following standard practice (Peherstorfer and Willcox, 2016), we used MC

quadrature with P , so-called, pilot samples Θpilot = {θ(p)}Pp=1 to compute the pilot statistics. This involves computing the

high-fidelity and all the low-fidelity models at the same set of samples Θpilot. For example, we approximated Covπ [fα,fβ ],450

which is needed to compute the quantities in Eq. (27), by

Covπ [fα,fβ ]≈ P−1
P∑
p=1

(
fα(θ(p))−Qµα(Θpilot)

)(
fβ(θ(p))−Qµβ(Θpilot)

)
∈ R2×2, (28)

Please refer to Dixon et al. (2023) to see the additional quantities needed to compute the covariance blocks of CovΘ [∆α,∆β ]

and CovΘ [Q0,∆α], which are required to compute the estimator covariance CovΘ [QACV,QACV] of a vector-valued statistic

that consists of both the mean and variance of a model. Finally, we recorded the CPU time needed to simulate each model at455

all pilot samples and set the model costsw> = [w0,w1, . . . ,wM ]∈ RM+1 to be the the median simulation time of each model.

Unfortunately, using a finite P introduces sampling errors into CovΘ [∆,∆] and CovΘ [Q0,∆], which in turn induces error

in the ACV estimator covariance, Eq. (27). This error can be decreased by using a large P but this would require additional

evaluations of expensive numerical models, which we were trying to avoid. Consequently, in this study we investigated the

sensitivity of the error in ACV MC estimators to the number of pilot samples. Results of this study are presented in Section 5.460

4.4.2 Optimal computational resource allocation.

The covariance of an ACV estimator, CovΘ [QACV,QACV] in Eq. (27), is dependent on how samples are allocated to the sets

Θα,Θ
∗
α, which we call the sample allocation A. A uniquely defines the allocation strategy by listing the number of samples

of each set Θα and Θ∗α and their pairwise intersections. Namely, A= {N0,Nα∩β ,Nα∗∩β ,Nα∩β∗ ,Nα∗∩β∗ | α,β = 1, . . . ,M},
where Nα∩β = |Θα ∩Θβ |, Nα∗∩β = |Θ∗α ∩Θβ |, Nα∩β∗ = |Θα ∩Θ∗β |, Nα∗∩β∗ = |Θ∗α ∩Θ∗β | denote the number of samples465

in the intersections of pairs of sets, and Nα∪β = |Θα ∪Θβ |, Nα∗∪β = |Θ∗α ∪Θβ |, Nα∪β∗ = |Θα ∪Θ∗β |, Nα∗∪β∗ = |Θ∗α ∪Θ∗β |
denote the number of samples in the union of pairs of sets . Thus, the best ACV estimator can be theoretically found by solving

the constrained non-linear optimization problem

min
A∈A

Det[CovΘ [QACV,QACV] (A)] s.t. W (w,A)≤Wmax. (29)

In the above equation, A is the set of all possible sample allocations and the constraint ensures that the computational cost of470

computing the ACV estimator

W (w,A) =

M∑
α=0

Nα∗∪αwα
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is smaller than a computational budget Wmax∈ R. The solution to this optimization problem is often called the optimal sample

allocation.

Unfortunately, a tractable algorithm for solving Eq. (29) has not yet been developed, largely due to the extremely high475

number of possible sample allocations in the set A. Consequently, various ACV estimators have been derived in the literature

that simplify the optimization problem, by specifying what we call the sample structure T , which restricts how samples are

shared between the sets Θα,Θ
∗
α. For example, optimizing the estimator variance, Eq. (23), of a two-model MFMC (Peherstorfer

et al., 2016) mean estimator, Eq. (21), requires solving

min
N0,N1

N−1
0 V [f0]

(
1− N1−N0

N1
Corr[f0,f1]2

)
480

s.t. N0w0 +N1w1 ≤Wmax, T = {N0∩1∗ =N0,N0∪1∗ =N0,N0∩1 =N0,N0∪1 =N1,N1∗∩1 =N0,N1∗∪1 =N1}.

Alternatively, minimizing the estimator variance of the two-model MLMC (Giles, 2015)4 mean estimator requires solving

min
N0,N1

N−1
0 V [f1− f0] + (N1−N0)−1V [f1]

s.t. N0w0 +N1w1 ≤Wmax, T = {N0∩1∗ =N0,N0∪1∗ =N0,N0∩1 = 0,N0∪1 =N1,N1∗∩1 = 0,N1∗∪1 =N1}.

485

MLMC and MFMC employ sample structures T that simplify the general expression for the estimator covariance

CovΘ [QACV,QACV] in Eq. (27). These simplifications were used to derive analytically solutions of the sample allocation opti-

mization problem in Eq. (29) when estimating the mean, EΘ [f0] in Eq. (16), for a scalar-valued model. However, the optimal

sample allocation of MLMC and MFMC must be computed numerically when estimating other statistics, such as variance

VΘ [f0] in Eq. (17). Similarly, numerical optimization must be used to optimize the estimator covariance, CovΘ [QACV,QACV]490

in Eq. (27), of most other ACV estimators, including the ACVMF and ACVIS (Gorodetsky et al., 2020), as well as their tunable

generalizations (Bomarito et al., 2022).

Each existing ACV estimator was developed to exploit alternative sample structures T to improve the performance of ACV

estimators in different settings. For example, a three model ACVMF estimator performs well when the low-fidelity models are

conditionally independent of the high-fidelity model. Imposing this conditional independence is useful when knowing one-495

low-fidelity does not provide any additional information about the second low-fidelity model, given enough samples of the

high-fidelity model. This situation can arise when the low-fidelity models use different physics simplifications of the high-

fidelity model. In contrast, MLMC assumes that each model in the hierarchy is conditionally independent of all other models

given the next higher fidelity model. This allows MLMC to perform well with with a set of models ordered in a hierarchy by

bias relative to the exact solution of the governing equations.500

The performance of different ACV estimators is problem dependent. Consequently, in this paper we investigated the use

of a large number of different ACV estimators from the literature. For each estimator we used the general purpose numerical

4MLMC estimators set all the control variate weights in Eq. (24) to η = −1. Refer to Gorodetsky et al. (2020) for more details on the connections between

ACV and MLMC.
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optimization algorithm proposed in Bomarito et al. (2022) to find the optimal sample allocations that minimize the determinant

of the estimator covariance.5

4.4.3 Model and estimator selection.505

Using data from all available models may produce an estimator with larger MSE than an estimator that is only constructed

using a subset of the available models. This occurs when a subset of the low-fidelity models correlate much better with the

high-fidelity model than the rest of the low-fidelity models. For instance, some low-fidelity models may fail to capture physical

behaviours that are important to estimating the QoI. Consequently, it is difficult to determine the best estimator a priori.

However, we can accurately predict the relative performance of any ACV estimator using only the model simulations run510

during the pilot study. Thus, in this study we enumerated a large set of estimator types encoded by the different sample

structures T and model subsets.

