
1 Summary of comments and our proposed changes

In this document, we respond to every comment from the three reviewers. The reviews were
extremely thorough and valuable, and addressing the comments given has substantially improved
our manuscript. Below we address all 187 comments. However, first we summarize here what we
inferred were the main concerns raised by the reviewers.

Please note that while this stage of the review process did not require that we prepare a new
revision, we choose to do so anyway to ensure that su�cient thought was given to each comment.
Consequently, our responses below use the past tense. Also note that, we changed the acronym used
in this paper from MFUQ to MFSE, which refers to multi-fidelity statistical estimation. We believe
this term better captures the algorithms used in this paper than term multi-fidelity uncertainty
quantification (MFUQ), which is broader and could be perceived to include methods such as multi-
fidelity surrogate modeling. Ideally, we would use the term multi-fidelity Monte Carlo (MFMC),
instead of either of the two aforementioned terms. However, MFMC is used in the literature to to
a particular type of MFSE algorithm.

First, all three reviewers stated that the Section 4, which introduced multi-fidelity methods,
needed to be rewritten more clearly. We were happy to do this, as we want to make the paper as
easily accessible as possible. We also thank the reviewers for their constructive advice on how to
improve our exposition.

Second, the reviewers asked to more clearly and precisely establish the novel contributions of
our work, especially compared to a recent paper that we were unaware of. Additionally, we were
asked to add further discussion of the limitations of our study to the paper. We have rewritten the
introduction and discussion sections to address this concern.

Third, but not least, the third reviewer (listed in this document) asked how MFSE compares
to a recent method introduced in a paper referred to as BR23. The method in BR23 linearized the
parameter-to-QoI map of an ice-sheet model to computationally e�ciently estimate the distribution
of the QoI conditioned on observations. Moreover, the reviewer also remarked that our procedure
for selecting the prior distribution of our uncertain parameters could be improved by pointing to the
tuning method proposed in BR23. Specifically, the reviewer correctly pointed out that not using a
rigorous method for tuning the hyper-parameters of the prior distribution, such as that proposed
in BR23, can lead to uncertainty being underestimated. However, the method requires automatic
di↵erentiation to linearize the parameter-to-QoI map, which our codes (and many others) do not
support, so we were unable to make a comparison or adopt the tuning procedure proposed in the
cited paper. Secondly, linearizing the parameter-to-QoI map introduces an error when the map is
nonlinear. As the cited paper points out this, error depends on the strength of the nonlinearity
in the map. As we could not construct the linearization used in BR23, we could not compute the
size of this error. However, we have included plots in the paper and response that demonstrate the
parameter-to-QoI map is nonlinear. Moreover, we now remark in the paper that if linearization
is possible, then it will likely be a computationally e�cient and accurate low-fidelity model that
could potentially improve the performance of MSE further.

In the following we list the reviewers comments with “black italic” font. We list text from
the original document with “blue italic”. Additionally, we include new text added to the revised
document in red. Lastly, we made additional edits to the paper to improve readability, but we only
highlighted such changes if they were in response to a reviewer comment or change the narrative
substantially.
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1.1 Miscellaneous

Please note that there was an issue with section numbering in Section 4 which we have now cor-
rected. In the revised document we created a new subsection 4.4 called “Computational consid-
erations for multi-fidelity uncertainty quantification” which discusses the important computational
aspects of the exploration and exploitation phases of multi-fidelity UQ. Section 4.4 now includes
subsections 4.2.3, 4.2.4, 4.25, 4.2.6 in the original submission. Moreover, Remark 4.1 in the original
submission has now been moved to form the basis of the introduction in Section 4.4.

2 Reviewer 1 (Douglas Brinkerho↵)

2.1 General comments

“In this manuscript, Jakeman et al. present the application of multi-fidelity uncertainty quantifi-
cation to accelerate – and hopefully provide more accurate – estimates of first- and second-order
ensemble statistics. They begin by describing two approximations to the Stokes’ equations, which
trade solution expressivity for computational expense and serve as the basis for their multifidelity
methods. They next describe a mechanism by which to characterize an approximate posterior dis-
tribution (based on a low-rank Laplace approximation) over basal traction conditioned on surface
velocity observation, which serves as the source of samples for Monte Carlo sampling of ice volume
evolution, the primary quantity of interest in this work. The primary methodological advance is the
introduction of an adaptive control variate (ACV) estimator for the mean and variance of mass
change after approximately a century of ice evolution. This estimator leverages correlations between
so-called low- and high-fidelity models (which have di↵erent computational expense) to e↵ectively
reduce the error in Monte Carlo estimates of ice volume change relative to predictions made us-
ing a limited number of high-fidelity model predictions on its own. They present this method for
a single high and low-fidelity model, and then extend the analysis to the case where there exists
one high-fidelity model and a hierarchy of multiple low-fidelity models. Such methods require the
establishment of statistical relationships between the low and high-fidelity models, and also care-
ful selection of the number of samples evaluated for each constituent model: the authors carefully
present strategies for these tasks within the framework of a fixed computational budget, and explore
the implications of these strategies when they are better informed by empirical analysis than theory.
The manuscript applies these methods to the Humboldt Glacier basin of Northwest Greenland and
show that the present methods can be used to perform e↵ective uncertainty quantification, at least
over the limited subset of uncertain parameters that the authors’ consider. This work is an impor-
tant and timely contribution to the growing e↵ort towards robust uncertainty quantification in ice
sheet modeling. I have no major objections to the scientific content of this work, which I find to be
well-motivated and defensible. I do think that the work relies on language and a presentation style
that will be challenging for many readers, particularly those without a specialized statistical back-
ground. As a general comment, I would encourage the authors to try to provide more intuition and
plain-language summaries, particularly in Section 4. I provide more specific examples, alongside
other detailed comments below.”

2.2 Specific comments

1. “L26 Here and elsewhere, ‘e↵ects’ should be ‘a↵ects”’.

Fixed.

2. “L97 Should H(x, y, z) be H(x, y, t)?”
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Yes. We fixed this typo.

3. “L98 The MOLHO (or the Blatter-Pattyn approximation) doesn’t neglect vertical velocity, it
is just eliminated from the system of equations via mass conservation and the assumption of
hydrostatic pressure. It can always be determined a posteriori from the horizontal velocity
components.”

We changed the sentence “ In contrast, using the observation that ice-sheets are typically shal-
low, i.e. their horizontal extent is much greater than their thickness, the MOLHO model ne-
glects the vertical velocity w and only simulates the horizontal velocities u(x, y, z, t), v(x, y, z, t)
but still as functions of the three spatial coordinates” to In contrast, the MOLHO model makes
simplifications based on the observation that ice-sheets are typically shallow, i.e. their hor-
izontal extent is much greater than their thickness. These simplifications lead to a model
that does not explicitly estimate the vertical velocity w and only simulates the horizontal
velocities u(x, y, z, t), v(x, y, z, t) as functions of the three spatial coordinates.

4. “I don’t think Dukowicz is the best reference here. Pattyn (2003) is more commonly cited,
or if the preference is for something that clearly describes the hierarchy of approximations,
Schoof and Hindmarsh (2009).”

We have added a citation to Schoof and Hindmarsh (2009).

5. “L137 I think that citet should be used rather than citep here.”

We now use citet.

