
1 Summary of comments and our proposed changes

In this document, we respond to every comment from the three reviewers. The reviews were
extremely thorough and valuable, and addressing the comments given has substantially improved
our manuscript. Below we address all 187 comments. However, first we summarize here what we
inferred were the main concerns raised by the reviewers.

Please note that we changed the acronym used in this paper from MFUQ to MFSE, which refers
to multi-fidelity statistical estimation. We believe this term better captures the algorithms used in
this paper than term multi-fidelity uncertainty quantification (MFUQ), which is broader and could
be perceived to include methods such as multi-fidelity surrogate modeling. Ideally, we would use
the term multi-fidelity Monte Carlo (MFMC), instead of either of the two aforementioned terms.
However, MFMC is used in the literature to to a particular type of MFSE algorithm.

First, all three reviewers stated that the Section 4, which introduced multi-fidelity methods,
needed to be rewritten more clearly. We were happy to do this, as we want to make the paper as
easily accessible as possible. We also thank the reviewers for their constructive advice on how to
improve our exposition.

Second, the reviewers asked to more clearly and precisely establish the novel contributions of
our work, especially compared to a recent paper that we were unaware of. Additionally, we were
asked to add further discussion of the limitations of our study to the paper. We have rewritten the
introduction and discussion sections to address this concern.

Third, but not least, the third reviewer (listed in this document) asked how MFSE compares
to a recent method introduced in a paper referred to as BR23. The method in BR23 linearized the
parameter-to-QoI map of an ice-sheet model to computationally efficiently estimate the distribution
of the QoI conditioned on observations. Moreover, the reviewer also remarked that our procedure
for selecting the prior distribution of our uncertain parameters could be improved by pointing to the
tuning method proposed in BR23. Specifically, the reviewer correctly pointed out that not using a
rigorous method for tuning the hyper-parameters of the prior distribution, such as that proposed
in BR23, can lead to uncertainty being underestimated. However, the method requires automatic
differentiation to linearize the parameter-to-QoI map, which our codes (and many others) do not
support, so we were unable to make a comparison or adopt the tuning procedure proposed in the
cited paper. Secondly, linearizing the parameter-to-QoI map introduces an error when the map is
nonlinear. As the cited paper points out this, error depends on the strength of the nonlinearity
in the map. As we could not construct the linearization used in BR23, we could not compute the
size of this error. However, we have included plots in the paper and response that demonstrate the
parameter-to-QoI map is nonlinear. Moreover, we now remark in the paper that if linearization
is possible, then it will likely be a computationally efficient and accurate low-fidelity model that
could potentially improve the performance of MSE further.

In the following we list the reviewers comments with “black italic” font. We list text from
the original document with “blue italic”. Additionally, we include new text added to the revised
document in red. Lastly, we made additional edits to the paper to improve readability, but we only
highlighted such changes if they were in response to a reviewer comment or change the narrative
substantially.

1.1 Miscellaneous

Please note that there was an issue with section numbering in Section 4 which we have now cor-
rected. In the revised document we created a new subsection 4.4 called “Computational consid-
erations for multi-fidelity uncertainty quantification” which discusses the important computational
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aspects of the exploration and exploitation phases of multi-fidelity UQ. Section 4.4 now includes
subsections 4.2.3, 4.2.4, 4.25, 4.2.6 in the original submission. Moreover, Remark 4.1 in the original
submission has now been moved to form the basis of the introduction in Section 4.4.

2 Reviewer 1 (Douglas Brinkerhoff)

2.1 General comments

“In this manuscript, Jakeman et al. present the application of multi-fidelity uncertainty quantifi-
cation to accelerate – and hopefully provide more accurate – estimates of first- and second-order
ensemble statistics. They begin by describing two approximations to the Stokes’ equations, which
trade solution expressivity for computational expense and serve as the basis for their multifidelity
methods. They next describe a mechanism by which to characterize an approximate posterior dis-
tribution (based on a low-rank Laplace approximation) over basal traction conditioned on surface
velocity observation, which serves as the source of samples for Monte Carlo sampling of ice volume
evolution, the primary quantity of interest in this work. The primary methodological advance is the
introduction of an adaptive control variate (ACV) estimator for the mean and variance of mass
change after approximately a century of ice evolution. This estimator leverages correlations between
so-called low- and high-fidelity models (which have different computational expense) to effectively
reduce the error in Monte Carlo estimates of ice volume change relative to predictions made us-
ing a limited number of high-fidelity model predictions on its own. They present this method for
a single high and low-fidelity model, and then extend the analysis to the case where there exists
one high-fidelity model and a hierarchy of multiple low-fidelity models. Such methods require the
establishment of statistical relationships between the low and high-fidelity models, and also care-
ful selection of the number of samples evaluated for each constituent model: the authors carefully
present strategies for these tasks within the framework of a fixed computational budget, and explore
the implications of these strategies when they are better informed by empirical analysis than theory.
The manuscript applies these methods to the Humboldt Glacier basin of Northwest Greenland and
show that the present methods can be used to perform effective uncertainty quantification, at least
over the limited subset of uncertain parameters that the authors’ consider. This work is an impor-
tant and timely contribution to the growing effort towards robust uncertainty quantification in ice
sheet modeling. I have no major objections to the scientific content of this work, which I find to be
well-motivated and defensible. I do think that the work relies on language and a presentation style
that will be challenging for many readers, particularly those without a specialized statistical back-
ground. As a general comment, I would encourage the authors to try to provide more intuition and
plain-language summaries, particularly in Section 4. I provide more specific examples, alongside
other detailed comments below.”

2.2 Specific comments

1. “L26 Here and elsewhere, ‘effects’ should be ‘affects”’.

Fixed.

2. “L97 Should H(x, y, z) be H(x, y, t)?”

Yes. We fixed this typo.

3. “L98 The MOLHO (or the Blatter-Pattyn approximation) doesn’t neglect vertical velocity, it
is just eliminated from the system of equations via mass conservation and the assumption of
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hydrostatic pressure. It can always be determined a posteriori from the horizontal velocity
components.”

We changed the sentence “ In contrast, using the observation that ice-sheets are typically shal-
low, i.e. their horizontal extent is much greater than their thickness, the MOLHO model ne-
glects the vertical velocity w and only simulates the horizontal velocities u(x, y, z, t), v(x, y, z, t)
but still as functions of the three spatial coordinates” to In contrast, the MOLHO model makes
simplifications based on the observation that ice-sheets are typically shallow, i.e. their hor-
izontal extent is much greater than their thickness. These simplifications lead to a model
that does not explicitly estimate the vertical velocity w and only simulates the horizontal
velocities u(x, y, z, t), v(x, y, z, t) as functions of the three spatial coordinates.

4. “I don’t think Dukowicz is the best reference here. Pattyn (2003) is more commonly cited,
or if the preference is for something that clearly describes the hierarchy of approximations,
Schoof and Hindmarsh (2009).”

We have added a citation to Schoof and Hindmarsh (2009).

5. “L137 I think that citet should be used rather than citep here.”

We now use citet.

6. “L152 The discretization of the continuity equation is non-trivial and should be described here.
How was it stabilized? How was positivity (even in the absence of negative forcing) ensured?”

We added the following details:

Specifically, the continuity equation was discretized with nodal finite elements, using stream-
line upwind stabilization. Additionally, the advection term was integrated by part and the
thickness was treated implicitly. Using this time evolution process, we did not observe any
numerical instabilities when using the time-step sizes adopted in this study.

7. “L172 Who specifically considers friction to be such a large source of uncertainty? Plenty
of recent work has shown that forcing terms are the most important uncertainty sources,
particularly at long time scales. I don’t have a problem with focusing on traction here, but I
think it is important to contextualize this choice a little bit more fully.”

We agree that forcing terms are large sources of uncertainty. Carr et al. (2024) in particular
have recently made this argument. However, basal sliding is widely acknowledged to also
be a large source of uncertainty (see e.g., Nias et al. (2018); Joughin et al. (2019); Brondex
et al. (2019); Åkesson et al. (2021); Hillebrand et al. (2022)), especially when using model
configurations with active calving, which Carr et al. (2024) ignored. While we also do not
account for active calving except to prevent advance, our methodology could be extended to
situations that include physically based calving laws.

We changed the statement “While all sources of uncertainty may significantly impact pre-
dictions of mass change from ice sheets, this study focused on quantifying uncertainty due to
the unknown basal friction, which is considered one of the largest sources of prediction uncer-
tainty. This singular focus was made to improve our ability to assess whether MSE is useful
for ice-sheet modeling for a very high-dimensional source of uncertainty, which cannot be
tractably tackled using most existing UQ methods. This ensures that the conclusions drawn by
our study can be plausibly extended to studies considering additional sources of uncertainty.”
to While all these sources of parametric uncertainty may significantly impact predictions of
mass change from ice sheets, this study focused on quantifying uncertainty due to unknown

3



basal friction, which is considered one of the largest sources of prediction uncertainty after
future environmental forcing (Nias et al., 2018; Joughin et al., 2019; Brondex et al., 2019;
Åkesson et al., 2021; Hillebrand et al., 2022; Nias et al.,190 2023). This singular focus was
made to improve our ability to assess whether MFSE is useful for quantifying uncertain in
ice-sheet modeling with high-dimensional parameter uncertainty, which most existing UQ
methods cannot tractably address. By doing so, we ensured that the conclusions drawn by
our study can be plausibly extended to studies considering additional sources of uncertainty.

8. “L180 I think that the community is using the term ‘Gaussian process’ with some frequency
now, so it would be good to at least mention that as a name for what is going on here (and a
reference to, say Rasmussen and Williams (2006)).” We did not add this or a similar citation.
We want to avoid using the term Gaussian process because the method we used to generate
the Gaussian random field, which the reviewer is referring to, and condition it on data differs
from the approach used by Gaussian process used in machine learning, e.g. (Rasmussen and
Williams, 2006).

9. “L212 For what it’s worth, it’s a stretch to call BedMachine ‘data’ – it is the result of a
PDE-constrained optimization scheme that relies on assumptions of climate, smoothness, and
a variety of other things. Again, nothing different needs to be done, but it is important to
state that this inferred geometry is assumed error-free. ”

We clarified that we assumed the geometry was error-free.

10. “L232 This scaling term is less mysterious when reported with units ‘number of observations
per area’.”

We think that the “scaling term” the reviewer is referring to is the inverse of our coefficient
α in the original submission. In our case, the observations are given as a spatial field, not
as a finite number of data points, therefore α has the units of area, which is consistent with
the reported units of km2. In an attempt to make the scaling coefficient more intuitive, we
changed the definition of α and considered its inverse, which is more inline with the typical
definition of scaling terms in objective functionals. We also expanded Remark 5.1 to discuss
how the scaling parameter α has been selected.

11. “L263–267 Here and elsewhere, please be sure to use a consistent tense. This switches from
present to past inside a sentence.”

We have corrected tense here and throughout the document.

12. “L298 Should these sums have N − 1 in front of them?” Yes. We corrected this mistake.

13. “L298 For the inner sum, please use a different index variable than n.”

We now use the symbol j.

14. “L298 Is the optimization of η mandatory or does this work with arbitrary η? What is the
objective that is optimized?”

The optimization of η is not mandatory. Any value can be used, indeed MLMC uses η = −1,
however using a non-optimized value of η can substantially degrade the accuracy of the
estimator. We now mention that η can be set a priori. To see the exact changes refer to the
added text in red in response to comment 15.

Also note that, in the original manuscript we stated that “the MSE of the ACV estimator can
be minimized by optimizing the determinant of the estimator covariance matrix”. For a fixed
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sample size, the optimization of η is analytical as reported in Equation (14) of the original
manuscript.