Algorithm 1 summarizes the procedure we use to choose the best ACV estimator. Line 8 loops over all model subsets S. In

this study, we enumerated all permutations of the sets of models that contained the high-fidelity model and at most 3 low-fidelity

models. Line 10 enumerates each parametrically defined estimator E. We enumerated the large sets of parametrically defined515

generalized multi-fidelity (GMF), generalized independent sample (GIS) and generalized recursive difference (GRD) ACV

estimators introduced by Bomarito et al. (2022). These sets of estimators include ACVMF, MFMC, MLMC (with optimized

control variate weights) as special cases. For each estimator E and model subset S, line 12 was used to find the optimal sample

allocation AE , using the pilot values {fα(Θpilot)}α∈S when minimizing Eq. (29). Lines 13-16 were used to record the best

estimator found at each iteration of the outer-loops.520

Whether a model is useful for reducing the MSE of a multi-fidelity estimator depends on the correlations between that

model, the high-fidelity, and the other low-fidelity models. For toy parameterized PDE problems, such as the diffusion equation

with an uncertain diffusion coefficient, theoretical convergence rates and theoretical estimates of computational costs can be

used to rank models. However, for the models we used in this study, and likely many other ice-sheet studies, ordering models

hierarchically, that is, by bias or correlation relative to the highest-fidelity model, before evaluating them is challenging. Indeed,525

the best model ensemble for multi-fidelity UQ may not be hierarchical (see Gorodetsky, 2020). Yet, estimators such as MLMC

and MFMC only work well on model hierarchies. Consequently, having a practical approach for learning the best model

ensemble is needed. Yet, to date this issue has received little attention in the multi-fidelity literature. Section 5 provides a

discussion of the impact of the pilot study on model selection and the MSE of multi-fidelity estimators.

5 Results530

This section presents the results of our MFSE study. First, we describe the ensemble of numerical models we used to solve the

governing equations presented in Section 5.1. Second, we summarize the results of our Bayesian model calibration. Third, in

5The presentation of the optimization algorithms in (Bomarito et al., 2022) focuses on the estimation of a single statistic, but can be trivially be extended

to the vector-valued QoI considered here.

21



Algorithm 1 Estimator selection

1: Input

2: {fα(Θpilot)}Mα=0 Pilot evaluations of each model

3: Output

4: Abest Best estimator sample allocation

5: Jbest Best estimator objective

6: Jbest←∞

7: . Loop over all low-fidelity model subsets

8: for S ⊆ {1, . . . ,M} do

9: . Loop over all MF estimators, e.g MLMC, MFMF, ACVMF, etc

10: for E ∈ E do

11: . Compute the optimal estimator objective JE and sample allocation AE for the current estimator and

subset of models
12: JE ,AE ← Solve Eq. (29) using AE,S and {fα(Θpilot)}α∈S
13: if JE < Jbest then

14: . Update the best estimator

15: Abest←AE
16: Jbest← JE

17: end if

18: end for

19: end for

Section 5.3 we present the results of our pilot study. Specifically, we compare the computational costs of each model and their

SFMC-based estimates of the mean and variance of the mass change computed using the pilot samples. We also report the

MSE of ACV estimators predicted using the pilot and note the subset of models they employed. Fourth, we detail the impact535

of increasing the number of pilot samples on the predicted MSE of the ACV estimators in Section 5.4. Finally, we quantify the

improvement in the precision of MFSE estimates of mass-change statistics relative to SFMC in Section 5.5. All results were

generated with the PyApprox software package (Jakeman, 2023).

5.1 Multi-fidelity model ensemble

In this study we investigated the use of 13 different models of varying computational cost and fidelity to compute glacier mass540

change. Specifically, we used MFSE to estimate the mean and variance of a highly-resolved finite element model using an

ensemble of 12 low-fidelity models. We compactly denote the fidelity of each model using the notation PHYSICSNAMEdx,dt,

where PHYSICSNAME refers to the governing equations solved, dx denotes the size of the representative spatial element and

dt the size of the time-step. The four different meshes we used are shown in Figure 2.
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The highest-fidelity model we considered in this study was a MOLHO-based model denoted by MOLHO∗1km,9days, where545

the star indicates that the model was modified to conserve mass. The low-fidelity model ensemble consisted of four MOLHO-

based low-fidelity models, MOLHO1km,36days, MOLHO1.5km,36days,MOLHO2km,36days,MOLHO3km,36days, and eight SSA-

based low-fidelity models SSA1km,36days,SSA1.5km,36days, SSA2km,36days, SSA3km,36days, SSA1km,365days, SSA1.5km,365days,

SSA2km,365days, SSA3km,365days. The number of elements associated with the four meshes with characteristic element sizes

1km, 1.5km, 2km and 3km, were 22334, 13744, 9238, 2611, and 13744, respectively. The number of nodes for the same four550

meshes were 1422, 4846, 7154, 11536. Note, no low-fidelity model enforced the conservation of mass.

The models we used were all different numerical discretizations of two distinct physics models. However, in the future we

could also use alternative classes of low-fidelity models, if they become available. For example, we could use linearizations

of the parameter-to-QoI map, proposed by Recinos et al. (2023), if our MOLHO and/or SSA codes become capable of effi-

ciently computing the gradient of the map. Such an approach would require only one non-linear forward transient solve of the555

governing equations followed by a linear solve of the corresponding backward adjoint. Once constructed, the linearized map

could then be evaluated very cheaply and used to reduce the estimator variance, CovΘ [QACV,QACV] in Eq. (27), of the MFSE

estimators, provided the error introduced by the linearization is not substantial. Other types of surrogates could also be used in

principle, however, the large number of parameters used pose significant challenges to traditional methods such as the Gaussian

processes used in Jantre et al. (2024). Recently developed machine-learning surrogates (Jouvet et al., 2021; Brinkerhoff et al.,560

2021; He et al., 2023) could be competitive alternatives to the low fidelity models considered in this work.

Lastly, note that we used a different model, to the 13 described above, for the Bayesian calibration of the basal friction param-

eters. Specifically, we used the C++ code MALI (Hoffman et al., 2018), which can solve the Blatter-Pattyn equations (Pattyn,

2003; Dukowicz et al., 2010) and compute the action of the Hessian on a vector. MALI efficiently computed these Hessian-

vector products, needed to compute our Laplace approximation of the posterior in Eq. (14), by solving the adjoint equations565

for the steady state Blatter-Pattyn equations. However, SSA equations (Section 2.1.3) are not currently implemented in MALI

and the MOLHO (Section 2.1.2) equations have only recently been implemented (after the simulations for this work were per-

fomed). Consequently, we used FEniCS (Alnæs et al., 2015) to implement both MOLHO and SSA to ensure that the relative

computational timings of these models would be consistent. Solving the MOLHO model using the C++-based MALI code and

solving and SSA using the python based FEniCS, would have corrupted the MFSE results. Moreover, implementing SSA in570

MALI would be time consuming because it is currently only used to solve 3D models and not 2D models, such as SSA. Indeed,

a partial motivation for this study was to to determine the utility of implementing the SSA equations in MALI.