6. “L152 The discretization of the continuity equation is non-trivial and should be described here.
How was it stabilized? How was positivity (even in the absence of negative forcing) ensured?”

We added the following details:

Specifically, the continuity equation was discretized with nodal finite elements, using stream-
line upwind stabilization. Additionally, the advection term was integrated by part and the
thickness was treated implicitly. Using this time evolution process, we did not observe any
numerical instabilities when using the time-step sizes adopted in this study.

7. “L172 Who specifically considers friction to be such a large source of uncertainty? Plenty
of recent work has shown that forcing terms are the most important uncertainty sources,
particularly at long time scales. I don’t have a problem with focusing on traction here, but I
think it is important to contextualize this choice a little bit more fully.”

We agree that forcing terms are large sources of uncertainty. Carr et al. (2024) in particular
have recently made this argument. However, basal sliding is widely acknowledged to also
be a large source of uncertainty (see e.g., Nias et al. (2018); Joughin et al. (2019); Brondex
et al. (2019); Åkesson et al. (2021); Hillebrand et al. (2022)), especially when using model
configurations with active calving, which Carr et al. (2024) ignored. While we also do not
account for active calving except to prevent advance, our methodology could be extended to
situations that include physically based calving laws.

We changed the statement “While all sources of uncertainty may significantly impact pre-
dictions of mass change from ice sheets, this study focused on quantifying uncertainty due to
the unknown basal friction, which is considered one of the largest sources of prediction uncer-
tainty. This singular focus was made to improve our ability to assess whether MSE is useful
for ice-sheet modeling for a very high-dimensional source of uncertainty, which cannot be
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tractably tackled using most existing UQ methods. This ensures that the conclusions drawn by
our study can be plausibly extended to studies considering additional sources of uncertainty.”
to While all these sources of parametric uncertainty may significantly impact predictions of
mass change from ice sheets, this study focused on quantifying uncertainty due to unknown
basal friction, which is considered one of the largest sources of prediction uncertainty after
future environmental forcing (Nias et al., 2018; Joughin et al., 2019; Brondex et al., 2019;
Åkesson et al., 2021; Hillebrand et al., 2022; Nias et al.,190 2023). This singular focus was
made to improve our ability to assess whether MFSE is useful for quantifying uncertain in
ice-sheet modeling with high-dimensional parameter uncertainty, which most existing UQ
methods cannot tractably address. By doing so, we ensured that the conclusions drawn by
our study can be plausibly extended to studies considering additional sources of uncertainty.

8. “L180 I think that the community is using the term ‘Gaussian process’ with some frequency
now, so it would be good to at least mention that as a name for what is going on here (and a
reference to, say Rasmussen and Williams (2006)).” We did not add this or a similar citation.
We want to avoid using the term Gaussian process because the method we used to generate
the Gaussian random field, which the reviewer is referring to, and condition it on data di↵ers
from the approach used by Gaussian process used in machine learning, e.g. (Rasmussen and
Williams, 2006).

9. “L212 For what it’s worth, it’s a stretch to call BedMachine ‘data’ – it is the result of a
PDE-constrained optimization scheme that relies on assumptions of climate, smoothness, and
a variety of other things. Again, nothing di↵erent needs to be done, but it is important to
state that this inferred geometry is assumed error-free. ”

We clarified that we assumed the geometry was error-free.

10. “L232 This scaling term is less mysterious when reported with units ‘number of observations
per area’.”

We think that the “scaling term” the reviewer is referring to is the inverse of our coe�cient
↵ in the original submission. In our case, the observations are given as a spatial field, not
as a finite number of data points, therefore ↵ has the units of area, which is consistent with
the reported units of km2. In an attempt to make the scaling coe�cient more intuitive, we
changed the definition of ↵ and considered its inverse, which is more inline with the typical
definition of scaling terms in objective functionals. We also expanded Remark 5.1 to discuss
how the scaling parameter ↵ has been selected.

11. “L263–267 Here and elsewhere, please be sure to use a consistent tense. This switches from
present to past inside a sentence.”

We have corrected tense here and throughout the document.

12. “L298 Should these sums have N � 1 in front of them?” Yes. We corrected this mistake.

13. “L298 For the inner sum, please use a di↵erent index variable than n.”

We now use the symbol j.

14. “L298 Is the optimization of ⌘ mandatory or does this work with arbitrary ⌘? What is the
objective that is optimized?”

The optimization of ⌘ is not mandatory. Any value can be used, indeed MLMC uses ⌘ = �1,
however using a non-optimized value of ⌘ can substantially degrade the accuracy of the
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estimator. We now mention that ⌘ can be set a priori. To see the exact changes refer to the
added text in red in response to comment 15.

Also note that, in the original manuscript we stated that “the MSE of the ACV estimator can
be minimized by optimizing the determinant of the estimator covariance matrix”. For a fixed
sample size, the optimization of ⌘ is analytical as reported in Equation (14) of the original
manuscript.

15. “L298 The reader would benefit from a description of what this equation means and some
intuition of why this works. It appears to be that the low-fidelity terms yield a correction to
the high fidelity statistic, but it is somewhat surprising that this doesn’t need to include any
explicitly quantified relationship between the two models. It would also be helpful to emphasize
that the ⇥0 and ⇥1 can have di↵erent set sizes.”

We added the following text to the revised document to provide the intuition requested and
discuss the sizes of the sample sets ⇥0 and ⇥1.

Using only high-fidelity model simulations to estimate a statistic with single-fidelity MC
produces an unbiased estimator of Q0. However, when the computational cost of running a
high-fidelity model limits the number of model simulations that can be used, the variance
and thus the MSE, of the MC estimator will be large. Fortunately, the MSE error of the
estimator can be reduced by correcting the high-fidelity estimator with statistics computed
using lower-fidelity models. For example, given a high-fidelity model f0(✓) and a single low-
fidelity model f1(✓), an MFMC ACV estimator approximates the mean of the high-fidelity
model using
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The two-model ACV estimator in Eq.(21) uses a weighted combination of a high-fidelity MC
estimator and two low-fidelity estimators. The high-fidelity model evaluations are used to
ensure the ACV estimator is unbiased, i.e. E⇥

⇥
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fidelity evaluations are used to reduce the variance of the estimator. The estimator of the
low-fidelity mean Qµ

1 (⇥0) is referred to as a control variate because it is a random variable,
which is correlated with the random estimator Qµ

0 (⇥0), and can be used to control the vari-
ance of that high-fidelity estimator. The term Qµ

1 (⇥1) ⇡ Qµ

1 is an approximation of the
true low-fidelity statistic Q1 that is used to ensure that the ACV estimator is unbiased, i.e.
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0 . The weight ⌘ can either be fixed – e.g. MLMC sets ⌘ = 1 – or optimized to minimize the
MSE of the estimator. However, an ACV estimator will always be unbiased, with respect to
Q0, regardless of the value of ⌘, because the expected values of the second and third terms
will always cancel.