15. “L298 The reader would benefit from a description of what this equation means and some
intuition of why this works. It appears to be that the low-fidelity terms yield a correction to
the high fidelity statistic, but it is somewhat surprising that this doesn’t need to include any
explicitly quantified relationship between the two models. It would also be helpful to emphasize
that the Θ0 and Θ1 can have different set sizes.”

We added the following text to the revised document to provide the intuition requested and
discuss the sizes of the sample sets Θ0 and Θ1.

Using only high-fidelity model simulations to estimate a statistic with single-fidelity MC
produces an unbiased estimator of Q0. However, when the computational cost of running a
high-fidelity model limits the number of model simulations that can be used, the variance
and thus the MSE, of the MC estimator will be large. Fortunately, the MSE error of the
estimator can be reduced by correcting the high-fidelity estimator with statistics computed
using lower-fidelity models. For example, given a high-fidelity model f0(θ) and a single low-
fidelity model f1(θ), an MFMC ACV estimator approximates the mean of the high-fidelity
model using
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1 (Θ1)) ≈ EΘ [f0] . (2)

The two-model ACV estimator in Eq.(21) uses a weighted combination of a high-fidelity MC
estimator and two low-fidelity estimators. The high-fidelity model evaluations are used to
ensure the ACV estimator is unbiased, i.e. EΘ

[
Qµ

ACV(Θ0,Θ1)
]
= Eπ [f0], while the low-

fidelity evaluations are used to reduce the variance of the estimator. The estimator of the
low-fidelity mean Qµ

1 (Θ0) is referred to as a control variate because it is a random variable,
which is correlated with the random estimator Qµ

0 (Θ0), and can be used to control the vari-
ance of that high-fidelity estimator. The term Qµ

1 (Θ1) ≈ Qµ
1 is an approximation of the

true low-fidelity statistic Q1 that is used to ensure that the ACV estimator is unbiased, i.e.
EΘ

[
Qµ

ACV(Θ0,Θ1)
]
= EΘ [Qµ

0 (Θ)] + η (EΘ [Qµ
1 (Θ0)]− EΘ [Qµ

1 (Θ1)]) = Qµ
0 + η (Qµ

1 −Qµ
1 ) =

Qµ
0 . The weight η can either be fixed – e.g. MLMC sets η = 1 – or optimized to minimize the

MSE of the estimator. However, an ACV estimator will always be unbiased, with respect to
Q0, regardless of the value of η, because the expected values of the second and third terms
will always cancel.

Computing the ACV estimate of the high-fidelity mean in Eq. (21) requires two different
sets of model evaluations. These evaluations must be obtained by first drawing two sets of

samples Θ0 = {θ(n)0 }N0
n=1,Θ1 = {θ(n)1 }N1

n=1 from the distribution of the random variables. In
our study, we draw random samples from the posterior distribution of the log basal friction,
i.e p(θ | M,y). The high-fidelity model must be evaluated on all the samples in Θ0 and the
low-fidelity model must be evaluated on both the sets Θ0 and Θ1. Typically N0 < N1. In
most practical applications, such as this study, the model f0 used with an ACV estimate is
chosen to be the highest-fidelity model that can be simulate O(10) times, However, when a
model utilizes a numerical discretization that can be refined indefinitely, MLMC can be used
to adaptively set Q0 such that the discretization error Q0 −Q∞, in Eq. (18), is equal to the
variance VΘ [QACV] of the MLMC estimator.
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16. “L323 The line about some samples being shared is vague. Please elaborate on what this
means.”

We replaced this line with:

Different ACV estimators can be produced by changing the way each sample set is structured.
For example, MFMC estimators sample the uncertain parameters such that Θ∗

α ⊂ Θα and
Θ∗

α = Θα−1 and MLMC estimators sample such that Θ∗
α ∩Θα = ∅, and Θ∗

α = Θα−1.

We also know state in Section 4.4.2:

Each existing ACV estimator was developed to exploit alternative sample structures T to
improve the performance of ACV estimators in different settings. For example, a three model
ACVMF estimator performs well when the low-fidelity models are conditionally independent
of the high-fidelity model. Imposing this conditional independence is useful when knowing
one-low-fidelity does not provide any additional information about the second low-fidelity
model, given enough samples of the high-fidelity model. This situation can arise when the
low-fidelity models use different physics simplifications of the high-fidelity model. In contrast,
MLMC assumes that each model in the hierarchy is conditionally independent of all other
models given the next highest fidelity model. This allows MLMC to perform well with with
a set of models ordered in a hierarchy by bias relative to the exact solution of the governing
equations.

17. “L328 ‘statistics’ → ‘statistic’.”

Fixed.

18. “Eq. 14 As before, are there alternatives to using this value for η?”

See responses 14 and 15.

19. “Eq. 16 Split this into two equations, and add matrix sizes for each.”

Fixed.

20. “L352 I’m not sure I understand this sentence.”

We changed this sentence when responding to the next comment.

21. “L356 I think it would be better to include more detail about how these expressions are used
to compute Eq. 15 than just referencing Dixon (2023). Otherwise, it sort of feels like a lot of
space gets used describing Eqs. 16 and 17, but they never really go anywhere.”

We removed equation 16 and 17, as we agree that they did not really build intuition. Moreover,
including the expressions in Dixon et al (2023) are extremely complicated and would likely
turn off all but the most mathematically inclined reader.

22. “Eq. 20 Why is it the case that minimizing the determinant of the covariance determines an
optimial sampling strategy?”

Because we are computing a vector valued statistic, comprised of the mean and variance of
the mass loss at the final time, the MSE error of the statistic is a matrix. The determinant
was first proposed in as a scalar metric that quantifies the error of a vector-valued estimator.
It is likely possible to use alternative measures, such as the trace to quantify error, however
to date only the determinant has been used. Indeed, most MSE literature only focuses on
estimating a single statistic of a scalar function, in which case the trace and the determinant
are equal.
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We now state in Section 4.4.2: Unfortunately, a tractable algorithm for solving Eq. (29)
has not yet been developed, largely due to the extremely high number of possible sample
allocations in the set A. Consequently, various ACV estimators have been derived in the
literature that simplify the optimization problem, by specifying what we call the sample
structure T , which restricts how samples are shared between the sets Θα,Θ

∗
α. For example,

optimizing the estimator variance, Eq. (23), of a two model MFMC (Peherstorfer et al., 2016)
mean estimator, Eq. (21), requires solving

min
N0,N1

N−1
0 V [f0]

(
1− N1 −N0

N1
Corr[f0, f1]2

)
s.t. N0w0 +N1w1 ≤Wmax,

T = {N0∩1∗ = N0, N0∪1∗ = N0, N0∩1 = N0, N0∪1 = N1, N1∗∩1 = N0, N1∗∪1 = N1}.

Alternatively, minimizing the estimator variance of the two model MLMC (Giles, 2015) mean
estimator requires solving

min
N0,N1

N−1
0 V [f1 − f0] + (N1 −N0)

−1V [f1]

s.t. N0w0 +N1w1 ≤Wmax,

T = {N0∩1∗ = N0, N0∪1∗ = N0, N0∩1 = 0, N0∪1 = N1, N1∗∩1 = 0, N1∗∪1 = N1}.

MLMC and MFMC employ sample structures T that simplify the general expression for the
estimator covariance
CovΘ [QACV,QACV] in Eq. (27). These simplifications were used to derive analytically solu-
tions of the sample allocation optimization problem in Eq. (29) when estimating the mean,
EΘ [f0] in Eq. (16), for a scalar-valued model. However, the optimal sample allocation of
MLMC and MFMC must be computed numerically when estimating other statistics, such
as variance VΘ [f0] in Eq. (17). Similarly, numerical optimization must be used to optimize
the estimator covariance, CovΘ [QACV,QACV] in Eq. (27), of most other ACV estimators,
including the ACVMF and ACVIS (Gorodetsky et al., 2020), as well as their tunable gener-
alizations (Bomarito et al., 2022).

23. “Fig. 4 and accompanying text I don’t think that the text does a sufficient job of describing the
principles behind these different sampling strategies. Figure 4 tells me that Θ0 and Θ∗

1 share
their samples, and different schemes use entirely different or appended different samples for
Θ1, but I cannot grasp from the text why this is significant. This needs to be motivated fully
or de-emphasized and more carefully referenced.”

We removed the figure and instead now try to provide intuitive descriptions on why different
sample structures target different relationships between models.

See our response to comment 16.

24. “L394 ‘model’ appears twice.”

Fixed.

25. “L433–439 Is there an argument that can be made here to reassure a reader that the observed
changes are due to real climate/ice dynamic effects and not so-called ‘transients’ resulting
from inconsistency between initial conditions, physics, and input fields? Fig. 7 (left) has
some rather surprising high-frequency noise in the surface elevation change – it would be
helpful to know where this comes from.”
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The high-frequency content is largely due to the oscillations in the posterior sample of the
basal friction (Figure 6). We have added a similar statement to the document when discussing
Figure 7.

26. “L453 Just to clarify, was Θpilot shared across models, or were the samples different for each
model?”

We now state:

First, we evaluated each of our 13 models at the same 20 random pilot samples of the model
inputs Θpilot

27. “L458 ‘significant’ is an unfortunately subjective term here - to my eye, the differences in
the heights of the referenced bars seems rather insignificant. Is it possible to elaborate on the
meaning of ‘significant’ here, and why it should be viewed as such?”

We updated the figure to more clearly show the differences between the means and standard
deviations of each model. We also now state:

The middle and lower panels of Figure 8 show that the means and standard deviations of
each model differ.

28. “L467 This sentence is a bit challenging, with 5(!) nested prepositions and two uses of ‘vari-
ance’ each describing different things. I recognize that it is challenging to compactly describe
the statistics of statistics, but is it possible to relax this sentence a bit?”

The previous text was “Given estimates of the pilot statistics, (18) and (19), we used (20)
to predict the determinant of the variance of the ACV estimator of the mean and variance of
the mass change. ”

we change this to We used Eq. (20), with estimates of the pilot statistics obtained using Eq.
(18) and Eq. (19), to predict the determinant of the the ACV estimator covariance.

29. “L476 This assertion is surprising to me, and a citation describing the assumption of pilot
statistic exactness would be useful.”

We have added a citation to (Peherstorfer et al., 2016) which was cited elsewhere in the
paper for another reason. In the last paragraph from Page A3181 the authors state “We
use the sample variances and the sample correlation coefficients to determine the number of
model evaluations m and the coefficients α. Table 2 compares sample variances and sample
correlation coefficients computed from 10, 100, and 1000 samples. The different number of
samples leads to different estimates.”

The authors also state that “the variations in the sample variances have only a minor effect
on the coefficients α” where α refers to the control variate weights denoted η in our paper.
However our results show that the impact of the size of the pilot is problem dependent.

30. “L494 Is there an interpretation of why some models appear to be more informative than
others, or is this just random chance? I can’t identify a mechanism for why some low-fidelity
models were chosen more frequently, but understanding that (or being able to predict it a
priori) would be exceptionally useful.”

We included the following statement at the end of section 4:

Whether a model is useful for reducing the MSE error of a multi-fidelity estimator depends on
the correlations between that model, the high-fidelity, and the other low-fidelity models. For
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toy parameterized PDE problems, such as the diffusion equation with an uncertain diffusion
coefficient, theoretical convergence rates and theoretical estimates of computational costs can
be used to rank models. However, for the models we used in this study, and likely many other
ice-sheet studies, ordering models hierarchically, that is, by bias or correlation relative to the
highest-fidelity model, before evaluating them is challenging. Indeed, the best model ensemble
for multi-fidelity UQ may not be hierarchical (see Gorodetsky, 2020). Yet, estimators such as
MLMC and MFMC only work well on model hierarchies. Consequently, having a practical
approach for learning the best model ensemble is needed. Yet, to date this issue has received
little attention in the multi-fidelity literature. Section 5 provides a sorely needed discussion
of the impact of the pilot study on model selection and the error a multi-fidelity estimator.