5.2 Bayesian model calibration

In this study we used the MALI ice-sheet code (Hoffman et al., 2018; Tezaur et al., 2021) to calibrate the basal friction field on

the finest mesh, as described in Section 3. The MAP point of the posterior, determined using Eq. (13), is depicted in the left575

panel of Figure 5. The pointwise variance of the Laplace approximation of the posterior of the log-friction (i.e. the diagonal of

Eq. (15)) is depicted in the right-panel of Figure 5. When this figure is compared to the pointwise variance of the prior (i.e. the

diagonal of Eq. (9)) depicted in the center panel of Figure 5, it is clear that conditioning the prior uncertainty on the surface
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velocity significantly reduced the uncertainty in the basal friction field. This conclusion is further corroborated by Figure 6,

which compares a random sample from the prior and a random sample from the posterior. The minimum and maximum values580

of the posterior sample of the log-friction are much smaller than the same bounds of the prior sample. However, the posterior

sample has much higher-frequency content because the data only informed the lower-frequency modes of the friction field.

Figure 5. (Left) Log of the basal friction MAP point, θMAP computed using Eq. (13). (Center) Pointwise prior variance, i.e. the diagonal

entries of Σprior, defined in Eq. (9). (Right) Pointwise posterior variance, i.e. the diagonal entries of, Σpost, defined in Eq. (15). Note, the color

scales of each plot span different ranges so that the variability in the quantities plotted is visible.

Figure 6. (Left) A random sample from the prior distribution of the log-friction p(θ)∼N (0,Σprior), where Σprior is defined in Eq. (9).

(Right) A random sample from the Laplace approximation of the posterior p(θ | M,y)∼N (θMAP,Σpost), defined in Eq. (14). Note, the

color scales of each plot span different ranges so that the variability in the quantities plotted is visible.

To demonstrate a projection to 2100 using a calibrated model, figure 7 depicts the difference between the final (year 2100)

and initial (year 2007) ice thickness and the final surface velocity of Humboldt Glacier computed by the highest-fidelity

model (MOLHO∗1km,9days) for a random posterior realization of the basal friction field. The final ice thickness shown differs585

substantially from the initial thickness with thickness decreasing substantially at lower elevations of the glacier in the ablation

zone where increasingly negative surface mass balance occurs through 2100. In general, the glacier speeds up as negative
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surface mass balance causes the surface to steepen near the terminus. The largest speedup occurs in the region of fast flow in

the north where basal friction is small. Also note that the high-frequency differences present in the thickness difference was

due to the high-frequency oscillations in the posterior sample, see Figure 6.590

Figure 7. (Left) The difference between the final and initial ice thickness in meters and (Right) the surface velocity of Humboldt Glacier.

The left box is a zoomed in picture of the top right tip of the glacier. The black line in the inset was used to plot cross-sections of the

thickness and friction profiles at 2100 in a region with high velocities (see Figure 14). Both the left and right figures were generated using

the highest-fidelity model MOLHO∗1km,9days evaluated at one random realization of the posterior of the basal friction field.

Remark 5.1 (Prior sensitivity). In this study we used our domain experience to determine the best values of the prior hyper-

parameters γ,δ,η reported in Section 2.3 and the likelihood hyper-parameter ξ in Eq. (12). However, varying these hyper-

parameters, would likely change the estimates of uncertainty in ice-sheet predictions produced by this study. Similar to previ-

ous studies (Isaac et al., 2015), we did not investigate these sensitivities extensively. We heuristically chose the prior hyper-

parameters so that the prior samples would have a variance and spatial variability that we deemed inline with our domain595

experience. Further, we found that reducing ξ substantially from the value we ultimately used while keeping the prior hyper-

parameters fixed, prevented the MAP point from capturing the high-frequency content of the basal friction field needed to

accurately match the observed surface velocities. Future studies should investigate the sensitivity of mass change to the values

of the hyper-parameters more rigorously using an approach such as the one developed by Recinos et al. (2023).

Remark 5.2 (Interpolating basal friction). In this study we drew samples from the posterior distribution of the friction param-600

eters defined on the finest spatial mesh. However, a posterior sample defined on the fine mesh cannot be used to predict mass

change with a low-fidelity model defined on a coarser mesh. Consequently, before using a low-fidelity model with a coarse

mesh to predict mass change, we first interpolated each sample of the posterior distribution of the basal friction field defined

on the finest mesh onto the mesh used by the low-fidelity model. Specifically, we used the linear finite element basis of the
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fine mesh to interpolate onto the coarser meshes. This procedure ensured that varying the basal friction field (the random605

parameters to the model) would affect each model similarly, regardless of the mesh discretization employed. However, the

linear interpolation we used may have overly smooth the friction on coarse meshes relative to alternative higher-order inter-

poolation methods. Consequently, using alternative interpolation methods may increase the correlation between the mass loss

predicted by the coarse meshes and that predicted using the finest mesh. However, we did not explore the use of alternative

iterpolation schemes because our results demonstrate that linear interpolation still produces models that can be used produce610

a computationally efficient MFSE.

5.3 Initial Pilot study

This section details the results of the pilot study that we used to obtain the computational cost, w, of each model and the pilot

statistics, e.g. Eq. (28), needed to construct ACV estimators. First, we evaluated each of our 13 models at the same 20 random

pilot samples of the model parameters Θpilot, i.e. 20 different basal friction fields drawn from the Laplace approximation of the615

posterior distribution p(θ | M,y), Eq. (14). Second we computed the median computational cost (wall-time), w, required to

solve each model at one pilot sample. The median computational costs are plotted in the top panel of Figure 8 and the total cost

of evaluating all 13 models was approximately 144 hours. Third, using the pilot samples, we computed the SFMC estimators

of the mean, Eq. (16), and standard deviation , using the square-root of Eq. (17), of the mass change predicted by each of the 13

models. The middle and lower panels of Figure 8 show that the means and standard deviations of each model differ. However620

in the next section, we show that despite the differences between the statistics computed using each model and the differences

between the ice-evolution predicted by each model (see Figure 14), MFSE was able to effectively increase the precision of the

mean and variance of the mass change, relative to SFMC.