Computing the ACV estimate of the high-fidelity mean in Eq. (21) requires two di↵erent
sets of model evaluations. These evaluations must be obtained by first drawing two sets of

samples ⇥0 = {✓(n)0 }N0
n=1,⇥1 = {✓(n)1 }N1

n=1 from the distribution of the random variables. In
our study, we draw random samples from the posterior distribution of the log basal friction,
i.e p(✓ | M,y). The high-fidelity model must be evaluated on all the samples in ⇥0 and the
low-fidelity model must be evaluated on both the sets ⇥0 and ⇥1. Typically N0 < N1. In
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most practical applications, such as this study, the model f0 used with an ACV estimate is
chosen to be the highest-fidelity model that can be simulate O(10) times, However, when a
model utilizes a numerical discretization that can be refined indefinitely, MLMC can be used
to adaptively set Q0 such that the discretization error Q0 � Q1, in Eq. (18), is equal to the
variance V⇥ [QACV] of the MLMC estimator.

16. “L323 The line about some samples being shared is vague. Please elaborate on what this
means.”

We replaced this line with:

Di↵erent ACV estimators can be produced by changing the way each sample set is structured.
For example, MFMC estimators sample the uncertain parameters such that ⇥⇤

↵ ⇢ ⇥↵ and
⇥⇤

↵ = ⇥↵�1 and MLMC estimators sample such that ⇥⇤
↵ \ ⇥↵ = ;, and ⇥⇤

↵ = ⇥↵�1.

We also know state in Section 4.4.2:

Each existing ACV estimator was developed to exploit alternative sample structures T to
improve the performance of ACV estimators in di↵erent settings. For example, a three model
ACVMF estimator performs well when the low-fidelity models are conditionally independent
of the high-fidelity model. Imposing this conditional independence is useful when knowing
one-low-fidelity does not provide any additional information about the second low-fidelity
model, given enough samples of the high-fidelity model. This situation can arise when the
low-fidelity models use di↵erent physics simplifications of the high-fidelity model. In contrast,
MLMC assumes that each model in the hierarchy is conditionally independent of all other
models given the next highest fidelity model. This allows MLMC to perform well with with
a set of models ordered in a hierarchy by bias relative to the exact solution of the governing
equations.

17. “L328 ‘statistics’ → ‘statistic’.”

Fixed.

18. “Eq. 14 As before, are there alternatives to using this value for ⌘?”

See responses 14 and 15.

19. “Eq. 16 Split this into two equations, and add matrix sizes for each.”

Fixed.

20. “L352 I’m not sure I understand this sentence.”

We changed this sentence when responding to the next comment.

21. “L356 I think it would be better to include more detail about how these expressions are used
to compute Eq. 15 than just referencing Dixon (2023). Otherwise, it sort of feels like a lot of
space gets used describing Eqs. 16 and 17, but they never really go anywhere.”

We removed equation 16 and 17, as we agree that they did not really build intuition. Moreover,
including the expressions in Dixon et al (2023) are extremely complicated and would likely
turn o↵ all but the most mathematically inclined reader.

22. “Eq. 20 Why is it the case that minimizing the determinant of the covariance determines an
optimial sampling strategy?”
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Because we are computing a vector valued statistic, comprised of the mean and variance of
the mass loss at the final time, the MSE error of the statistic is a matrix. The determinant
was first proposed in as a scalar metric that quantifies the error of a vector-valued estimator.
It is likely possible to use alternative measures, such as the trace to quantify error, however
to date only the determinant has been used. Indeed, most MSE literature only focuses on
estimating a single statistic of a scalar function, in which case the trace and the determinant
are equal.

We now state in Section 4.4.2: Unfortunately, a tractable algorithm for solving Eq. (29)
has not yet been developed, largely due to the extremely high number of possible sample
allocations in the set A. Consequently, various ACV estimators have been derived in the
literature that simplify the optimization problem, by specifying what we call the sample
structure T , which restricts how samples are shared between the sets ⇥↵,⇥⇤

↵. For example,
optimizing the estimator variance, Eq. (23), of a two model MFMC (Peherstorfer et al., 2016)
mean estimator, Eq. (21), requires solving

min
N0,N1

N�1
0 V [f0]

✓
1 � N1 � N0

N1
Corr[f0, f1]2

◆

s.t. N0w0 +N1w1  Wmax,

T = {N0\1⇤ = N0, N0[1⇤ = N0, N0\1 = N0, N0[1 = N1, N1⇤\1 = N0, N1⇤[1 = N1}.

Alternatively, minimizing the estimator variance of the two model MLMC (Giles, 2015) mean
estimator requires solving

min
N0,N1

N�1
0 V [f1 � f0] + (N1 � N0)

�1V [f1]

s.t. N0w0 +N1w1  Wmax,

T = {N0\1⇤ = N0, N0[1⇤ = N0, N0\1 = 0, N0[1 = N1, N1⇤\1 = 0, N1⇤[1 = N1}.

MLMC and MFMC employ sample structures T that simplify the general expression for the
estimator covariance
Cov⇥ [QACV,QACV] in Eq. (27). These simplifications were used to derive analytically solu-
tions of the sample allocation optimization problem in Eq. (29) when estimating the mean,
E⇥ [f0] in Eq. (16), for a scalar-valued model. However, the optimal sample allocation of
MLMC and MFMC must be computed numerically when estimating other statistics, such
as variance V⇥ [f0] in Eq. (17). Similarly, numerical optimization must be used to optimize
the estimator covariance, Cov⇥ [QACV,QACV] in Eq. (27), of most other ACV estimators,
including the ACVMF and ACVIS (Gorodetsky et al., 2020), as well as their tunable gener-
alizations (Bomarito et al., 2022).

23. “Fig. 4 and accompanying text I don’t think that the text does a su�cient job of describing the
principles behind these di↵erent sampling strategies. Figure 4 tells me that ⇥0 and ⇥⇤

1 share
their samples, and di↵erent schemes use entirely di↵erent or appended di↵erent samples for
⇥1, but I cannot grasp from the text why this is significant. This needs to be motivated fully
or de-emphasized and more carefully referenced.”

We removed the figure and instead now try to provide intuitive descriptions on why di↵erent
sample structures target di↵erent relationships between models.

See our response to comment 16.
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24. “L394 ‘model’ appears twice.”

Fixed.

25. “L433–439 Is there an argument that can be made here to reassure a reader that the observed
changes are due to real climate/ice dynamic e↵ects and not so-called ‘transients’ resulting
from inconsistency between initial conditions, physics, and input fields? Fig. 7 (left) has
some rather surprising high-frequency noise in the surface elevation change – it would be
helpful to know where this comes from.”

The high-frequency content is largely due to the oscillations in the posterior sample of the
basal friction (Figure 6). We have added a similar statement to the document when discussing
Figure 7.

26. “L453 Just to clarify, was ⇥pilot shared across models, or were the samples di↵erent for each
model?”

We now state:

First, we evaluated each of our 13 models at the same 20 random pilot samples of the model
inputs ⇥pilot

27. “L458 ‘significant’ is an unfortunately subjective term here - to my eye, the di↵erences in
the heights of the referenced bars seems rather insignificant. Is it possible to elaborate on the
meaning of ‘significant’ here, and why it should be viewed as such?”

We updated the figure to more clearly show the di↵erences between the means and standard
deviations of each model. We also now state:

The middle and lower panels of Figure 8 show that the means and standard deviations of
each model di↵er.

28. “L467 This sentence is a bit challenging, with 5(!) nested prepositions and two uses of ‘vari-
ance’ each describing di↵erent things. I recognize that it is challenging to compactly describe
the statistics of statistics, but is it possible to relax this sentence a bit?”