31. “L496 I don’t understand what is meant by a ‘hierarchical relationship’ here.”

See response 30.

32. “L525 I get where these numbers come from after some digging back through the other sections,
but it would be helpful to remind the reader where each of the terms in the cost expression
represent.”

We added the following to the text:

The cost of constructing our final estimator was equal to the sum of the pilot cost (197.13
hours) and the exploitation cost (160 × 4.18) hours, which was approximately 36 days. The
pilot cost was the sum of evaluating all 13 models on the initial 20 pilot samples and 8 models
on an additional 10 pilot samples (see Section 5.2). The exploitation cost was fixed at the
beginning of the study to the computational cost equivalent to evaluating the high-fidelity
model 160 times, which takes a median time of 4.18 hour to simulate.

33. “L536 Is this extreme asymmetry between the number of high- and low-fidelity model evalua-
tions typical? I think that this is a significant and interesting result if the high-fidelity model
is only really needed to, e.g. characterize the spatial variability of the mean solution, but the
low-fidelity models are sufficient to characterize all of the uncertainty.”

We added the following statement to Section 5.5:

The allocation of the small number of samples to the highest-fidelity model is due to the
extremely high-correlation between that model and the model MOLHO1km,36days. This high-
correlation suggests that the temporal discretization error of the highest-fidelity model is
smaller than the spatial discretization error.

34. “Table 1 I don’t think this needs to be a table.”

We removed the table and now state the following in the main text:

The mean and standard deviation computed using the best ACV estimator were−639.06±0.23
and 17.68± 6.67, respectively.

35. “L589 The variance doesn’t have the same units as the mean, so I’m not sure what numbers
I’m looking at. Is 17.68 the standard deviation?”

You are right. We now state the values in question represent standard deviation.
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3 Reviewer 2 (Vincent Verjans)

3.1 General comments

“This study proposes a multi-model method for evaluating uncertainties in ice sheet model pro-
jections. This method uses models of different degrees of fidelity to simulate glacier mass change
projections, therefore referred to as multi-fidelity uncertainty quantification (MFUQ). It exploits
correlation between the different model realizations to approximate the statistics that would be ob-
tained by the highest-fidelity model available, but at reduced computational cost. Here, the study
focuses on uncertainty arising from the uncertain basal friction input field, and shows an applica-
tion at Humboldt glacier, Greenland. Random samples of the basal friction field are drawn from a
Laplace approximation of the posterior probability distribution, which is calibrated to match output
from an ice flow model to the present-day Humboldt glacier configuration. The study then compares
the MFUQ method with Monte Carlo sampling using the highest-fidelity model only, which is re-
ferred to as single-fidelity Monte Carlo (SFMC). Results show that, applied to this problem, MFUQ
can serve to infer the mean and variance statistics with large computational savings compared to
SFMC. The MFUQ procedure splits the computational burden by using only few high-fidelity model
runs and a large number of lower-fidelity model runs, and then exploiting the correlation between
both sets of runs. This study is a valuable contribution to the field of uncertainty quantification
in ice sheet modeling. It demonstrates that combining multiple levels of model fidelity can serve
to improve uncertainty estimates in useful quantities, which is an approach scarcely used in this
field. The science presented in this study uses elaborate statistical techniques, which is a good thing.
And I evaluate the scientific aspects of this study positively. However, I believe that major efforts
should be made on two presentation aspects. First, more clarity is needed in the presentation of
the MFUQ method. I needed to re-read and go back-and-forth between different sections multiple
times to really un- derstand the procedure. Second, the authors should try to guide the reader in
understanding the procedure, and to provide some intuitive explanations of the different steps in
addition to the mathematical details. This latter aspect would better align with the readership of
Earth System Dynamics, which is not primarily focused on methodological developments per se. I
separate this re- view in one Major comment, focused on the most important clarifications required,
and line-by-line comments focused on less important aspects that need elaboration, as well as on
scientific aspects that could be slightly adjusted or more thoroughly explored. Line numbers (L)
refer to lines in the preprint. Although my review insists a lot on presentation aspects, I find it also
important that the science-related comments are addressed. I encourage the authors to revise their
manuscript following comments from other reviewers and me. Given the strong scientific basis of
this study, I am certain that a revised version of this manuscript will be a valuable contribution to
the literature.

Major comment: mathematical presentation. There is no single specific aspect that makes the
mathematical presentation unclear. Instead, it is the accumulation of various elements that renders
understanding the methods challenging. I try to identify some of these elements here.”

We want to make the paper as easily accessible as possible and have rewritten the paper. Specific
focus was given to improving clarity and providing intuition wherever possible.

3.1.1 Equations should be better explained and without errors.

36. “In all equations with matrices, please provide explicitly the dimensions of the matrices in-
volved. This would help to understand, for example, Eqs. 13, 16, 17. It would also be helpful
to explicitly mention if a quantity is a scalar, vector, or matrix when it is used for the first
time.”
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We added matrices sizes to all relevant equations in the revised document. To further improve
clarity, we our revised paper uses bold italics to represent vectors and bold regular font for
matrices. This is inline with the instructions on how to denote matrices and vectors n the
journal’s guide for authors. We apologize for missing these instructions in our previous
submission.

37. “In Eq. 12, the covariance term has twice the same argument, and can therefore not be a
covariance. Furthermore, I am not convinced of the validity of the V ar(Qσ2

) formula, so
please provide a reference and/or a detailed derivation in the response.”

Eq 12 is a valid covariance. Cov [X,Y ] = E [(X − E [X])(Y − E [Y ])] and Cov [X,X] =
E [(X − E [X])(X − E [X])] = V [X] is just a special case that occurs when X = Y . We
want to use the notation Cov [X,X] so to emphasize that the covariance is a matrix when the
random variable X is a vector. However since X = (fα −E [fα])

2 is only a scalar we replaced
Cov

[
(fα − E [fα])

2, (fα − E [fα])
2
]
. We also added the following note after equation 15 that

states:

Note that, in (14) and (15), and the remainder of this paper we use Cov [X,X] as long hand
for V [X] to emphasize that the covariance is a matrix when the random variable X is a
vector.

A detailed derivation of the expression can be found in (Dixon et al., 2023). See equation
2.3 and the proof of proposition 3.4 on page 10 of their ARXIV manuscript. We added the
following to the paper:

A detailed derivation of the expression for V
[
Qσ2

α (Θ)
]
can be found in (Dixon et al., 2023).

38. “In L298, to be valid, this equation requires some normalizing terms (1/N0,1/N0,1/N1).”

We corrected these equations.

39. “In the first part of Eq. 16, one term should be Cov
[
∆σ2

α ,∆
µ
β

]
.”

Fixed.

40. “In Eq. 11, both Qα and Q are referred to as MC estimators (in Eq. (10) and on L271,
respectively).”

We now state the following before equation 11.

Consequently, any MC estimator Qα(Θ) of an exact statistic Q, such as Qµ
α(Θ) and Qσ2

α (Θ),
is a random variable and the mean-squared error (MSE)

41. “It would be nice define the MC estimator precisely, as well as the quantity that it is esti-
mating.” Eq. (16) and Eq. (17) define the MC estimators of the mean and variance of mass
change, respectively. We now reference these equations throughout the paper to make clear
which quantities we are talking about as suggested comment 44.

42. “Please be consistent in the notation. For example, QACV is bold in Eq. 15, but not in Eq.
20.”

Fixed.

43. “Please use equation numbers for all equations.”

We would to only number equations if they are referenced in the text. I cannot find guidance
online about the journals requirement to number all equations. We will do so if the editor
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requests we do so. However, we have increased the number of numbered equations to allow
the reader to easily refer back to relevant equations, when discussing them in the text to
address comment 44.

44. “Throughout the text, try as much as possible to refer to the relevant equations and/or math-
ematical variables. That would be incredibly helpful for the reader to understand the methods
more easily. For example, refer to Eq. 15 every time the “ACV estimator covariance” is
mentioned, refer to L197 when mentioning sampling from the prior, refer to L227 when men-
tioning sampling from the posterior. And there are many more instances, which I will not
enumerate here. But I encourage the authors to look for every instance where the reader would
benefit from knowing clearly which quantity or equation a certain statement relates to.”

We have added references throughout the revised paper.

3.1.2 Adding some intuitive explanations

“Here and there, it would help to add a simple sentence to give a better intuition about some
concepts. I provide a few examples here below. Again, this is not an exhaustive list. So, I encourage
the authors to actively look for similar statements, equations, or paragraphs that could benefit from
some intuitive explanations.”

We added intuitive explanations whenever suggested by the reviewer. We also took the oppor-
tunity to provide intuitive explanations at other places in the text. Any such changes are marked
in red in the revised document.

45. “Towards the beginning of the manuscript, please provide one short paragraph to explain what
the statistics of interest are, and why they are uncertain. I believe that all readers might not
intuitively understand the concept of variance of a variance.”

We added the following statement to the introduction: “However, the substantial compu-
tational cost of evaluating ice-sheet models limits the number of model simulations that can
be run, and thus the accuracy of uncertainty estimates.” For example, when estimating the
mean of a model with Monte Carlo, the mean squared error (MSE) in the estimated value
only decreases linearly as the number of model simulations increases.

We also added the following statement in Section 4.1:

MC estimators converge to the true mean and variance of fα as the number of samples
tends to infinity, but using a finite number of samples N introduces an error into the MC
estimator that depends on the sample realizations used to compute the estimators. That
is, two different realizations of N parameter samples Θ, and the associated QoI values, will
produce two different mean and variance estimates (see Figure 4). Consequently, any MC
estimator Qα(Θ) of an exact statistic Q, such as Qµ

α(Θ) and Qσ2

α (Θ), is a random variable.

46. “L228: Please add one or two sentences to explain that g(θ) can be computed without time
stepping model solves, and why this is the case.”

We added the following text. After line 228. We were able to calibrate the model using
only a steady model without time-stepping because we assumed that the velocity data were
collected when the ice sheet which was in equilibrium.

47. “L247: Please explain that Σpost characterizes the balance between the prior uncertainty in
the friction field estimate, and the model-observation mismatch weighted by the observational
noise.”
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We added the following statement at the end of section 3:

The posterior characterizes the balance between the prior uncertainty in the friction field
and the model-observation mismatch, weighted by the observational noise. In the limit of
infinite observational data, the posterior distribution will collapse to a single value. However,
in practice when using a finite amount of data, the posterior will only change substantially
from the prior in directions of the parameter space informed by the available data, which
were captured by our low-rank approximation.

48. “L298: Why is this valid regardless of how truthfully f1 approximates f0?”

Please see response 15 above.

49. “L322: What do the control variates represent?”

We now state:

The estimator of the low-fidelity mean Qµ
1 (Θ0) is referred to as a control variate because it

is a random variable, which is correlated with the random estimator Qµ
0 (Θ0), and can be

used to control the variance of that high-fidelity estimator. The term Qµ
1 (Θ1) ≈ Qµ

1 is an
approximation of the true low-fidelity statistic Q1 that is used to ensure that the ACV esti-
mator is unbiased, i.e. EΘ

[
Qµ

ACV(Θ0,Θ1)
]
= EΘ [Qµ

0 (Θ)] + η (EΘ [Qµ
1 (Θ0)]− EΘ [Qµ

1 (Θ1)]) =
Qµ

0 + η (Qµ
1 −Qµ

1 ) = Qµ
0 .

50. “Figure 4: How do results between these different sample allocation strategies differ? For
example, does one approach prioritize minimizing the diagonal entries of the ACV covariance,
versus another better constraining the correlation between different models?”

See our response to comment 16.

3.2 Line-by-line comments

51. “General (1): The text would benefit from the use of many more commas. I encourage the
authors to, at least, double the number of commas in the manuscript. The general writing
level is good, so I have no doubt that the authors can find sentences that need (or would
benefit) from commas.”