The exact gain in performance achieved by MFSE is dependent on the correlations between each model and the other pilot

quantities needed to compute CovΘ [∆,∆] and CovΘ [Q0,∆] in Eq. (27). Consequently, in Figure 9 we plot the entries of the625

correlation matrix, Corrπ[f ,f ] with f = [f0, . . . ,fM ]>. This figure shows that, despite the differences between each model’s

prediction of ice thickness and velocities at the final time (see Figure 14), as well as the variations in the SFMC estimate of

the mean and variance computed using each model, the correlation between each model’s prediction of the mass change is

high.6 However, inspecting the correlation between models can only qualitatively suggest the relative utility of each model for

reducing the error of an MFSE estimator. Thus, to be more precise, we used Eq. (29), and our pilot statistics, to predict the630

determinant of the the ACV estimator covariance, Det[CovΘ [QACV,QACV]]. Specifically, we made these predictions assuming

that a budget of 160 high-fidelity model evaluations would be allocated to the high-and low-fidelity models. Moreover, this

cost was assumed additional to the computational cost of simulating each model at the pilot samples. We then computed the so

called variance reductions of the ACV estimator

RΘ[QµACV] = VΘ [Qµ0 ]/VΘ [QµACV] and RΘ[Qσ
2

ACV] = VΘ

[
Qσ

2

0

]
/VΘ

[
Qσ

2

ACV

]
(30)635

6The correlation between MOLHO∗1km,9days and MOLHO1km,36days, reported in Figure 9, was not exactly 1. Each correlation was rounded to 4

significant digits.
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Figure 8. (Top) The median computational costw (wall-time in hours) of simulating each model used in this study for one realization of the

random parameters. (Middle) The mean mass loss – negative expected mass change – (gigatons) at 2100. (Bottom) The standard deviation of

the mass change (gigatons) at 2100. Each quantity was computed using 20 pilot samples.

by extracting the diagonal elements of the estimator covariance, CovΘ [QACV,QACV] in Eq. (27). To ensure a fair comparison

we compared the ACV estimator variance to the SFMC estimator variance obtained using a computational budget equivalent

to 160 high-fidelity evaluations plus the computational cost of collecting the pilot model evaluations.
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Figure 9. The correlations, Corrπ[f ,f ] with f = [f0, . . . ,fM ]>, between the 13 ice-sheet models considered by this study using 20 pilot

samples.

Existing literature assumes that the pilot statistics used with Eq. (29) are exact, however using a small number of pilot

samples can introduce error into the estimator covariance CovΘ [QACV,QACV]. Moreover, we found that the error introduced640
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by using a small number of pilot samples can be substantial, yet it is typically ignored in existing literature. Consequently, in

Figure 10a we plot the variance reduction of the ACV estimators of the mean, QµACV, and variance, Qσ
2

ACV, of mass loss for

21 different bootstraps of the 20 pilot samples (1 bootstrap was just the original pilot data and each bootstrap set contained

20 samples). The plot is created by randomly sampling the model evaluations with replacement, computing the pilot statistics

with those samples, and solving Eq. (29). Please note that, while we enumerate over numerous estimators, each with a different645

variance reduction, the variability in the plots is induced entirely by the bootstrapping procedure we employed. The box plots

report the largest variance reduction, across all estimators, for each bootstrapped sample.
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Figure 10. (a) The predicted variance reductions RΘ[QµACV] (mean) and RΘ[Qσ
2

ACV] (variance), see Eq. (30), obtained using bootstrapping

of the initial 20 pilot samples. The red lines represent the median estimator variance reductions. The lower and upper whiskers represent the

10% and 90% quantiles. Note, two outliers, with values 73 and 125, do not appear on the plot for R[Qσ
2

ACV]. (b) The model subsets chosen

by the bootstrapped estimators using the initial 20 pilot samples.

The median variance reduction was over 40 for the ACV estimators of both the mean and variance of the mass change. In

other words, our initial pilot study predicted that using ACV estimators would reduce the cost of estimating uncertainty in

projections of the mass change by over a factor of 40 when compared to SFMC estimators, which only use the highest-fidelity650

model. However, the box plots in Figure 10a highlight that using only 20 samples introduces a large degree of uncertainty into

the estimated variance reduction. The 10% quantile of the variance reduction for both the mean and variance estimators were

close to 30.

The estimators obtained by bootstrapping the initial 20 pilot samples not only had different estimator variances (see Fig-

ure 10a), they also predicted that different model subsets (combinations of models) are needed to minimize the estimator655

variance. Figure 10b plots the model subsets chosen by the bootstrapped estimators and the number of times (frequency) each

subset was chosen; the set (0, 9, 10, 12) was chosen when the original 20 pilot samples were used (bootstrapping was not
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used). Moreover, bootstrapping the estimators also revealed that not all models are equally useful when reducing the variance

of the ACV estimator. In some cases, using 3 models was more effective than using four models. Specifically, only eight

out of the 13 models considered were chosen at least once by a bootstrapped estimator. The models MOLHO1.5km,36days,660

MOLHO2km,36days, SSA1km,36days, SSA1.5km,36days, SSA2km,36days, were never selected by any of the bootstrapped esti-

mators. Moreover, in some cases only two low-fidelity models were chosen and in other cases three low-fidelity models were

chosen. Lastly, not only did the chosen model subsets vary between bootstrapped estimators, the type of estimator chosen

also varied. In 7 cases, a hierarchical relationship was identified and in the other 14 cases a non-hierarchical relationship was

identified; a non-hierarchical estimator was chosen using the original 20 pilot samples (the 21st estimator). Recall, a model665

ensemble is hierarchical if it can be ordered by bias or correlation relative to the highest-fidelity model and each low-fidelity is

only used to reduce the variance of the estimator of the next higher-fidelity model in a recursive fashion.

5.4 Secondary pilot study

Upon quantifying the impact of only using 20 pilot samples on the estimator covariance, CovΘ [QACV,QACV], and the model

subsets, S, chosen by Algorithm 1, we incremented the number of pilot samples we used to compute the performance of the670

ACV estimators. To avoid wasting computational resources in our secondary pilot study, we only evaluated the 8 models, se-

lected by at least one bootstrapped estimator, on an additional 10 pilot samples. The combined cost of the initial and secondary

pilot study was approximately 197 hours, which equated to the equivalent of approximately 47 simulations of the highest-

fidelity model. Note that only the models included in the second pilot were simulated 30 times. The models only included in

the first pilot were simulated 20 times.675

Figure 11c plots the variance reductions of the mean and variance of mass loss , given by R[QµACV] and R[Qσ
2

ACV], respec-

tively, as the maximum number of models used by the ACV estimators is increased. Note, an estimator allowed to choose four

models may still choose less than four models, which will happen when some of those models are not highly-informative. 21

different bootstraps of the final 30 pilot samples were used to quantify the error of the variance reductions caused by only

using a small number of pilot samples. Comparing Figure 11c with Figure 10a, which plots variance reductions using only 20680

pilot samples, we observed that increasing the number of pilot samples decreased the variability of the estimator variances.