The previous text was “Given estimates of the pilot statistics, (18) and (19), we used (20)
to predict the determinant of the variance of the ACV estimator of the mean and variance of
the mass change. ”

we change this to We used Eq. (20), with estimates of the pilot statistics obtained using Eq.
(18) and Eq. (19), to predict the determinant of the the ACV estimator covariance.

29. “L476 This assertion is surprising to me, and a citation describing the assumption of pilot
statistic exactness would be useful.”

We have added a citation to (Peherstorfer et al., 2016) which was cited elsewhere in the
paper for another reason. In the last paragraph from Page A3181 the authors state “We
use the sample variances and the sample correlation coe�cients to determine the number of
model evaluations m and the coe�cients ↵. Table 2 compares sample variances and sample
correlation coe�cients computed from 10, 100, and 1000 samples. The di↵erent number of
samples leads to di↵erent estimates.”

The authors also state that “the variations in the sample variances have only a minor e↵ect
on the coe�cients ↵” where ↵ refers to the control variate weights denoted ⌘ in our paper.
However our results show that the impact of the size of the pilot is problem dependent.
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30. “L494 Is there an interpretation of why some models appear to be more informative than
others, or is this just random chance? I can’t identify a mechanism for why some low-fidelity
models were chosen more frequently, but understanding that (or being able to predict it a
priori) would be exceptionally useful.”

We included the following statement at the end of section 4:

Whether a model is useful for reducing the MSE error of a multi-fidelity estimator depends on
the correlations between that model, the high-fidelity, and the other low-fidelity models. For
toy parameterized PDE problems, such as the di↵usion equation with an uncertain di↵usion
coe�cient, theoretical convergence rates and theoretical estimates of computational costs can
be used to rank models. However, for the models we used in this study, and likely many other
ice-sheet studies, ordering models hierarchically, that is, by bias or correlation relative to the
highest-fidelity model, before evaluating them is challenging. Indeed, the best model ensemble
for multi-fidelity UQ may not be hierarchical (see Gorodetsky, 2020). Yet, estimators such as
MLMC and MFMC only work well on model hierarchies. Consequently, having a practical
approach for learning the best model ensemble is needed. Yet, to date this issue has received
little attention in the multi-fidelity literature. Section 5 provides a sorely needed discussion
of the impact of the pilot study on model selection and the error a multi-fidelity estimator.

31. “L496 I don’t understand what is meant by a ‘hierarchical relationship’ here.”

See response 30.

32. “L525 I get where these numbers come from after some digging back through the other sections,
but it would be helpful to remind the reader where each of the terms in the cost expression
represent.”

We added the following to the text:

The cost of constructing our final estimator was equal to the sum of the pilot cost (197.13
hours) and the exploitation cost (160 ⇥ 4.18) hours, which was approximately 36 days. The
pilot cost was the sum of evaluating all 13 models on the initial 20 pilot samples and 8 models
on an additional 10 pilot samples (see Section 5.2). The exploitation cost was fixed at the
beginning of the study to the computational cost equivalent to evaluating the high-fidelity
model 160 times, which takes a median time of 4.18 hour to simulate.

33. “L536 Is this extreme asymmetry between the number of high- and low-fidelity model evalua-
tions typical? I think that this is a significant and interesting result if the high-fidelity model
is only really needed to, e.g. characterize the spatial variability of the mean solution, but the
low-fidelity models are su�cient to characterize all of the uncertainty.”

We added the following statement to Section 5.5:

The allocation of the small number of samples to the highest-fidelity model is due to the
extremely high-correlation between that model and the model MOLHO1km,36days. This high-
correlation suggests that the temporal discretization error of the highest-fidelity model is
smaller than the spatial discretization error.

34. “Table 1 I don’t think this needs to be a table.”

We removed the table and now state the following in the main text:

The mean and standard deviation computed using the best ACV estimator were �639.06±0.23
and 17.68 ± 6.67, respectively.
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35. “L589 The variance doesn’t have the same units as the mean, so I’m not sure what numbers
I’m looking at. Is 17.68 the standard deviation?”

You are right. We now state the values in question represent standard deviation.

3 Reviewer 2 (Vincent Verjans)

3.1 General comments

“This study proposes a multi-model method for evaluating uncertainties in ice sheet model pro-
jections. This method uses models of di↵erent degrees of fidelity to simulate glacier mass change
projections, therefore referred to as multi-fidelity uncertainty quantification (MFUQ). It exploits
correlation between the di↵erent model realizations to approximate the statistics that would be ob-
tained by the highest-fidelity model available, but at reduced computational cost. Here, the study
focuses on uncertainty arising from the uncertain basal friction input field, and shows an applica-
tion at Humboldt glacier, Greenland. Random samples of the basal friction field are drawn from a
Laplace approximation of the posterior probability distribution, which is calibrated to match output
from an ice flow model to the present-day Humboldt glacier configuration. The study then compares
the MFUQ method with Monte Carlo sampling using the highest-fidelity model only, which is re-
ferred to as single-fidelity Monte Carlo (SFMC). Results show that, applied to this problem, MFUQ
can serve to infer the mean and variance statistics with large computational savings compared to
SFMC. The MFUQ procedure splits the computational burden by using only few high-fidelity model
runs and a large number of lower-fidelity model runs, and then exploiting the correlation between
both sets of runs. This study is a valuable contribution to the field of uncertainty quantification
in ice sheet modeling. It demonstrates that combining multiple levels of model fidelity can serve
to improve uncertainty estimates in useful quantities, which is an approach scarcely used in this
field. The science presented in this study uses elaborate statistical techniques, which is a good thing.
And I evaluate the scientific aspects of this study positively. However, I believe that major e↵orts
should be made on two presentation aspects. First, more clarity is needed in the presentation of
the MFUQ method. I needed to re-read and go back-and-forth between di↵erent sections multiple
times to really un- derstand the procedure. Second, the authors should try to guide the reader in
understanding the procedure, and to provide some intuitive explanations of the di↵erent steps in
addition to the mathematical details. This latter aspect would better align with the readership of
Earth System Dynamics, which is not primarily focused on methodological developments per se. I
separate this re- view in one Major comment, focused on the most important clarifications required,
and line-by-line comments focused on less important aspects that need elaboration, as well as on
scientific aspects that could be slightly adjusted or more thoroughly explored. Line numbers (L)
refer to lines in the preprint. Although my review insists a lot on presentation aspects, I find it also
important that the science-related comments are addressed. I encourage the authors to revise their
manuscript following comments from other reviewers and me. Given the strong scientific basis of
this study, I am certain that a revised version of this manuscript will be a valuable contribution to
the literature.

Major comment: mathematical presentation. There is no single specific aspect that makes the
mathematical presentation unclear. Instead, it is the accumulation of various elements that renders
understanding the methods challenging. I try to identify some of these elements here.”

We want to make the paper as easily accessible as possible and have rewritten the paper. Specific
focus was given to improving clarity and providing intuition wherever possible.

10



3.1.1 Equations should be better explained and without errors.

36. “In all equations with matrices, please provide explicitly the dimensions of the matrices in-
volved. This would help to understand, for example, Eqs. 13, 16, 17. It would also be helpful
to explicitly mention if a quantity is a scalar, vector, or matrix when it is used for the first
time.”