While revising the document, we broke compound sentences into multiple sentences where
appropriate and used additional commas for complex sentences where needed.

52. “General (2): The quality of the figures is low. Color scales should be more informative, units
should be provided, span of y axes should be appropriate for the range of values shown, a scale
in km should be added when showing Humboldt, labels should be added to colorbars, etc. ”

We regenerated all figures in the document to improve readability.

53. “L4 Here and elsewhere, the term “accuracy” is used very loosely, and encompasses a wide
range of concepts. When used to describe a model degree of fidelity, please always use “fidelity”
since this is the technical term used for the name of the method (MFUQ). When describing
the amount of variance, please rather use precision, which is mathematically the inverse of
the variance.”

We now use precision when referring to the accuracy of a statistic. Instances of its use are
highlighted in red in the revised document. We also use fidelity when approriate.

13



54. “L4 Replace ice sheet by glacier.”

Fixed.

55. “L5 The problem size is not “representative” of continental scale studies. Please use more
careful wording.”

We now state:

The problem size and complexity were chosen to reflect the challenges posed by future con-
tinental scale studies while still facilitating a computationally feasible investigation of MSE
methods.

56. “L11 prediction should be plural.”

Fixed.

57. “L15 Add report after IPCC.”

Fixed.

58. “L15 Ice sheets are all land-based.”

Thanks. We removed ”land-based”.

59. “L26 Throughout the manuscript, affect should be used as a verb instead of effect.”

Fixed.

60. “L28 Replace inadequacy by uncertainty.”

We now state

In addition, while the comparison of model outputs has been used to estimate uncertainty
arising from model inadequacy

61. “Throughout the manuscript, there is confusion in the wording of “parameters” and “inputs”.
For example, both terms are used interchangeably to characterize the basal friction field. Please
(i) always use the same term for a same meaning, and (ii) clearly define the difference between
parameters and inputs in the Introduction.”

We now always use the term parameters.

62. “L39 There are also methods that have been developed to reduce the problem dimensionality.
Please cite Brinkerhoff (2022).”

We added a reference to Brinkerhoff (2022) to Section 3, which discusses Bayesian calibration.
The introduction now focuses on quantifying uncertainty in predictions, whereas the focus of
the cited paper is on Bayesian inference.

63. “L48 When using the notion of MSE, it is important to clearly define with respect to which
quantity the error is considered. In this study, I believe that the error is considered with
respect to the expec- tation of the mass change from the high-fidelity model with respect to
the posterior distribution of the basal friction field. I realize that this is not straightforward
to include. But I recommend adding a couple of sentences to give the definition, and possibly
explain its meaning.”

We added the following to Section 4.1:
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The MSE of an MC estimator, Eq. (18), consists of two terms referred to as the estimator
variance (I) and the estimator bias (II). The bias term of the MSE is caused by using a nu-
merical model, with inadequacy and discretization errors, to compute the mass change. More
specifically, letting Q∞ denote the exact value of the statistic of a numerical model with zero
discretization error but non-zero model inadequacy error, and Q0 denote the highest-fidelity
computationally tractable model approximation of Q∞, then the bias can be decomposed into
three terms

(E [Qα(Θ)]−Q) = (EΘ [Qα(Θ)]−Q∞ +Q∞ −Q0 +Q0 −Q) (3)

= (EΘ [Qα(Θ)]−Q0) + (Q0 −Q∞) + (Q∞ −Q) (4)

The first term is caused by using a model fα with numerical discretization that is inferior
to that employed by the highest fidelity model f0. The second term represents the error in
the statistic introduced by the numerical discretization of the highest-fidelity model. The
third term quantifies the model inadequacy error caused by the numerical model being an
approximation of reality.

Later in that section we now also state:

Constructing a SFMC estimator of statistics, such as the mean Eq. (16) or variance Eq. (17),
with a small MSE ensures that the value of the estimator will be likely close to the true
value, for any set of model parameters samples. However, when using numerical models
approximating a physical system, constructing an unbiased estimator of Q is not possible. All
models are approximations of reality and thus the model inadequacy contribution Q∞−Q to
the bias decomposition in Eq. (3) can never be driven to zero. Additionally, it is impractical to
quantify the discretization error Q∞−Q0. Consequently, SFUQ methods focus on producing
unbiased estimators of Q0, such that EΘ [Qα(Θ)] = Q0.

64. “L50 I think that the authors might not be aware of the study of Bulthuis et al. (2020). Please
consider referring to it.”

The study cited uses a surrogate based multi-fidelity method which has no direct relationship
to the statistical estimation methods discussed in this paper. Moreover, the paper’s reliance
on a surrogate means that it can not be applied to ice-sheet models with large numbers of
parameters as is the focus of this paper. Consequently, we did not cite this paper in the
revised manuscript.

However, we did find the a paper using MFSE on an ice-sheet model Gruber et al. (2022).
This paper, uses one type of ACVMF estimator, i.e. MFMC, to estimate uncertainty in
a steady-state Blatter-Pattyn model of an ice sheet defined on rectangular a rectangular
parallelepiped domain. Specifically, MFMC was used to estimate uncertainty in the L2 norm
of the ice-velocity caused by uncertainty in two parameters, specifically a scalar representing
basal friction and a variable parameterizing the simple bed topography.

We added a citation to this work in the revised document. Specifically, we now state: Note,
Gruber et al. (2022) previously applied MFSE to a ice-sheet model; however, their study was
highly simplified, as it only quantified uncertainty arising from two uncertain parameters of
an ice-sheet model define on a simple geometric domain.

65. “L61 I find the changes between past and present tense somewhat confusing. I recommend
consistently using a single tense.”

We tried to improve the consistency of tense wherever possible. In revising our paper we used
the following guidelines.
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66. “L85 Model simulations do not only capture the “melting”, since they represent the dynamic
response of the glacier as well. This should induce changes in the amount of ice flowing out
of the simulated domain.”

We revised the sentence.

67. “L102-104 In this sentence, the summary of the Stokes and MOLHO models sound identical
to me.”

We now state: In summary, the simpler 2D SSA model is formulated to simulate grounded
ice with significant sliding at the bed or ice shelves, while the 3D MOLHO model is designed
to capture the evolution of ice sheets over frozen and thawed beds, as well as ice shelves.

68. “L113 Replace exorbitant by impractical.”

Fixed.

69. “L121 Provide a reference for q = 1/3.”

Done.

70. “L125. Define the ∥ notation here.”

Done.

71. “L139 The ψ term is already multiplied by n above, so this multiplication should not be
included in the definition of ψ. Also, why is there an extra term ρg(s − z) in the boundary
condition on Γm here compared to the Stokes model?”

Fixed.

72. “L145 ∂Σ is not defined.”

Fixed.

73. “Figure 2 Show the meshes side-by-side (+ all comments from General (2)).”

The paper now includes plots of all four meshes side-by-side.

74. “L172 The statement “one of the largest sources of prediction uncertainty” should be quantified
and referenced with a citation.”

Please see response 7.

75. “L180 “we set µ = 0”. I believe that this is only for the prior. It seems strange to me that
the posterior is forced to have zero mean. Please specify.”

We now state: In this study, we adopted a fully distributed approach that treated the friction
as a log-Gaussian random field that is θ = log(β) with a Gaussian prior distribution p(θ) ∼
N (µ, C) with µ = 0.

76. “L183 There is a switch from C to Σ without mentioning it. Specify that Σprior is a covari-
ance.”

We now state:

a finite-dimensional discretization of the operator Σprior ≈ C with
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77. “L185 Why is the source term only integrated over Γg and not over Γf ? I would assume that
snow accu- mulation and surface melting should also be computed over the floating parts of
the domain.”

That was a typo, the integrals are over the lower surface of the ice sheet Γl = Γg ∪Γf . Fixed.

78. “L199 Please specify “this Gaussian prior”.”

Fixed.

79. “L199 Replace “on” by “constrained with”.”

Fixed.

80. “L207 The authors sort of sweep under the rug the possible influence of ocean melt on their
methods. Melt at the boundary can induce strong dynamical responses by a marine-terminating
glacier. It can be expected that differences between models of different levels of fidelity would
be exacerbated, potentially diminishing the advantages of the MFUQ. Please discuss this more
thoroughly in the Discussion.”

We now state in the discussion: Moreover, introducing more complicated physics in the
highest-fidelity model, such as calving, could degrade the performance of MFSE. For example,
ice melt at the boundary can induce strong dynamical responses in a marine-terminating
glacier, which could potentially reduce the correlation between models that do not capture
this phenomenon.

81. “L213 Please clarify why this assumption is required in the procedure. I believe that it is
needed to compute the g(θ) function represented by the Blatter-Pattyn flow model. And that
without this assumption, the PDE-constrained optimization cannot be solved.”

We now state: Before continuing, we wish to emphasize two important aspects of the cali-
bration used in this study that mean our results must be viewed with some caution. First,
we assumed the observational data to be uncorrelated, as assumed in most ice-sheet inference
studies, including (Recinos et al., 2023; Isaac et al., 2015). Moreover, we also assumed our
Gaussian error model to be exact. However, neither of these assumptions are likely to be
perfect in reality. For example, Koziol et al. (2021) showed that, for an idealized problem,
ignoring spatial correlation in the observational noise can lead to uncertainty being underes-
timated. Second, our optimization of the MAP point was constrained by the coupled velocity
flow equations and steady-state enthalpy equation, which is equivalent to implicitly assume
that the ice is at thermal equilibrium. Theoretically, this assumption could be avoided if the
temperature tendencies were known, but they are not. Alternatively, transient optimization
over long time periods, comparable to the temperature time scales, could be used. However,
this approach would be computationally expensive and would require including time-varying
temperature data (e.g., inferred by ice cores) which are very sparse.

82. “L217 “However, such approaches ignore the uncertainty in the model parameters due to using
a finite amount of noisy observational data”. This statement is incorrect. Observational
uncertainty can be incorporated in cost functions. See for example Eq. (1) from Goldberg
(2015).”

That’s correct. We also account for the uncertainty in our deterministic inversion to compute
the MAP point. We have rephrased our statement: However, such approaches only use a
single optimized parameter value to represent the uncertainty in the model parameters that
arises from using a finite amount of noisy observational data.
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83. “L222 “the likelihood distribution”: the likelihood is a function, not a distribution.”

We disagree. The likelihood is the probability of the data given the parameters θ p(y|θ).
However, we have dropped the word distribution from the sentence.

84. “L232 Please add a justification for this choice of α.”

We expanded Remark 5.1 to discuss how we heuristically chose parameter α.

85. “L233 Please specify “samples from the posterior of log(β)”.”

Fixed.

86. “L249 Again, this statement is likely not obvious to most readers. At first sight, the computa-
tion that is referred to here is a simple addition of two matrices (HMAP +Σ−1) prior explain
why this is intractable would be beneficial.”

We rephrased the sentence and explained why it is intractable to compute HMAP and invert
high-dimensional dense matrices.

87. “L254 and 255 Replace ice sheet by glacier.”

Fixed.

88. “L263 What do the authors mean by “robust”?”

We now state:

SFMC quadrature is a highly versatile procedure that can be used to estimate a wide range
of statistics for nearly any function regardless of the number of parameters involved.

89. “L264 “three-step””

Fixed.

90. “L265 The m superscript should be n (which would preferably be another letter than n, see
Major comment).”

We changed m to n. However, we like to use capital N to denote the number of samples and
lower case n to denote the index n = 1, . . . , N .

91. “L266 Specify “basal friction field”.”

Fixed.

92. “L278 “The bias term of the MSE (11) is caused by using a numerical model, with inadequacy
and discretization errors, to compute the mass change.” Here also, I ask for clarification: bias
with respect to what? If it is with respect to observations, then observational uncertainty should
also be discussed. If it is with respect to the highest-fidelity model, then the latter is also a
“numerical model”, and the sentence is inappropriate. If it is with respect to the unknown
true dynamical behavior of Humboldt glacier, then there is a philosophical question of how to
compute a mean squared error with respect to a quantity that cannot be known.”