However, increasing the number of pilot samples also increased the computational cost of the pilot study, which in turn reduced

the reported median variance reduction. That is, the median variance reductions obtained using 30 pilot samples (Figure 11c)

was lower than the median variance reductions reported using 20 pilot samples (Figure 10a). This fact can be explained by re-

calling the SFMC estimator variance, e.g. VΘ [Qµ0 ], was obtained using a computational budget equivalent to 160 high-fidelity685

evaluations plus the computational cost of collecting the pilot model evaluations. In contrast, the ACV estimator variance,

e.g, VΘ [QµACV], does not depend on the number of pilot samples. Therefore, while increasing the number of pilot samples

decreases the SFMC estimator variance, it does not decrease the the ACV estimator variance. Consequently, increasing the

pilot cost reduces the variance reduction achieved by the ACV estimator.

The median variance reduction decreased because ACV estimators utilize the pilot samples solely to compute pilot statistics,690

such as variance, and do not reuse these samples for calculating the final statistics. In contrast, an equivalent SFMC estimator
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Figure 11. The predicted variance reductions, R[QµACV] (mean) and R[Qσ
2

ACV] (variance), see Eq. (30), of the best ACV estimators obtained

by bootstrapping the final 30 pilot samples, while enforcing a limit on the number of models an estimator can use, including the highest-

fidelity model. The red lines indicate the median estimator variance reductions. The lower and upper whiskers represent the 10% and 90%

quantiles.

can leverage both the pilot and exploitation budgets to estimate the final statistics. In other words, the variance of an SFMC

estimator decreases linearly with the number of pilot samples, whereas the variance of an ACV estimator does not exhibit the

same behavior. Specifically, the variance of an ACV estimator is only marginally affected by an increase in the number of pilot

samples, as the sample allocation becomes more optimal.695

While increasing the number of pilot samples decreased variability, we believed that the benefit of further increasing the

number of pilot samples would be outweighed by the resulting drop in the variance reduction. Despite the remaining variability

in the variance reduction, we were able to confidently conclude that the MSE of the final ACV estimator we would construct

would be much smaller than the MSE of a SFMC estimator of the same cost because even the smallest variance reduction was

greater than 14. Consequently, we used the unaltered 30 pilot samples to determine the ACV estimator and its optimal sample700

allocation, which we used to construct our final estimates of the mean and variance of the mass change. The best estimator

chosen was an MFMC estimator that used the three models MOLHO∗1km,9days, MOLHO1km,36days, SSA1.5km,365days.

5.5 Multi-fidelity sea-level rise projections

The cost of constructing our final estimator, QACV in Eq. (24), was equal to the sum of the pilot cost (197.13 hours) and

the exploitation cost (160× 4.18) hours, which was approximately 36 days on a single CPU. The pilot cost was the sum of705

evaluating all 13 models on the initial 20 pilot samples and 8 models on an additional 10 pilot samples (see Section 5.4). The

exploitation cost was fixed at the beginning of the study to the computational cost equivalent to evaluating the high-fidelity

model 160 times and the median time taking to run a single simulation of the Glacier for a single realization of basal frictoin

being 4.18 hours. The number of samples allocated to evaluating each model by the ACV estimator during the exploitation

phase are shown Figure 12. Only two samples of the high-fidelity model were used. Yet, while running these simulations710

only accounted for approximately 1.25% of the total computational cost budget, these samples ensured the estimators were
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unbiased, with respect to the highest-fidelity model. In contrast, many more evaluations of the lower fidelity models were used.

The lower computational costs of these models and their high-correlation with each other and the highest-fidelity model were

effectively exploited to significantly reduce the MSE of the ACV estimator relative to the SFMC estimator.

We constructed our final estimator of the mean, QµACV, and variance, Qσ
2

ACV, of the mass change by evaluating each model715

at the number of samples determined by Figure 12. All models were evaluated at the same two samples, the two low-fidelity

models were both evaluated at another 351 samples, and the SSA1.5km,365days model was evaluated at another 10130 samples.

The small number of samples allocated to the highest-fidelity model was due to the extremely high-correlation between that

model and the model MOLHO1km,36days. This high-correlation suggests that the temporal discretization error of the highest-

fidelity model is smaller than the spatial discretization error for the ranges of discretizations used in this study.720

Note, the exact number of samples allocated to each model that we reported is determined by the properties of the MFMC

estimator chosen. However, if another estimator, for example MLMC, was chosen to use the same models the way samples are

shared between models would likely change.7
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Figure 12. The optimal number of samples (number inside rectangles), computed using Eq. (29), required by the best ACV estimator to

simulate each model.

The mean and standard deviation computed using the best ACV estimator were −639.06± 0.23 Gigatons and 17.68± 6.67

Gigatons , respectively. It is clear that with our budget we were able to confidently estimate the expected mass change at year725

2100. However, our estimates of the standard deviation in the mass change were less precise. We could improve the precision

of both estimated statistics by further increasing the exploitation budget; however, we choose not to do so, as our results

emphasize that estimating statistics high-order statistics, such as variance, is more computationally demanding than estimating

a mean. Moreover, the precision requirements of a UQ study should be determined by the stakeholders, which will use the

uncertainty estimates to make decisions.730

The left panel of Figure 13 plots the time evolution of mass loss predicted by the three models selected by our final ACV

estimator. The right panel plots the distribution of mass loss at the final year, 2100, computed using the SSA1.5km,365days

737 of the 10130 SSA1.5km,365days model simulations failed so an additional 37 simulations at new random realizations of the friction field were run.
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model. The bias of the SSA1.5km,365days is clear in both plots, for example, in the right panel the mean of the blue distribution

is not close to the mean computed by the ACV estimator. However, we must emphasize that, by construction, the ACV estimate

of the mean mass loss, and its variance, is unbiased with respect to the highest-fidelity model MOLHO1km,9days. We also735

point out that while our Laplace approximation of the posterior is a Gaussian, the push-forward of this distribution through the

SSA1.5km,365days model is nonlinear. Specifically, the push-forward of a Gaussian through a linear model remains Gaussian;

however, in this case, the right tail of the push-forward density is longer than the left tail, indicating that it is not Gaussian.

This suggests that the mapping from the basal friction parameters to the quantity of interest is nonlinear. We were unable to

compute reasonable push-forward densities with the simulations obtained from the other two models used to construct the ACV740

estimator due to an insufficient number of simulations. However, we believe it is reasonable to assume that the parameter-to-

QoI map of these models is also non-linear.
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Figure 13. (Left) The evolution of mass loss predicted by the three models we used in our final ACV estimator, corresponding to each of the

simulations used to construct the estimator. (Right) The probability of mass loss computed using the SSA1.5km,365days model. The black

vertical line represents the ACV estimate of the mean, while the gray shaded region represents plus and minus 2 standard deviations, again

computed by the ACV estimator.