We added matrices sizes to all relevant equations in the revised document. To further improve
clarity, we our revised paper uses bold italics to represent vectors and bold regular font for
matrices. This is inline with the instructions on how to denote matrices and vectors n the
journal’s guide for authors. We apologize for missing these instructions in our previous
submission.

37. “In Eq. 12, the covariance term has twice the same argument, and can therefore not be a
covariance. Furthermore, I am not convinced of the validity of the V ar(Q�

2
) formula, so

please provide a reference and/or a detailed derivation in the response.”

Eq 12 is a valid covariance. Cov [X,Y ] = E [(X � E [X])(Y � E [Y ])] and Cov [X,X] =
E [(X � E [X])(X � E [X])] = V [X] is just a special case that occurs when X = Y . We
want to use the notation Cov [X,X] so to emphasize that the covariance is a matrix when the
random variable X is a vector. However since X = (f↵ �E [f↵])2 is only a scalar we replaced
Cov

⇥
(f↵ � E [f↵])2, (f↵ � E [f↵])2

⇤
. We also added the following note after equation 15 that

states:

Note that, in (14) and (15), and the remainder of this paper we use Cov [X,X] as long hand
for V [X] to emphasize that the covariance is a matrix when the random variable X is a
vector.

A detailed derivation of the expression can be found in (Dixon et al., 2023). See equation
2.3 and the proof of proposition 3.4 on page 10 of their ARXIV manuscript. We added the
following to the paper:

A detailed derivation of the expression for V
h
Q�

2

↵ (⇥)
i
can be found in (Dixon et al., 2023).

38. “In L298, to be valid, this equation requires some normalizing terms (1/N0,1/N0,1/N1).”

We corrected these equations.

39. “In the first part of Eq. 16, one term should be Cov
h
��

2

↵ ,�µ

�

i
.”

Fixed.

40. “In Eq. 11, both Q↵ and Q are referred to as MC estimators (in Eq. (10) and on L271,
respectively).”

We now state the following before equation 11.

Consequently, any MC estimator Q↵(⇥) of an exact statistic Q, such as Qµ
↵(⇥) and Q�

2

↵ (⇥),
is a random variable and the mean-squared error (MSE)

41. “It would be nice define the MC estimator precisely, as well as the quantity that it is esti-
mating.” Eq. (16) and Eq. (17) define the MC estimators of the mean and variance of mass
change, respectively. We now reference these equations throughout the paper to make clear
which quantities we are talking about as suggested comment 44.
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42. “Please be consistent in the notation. For example, QACV is bold in Eq. 15, but not in Eq.
20.”

Fixed.

43. “Please use equation numbers for all equations.”

We would to only number equations if they are referenced in the text. I cannot find guidance
online about the journals requirement to number all equations. We will do so if the editor
requests we do so. However, we have increased the number of numbered equations to allow
the reader to easily refer back to relevant equations, when discussing them in the text to
address comment 44.

44. “Throughout the text, try as much as possible to refer to the relevant equations and/or math-
ematical variables. That would be incredibly helpful for the reader to understand the methods
more easily. For example, refer to Eq. 15 every time the “ACV estimator covariance” is
mentioned, refer to L197 when mentioning sampling from the prior, refer to L227 when men-
tioning sampling from the posterior. And there are many more instances, which I will not
enumerate here. But I encourage the authors to look for every instance where the reader would
benefit from knowing clearly which quantity or equation a certain statement relates to.”

We have added references throughout the revised paper.

3.1.2 Adding some intuitive explanations

“Here and there, it would help to add a simple sentence to give a better intuition about some
concepts. I provide a few examples here below. Again, this is not an exhaustive list. So, I encourage
the authors to actively look for similar statements, equations, or paragraphs that could benefit from
some intuitive explanations.”

We added intuitive explanations whenever suggested by the reviewer. We also took the oppor-
tunity to provide intuitive explanations at other places in the text. Any such changes are marked
in red in the revised document.

45. “Towards the beginning of the manuscript, please provide one short paragraph to explain what
the statistics of interest are, and why they are uncertain. I believe that all readers might not
intuitively understand the concept of variance of a variance.”

We added the following statement to the introduction: “However, the substantial compu-
tational cost of evaluating ice-sheet models limits the number of model simulations that can
be run, and thus the accuracy of uncertainty estimates.” For example, when estimating the
mean of a model with Monte Carlo, the mean squared error (MSE) in the estimated value
only decreases linearly as the number of model simulations increases.

We also added the following statement in Section 4.1:

MC estimators converge to the true mean and variance of f↵ as the number of samples
tends to infinity, but using a finite number of samples N introduces an error into the MC
estimator that depends on the sample realizations used to compute the estimators. That
is, two di↵erent realizations of N parameter samples ⇥, and the associated QoI values, will
produce two di↵erent mean and variance estimates (see Figure 4). Consequently, any MC
estimator Q↵(⇥) of an exact statistic Q, such as Qµ

↵(⇥) and Q�
2

↵ (⇥), is a random variable.

46. “L228: Please add one or two sentences to explain that g(✓) can be computed without time
stepping model solves, and why this is the case.”
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We added the following text. After line 228. We were able to calibrate the model using
only a steady model without time-stepping because we assumed that the velocity data were
collected when the ice sheet which was in equilibrium.

47. “L247: Please explain that ⌃post characterizes the balance between the prior uncertainty in
the friction field estimate, and the model-observation mismatch weighted by the observational
noise.”

We added the following statement at the end of section 3:

The posterior characterizes the balance between the prior uncertainty in the friction field
and the model-observation mismatch, weighted by the observational noise. In the limit of
infinite observational data, the posterior distribution will collapse to a single value. However,
in practice when using a finite amount of data, the posterior will only change substantially
from the prior in directions of the parameter space informed by the available data, which
were captured by our low-rank approximation.

48. “L298: Why is this valid regardless of how truthfully f1 approximates f0?”

Please see response 15 above.

49. “L322: What do the control variates represent?”

We now state:

The estimator of the low-fidelity mean Qµ

1 (⇥0) is referred to as a control variate because it
is a random variable, which is correlated with the random estimator Qµ

0 (⇥0), and can be
used to control the variance of that high-fidelity estimator. The term Qµ

1 (⇥1) ⇡ Qµ

1 is an
approximation of the true low-fidelity statistic Q1 that is used to ensure that the ACV esti-
mator is unbiased, i.e. E⇥

⇥
Qµ

ACV(⇥0,⇥1)
⇤
= E⇥ [Qµ

0 (⇥)] + ⌘ (E⇥ [Qµ

1 (⇥0)] � E⇥ [Qµ

1 (⇥1)]) =
Qµ

0 + ⌘ (Qµ

1 � Qµ

1 ) = Qµ

0 .

50. “Figure 4: How do results between these di↵erent sample allocation strategies di↵er? For
example, does one approach prioritize minimizing the diagonal entries of the ACV covariance,
versus another better constraining the correlation between di↵erent models?”

See our response to comment 16.

3.2 Line-by-line comments

51. “General (1): The text would benefit from the use of many more commas. I encourage the
authors to, at least, double the number of commas in the manuscript. The general writing
level is good, so I have no doubt that the authors can find sentences that need (or would
benefit) from commas.”

While revising the document, we broke compound sentences into multiple sentences where
appropriate and used additional commas for complex sentences where needed.