See our response to comment 63.

93. “L287 Typo estimated.”

Fixed.
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94. “L296 Two-model”

Fixed.

95. “L316 QoI is not defined.”

Fixed.

96. “L324 Concerning Θ∗
α ∪ Θβ = ∅. (i) I believe that ∪ should be ∩, (ii) I believe that “for

α ̸= β” should be specified.”

We have added additional clarifying text.

97. “Eq. (16) Is Cov [Q0,∆0] (ΘACV) a covariance matrix? If so, it should be symmetric. How-
ever, the (0, 1) and (1, 0) entries of the right-hand-side seem different to me. Please explain.”

The quantity is a covariance matrix. It is symmetric in the arguments µ and σ2.

98. “L351 “following standard practice”: provide citation.”

We added a citation

99. “L352 Please add an additional explanatory statement, for example: This involves computing
the high- fidelity and all the low-fidelity models for the same set of samples Θ pilot.”

We added the following statement This involves computing the high-fidelity and all the low-
fidelity models at the same set of samples θpilot.

100. “L360 Specify “introduce sampling errors”.”

Fixed.

101. “L367 I believe that the same should be specified for α ∪ β∗ and α ∩ β∗”
Fixed.

102. “L382 There is no verb in this sentence.”

Fixed.

103. “L391 Please add an additional explanatory statement, for example: This can happen if a
subset of the low-fidelity models correlate much better with the high-fidelity model than the
rest of the low-fidelity models, for example.”

We added the statement:

This occurs when a subset of the low-fidelity models correlate much better with the high-
fidelity model than the rest of the low-fidelity models. For instance, some low-fidelity models
may fail to capture physical behaviours that are important to estimating the QoI.

104. “L394 I think this should be estimator types.”

Fixed.

105. “L394 “model models subsets” is either a typo, or very confusing language.”

We fixed the typo.

106. “L402 was should be were.”

Fixed.
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107. “L413 ice-sheet should be glacier.”

Fixed.

108. “L415 Typo an an.”

Fixed.

109. “L424 Specify MALI ice-sheet code with the Blatter-Pattyn flow model.”

See response 182.

110. “Figure 9 I provide here a concrete example of how to help the reader navigate through the
technical details of the study. The caption should specify: “... MAP point (θMAP in Eq. (9))
... prior variance (Σprior in Eq. (xxx)) ... posterior variance (Σpost in Eq. (xxx))”. Using
more such links between text and mathematics would really help reading the study.”

We have added symbols and equation references throughout the paper.

111. “L437 “speeds up as it thins”: I think that this statement is incorrect, although I see what
the authors mean. A glacier does not speed up because of thinning. It speeds up because of
increasing surface slope, caused by enhanced thinning at the front. Also, the inverted relation
holds: as a glacier speeds up, it discharges more ice into the ocean, leading to thinning.”

We now state In general, the glacier speeds up as negative surface mass balance causes the
surface to steepen near the terminus. The largest speedup occurs in the region of fast flow in
the north where basal friction is small.

112. “Remark 5.2 I believe that this is an important scientific aspect, which is also somewhat swept
under the rug. In their results, the authors demonstrate that the simulated mass change is
sensitive to high-frequency variability in the basal friction field. As such, the interpolation
method from fine to coarse meshes is potentially very influential. Which interpolation method
has been used here? If it is simple linear interpolation, then all the high-frequency variability
will be smoothed out. This would affect the behavior of low-fidelity models with coarser meshes.
I recommend that the authors try interpolation methods that better preserve high-frequency
variability (nearest neighbor, or maybe polynomial interpolation) and evaluate the impacts on
their results.”

We used the finite element mesh of the high-fidelity model to interpolate the basal friction
from that mesh onto the coarser meshes. We added a note to this effect to the text.

However, we do not believe that a different interpolation strategy is needed. Our results show
that multi-fidelity models are able to use coarser meshes despite those meshes not being able
to accurately representing the basal friction. See Figure 13 in the original submission. We
make this point on paragraph starting on line 551 in the original submission.

113. “L458 “significant differences”: the word significant is misused here, because no statistical
test has been performed. If a statistical test has been performed, please specify which one,
and provide p-values. Furthermore, by eye, the differences do not seem very large in Figure
8 compared to the standard deviations. However, this is difficult to say because of the terrible
choice of y-axes span in Figure 8, which should be changed.”

See response 27.

114. “L460 The meaning of accuracy is not clear here (see comment on L4).”

See response 53.
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115. “L476 Provide a citation to support this statement.”

See response 29.

116. “477. Please quantify “the error introduced”. “not insignificant”: this wording is misused
here, because no statistical test has been performed. If a statistical test has been performed,
please specify which one, and provide p-values.”

We now state:

Moreover, we found that the error introduced by using a small number of pilot samples can
be substantial, yet it is typically ignored in existing literature.

117. “L479 Please specify the number of realizations per bootstrap. From the rest of the text, I
believe that it is 20 realizations per bootstrap samples, but this should be clarified explicitly.”

Fixed.

118. “Figure 10 (1) I am puzzled by the very high upper bound on the variance reduction of the
variance. In the ratio, the SFMC variance estimator is the denominator, which should there-
fore be the same for all the bootstrap samples. As such, the very high upper bound is caused
by an unrealistically low estimated ACV variance via Eq. (15). This leads me to the question:
is the approximation on pilot samples via Eqs. (15,20) unstable when using bootstrap with
replacement? In any case, please provide an explanation about the very high value of the 95%
quantile.”

We now report the 10% and 90% quantiles to more clearly show how variance reduction
distributes. We also refer the reviewer to the statement on page 26 “However, the box plots
in Figure 10a highlight that using only 20 samples introduces a large degree of uncertainty
into the estimated variance reduction.” We also refer the reviewer to the statement on page
28 “While, increasing the number of pilot samples decreased variability, we believed that the
benefit of further increasing the number of pilot samples would be outweighed by the resulting
drop in the variance reduction.”

119. “Figure 10 (2) It is not immediately clear why a same model combination would give different
estimates of the variance reduction, since the ice sheet models are deterministic. If I under-
stand correctly, some of this variability comes from the random bootstrapping within the pilot
samples, and some of the variability comes from the ACV estimator selected (MLMC, MFMC,
ACVMF). Is it possible to quantify how these two sources of variability compare? And in turn,
is it possible to quantify how much of the boxplot spread in Fig. 10a is due to these two factors
versus the fact that different subsets of low-fidelity models have been selected?”

The variability in the plots is induced entirely by the bootstrapping. This plot was included
to demonstrate that using a small number of pilot samples introduces a non-trivial error.
Each estimator does have a different estimator variance. However, the box plots just report
the smallest estimator variance, across all estimators, for each bootstrapped sample.

We now state in the paper: Please note that, while we enumerate over numerous estimators,
each with a different variance reduction, the variability in the plots is induced entirely by the
bootstrapping procedure we employed. The box plots report the largest variance reduction,
across all estimators, for each bootstrapped sample.

120. “L489 Specify subsets of model combinations.”

Fixed.
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121. “L491 the original 20 pilot samples are used.”

Fixed.

122. “L491 Specify were determined useful to include for reducing. (Probably that individually, all
the models would be useful. But they are not relative to including other better-correlated or
computationally- cheaper models.)”

We now state:

Moreover, bootstrapping the estimators also revealed that using all models simultaneously to
reducing the variance of the ACV estimator was not as effective as using a smaller subset of
models.

123. “L496-499 I could not understand the end of this paragraph. It would be helpful if the authors
defined the notion of hierarchical relationship.”

See response 30.

124. “Figure 11. Please specify the number of samples for each case (2, 3, and 4 models).”

The number of samples allocated to each model depends on the bootstrapped realization of
the pilot data to compute the pilot statistics. Consequently, there is no one number that we
can provide.

125. “L520 Again, the meaning of “accurate” is not well-defined.”

We now state: MSE of the final ACV estimator we would construct would be much smaller
than the MSE of a SFMC estimator of the same cost because even the smallest variance
reduction was greater than 14.

126. “L520 “even the smallest variance reduction was greater than 20”. This is not what is shown
in Fig. 11. Certainly not for the cases of 2 and 3 models. And for the case of 4 models,
it seems to me that even the 5% quantile is below 20, suggesting that the smallest value is
definitely smaller than 20.”

See our response to comment 125.

127. “L522 Replace that by which (with a comma, see General comment (1)).”

Fixed.

128. “L523 The three models listed do not include MOLHO∗
1km,9days. As such, I believe that it

corresponds to the case “4 models” in Fig. 11. I find the discrepancy between the number of
low-fidelity versus the total number of models confusing. Please use a consistent manner to
quantify the number of models used.”

Throughout the paper, We now always include the highest-fidelity model when counting the
number of models used by an estimator. The particular statement highlighted by the reviewer
had a typo, which we corrected. Three models were chosen despite the estimator being allowed
to use four.

We now state in the paper: Note, an estimator allowed to choose four models may still
choose less than four models, which will happen when some of those models are not highly-
informative.

129. “L525 Please remind the readers where these numbers come from.”

See response 32.
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130. “L527 I do not see any right or left panel.”

Fixed.

131. “535 Please specify another estimator (i.e., MLMC or ACVMF).”

Fixed.

132. “In Discussion. This question relates to my curiosity concerning the complementarity between
this method and stochastic ice sheet modeling. Here, the MFUQ samples uncertainty from a
single time-constant uncertain input. In contrast, stochastic modeling (e.g., Verjans et al.,
2022) samples uncertainties between multiple correlated uncertain inputs, and at different
time steps (for example SMB variability in time is prescribed as stochastic). However, since
the statistical properties of the time-varying stochastic inputs (i.e., the auto-correlation, the
covariance structure and the mean of each stochastic input) can be specified a priori, I suppose
that, in theory, the MFUQ method could be applied. But I wonder if this is practically feasible.
I think that the Discussion would benefit from a short paragraph about this point.”

We added the follwing to the discussion:

This study focused on investigating the efficacy of using MFSE to accelerate the quantification
of parametric uncertainty using deterministic ice-sheet models. We did not quantify the
uncertainty arising from model inadequacy. Recently Verjans et al. (2022), attempted to
quantify model uncertainty by developing stochastic ice-sheet models designed to simulate
the impact of glaciological processes that exhibit variability that cannot be captured by
the spatiotemporal resolution typically employed by ice-sheet models, such as calving and
subglacial hydrology. The MFSE algorithms presented in this paper can be applied to such
stochastic models, by sampling the model parameters and treating the stochasticity of model
as noise. However, the noise typically reduces the correlation between models and thus the
efficiency of MFSE (Reuter et al., 2024). Moreover, this study only focused on estimating
the mean and variance of mass change. Consequently, the efficacy of MFSE may change
when estimating statistics – such as probability of failure, entropic risk, and average value
at risk (Rockafellar and Uryasev, 2013; Jakeman et al., 2022) – to quantify the impact of
rare instabilities and feedback mechanisms in the system. We anticipate that larger number
of pilot samples than the amount used in this study will be needed to estimate such tail
statistics, potentially reducing the efficiency of MFSE.

133. “L567 Appendix B.”

Fixed.

134. “Figure 13 (1) Changing the color scale here is absolutely necessary.”

It was difficult to find a color scheme that more clearly highlighted the difference. However,
we believe the other two plots in Figure 13 supported our argument that the models did not
produce exactly the same predictions. Consequently, we removed the left panel of Figure 13.

135. “Figure 13 (2) If I understand correctly, the basal friction field should be model-independent.
The differences only stem from the interpolation method. This should be specified in the
caption. Furthermore, this Figure seems to confirm my comment about Remark 5.2.”