6 Discussion

The cost of constructing our final estimator was equal to the pilot cost and the exploitation cost, totalling 197.13 + (160×
4.18) hours, or approximately 36 days. Additionally, the median variance reduction obtained by the bootstrapped estimators745

was VΘ [Qµ0 ]/VΘ [QµACV] = 38.24 for estimating the mean and VΘ [Qµ0 ]/VΘ

[
Qσ

2

ACV

]
= 28.91 for estimating the variance of

the mass change. Achieving the same precision with SFMC estimators using only the highest fidelity model would require

approximately 28.91× 160× 4.18 hours = 805 days. This calculation used the smallest variance reduction motivated by the

observation that high-fidelity simulation data can be used to compute both mean and variance. Thus, MFSE reduced the cost
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of estimating uncertainty from over two and a half years of CPU time to just over a month, assuming the models are evaluated750

in serial. Note that while applying MFSE to the Humboldt Glacier took over a month of serial computations, the clock time

needed for MFSE can be substantially reduced because MFSE is embarrassingly parallel. Each simulation run in the pilot

stage can be executed in parallel without communication between them. Similarly, in the exploitation phase, each simulation

can also be computed in parallel. Consequently, while using MFSE for continental scale UQ studies may require years of serial

CPU time, distributed computing could substantially reduce this cost, potentially one to two orders of magnitude. The exact755

reduction would depend on the number of CPUs used and the scalability of the computational models.

While the highest-fidelity model, MOLHO, was capable of capturing ice-sheet dynamics that the SSA model was not – that

is vertical changes in the horizontal velocities (Figure 14 shows the different ice-thickness predicted at the final time by the

MOLHO and SSA model) – the best ACV estimator was still able to use the simplified physics of SSA to reduce the MSE of

the best ACV estimator. Moreover, the best ACV estimator also used evaluations of the SSA model on a coarse mesh, which760

failed to resolve all the local features of the friction and ice-sheet flow-field (see Figure 14) and did not conserve mass, unlike

the highest fidelity model. This result demonstrates that, provided there is high correlation between the model predictions of a

QoI, MFSE can be effective when there is high correlation between the model predictions of a QoI, even when the model states

vary differently across time and space for a single realization of the random model parameters. Moreover, future MFSE studies

may benefit from not only using low-fidelity models derived from different physics assumptions and numerical discretizations765

but also those based on data driven models, such as machine learning operators (He et al., 2023; Lowery et al., 2024) or

adjoint-based linearizations (Recinos et al., 2023). However, if such models are used, the computational cost of constructing

them must also be considered (Peherstorfer, 2019), just as we accounted for the pilot cost in this study.
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Figure 14. (Left) The basal friction, β, along the cross section (black line) depicted in the right panel of Figure 7. (Right) The difference

between the thickness fields simulated by the MOLHO∗1km,9days model and the SSA1.5km,365days along the same cross section.
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Our study used a high-dimensional representation of the basal friction field capable of capturing high-frequency modes.

However, previous studies have commonly used lower-dimensional parameterizations (Nias et al., 2023; Ritz et al., 2015;770

Schlegel et al., 2018; Jantre et al., 2024). Consequently, we investigated the impact of using a low-frequency, low-dimensional

representation of the friction field on the efficiency of ACV estimators applied to ice-sheet models. Specifically, we estimated

the mean and variance of the mass change using a 10-dimensional Karhunen Loeve expansion (KLE) to represent the posterior

uncertainty of the basal friction field (complete details are presented in Appendix B). We found that using the low-dimensional

KLE smoothed realizations of the basal friction, which in turn drastically improved the variance reduction of MFSE to over775

a factor of 200. However, only using 10 modes to represent the basal friction caused the variance of the mass change to be

substantially underestimated. Recinos et al. (2023) also demonstrated that lower-dimensional parameterizations can result in

misleading estimates. Consequently, while low-dimensional representations of friction enable faster UQ, the results may be

misleading. Thus, future research is needed to balance the increased bias introduced by the low-dimensional parameterization

with the improved variance reduction properties of an ACV estimator.780

This study emphasizes that the relative effectiveness of ACV estimators – such as MLMC, MFMC, and ACVMF – is

problem dependent. Although each MFSE algorithm in the literature has its own theoretical advantages and disadvantages,

it is often difficult to determine which will be the most effective at the onset of a study. Indeed, several types of estimators

enumerated by this study yielded estimates of the mean and variance of the mass change with similar precision. For example,

Figures 11a, 11b, 11c show that while using three models is clearly better than using two, there is little, if any, marginal benefit785

in moving from three to four models, as indicated by the size of the box plots. Moreover, it is difficult to determine a priori

the numerical discretizations and model physics needed by a model ensemble to produce an ACV estimator with the smallest

MSE. Consequently, we used a small pilot sample to compute the correlation between model outputs and then use the analytical

properties of ACV estimators to predict the MSE of each estimator produced by popular MFSE algorithms.

While pilot studies are required for ACV methods, our results suggest that using a small number of pilot samples can790

introduce non-trivial variability into the optimal sample allocation used by ACV estimators. Consequently, we introduced

a novel two-step bootstrapping procedure to quantify the impact of a small number of pilot samples. While our two step

procedure was able to down select from a large set of possible models, further research is needed to develop algorithms that can

efficiently conduct pilot studies involving a large numbers of models. Furthermore, it is essential that new algorithms balance

the computational cost of computing the correlation between models with the impact the error in the estimated correlations795

when determining the optimal MSE of an ACV estimator.

Our study predicted the mean and standard deviation of mass change (in Gigatons) from Humboldt Glacier to be -639.06

and 17.68 respectively. However, the exact values of these statistics were impacted by our modeling choices. First, we only

quantified uncertainty due to unknown basal friction which ignores other contributions to mass-loss variability arising from

uncertain climate and ice-sheet processes such as iceberg calving, subglacial hydrology, and submarine melting. Including800

these processes would have likely affected both the mean and variance of the mass change. Indeed, our predicted mass loss

is significantly less than in two recent studies of Humboldt Glacier (Hillebrand et al., 2022; Carr et al., 2024) due to our use

of a low-emissions climate scenario and our neglect of ocean forcing. Moreover, introducing more complicated physics in
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the highest-fidelity model, such as calving, could degrade the performance of MFSE. For example, ice melt at the boundary

can induce strong dynamical responses in a marine-terminating glacier, which could potentially reduce the correlation with805

models that do not capture this phenomenon. However, despite our imperfect description of uncertainty, we believe our study

reflects the challenges of a more comprehensive study while still facilitating a computationally feasible investigation of MFSE

methods.