52. “General (2): The quality of the figures is low. Color scales should be more informative, units
should be provided, span of y axes should be appropriate for the range of values shown, a scale
in km should be added when showing Humboldt, labels should be added to colorbars, etc. ”

We regenerated all figures in the document to improve readability.
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53. “L4 Here and elsewhere, the term “accuracy” is used very loosely, and encompasses a wide
range of concepts. When used to describe a model degree of fidelity, please always use “fidelity”
since this is the technical term used for the name of the method (MFUQ). When describing
the amount of variance, please rather use precision, which is mathematically the inverse of
the variance.”

We now use precision when referring to the accuracy of a statistic. Instances of its use are
highlighted in red in the revised document. We also use fidelity when approriate.

54. “L4 Replace ice sheet by glacier.”

Fixed.

55. “L5 The problem size is not “representative” of continental scale studies. Please use more
careful wording.”

We now state:

The problem size and complexity were chosen to reflect the challenges posed by future con-
tinental scale studies while still facilitating a computationally feasible investigation of MSE
methods.

56. “L11 prediction should be plural.”

Fixed.

57. “L15 Add report after IPCC.”

Fixed.

58. “L15 Ice sheets are all land-based.”

Thanks. We removed ”land-based”.

59. “L26 Throughout the manuscript, a↵ect should be used as a verb instead of e↵ect.”

Fixed.

60. “L28 Replace inadequacy by uncertainty.”

We now state

In addition, while the comparison of model outputs has been used to estimate uncertainty
arising from model inadequacy

61. “Throughout the manuscript, there is confusion in the wording of “parameters” and “inputs”.
For example, both terms are used interchangeably to characterize the basal friction field. Please
(i) always use the same term for a same meaning, and (ii) clearly define the di↵erence between
parameters and inputs in the Introduction.”

We now always use the term parameters.

62. “L39 There are also methods that have been developed to reduce the problem dimensionality.
Please cite Brinkerho↵ (2022).”

We added a reference to Brinkerho↵ (2022) to Section 3, which discusses Bayesian calibration.
The introduction now focuses on quantifying uncertainty in predictions, whereas the focus of
the cited paper is on Bayesian inference.
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63. “L48 When using the notion of MSE, it is important to clearly define with respect to which
quantity the error is considered. In this study, I believe that the error is considered with
respect to the expec- tation of the mass change from the high-fidelity model with respect to
the posterior distribution of the basal friction field. I realize that this is not straightforward
to include. But I recommend adding a couple of sentences to give the definition, and possibly
explain its meaning.”

We added the following to Section 4.1:

The MSE of an MC estimator, Eq. (18), consists of two terms referred to as the estimator
variance (I) and the estimator bias (II). The bias term of the MSE is caused by using a nu-
merical model, with inadequacy and discretization errors, to compute the mass change. More
specifically, letting Q1 denote the exact value of the statistic of a numerical model with zero
discretization error but non-zero model inadequacy error, and Q0 denote the highest-fidelity
computationally tractable model approximation of Q1, then the bias can be decomposed into
three terms

(E [Q↵(⇥)] � Q) = (E⇥ [Q↵(⇥)] � Q1 +Q1 � Q0 +Q0 � Q) (3)

= (E⇥ [Q↵(⇥)] � Q0) + (Q0 � Q1) + (Q1 � Q) (4)

The first term is caused by using a model f↵ with numerical discretization that is inferior
to that employed by the highest fidelity model f0. The second term represents the error in
the statistic introduced by the numerical discretization of the highest-fidelity model. The
third term quantifies the model inadequacy error caused by the numerical model being an
approximation of reality.

Later in that section we now also state:

Constructing a SFMC estimator of statistics, such as the mean Eq. (16) or variance Eq. (17),
with a small MSE ensures that the value of the estimator will be likely close to the true
value, for any set of model parameters samples. However, when using numerical models
approximating a physical system, constructing an unbiased estimator of Q is not possible. All
models are approximations of reality and thus the model inadequacy contribution Q1 �Q to
the bias decomposition in Eq. (3) can never be driven to zero. Additionally, it is impractical to
quantify the discretization error Q1 �Q0. Consequently, SFUQ methods focus on producing
unbiased estimators of Q0, such that E⇥ [Q↵(⇥)] = Q0.

64. “L50 I think that the authors might not be aware of the study of Bulthuis et al. (2020). Please
consider referring to it.”

The study cited uses a surrogate based multi-fidelity method which has no direct relationship
to the statistical estimation methods discussed in this paper. Moreover, the paper’s reliance
on a surrogate means that it can not be applied to ice-sheet models with large numbers of
parameters as is the focus of this paper. Consequently, we did not cite this paper in the
revised manuscript.

However, we did find the a paper using MFSE on an ice-sheet model Gruber et al. (2022).
This paper, uses one type of ACVMF estimator, i.e. MFMC, to estimate uncertainty in
a steady-state Blatter-Pattyn model of an ice sheet defined on rectangular a rectangular
parallelepiped domain. Specifically, MFMC was used to estimate uncertainty in the L2 norm
of the ice-velocity caused by uncertainty in two parameters, specifically a scalar representing
basal friction and a variable parameterizing the simple bed topography.
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We added a citation to this work in the revised document. Specifically, we now state: Note,
Gruber et al. (2022) previously applied MFSE to a ice-sheet model; however, their study was
highly simplified, as it only quantified uncertainty arising from two uncertain parameters of
an ice-sheet model define on a simple geometric domain.

65. “L61 I find the changes between past and present tense somewhat confusing. I recommend
consistently using a single tense.”

We tried to improve the consistency of tense wherever possible. In revising our paper we used
the following guidelines.

66. “L85 Model simulations do not only capture the “melting”, since they represent the dynamic
response of the glacier as well. This should induce changes in the amount of ice flowing out
of the simulated domain.”

We revised the sentence.

67. “L102-104 In this sentence, the summary of the Stokes and MOLHO models sound identical
to me.”

We now state: In summary, the simpler 2D SSA model is formulated to simulate grounded
ice with significant sliding at the bed or ice shelves, while the 3D MOLHO model is designed
to capture the evolution of ice sheets over frozen and thawed beds, as well as ice shelves.

68. “L113 Replace exorbitant by impractical.”

Fixed.

69. “L121 Provide a reference for q = 1/3.”

Done.

70. “L125. Define the k notation here.”

Done.

71. “L139 The  term is already multiplied by n above, so this multiplication should not be
included in the definition of  . Also, why is there an extra term ⇢g(s � z) in the boundary
condition on �m here compared to the Stokes model?”

Fixed.

72. “L145 @⌃ is not defined.”

Fixed.

73. “Figure 2 Show the meshes side-by-side (+ all comments from General (2)).”

The paper now includes plots of all four meshes side-by-side.

74. “L172 The statement “one of the largest sources of prediction uncertainty” should be quantified
and referenced with a citation.”

Please see response 7.

75. “L180 “we set µ = 0”. I believe that this is only for the prior. It seems strange to me that
the posterior is forced to have zero mean. Please specify.”

We now state: In this study, we adopted a fully distributed approach that treated the friction
as a log-Gaussian random field that is ✓ = log(�) with a Gaussian prior distribution p(✓) ⇠
N (µ, C) with µ = 0.
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76. “L183 There is a switch from C to ⌃ without mentioning it. Specify that ⌃prior is a covari-
ance.”