See response 112

136. “L589 “variance” should be standard deviation here, since Gigaton units are specified.”

Fixed.
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137. “L590 “significance”: the word significant is misused here, because no statistical test has been
performed. If a statistical test has been performed, please specify which one, and provide p-
values. Furthermore, even the meaning of “the significance of these numbers” is not clear to
me.”

We now state:

However, the exact values of these statistics were impacted by our modeling choices.

138. “L593 In this study, the basal friction field distribution was derived assuming that all other
variables were perfectly known. In reality, different sources of uncertainty can mix. Please
cite Gudmundsson and Raymond (2008) and add one or two sentences about this to the
Discussion.”

We added further discussion of the limitations of our approach. For more details, see our
response to comment 80.

139. “L614 Please mention here that this study explores the use of MFUQ for low-order moments
only. One can wonder if this method can be used for statistics such as skewness or quantiles
in the tails of the distribution. This can be particularly important for evaluating the response
to an input that could introduce instabilities and feedback mechanisms in the system, such as
ocean or SMB forcing.”

We have added the following to the discussion:

Moreover, this study only focused on estimating the mean and variance of mass change.
Consequently, the efficacy of MFSE may change when estimating statistics such as probability
of failure, entropic risk, average value at risk, etc. to quantify the impact of rare instabilities
and feedback mechanisms in the system. We anticipate that larger number of pilot samples,
than used here, will be needed to estimate such tail statistics, thus potentially reducing the
efficiency of MFSE.

140. “L616 Here, and in many other instances, the authors insist about the fact that MFUQ can be
used at continental scale to estimate uncertainty on ice-sheet mass change statistics. However,
such a statement is not well-supported by their results. Just looking at the results, one can
argue that the MFUQ framework presented here requires 36 CPU days for a single glacier.
Scaling this linearly to the Greenland ice sheet results in O(1 − 10) years of computation.
Thus, there should be a slightly more in-depth explanation of why MFUQ is applicable for
studies at the ice-sheet-scale.”

The following statement from the original paper, is one example that raised the reviewers
concerns:

“Thus, MFSE reduced the cost of estimating uncertainty from over two and a half years of
CPU time to just over a month, assuming the models are evaluated in serial.”

To address the reviewers concern, we had added the following statement to the discussion.

Note that while applying MFSE to the Humboldt Glacier took over a month of serial com-
putations, the clock time needed for MFSE can be substantially reduced because MFSE is
embarrassingly parallel. Each simulation run in the pilot stage can be run in parallel without
communication between. Similarly, for the exploitation phase. Moreover, each simulation can
be computed in parallel. Consequently, while using MFSE for continental scale UQ studies
may require years of serial CPU time, distributed computing could substantially reduce this
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cost, potentially one to two orders of magnitude. The exact reduction would depend on the
number of CPUs used.

141. “L618 “substantially”: please quantify and provide a citation.”

We now state: Mass loss from ice sheets is anticipated to contribute 10s of cm to sea-level
rise in the next century under all but the lowest emission scenarios (Edwards et al., 2021).

142. “L638 I do not understand the underlying meaning of this sentence. Please expand or remove
it.”

We now state:

Moreover, while the utility of the lower-fidelity models ultimately chosen for MFSE were not
clear at the onset of the study, we were still able to estimate uncertainty at a fraction of the
cost of single fidelity MC. This was achieved despite the need to conduct a pilot study that
evaluated all models a small number of times.

143. “L641 Antarctica and Greenland.”

Fixed.

144. “L661 Again, the meaning of accurate is unclear here. It would be more correct to explain
that the approximation level depends on the variance retained in the truncation.”

We now state: In order to compute a low-rank approximation of the matrix T we truncated the

spectral decomposition of W = U
(
(Λ+ I)−

1
2 − I

)
U⊤ by discarding the eigenvalues λi such

that
∣∣∣1− 1√

λi+1

∣∣∣ ≪ 1. This ensured that the low-rank approximation of T well approximated

T in the spectral norm sense.

145. “L668 Please define K here as well. Otherwise, the reader needs to go back to the main text.”

Fixed.

146. “L674 I do not see why the representation is “bi-Laplacian”. I wonder if this term is not
inadvertently misused here. Could this please be clarified? I believe that applying the Laplace
approximation has no link with the bi-Laplacian operator, but sorry if I am misunderstanding
here.”

The bi-laplacian is used to define the prior-distribution of the log normal basal friction field.
We dropped the mention of bi-laplcian to avoid confusion.

147. “L685 Typo: in this study”

Fixed.

148. “L686 Typo: modes”

Fixed.

149. “L700 I believe that MF estimator should be ACV estimator”

Fixed.

150. “L701 I believe that MFUQ estimator should be ACV estimator”

Fixed.
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151. “L702 This should be: The mean and variance bootstrapped (...).”

Fixed.

152. “L706 This should be: the uncertainty in the mean mass change (...)”

Fixed.

153. “L706-708 Please refer to Figure B5.”

Fixed.

4 Reviewer 3 (Dan Goldberg)

4.1 General comments

“The manuscript, An evaluation of multi-fidelity methods for quantifying uncertainty in projections
of ice-sheet mass change by Jakeman et al, uses a new computational approach to determining the
posterior uncertainty of ice mass change in a glacier forecast conditioned on observational data
and uncertainty. The main contribution is a Multi Fidelity Uncertainty Quantification (MFUQ)
scheme which samples from a probability distribution (see below) and provides an inexpensive means
of Monte Carlo variance reduction in the calculated statistics that requires far less simulation time.
This is achieved through generating ensembles from models that are of lower fidelity (coarser reso-
lution / longer time steps) whose dependencies on the input parameters are similar. The probability
distribution which is sampled – that of the sliding parameter conditioned on observations and model
physics – would be too expensive to find via Monte Carlo methods. Rather, a method introduced
by others in the literature – which approximates this posterior as Gaussian and finds a low rank
approximation to the inverse covariance matrix to make the problem tractable – is used.

The methodology introduced in the paper – the MFUQ scheme – is fairly well described and
seems quite useful, and its results deserve to be shown.

However, there are a number of major issues I have with the manuscript. Aside from a num-
ber of writing issues, such as inconsistent statements and introducing of terms and symbols without
definition or explanation (see specific comments), I feel that the messaging of the paper in the intro-
duction is not in line with what the authors have actually done. Furthermore they have downplayed
or overlooked recent works in the literature – works which, in some cases, bring the methodology of
this study into question. I will highlight these in general comments below.

Finally I should point out first though that it monte carlo methods are not my area of expertise. I
have some specific comments about certain things that looked as thought they might be typos or need
more explanation. Largely however I do not have much to say about the actual MFUQ methodology
and its presentation, and I hope that other referees can assess it better. ”

4.2 High-level comments

154. “The paper sets out to deal with parametric uncertainty, which is the case. But the introduc-
tion is written in a way that makes it seem that MFUQ is used to solve the “full” problem –
that is, quantifying the probability density of mass change conditioned on the model and ob-
servations, which can be termed p(Q|m,U) where Q is the mass change, m is the model and
U is the observations. But in truth a different method (Hessian-based) was used to find the
posterior density of the frictional field q, and then this was sampled from to find the posterior
of Q i.e. p(Q|m, q)p(q|m,U) – and p(Q|q) is the only component being determined by MFSE.
I think this could be potentially very misleading and give the impression that MFSE is capable
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of the “full” problem when from the results of the paper it definitely is not. This is very
important: given the newness of the fields of ice-sheet modelling and ice-sheet uncertainty
quantification there is extensive misunderstanding about which problems can be tackled by
sampling methods and which require alternative methods. Although this is somewhat covered
in lines 61-71 of the manuscript, the passage requires familiarity with the field and with both
MC and Hessian-based UQ. It needs to be much more clear – with mathematical formality –
which distribution is being quantified using MFSE.”

We now state the following in the introduction:

“This study investigated the efficacy of using MFUQ methods to reduce the computational
cost needed to accurately estimate statistics summarizing the uncertainty in predictions of
sea-level rise obtained using ice-sheet models parameterized by large numbers of inputs.” To
facilitate a computationally feasible investigation, we focused on reducing the computational
cost of estimating the mean and variance of mass change in the Humboldt Glacier in northern
Greenland. This mass change was driven by uncertainty in the spatially varying basal friction
between the ice sheet and land mass, under a single climate change scenario between 2007
and 2100. Specifically, letting f denote the mass change at 2100 computed by a mono-layer
higher-order (MOLHO) (Dias dos Santos et al., 2022) model M, θ denote the parameters
of the model characterizing the Basal friction field, and y denote the observational data, we
estimated the mean and variance of the distribution p(f | M,y) = p(f | θ)p(θ | M,y) in
two steps. First, using a piecewise linear discretization of a log-normal basal friction field, we
used Bayesian inference to calibrate the resulting 11,536 dimensional uncertain variable to
match available observations of glacier surface velocity. Specifically, we constructed a low-rank
Gaussian approximation (Isaac et al., 2015; Recinos et al., 2023; Barnes et al., 2021; Johnson
et al., 2023; Perego et al., 2014) of the Bayesian posterior distribution of the model parameters
p(θ | M,y) using a Blatter-Pattyn model (Hoffman et al., 2018). Second, we estimated the
mean and mass of glacier mass change using 13 different model fidelities (including the highest-
fidelity model), based on different numerical discretizations of the MOLHO and shallow-shelf
(SSA) physics approximations (Morland and Johnson, 1980; Weis et al., 1999).

155. “The manuscript is also misleading about contributions in this paper versus in the literature.
Specific examples are given below, but the manuscript does not acknowledge previous authors’
attempts to quantify the uncertainty of high-dimensional parametric uncertainty. In particu-
lar, a recent paper in The Cryosphere (Recinos et al, 2023, hereby shortened as BR23) has
been overlooked. The authors can certainly be forgiven for this of course as the paper came out
only last year, but it is extremely relevant to many of the assumptions and calculations within
the manuscript (and is mentioned extensively in the specific comments below). Additionally,
based on this paper there are several assumptions and/or approximations that give me serious
reservations about this paper’s results – these are easily identifiable in the specific comments
where BR23 is mentioned.”

We apologize for missing the work in BR23. We agree that the paper is highly relevant to
this manuscript. We have edited the paper to address the reviewers reservations about the
results we present. First, in our response to comment 156 we show that despite linearizing
when computing the posterior distribution of the parameters, the parameter-to-QoI map is
nonlinear. Second, we acknowledge that BR23 presents a more rigorous approach to setting
the hyper-parameters of the prior imposed on the Basal friction field which is then used during
Bayesian inference and we now state the positive benefits of this approach in multiple places
in our paper. However, aside from our approach for choosing the prior hyper-parameters, the
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method we used for Bayesian inference, which is also used in BR23, is state-of-the-art in the
ice-sheet community. Moreover, the goal of our study was to demonstrate the efficacy of MFSE
on a ice sheet problem that has challenges representative of papers used to predict ice-sheet
evolution and not to produce scientifically meaningful values for sea-level rise. We detail the
limitations of our study in the discussion. Finally, we do not believe our approach and BR23
are mutually exclusive. Indeed, we believe that when adjoints are available in a ice sheet code,
then the linearization approach in BR23 could be used to provide a highly-computationally
efficient and accurate low-fidelity model that could be used to further increase the accuracy
and computational gains of MFSE reported in this manuscript.