This study focused on investigating the efficacy of using MFSE to accelerate the quantification of parametric uncertainty

using deterministic ice-sheet models. We did not quantify the uncertainty arising from model inadequacy. Recently Verjans810

et al. (2022), attempted to quantify model uncertainty by developing stochastic ice-sheet models designed to simulate the

impact of glaciological processes that exhibit variability that cannot be captured by the spatiotemporal resolution typically

employed by ice-sheet models, such as calving and subglacial hydrology. The MFSE algorithms presented in this paper can be

applied to such stochastic models, by sampling the model parameters and treating the stochasticity of model as noise. However,

the noise typically reduces the correlation between models and thus the efficiency of MFSE (Reuter et al., 2024). Moreover,815

this study only focused on estimating the mean and variance of mass change. Consequently, the efficacy of MFSE may change

when estimating statistics – such as probability of failure, entropic risk, and average value at risk (Rockafellar and Uryasev,

2013; Jakeman et al., 2022) – to quantify the impact of rare instabilities and feedback mechanisms in the system. We anticipate

that larger number of pilot samples than the amount used in this study will be needed to estimate such tail statistics, potentially

reducing the efficiency of MFSE.820

Many recent studies have conducted formal uncertainty quantification of projections of ice-sheet change considering nu-

merous sources of uncertainty, such as climate forcing, iceberg calving, basal friction parameters, and ice viscosity. Although,

these generally deal with scalar parameters, such as a single calving threshold stress (Aschwanden and Brinkerhoff, 2022;

Jantre et al., 2024) or scalar adjustment factors to basal friction and ice viscosity fields (Nias et al., 2023; Felikson et al., 2023;

Jantre et al., 2024). However, recently automatic differentiation was used to linearize the parameter-to-QoI map of an SSA825

model, facilitating the computationally efficient quantification of uncertainty caused by high-dimensional parameterizations of

basal friction and ice stiffness (Recinos et al., 2023), Additionally, other UQ studies have primarily relied on a large number

of simulations from a single low fidelity model (e.g., Nias et al., 2019; Bevan et al., 2023), sometimes with informal valida-

tion using a small number of higher-fidelity simulations (e.g., Nias et al., 2023), or on the construction of surrogate models

to sufficiently sample the parameter space (e.g., Bulthuis et al., 2019; Berdahl et al., 2021; DeConto et al., 2021; Hill et al.,830

2021; Aschwanden and Brinkerhoff, 2022; Jantre et al., 2024). Furthermore, another set of studies quantified the uncertainty

associated with the use of many different numerical models — termed an "ensemble of opportunity" — which includes a wide

range of modeling choices that sample parameter values and model fidelity in an unsystematic manner (Edwards et al., 2021;

Seroussi et al., 2023; Van Katwyk et al., 2023; Yoo et al., 2024). While this study is limited in scope, because it focus on solely

estimating parametric uncertainty induced by basal friction variability, our results demonstrate that even when low-fidelity835

ice-sheet models do not capture the flow features predicted by higher-fidelity models, they can still be effectively utilized by

MFSE methods to reduce the cost of quantifying high-dimensional parametric uncertainty in ice-sheet model predictions. Con-
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sequently, low-fidelity models, when used with MFSE methods, may be able to substantially reduce the computational cost of

future efforts to quantify uncertainty in the projection of the mass change from the entire Greenland and Antarctic ice sheets.

7 Conclusions840

Mass loss from ice sheets is anticipated to contribute O(10) cm to sea-level rise in the next century under all but the lowest

emission scenarios (Edwards et al., 2021). However, projections of sea-level rise due to ice-sheet mass change are inherently

uncertain, and quantifying the impact of this uncertainty is essential for making these projections useful to policy makers

and planners. Unfortunately, accurately estimating uncertainty is challenging because it requires numerous simulations of a

computationally expensive numerical model. Consequently, we evaluated the efficacy of MFSE for reducing the computational845

cost of quantifying uncertainty in projections of mass loss from Humboldt Glacier, Greenland.

This study used MFSE to estimate the mean and the variance of uncertain mass-change projections caused by uncertainty in

glacier basal friction using 13 different models of varying computational cost and fidelity. While ice sheets are subject to other

sources of uncertainty, focus was given to basal friction because its inherent high-dimensionality typically make quantifying its

impact on the uncertainty in model predictions challenging. Yet, despite this challenge, we found that for a fixed computational850

budget, MFSE was able to reduce the MSE in our estimates of the mean and variance of the mass change by over an order-of-

magnitude compared to a SFMC based approach that just used simulations from the highest fidelity model.

In our study, we were able to use MFSE to substantially reduce the MSE error in the statistics by exploiting the correlation

between the predictions of the mass change produced by each model. However, it was not necessary to use simulations from all

of the models to reduce the MSE. Indeed, the MFSE algorithm determined that only three models (including the highest-fidelity855

model) were needed to minimize the MSE in the statistics given our computational budget. The low-fidelity models selected

used: 1) simplifications of the high-fidelity model physics, 2) were solved on coarser resolution spatial and temporal meshes,

and 3) were solved without the requirement of mass conservation. These simplifications result in significant computational cost

savings relative to use of the high-fidelity model alone. This result demonstrated that MFSE can be effective even when the

lower-fidelity models are incapable of capturing the local features of the ice flow fields predicted by the high-fidelity model.860

Moreover, while the utility of the lower-fidelity models ultimately chosen for MFSE were not clear at the onset of the study,

we were still able to estimate uncertainty at a fraction of the cost of single fidelity MC. This was achieved despite the need to

conduct a pilot study that evaluated all models a small number of times.

Finally, this study demonstrated that MFSE can be used to reduce the computational cost of quantifying parametric uncer-

tainty in projections of a single glacier, which suggests that MFSE could plausibly be used for continental-scale studies of865

ice-sheet evolution in Greenland and Antarctica. However, the predicted mean mass loss from Humboldt Glacier that we re-

ported should be viewed with caution, as the length scales of the prior disribution we employed for the uncertain basal friction

field were not finely tuned, e.g. as done by Recinos et al. (2023), due to the compuational expense of such a procedure. Since

the length scales of basal friction are very difficult to determine a priori, the potentially over-informative length scales used in

this paper could substantially impact the posterior mass loss estimates. Future research should address this issue and increase870
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the complexity of this study in two further directions. First, future studies should include additional sources of ice-sheet un-

certainty beyond the basal friction field studied here, for example uncertain surface mass balance and ocean forcing. Second,

future studies should include the use of model fidelities that capture additional physical processes such as calving, fracture,

and ocean-forced melting. Consequently, while our findings should be interpreted with caution given the aforementioned limi-

tations, they encourage future studies to utilize MFSE for reducing the cost of computing probabilistic projections of sea-level875

rise due to ice-sheet mass change.

Code availability. The code used to construct ACV estimators has been released in the open-source Python package PyApprox https://github.

com/sandialabs/pyapprox.

Appendix A: Low-rank Laplace approximation

Following Bui-Thanh et al. (2013); Isaac et al. (2015) we computed the covariance of the Laplace approximation of the880

posterior distribution of the friction parameters, Eq. (14), using

Σpost =
(
HMAP + Σ−1

prior

)−1

= L
(
L>HMAPL + I

)−1

L>,

where HMAP is the Hessian of 1
2 (y− g(θ))>Σ−1

noise(y− g(θ)) at θ = θMAP, L = K−1M
1
2 and the entries of K and M are

defined in Eq. (10) and Eq. (11), respectively.