We now state:

a finite-dimensional discretization of the operator ⌃prior ⇡ C with

77. “L185 Why is the source term only integrated over �g and not over �f ? I would assume that
snow accu- mulation and surface melting should also be computed over the floating parts of
the domain.”

That was a typo, the integrals are over the lower surface of the ice sheet �l = �g [�f . Fixed.

78. “L199 Please specify “this Gaussian prior”.”

Fixed.

79. “L199 Replace “on” by “constrained with”.”

Fixed.

80. “L207 The authors sort of sweep under the rug the possible influence of ocean melt on their
methods. Melt at the boundary can induce strong dynamical responses by a marine-terminating
glacier. It can be expected that di↵erences between models of di↵erent levels of fidelity would
be exacerbated, potentially diminishing the advantages of the MFUQ. Please discuss this more
thoroughly in the Discussion.”

We now state in the discussion: Moreover, introducing more complicated physics in the
highest-fidelity model, such as calving, could degrade the performance of MFSE. For example,
ice melt at the boundary can induce strong dynamical responses in a marine-terminating
glacier, which could potentially reduce the correlation between models that do not capture
this phenomenon.

81. “L213 Please clarify why this assumption is required in the procedure. I believe that it is
needed to compute the g(✓) function represented by the Blatter-Pattyn flow model. And that
without this assumption, the PDE-constrained optimization cannot be solved.”

We now state: Before continuing, we wish to emphasize two important aspects of the cali-
bration used in this study that mean our results must be viewed with some caution. First,
we assumed the observational data to be uncorrelated, as assumed in most ice-sheet inference
studies, including (Recinos et al., 2023; Isaac et al., 2015). Moreover, we also assumed our
Gaussian error model to be exact. However, neither of these assumptions are likely to be
perfect in reality. For example, Koziol et al. (2021) showed that, for an idealized problem,
ignoring spatial correlation in the observational noise can lead to uncertainty being underes-
timated. Second, our optimization of the MAP point was constrained by the coupled velocity
flow equations and steady-state enthalpy equation, which is equivalent to implicitly assume
that the ice is at thermal equilibrium. Theoretically, this assumption could be avoided if the
temperature tendencies were known, but they are not. Alternatively, transient optimization
over long time periods, comparable to the temperature time scales, could be used. However,
this approach would be computationally expensive and would require including time-varying
temperature data (e.g., inferred by ice cores) which are very sparse.

82. “L217 “However, such approaches ignore the uncertainty in the model parameters due to using
a finite amount of noisy observational data”. This statement is incorrect. Observational
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uncertainty can be incorporated in cost functions. See for example Eq. (1) from Goldberg
(2015).”

That’s correct. We also account for the uncertainty in our deterministic inversion to compute
the MAP point. We have rephrased our statement: However, such approaches only use a
single optimized parameter value to represent the uncertainty in the model parameters that
arises from using a finite amount of noisy observational data.

83. “L222 “the likelihood distribution”: the likelihood is a function, not a distribution.”

We disagree. The likelihood is the probability of the data given the parameters ✓ p(y|✓).
However, we have dropped the word distribution from the sentence.

84. “L232 Please add a justification for this choice of ↵.”

We expanded Remark 5.1 to discuss how we heuristically chose parameter ↵.

85. “L233 Please specify “samples from the posterior of log(�)”.”

Fixed.

86. “L249 Again, this statement is likely not obvious to most readers. At first sight, the computa-
tion that is referred to here is a simple addition of two matrices (HMAP +⌃�1) prior explain
why this is intractable would be beneficial.”

We rephrased the sentence and explained why it is intractable to compute HMAP and invert
high-dimensional dense matrices.

87. “L254 and 255 Replace ice sheet by glacier.”

Fixed.

88. “L263 What do the authors mean by “robust”?”

We now state:

SFMC quadrature is a highly versatile procedure that can be used to estimate a wide range
of statistics for nearly any function regardless of the number of parameters involved.

89. “L264 “three-step””

Fixed.

90. “L265 The m superscript should be n (which would preferably be another letter than n, see
Major comment).”

We changed m to n. However, we like to use capital N to denote the number of samples and
lower case n to denote the index n = 1, . . . , N .

91. “L266 Specify “basal friction field”.”

Fixed.

92. “L278 “The bias term of the MSE (11) is caused by using a numerical model, with inadequacy
and discretization errors, to compute the mass change.” Here also, I ask for clarification: bias
with respect to what? If it is with respect to observations, then observational uncertainty should
also be discussed. If it is with respect to the highest-fidelity model, then the latter is also a
“numerical model”, and the sentence is inappropriate. If it is with respect to the unknown
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true dynamical behavior of Humboldt glacier, then there is a philosophical question of how to
compute a mean squared error with respect to a quantity that cannot be known.”

See our response to comment 63.

93. “L287 Typo estimated.”

Fixed.

94. “L296 Two-model”

Fixed.

95. “L316 QoI is not defined.”

Fixed.

96. “L324 Concerning ⇥⇤
↵ [ ⇥� = ;. (i) I believe that [ should be \, (ii) I believe that “for

↵ 6= �” should be specified.”

We have added additional clarifying text.

97. “Eq. (16) Is Cov [Q0,�0] (⇥ACV) a covariance matrix? If so, it should be symmetric. How-
ever, the (0, 1) and (1, 0) entries of the right-hand-side seem di↵erent to me. Please explain.”

The quantity is a covariance matrix. It is symmetric in the arguments µ and �2.

98. “L351 “following standard practice”: provide citation.”

We added a citation

99. “L352 Please add an additional explanatory statement, for example: This involves computing
the high- fidelity and all the low-fidelity models for the same set of samples ⇥ pilot.”

We added the following statement This involves computing the high-fidelity and all the low-
fidelity models at the same set of samples ✓pilot.

100. “L360 Specify “introduce sampling errors”.”

Fixed.

101. “L367 I believe that the same should be specified for ↵ [ �⇤ and ↵ \ �⇤”
Fixed.

102. “L382 There is no verb in this sentence.”

Fixed.

103. “L391 Please add an additional explanatory statement, for example: This can happen if a
subset of the low-fidelity models correlate much better with the high-fidelity model than the
rest of the low-fidelity models, for example.”

We added the statement:

This occurs when a subset of the low-fidelity models correlate much better with the high-
fidelity model than the rest of the low-fidelity models. For instance, some low-fidelity models
may fail to capture physical behaviours that are important to estimating the QoI.

104. “L394 I think this should be estimator types.”

Fixed.
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105. “L394 “model models subsets” is either a typo, or very confusing language.”

We fixed the typo.

106. “L402 was should be were.”

Fixed.

107. “L413 ice-sheet should be glacier.”

Fixed.

108. “L415 Typo an an.”

Fixed.

109. “L424 Specify MALI ice-sheet code with the Blatter-Pattyn flow model.”

See response 182.

110. “Figure 9 I provide here a concrete example of how to help the reader navigate through the
technical details of the study. The caption should specify: “... MAP point (✓MAP in Eq. (9))
... prior variance (⌃prior in Eq. (xxx)) ... posterior variance (⌃post in Eq. (xxx))”. Using
more such links between text and mathematics would really help reading the study.”

We have added symbols and equation references throughout the paper.