We now state in the introduction:

Most recent studies have focused on estimating uncertainty in the predictions of ice-sheet
model with small numbers of parameters, e.g. (Nias et al., 2023; Ritz et al., 2015; Schlegel
et al., 2018; Jantre et al., 2024), despite large numbers of parameters being necessary to
calibrate ice sheet model to observations (Barnes et al., 2021; Johnson et al., 2023; Perego
et al., 2014). However, recently Recinos et al. (2023) used the adjoint sensitivity method to
construct a linear approximation of the map from a high-dimensional parameterization of un-
certain basal friction coefficient, and ice stiffness, to quantities of interest (QoI) – specifically
the loss of ice volume above flotation predicted by a shallow-shelf approximation model at var-
ious future times. The linearized map and the Gaussian characterization of the distribution
of the parameter uncertainty was then exploited to estimate statistics of the QoI. While this
method is very computationally efficient, linearizing the parameter-to-QoI map will introduce
errors (bias) into estimates of uncertainty, which will depend on how accurately the linearized
parameter-to-QoI map approximates the true map (Koziol et al., 2021). Moreover, the ap-
proach requires using adjoints or automatic differentiation to estimate gradients, which many
ice-sheet models do not support. Consequently, in this study we focused on Multi-fidelity
statistical estimation (MFSE) methods that do not require gradients.

We removed our claim that we were the first to compute uncertainty in QoI when using
Bayesian inference to calibrate a large number of model parameters. We now state in the
introduction:

Our study makes two novel contributions to previously published glaciology literature. First,
it represents the first application of MFSE methods to quantify the impact of high-dimensional
parameter uncertainty on transient projections of ice-sheet models defined a realistic physical
domains. Our results demonstrate that MFSE can reduce the serial computational time
required for a precise UQ study of ice-sheet contribution to sea-level rise from years to a
month. Note, Gruber et al. (2022) previously applied MFSE to a ice-sheet model; however,
their study was highly simplified, as it only quantified uncertainty arising from two uncertain
parameters of an ice-sheet model define on a simple geometric domain. Second, our paper
provides a comprehensive discussion of the practical issues that arise when using MFSE, which
are often overlooked in all MFSE literature.

This statement also includes reference to an earlier attempt at using MFSE with ice-sheet
models. Please refer to our response to comment 64 for more details on the limitations of
that study.

156. “The underlying premise of the paper is that, given a Hessian-based approximation of the
posterior parameter density has already been carried out, “traditional” means of sampling from
this posterior density is too expensive. But another such approach – using the linearization
of the mass change model f(q) (using either Automatic Differentiation or some other form of
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differentiation) to project the posterior uncertainty of q onto the quantity of interest – exists,
and is not at all mentioned. Playing devil’s advocate, such an approach assumes near-linearity
of f(q), but linearity has already been assumed in the posterior calculation of q. Moreover at
least two prior papers – Isaac et al (2015) and BR23 – have used this method (see eq. 24
of Isaac et al 2015, or eq. 15 of BR23), and the latter comprehensively tested the linearity
assumption. Given this, I would expect acknowledgement of this very relevant and related
approach, its drawbacks and benefits, and fit (or lack thereof) to the current problem”

Again, we apologize for missing the work in BR23. We agree that the method we used to
compute the Laplace approximation of the posterior (also used in Isaac et al (2015) and BR23
is only exact if the model used to predict the observations is linear. This approach was only
computationally feasiable for us (and in the other papers) because we could solve adjoint
equations to compute the action of the Hessian of the misfit (between the model and the
observations) on a vector using our steady-state model implemented in MALI. However, our
codes do not have the ability to solve adjoint equations to compute gradients of the transient
model used to predict mass change at year 2100. Consequently, we could not linearize the
parameter-to-QoI map as done in BR23. A forward finite difference approximation of the
gradient would require 11,537 model evaluations. However, if the parameter-to-QoI could
be linearized computationally efficiently, using it to compute the mean and variance of mass
change would introduce an error because the map is nonlinear see Figure 1). Specifically,
Figure 1) plots one-dimensional sweeps through the 11,536 dimensional parameter space used
to represent Basal friction computed using the lowest fidelity model in our 13 model ensem-
ble, that is SSA3km,365days. Each sweep is along a random direction through the parameter
space that pass through the origin (which corresponds to using the mean friction field). The
extremes of the sweep correspond to ±σ, where σ is the standard deviation of the posterior
along the sweeps. It is clear that the parameter-to-QoI map is nonlinear but because we can-
not linearize the map we cannot compute the error introduced when using it to estimate the
mean and variance of mass change. However, if a linearized map was available we could use
it as an additional computationally efficient low-fidelity model when using MFSE to compute
statistics. The exact benefit of doing so would depend on the correlation between the new
model and the other models we used in the paper.

We added the following remark to Section 5.1 of the revised manuscript:

The models we used here are all different numerical discretizations of the two different physics
models. However, in the future we could also use alternative classes of low-fidelity models
if they become available. For example, we could use linearizations of the parameter-to-QoI
map (as done in (Recinos et al., 2023), if our MOLHO and/or SSA codes become capable of
efficiently computing the gradient of the map by solving adjoint equations or by using auto-
matic differentiation. Such an approach would require only one non-linear forward transient
solve of the governing equations followed by lone linear solve of the corresponding backward
adjoint. Once constructed, the linearized map could then be evaluated very cheaply and used
to reduce the MSE of the MFSE estimators, provided the error introduced by the lineariza-
tion was not substantial. Other types of surrogates could also be used in principle, however,
the large number of parameters used pose significant challenges to traditional methods such
as the Gaussian processes used in Jantre et al. (2024). Recently developed machine-learning
surrogates (Jouvet et al., 2021; Brinkerhoff et al., 2021; He et al., 2023) could be competitive
alternatives to the low fidelity models considered in this work.

We did not include Figure 1 in the revised manuscript because we believe it distracts from
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Figure 1: One-dimensional sweeps through the 11,536 dimensional parameter space used to repre-
sent Basal friction. Each sweep is along a random direction through the parameter space that pass
through the origin (which corresponds to using the mean friction field). The extremes of the sweep
correspond to ±σ, where σ is the standard deviation of the posterior along the sweeps.

the main message of the manuscript, that is that MFSE can substantially reduce the com-
putational cost of computing statistics of prediction uncertainty. However, we did add the
following statements and plots.

The left panel of Figure 13 (Figure 2 in this response document) plots the time evolution of
mass loss predicted by the three models selected by our final ACV estimator. The right panel
plots the distribution of mass loss at the final year, 2100, computed using the SSA1.5km,365days

model. The bias of the SSA1.5km,365days is clear in both plots, for example, in the right panel
the mean of the blue distribution is not close to the mean computed by the ACV estimator.
However, we must emphasize that, by construction, the ACV estimate of the mean mass loss,
and its variance, is unbiased with respect to the highest-fidelity model MOLHO1km,9days. We
also point out that while our Laplace approximation of the posterior is a Gaussian, the push-
forward of this distribution through the SSA1.5km,365days model model is nonlinear. Specif-
ically, the push-forward of a Gaussian through a linear model remains Gaussian; however,
in this case, the right tail of the push-forward density is longer than the left tail, indicating
that it is not Gaussian. This suggests that the mapping from the basal friction parameters
to the quantity of interest is nonlinear. We were unable to compute reasonable push-forward
densities with the simulations obtained from the other two models used to construct the ACV
estimator due to an insufficient number of simulations. However, we believe it is reasonable
to assume that the parameter-to-QoI map if these models is also non-linear.

4.3 Specific comments

157. “L23-25. This is a good outlay of the different sources of uncertainty. What is missing
is a definitive statement that the only type of uncertainty being quantified in this paper is
parametric uncertainty.”

We now state explicitly that we are quantified parametric uncertainty in the introduction.
We also now point out that model form error and model discretization error impact the bias
of our MFSE estimates of mean and variance in section 4. See our response to comment 63
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Figure 2: (Left) The evolution of mass loss predicted by the three models we used in our final
ACV estimator, corresponding to each of the simulations used to construct the estimator. (Right)
The probability of mass loss computed using the SSA1.5km,365days model. The black vertical line
represents the ACV estimate of the mean, while the gray shaded region represents plus and minus
2 standard deviations, again computed by the ACV estimator.

for details.

158. “L26-27. “but the impact of discretization errors has not been explicitly considered with other
sources of uncertainty”. And it has not in this study either, right? As I understand it the
MFUQ scheme is solely to estimate parameter uncertainty of the 1km, 9-day MOLHO model
– it did not quantify disc. uncertainty despite using different discretizations.”

You are correct. We apologize for our sloppy statement that may have led reviewers to believe
we were quantifying discretization uncertainty. We have edited the introduction accordingly.
See our responses to comments 155 and 63.

159. “L37-41. This is a good place to cite works such as Isaac et al 2015 (and various papers by
Noemi Petra e.g. Petra et al 2013), and BR23.”

See our response to comment 155 that explains our changes to the introduction intended to
clarify which studies are low-dimensional and which are high-dimensional.

160. “L60-61. As noted above, quantifying the impact of a high-dimensional parameterization of
basal friction on long-term projections is not novel (cf. BR23 – unless you are distinctly
saying that 40 years is not long-term and 80 years is!)”

We were not aware of BR23 and now we have read agree that quantifying the impact of
a high-dimensional parameterization of basal friction on long-term projections is not novel.
Consequently, we removed that claim and now state in the introduction: We discussed the
changes made to the introduction in our response to comment 155.

161. “L62-64. As noted above, Isaac et al, whose methodology you cite and use, arguably did this.”
We do not think that Isaac et al “quantified the impact of a high-dimensional parameteriza-
tions of basal friction on long-term ice-sheet projections” as stated in the first sentence on
line 62. However, we agree we are using the method from Isaac et al for inference. We hope
our revised introduction clarifies these facts.
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162. “L66. I’m not sure why you include Isaac 2015 in a list of papers using low-dimensional
parameterisations – they used O(106) parameters in their basal sliding parameterization.”

The original manuscript stated “In contrast, previous UQ studies (Nias et al., 2023; Ritz et
al., 2015; Schlegel et al., 65 2018; Jantre et al., 2024) only employed low-dimensional param-
eterizations despite high-dimensional parameterizations being necessary to calibrate ice-sheet
models to observational data (Barnes et al., 2021; Isaac et al., 2015; Johnson et al., 2023;
Perego et al., 2014)”. We cited Isaac et al to point out that high-dimensional parameteri-
zations are needed to calibrate ice-sheet models well not saying they used a low-dimensional
parameterization. Again we hope the new introduction clarifies this point.

163. “Fig 2, 3, 5, 6, 7, and 13: you need to show the coordinate axes in all visualisations of
the model domain – and there should be one figure showing the placement of Humboldt in
Greenland.”

We regenerated all figures in the revised document to improve readability.

164. “L181: “covariance” – prior or posterior?”

We changed it to prior covariance.

165. “L190-193. I have deep concerns about your parameter choices. Firstly, what is the pointwise
variance? Secondly, how did you arrive at this correlation length as suitable – on what basis?
I do not see any physical reasoning leading to it. You are saying that the data essentially
does not need to constrain variability on a scale smaller than this, which I don’t think is
an accurate statement. BR23 chose far smaller autocorrelations ( 3km) using some degree
of physical inference, and moreover showed that it was necessary to give reasonable values of
posterior uncertainty (see comment on TABLE 1 regarding this assessment), and it is possible
that in choosing such large numbers you are making the posterior uncertainty artificially small
by choosing an overly-informative prior. This may be why you only needed ¡ 1000 eigenvalues
to represent the posterior as shown in the appendix. (see BR23 for details.)”