Drawing samples from this Gaussian posterior is computationally challenging because the posterior covariance Σpost de-885

pends on the Hessian HMAP which is a high-dimensional dense matrix. Consequently, following Bui-Thanh et al. (2013) and

Isaac et al. (2015) we constructed a low-rank approximation of the prior-preconditioned Hessian L>HMAPL using matrix-free

randomized methods that requires only multiplications of the Hessian with random vectors. Specifically, computing a spectral

decomposition of

L>HMAPL = UΛU>, (A1)890

with U orthogonal and Λ diagonal matrices and noting

Σpost = L
(
UΛU>+ I

)−1

L> = L
(
U(Λ + I)U>

)−1

L> = LU(Λ + I)−1U>L>

we factorized Σpost as

Σpost = TT>, T = LU(Λ + I)−
1
2 U> = LU

(
(Λ + I)−

1
2 − I

)
U>+ L.

In order to perform a low-rank approximation of the matrix T we truncated the spectral decomposition of W = U
(

(Λ + I)−
1
2 − I

)
U>895

by discarding the eigenvalues λi such that
∣∣∣1− 1√

λi+1

∣∣∣� 1. This ensured that the low-rank approximation of T well approx-

imated T in the spectral norm sense. The eigenvalues and two eigenvectors of the spectral decomposition we computed are

depicted in Figure A1.
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Figure A1. (Left) Eigenvalues λi of the prior-preconditioned Hessian, computed by solving Eq. (A1), and (Center) its eigenvectors associated

to the largest and (Right) third largest eigenvalue. Note that similarly to Isaac et al. (2015), we plot the eigenvectors Vi = LUi that are

orthonormal with respect to the prior-induced dot-product, that is, V>i Σ−1
priorVj = δij .

We computed the truncated spectral decomposition using randomized algorithms (see Hartland et al. (2023); Halko et al.

(2011)) implemented in PyAlbany, see Liegeois et al. (2023). The algorithms used were matrix-free and only required the900

multiplication of L>HMAPL with vectors. Moreover, as described in Hartland et al. (2023); Isaac et al. (2015), the multipli-

cation of the Hessian with a vector required solving two adjoint systems of the flow model. Similarly, the multiplication of the

matrix L with a vector required the solution of the two-dimensional linear elliptic system with matrix K, defined in Eq. (10).

Consequently, we were able to efficiently draw samples from the posterior distribution of the friction parameters using

θpost = θMAP + Tn, n∼N (0,I).905

Appendix B: Low-dimensional representation of basal friction using a Karhunen-Loeve expansion

In our main study we found that when using a high-dimensional representation of the uncertainty in the basal friction field,

bootstrapped ACV estimators rarely chose to use models that had coarse spatial meshes relative to the mesh used by the

high-fidelity model. This was likely due to the fact that our high-dimensional representation of the friction uncertainty was

constructed on the high-fidelity mesh and interpolated onto coarser meshes. To verify this hypothesis we investigated using a910

lower-dimensional representation of the friction field based on a Karhunen Loeve expansion (KLE) of the friction field that

smoothed out the high-frequency variations in the posterior samples of the friction field we used in our main study.

Construction of the KLE

In our investigations we used a KLE

θ = θMAP +

D∑
i=1

√
λiψi ηi, ηi ∼N (0,1) (B1)915
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to provide a low-dimension representation of the Laplace approximation of the posterior of the log basal friction field. We

computed the eigenvalues λi and the orthonormal eigenvectors ψi by solving the eigenvalue problem

Σpostψi = λiψi, (B2)

using the randomized matrix-free methods Hartland et al. (2023); Halko et al. (2011).

While a KLE basis could have been constructed on any of the four meshes we considered, in this study we solved the920

discretized eigenvalue problem using the finest mesh. The 1st, 2nd, and 10th modes of the KLE used in this study are depicted

in Figure B1. Note, unlike what is typically seen when constructing a KLE of a field with a pointwise variance that is constant

across the domain, the low-frequency KLE modes constructed here are localized where the posterior uncertainty is highest.

The finite element basis on the finest mesh was then used to interpolate the KLE basis from the fine mesh onto the coarser

meshes. This procedure ensured that varying the coefficients of the KLE basis (the random parameters to the model) would925

affect each model similarly regardless of the mesh discretization employed. Similarly to the KLE basis, the mean of the log

KLE field (taken to be the mean of the Laplace approximation) was computed on the finest mesh.

Figure B2 compares a realization of the log of the basal friction perturbation (mean zero) drawn from the Laplace approxi-

mation of the posterior and a random random realization of the log of the basal friction perturbation computed using the KLE.

It is clear that the KLE smooths out much of the high-frequency content present in the realization drawn from the Laplace930

approximation of the posterior.

Figure B1. From left to right, the 1st, 2nd, and 10th mode of the KLE, Eq.(B1), used in this study, computed using Eq.(B2).

Pilot study

In this section, we detail the pilot study we undertook to investigate the impact of using a low-dimensional KLE to represent

friction when using MFSE to estimate statistics of mass change. We did not move beyond the pilot study to compute the values

of the statistics to limit the computational cost of this supplementary study.935
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Figure B2. (Left) The mean of the log of the basal friction, θMAP in Eq. (13). (Center) A random realization of the log of the basal friction

drawn from the Laplace approximation of the posterior p(θ | M,y)∼N (θMAP,Σpost). (Right) A random realization of the log of the 10-

dimensional basal friction computed using the KLE approximation, Eq. (B1), of the posterior.

First, we evaluated each of our 13 models at 20 random pilot samples of the KLE. Second we computed the pilot statistics

needed to find the best ACV estimator. Third we bootstrapped the pilot samples to estimate the median and confidence intervals

on the variance reduction obtained by the best ACV estimator.

The mean and variance bootstrapped variance reduction are depicted in Figure B4. The variance reductions reported are

almost an order of magnitude larger than those reported for MFSE based on the Laplace approximation of the posterior. This940

improved performance is because correlations between the models (Figure B3) are significantly higher than the correlations

obtained when sampling from the Laplace approximation of the posterior (Figure 9). However, the KLE representation un-

derestimates the uncertainty in the predicted mass change at 2100. Specifically, the standard deviation of the mass change

computed using 20 pilot samples of the highest-fidelity model using the Laplace approximation of the posterior is significantly

higher than the standard deviation computed using the KLE (see Figure B5).945
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Figure B3. The correlations, Corrπ[f ,f ] with f = [f0, . . . ,fM ]>, between the 13 ice-sheet models considered by this study using 20 pilot

samples of the KLE using Eq. (B1).
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Figure B4. The predicted variance reductions RΘ[QµACV] (mean) and RΘ[Qσ
2

ACV] (variance), see Eq. (30), obtained using bootstrapping of

the 20 pilot samples of the KLE, Eq. (B1). The red lines represent the median estimator variance reductions. The lower and upper whiskers

represent the 10% and 90% quantiles.
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