Thank you for pointing us to the reference BR23. We believe it provides a computationally
tractable method for tuning the hyper-parameters of the prior when automatic differentiation
(AD) is available with an ice-sheet code. Unfortunately, our codes do not have AD capabilities
for transient simulations. (We do have them for steady state simulations. Indeed we use AD
to compute the action of the hessian when constructing the Laplace approximation of the
posterior.) Because we did not have AD, we had to tune the hyper-parameters heuristically.
We informally varied the hyper-parameters of the prior and used our judgment to pick a
correlation length and variance that resulted in a posterior MAP point that was able to match
the observations well. We have expanded Remark 5.1 to better discuss how we heuristically
choose the parameters: “In this study we used our domain experience to determine the best
values of the prior hyper-parameters γ, δ, η reported in Section 2.3 and the likelihood hyper-
parameter α reported in Section 3. However, varying these hyper-parameters, would likely
change the estimates of uncertainty in ice-sheet predictions produced by this study. Similar
to previous studies (Isaac et al., 2015), we did not investigate these sensitivities extensively.
We heuristically chose the prior hyper-parameters so that the prior samples would have a
variance and spatial variability that we deemed inline with our experience. Further, we found
that reducing α substantially from the value we ultimately used while keeping the prior hyper-
parameter fixed prevented the MAP point from capturing the high-frequency content of the
basal friction field needed to accurately match the observed surface velocities. Future studies
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should investigate the sensitivity of mass change to the values of the hyper-parameters more
rigorously using an approach such as the one developed by Recinos et al. (2023).”

Despite not using the rigorous tuning procedure in BR23, we believe that our calibration is
still close to state-of-the-art and is sufficient to demonstrate the ability of MFSE to reduce
the computational cost of computing uncertainty. Moreover, the results in BR23 have further
motivated us to consider adding AD capabilities to our models for future studies. However,
doing so will require substantial human hours and so will not be feasible for this paper.

166. “L205. How did you generate mass balance? Did you run a regional climate model that
incorporates firn and snow processes? If so, say so. Did you use a parameterization? If so,
state it and the source.”

We added the following to Section 2.4: “Second, the MIROC5 climate forcing from the CMIP5
for the Representative Concentration Pathway (RCP) 2.6 scenario was used to generate the
surface mass balance (difference between ice accumulation and ablation) fH and drive the
ice-sheet evolution from 2007 to 2100.” This surface mass balance was provided by the Ice
Sheet Model Intercomparison Project for CMIP6 (ISMIP6), which down-scaled output from
Earth system models using the state-of-the-art regional climate model MAR (Nowicki et al.,
2020).

167. “L231. On what basis do you assume they are uncorrelated? The fact that the products are not
posted with spatial correlations of error is not a reason – this is simply too difficult for them
to calculate. Please highlight this, and state what the consequences of such an assumption
could be for estimating posterior uncertainty.”

We have added the following statement.

In this study we assumed that the observational data are independent, as also assumed in
(Recinos et al., 2023) Moreover, we also assumed our Gaussian error model to be exact.
However, neither of these assumptions are likely to perfect in reality. Consequently, our
results must be viewed with some caution. For example, Koziol et al. (2021) showed that,
for an idealized problem, ignoring spatial correlation in the observational noise can lead to
uncertainty being underestimated.

168. “Section 4: in general I think this section should be read over very carefully to look for typos
and variables introduced without definition. Ill mention several below but these sections (the
ones that I read closely) seem to have been written hastily.”

We have corrected mistakes pointed out by you and the other reviewers as well as some
additional ones. We will also spend considerable effort to improve section 4 in the revised
manuscript.

169. “L263, mean Qµ: mean of what?? And what is Q? and are these “true” statistics or estima-
tors since they have no subscript?”

We have made extensive edits to this section, including clarifying what Qµ represents.

170. “L265. Try to be consistent with tense throughout, and definitely within a sentence: “The
second step simulates the model at each realization ... and computed the mass change..””

We have corrected tense here and throughout the document. See comment 66.

171. “L271: “Any MC estimator Q” – do you mean Qµ
α or Qσ2

α , or both or neither?”

See response 40.
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172. “Eq 11 – can you show how this is derived? At first glance it looked similar to the identity
E[(X − E[X])2] = E[X2] − (E[X])2 but I could not derive it using similar reasoning.” The
right most expression is correct. However the middle expression had a typo which has been
corrected. You can find a derivation of the final expression for bias in one of our software
tutorials. https://sandialabs.github.io/pyapprox/auto_tutorials/multi_fidelity/

plot_monte_carlo.html. We did not include this proof in the paper.

173. “L279 did you mean MSE (II), rather than MSE (11)?”

We mean Eq. 11. All in text equation references in the paper have been changed from
(EQNO) to Eq. (EQNO).

174. “L279: I don’t believe that all of these sources of uncertainty go into the bias term. My
interpretation is that, for the purpose of your MFUQ, you are given a density of q arising
from the Isaac methodology. You then have a deterministic function fa(X) which is given by
your high fidelity model and its discretization, and is therefore deterministic. You are seeking
properties of the probability distribution induced by fa and the only actual uncertainty is how
fast the MC converges. Model uncertainty and discretization uncertainty, while very real, are
not accounted for in such a calculation.”

Line 279 stated “The bias term of the MSE (11) is caused by using a numerical model, with
inadequacy and discretization errors, to compute the mass change.”

We hope that our response to comment 63 answers this question.

175. “L280 what does MSE (10) mean?”

We now say Constructing a SFMC estimator with a small MSE, Eq. (10), ...

176. “L280 ensures, for any set of model input samples,”

Fixed.

177. “First eq in 4.2.1 (not numbered) – is the 2nd term in brackets not divided by N1?” You are
correct. See response 15.

178. “L316 – QoI not defined previously.”

We now define QoI as quantities of interest the first time it is introduced.

179. “L324 – for the union of these sets to be null, both need to be null. Should it be an intersection
symbol?”

We fixed this mistake.

180. “Eq 18. You seem to be estimating these statistics using straighforward (Näıve) MC. Why
is this OK given the whole thrust of your study is that MC is too expensive to apply to the
statistics of the ice model?”

You raised an important aspect of MF UQ. All current theory assumes that quantities such
as (18) in the original manuscript are known exactly. However, in practice they must be
estimated using estimates such as (18), typically with a small number of so called pilot
samples. An important contribution of this paper is to show that estimating these quantities
introduces an error that can be non-trivial. We also provide a strategy for estimating the
impact of this pilot error. See figures 10a, 11, a, b and c in the initial submission. In the
initial submission we stated the following in the second paragraph after equation (18).
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“Unfortunately, using a finite P introduces errors into (16) and (17), which in turn induces
error in the ACV estimator covariance. This error can be decreased by using a large P but
this would require additional evaluations of expensive numerical models, which we were trying
to avoid. Consequently, in this study we investigated the sensitivity of the number of pilot
samples on the accuracy of ACV MC estimators.”

181. “L418-422. State # of elements In models”

We now state:

The number of elements associated with the four meshes with characteristic element sizes
1km, 1.5km, 2km and 3km, were 2611, 9238, 13744, 22334, respectively. The number of
nodes for the same four meshes were 1422, 4846, 7154, 11536.

182. “L424 in the 1st para of 2.4 you state you use FEniCS. MALI is a C++ model with Fortran
libraries and not, to my knowledge, written with fenics. Which model(s) did you use???”

We have added the following to the paper to Section 5.1:

Lastly, note that we used a different model, to the 13 described above, for the Bayesian cali-
bration of the basal friction parameters. Specifically, we used the C++ code MALI (Hoffman
et al., 2018), which can solve the Blatter-Pattyn equations (Pattyn, 2003; Dukowicz et al.,
2010) and compute the action of the Hessian on a vector. MALI efficiently computed these
Hessian-vector products, needed to compute our Laplace approximation of the posterior in
Eq. (14), by solving the adjoint equations for the steady state Blatter-Pattyn equations. How-
ever, SSA equations (Section 2.1.3) are not currently implemented in MALI and the MOLHO
(Section 2.1.2) equations have only recently been implemented (after the simulations for this
work were perfomed). Consequently, we used FEniCS (Alnæs et al., 2015) to implement both
MOLHO and SSA to ensure that the relative computational timings of these models would
be consistent. Solving the Blatter-Pattyn model using the C++-based MALI code and solving
MOLHO and SSA using the python based FEniCS, would have corrupted the MFSE results.
Moreover, implementing SSA in MALI would be time consuming because it is currently only
used to solve 3D models and not 2D models, such as SSA. Indeed, a partial motivation for
this study was to to determine the utility of implementing the SSA equations in MALI.

183. “Fig 10 – I might be misunderstanding the methods but shouldn’t there be units??”

Figure 10a plots a dimensionless quantity it is the ratio (variance of the MC estimators) of
two quantities with the same units. We added Eq (30) to clarify the quantities plotted.

184. “Table 1. This value is presented without validation. It is possible to do a “sanity check”.
BR23 use 2 essentially independent measurements of velocity (ITS LIVE and MEaSUREs)
to invert for parameters and simulate mass loss. If the difference seen is of almost negligible
probability under the calculated posterior for mass loss - then there must be an issue with the
calculated posterior. You are capable of doing this as well ...”

We do not have access to two different observational data sets for the Humboldt Glacier for
the year 2007. We used the best available data set (MEaSUREs) for our Bayesian calibration
starting in 2007. Yet, while ITS LIVE velocity data exists for this year, its coverage at
Humboldt is limited, so we could not perform an inversion using ITS LIVE data alone.

Additionally, while such a sanity check is indeed valuable, computing exactly the correct
posterior is not the focus of this paper. Rather the goal of this paper is to demonstrate the
utility of using MFSE to quantify uncertainty in the predictions of ice sheet models using a
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problem setup (data, calibration etc.) that is close to what is used in practice by the best
papers in the literature, e.g. in BR23. Changing the prior would likely change the exact
values of mass change we reported, but it would likely not substantially change the variance
reduction we observed. The variance reduction of a statistic is the ratio of the single-fidelity
MC estimator variance divided by the MFSE estimator variance. Thus, when estimating the
mean mass change, the exact value of the statistic cancels. We have expanded the discussion
of the limitations of our study in the summary and conclusions sections.

185. “L550. “the SSA model was not..” can you provide an example or evidence of this?” The
original manuscript stated: “While the highest-fidelity model MOLHO was capable of captur-
ing ice-sheet dynamics that the SSA model was not, that is vertical changes in the horizontal
velocities,” Moreover, Figure 13 in the original manuscript shows that these two model pro-
duce different estimates of thickness at the final time. A reference to figure 13 has been placed
in the discussion.

186. “L565. Im confused – I thought that the MFUQ was needed as you are sampling from a
distribution of 600 dimensions (the number of Eigenvals retained in the Hessian based UQ).
If you have only 10 dimensions can you not use standard (näıve) MC?”

The original submission stated. “Our study used a high-dimensional representation of the
basal friction field that is capable of capturing high-frequency modes, however it has been com-
mon in previous studies to use lower-dimensional parameterizations. Consequently, we inves-
tigated the impact of using a low-frequency/lower-dimensional representation of the friction
field on the efficiency of ACV estimators using ice-sheet models. Specifically, we estimated
the mean and variance of the mass change using a 10 dimensional Karhunen Loeve expansion
(KLE) to represent the posterior uncertainty of the basal friction field (complete details are
presented in B). ”

Note, while we retained 1125 modes from the prior-preconditioned hessian, computing uncer-
tainty in the QoI still required sampling the 11,536 variables used to parameterize the friction
field. Only the KLE study required sampling 10 variables. Moreover, the dimensionality of
the parameter space does not explicitly effect the MSE of a MC estimator, see equations (11)
and (12) in the original manuscript. We explored the use of MFMC because the number
of variables parameterizing the friction field was 11,536 (reported in the introduction of the
original submission) prevented us from using surrogate methods. We also do not have the
capability to compute gradients of mass loss using adjoint methods such as done in BR23.
Our investigation of the impact of using a 10 term KLE was to show that one must avoid the
temptation to use a lower-dimensional parameterization of the friction field, to enable the use
of surrogates or increase the performance of MFSE, as doing so severely underestimates un-
certainty. BR23 shows this very well and we have added a citation to that paper. Specifically,
we now state in the discussion

(Recinos et al., 2023) also demonstrated that lower-dimensional parameterizations of uncer-
tainty cause uncertainty to be estimated.

187. “L567: Appendix B”.

Fixed.
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