111. “L437 “speeds up as it thins”: I think that this statement is incorrect, although I see what
the authors mean. A glacier does not speed up because of thinning. It speeds up because of
increasing surface slope, caused by enhanced thinning at the front. Also, the inverted relation
holds: as a glacier speeds up, it discharges more ice into the ocean, leading to thinning.”

We now state In general, the glacier speeds up as negative surface mass balance causes the
surface to steepen near the terminus. The largest speedup occurs in the region of fast flow in
the north where basal friction is small.

112. “Remark 5.2 I believe that this is an important scientific aspect, which is also somewhat swept
under the rug. In their results, the authors demonstrate that the simulated mass change is
sensitive to high-frequency variability in the basal friction field. As such, the interpolation
method from fine to coarse meshes is potentially very influential. Which interpolation method
has been used here? If it is simple linear interpolation, then all the high-frequency variability
will be smoothed out. This would a↵ect the behavior of low-fidelity models with coarser meshes.
I recommend that the authors try interpolation methods that better preserve high-frequency
variability (nearest neighbor, or maybe polynomial interpolation) and evaluate the impacts on
their results.”

We used the finite element mesh of the high-fidelity model to interpolate the basal friction
from that mesh onto the coarser meshes. We added a note to this e↵ect to the text.

However, we do not believe that a di↵erent interpolation strategy is needed. Our results show
that multi-fidelity models are able to use coarser meshes despite those meshes not being able
to accurately representing the basal friction. See Figure 13 in the original submission. We
make this point on paragraph starting on line 551 in the original submission.

113. “L458 “significant di↵erences”: the word significant is misused here, because no statistical
test has been performed. If a statistical test has been performed, please specify which one,
and provide p-values. Furthermore, by eye, the di↵erences do not seem very large in Figure
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8 compared to the standard deviations. However, this is di�cult to say because of the terrible
choice of y-axes span in Figure 8, which should be changed.”

See response 27.

114. “L460 The meaning of accuracy is not clear here (see comment on L4).”

See response 53.

115. “L476 Provide a citation to support this statement.”

See response 29.

116. “477. Please quantify “the error introduced”. “not insignificant”: this wording is misused
here, because no statistical test has been performed. If a statistical test has been performed,
please specify which one, and provide p-values.”

We now state:

Moreover, we found that the error introduced by using a small number of pilot samples can
be substantial, yet it is typically ignored in existing literature.

117. “L479 Please specify the number of realizations per bootstrap. From the rest of the text, I
believe that it is 20 realizations per bootstrap samples, but this should be clarified explicitly.”

Fixed.

118. “Figure 10 (1) I am puzzled by the very high upper bound on the variance reduction of the
variance. In the ratio, the SFMC variance estimator is the denominator, which should there-
fore be the same for all the bootstrap samples. As such, the very high upper bound is caused
by an unrealistically low estimated ACV variance via Eq. (15). This leads me to the question:
is the approximation on pilot samples via Eqs. (15,20) unstable when using bootstrap with
replacement? In any case, please provide an explanation about the very high value of the 95%
quantile.”

We now report the 10% and 90% quantiles to more clearly show how variance reduction
distributes. We also refer the reviewer to the statement on page 26 “However, the box plots
in Figure 10a highlight that using only 20 samples introduces a large degree of uncertainty
into the estimated variance reduction.” We also refer the reviewer to the statement on page
28 “While, increasing the number of pilot samples decreased variability, we believed that the
benefit of further increasing the number of pilot samples would be outweighed by the resulting
drop in the variance reduction.”

119. “Figure 10 (2) It is not immediately clear why a same model combination would give di↵erent
estimates of the variance reduction, since the ice sheet models are deterministic. If I under-
stand correctly, some of this variability comes from the random bootstrapping within the pilot
samples, and some of the variability comes from the ACV estimator selected (MLMC, MFMC,
ACVMF). Is it possible to quantify how these two sources of variability compare? And in turn,
is it possible to quantify how much of the boxplot spread in Fig. 10a is due to these two factors
versus the fact that di↵erent subsets of low-fidelity models have been selected?”

The variability in the plots is induced entirely by the bootstrapping. This plot was included
to demonstrate that using a small number of pilot samples introduces a non-trivial error.
Each estimator does have a di↵erent estimator variance. However, the box plots just report
the smallest estimator variance, across all estimators, for each bootstrapped sample.
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We now state in the paper: Please note that, while we enumerate over numerous estimators,
each with a di↵erent variance reduction, the variability in the plots is induced entirely by the
bootstrapping procedure we employed. The box plots report the largest variance reduction,
across all estimators, for each bootstrapped sample.

120. “L489 Specify subsets of model combinations.”

Fixed.

121. “L491 the original 20 pilot samples are used.”

Fixed.

122. “L491 Specify were determined useful to include for reducing. (Probably that individually, all
the models would be useful. But they are not relative to including other better-correlated or
computationally- cheaper models.)”

We now state:

Moreover, bootstrapping the estimators also revealed that using all models simultaneously to
reducing the variance of the ACV estimator was not as e↵ective as using a smaller subset of
models.

123. “L496-499 I could not understand the end of this paragraph. It would be helpful if the authors
defined the notion of hierarchical relationship.”

See response 30.

124. “Figure 11. Please specify the number of samples for each case (2, 3, and 4 models).”

The number of samples allocated to each model depends on the bootstrapped realization of
the pilot data to compute the pilot statistics. Consequently, there is no one number that we
can provide.

125. “L520 Again, the meaning of “accurate” is not well-defined.”

We now state: MSE of the final ACV estimator we would construct would be much smaller
than the MSE of a SFMC estimator of the same cost because even the smallest variance
reduction was greater than 14.

126. “L520 “even the smallest variance reduction was greater than 20”. This is not what is shown
in Fig. 11. Certainly not for the cases of 2 and 3 models. And for the case of 4 models,
it seems to me that even the 5% quantile is below 20, suggesting that the smallest value is
definitely smaller than 20.”

See our response to comment 125.

127. “L522 Replace that by which (with a comma, see General comment (1)).”

Fixed.

128. “L523 The three models listed do not include MOLHO⇤
1km,9days. As such, I believe that it

corresponds to the case “4 models” in Fig. 11. I find the discrepancy between the number of
low-fidelity versus the total number of models confusing. Please use a consistent manner to
quantify the number of models used.”

Throughout the paper, We now always include the highest-fidelity model when counting the
number of models used by an estimator. The particular statement highlighted by the reviewer
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had a typo, which we corrected. Three models were chosen despite the estimator being allowed
to use four.

We now state in the paper: Note, an estimator allowed to choose four models may still
choose less than four models, which will happen when some of those models are not highly-
informative.

129. “L525 Please remind the readers where these numbers come from.”

See response 32.

130. “L527 I do not see any right or left panel.”

Fixed.

131. “535 Please specify another estimator (i.e., MLMC or ACVMF).”

Fixed.

132. “In Discussion. This question relates to my curiosity concerning the complementarity between
this method and stochastic ice sheet modeling. Here, the MFUQ samples uncertainty from a
single time-constant uncertain input. In contrast, stochastic modeling (e.g., Verjans et al.,
2022) samples uncertainties between multiple correlated uncertain inputs, and at di↵erent
time steps (for example SMB variability in time is prescribed as stochastic). However, since
the statistical properties of the time-varying stochastic inputs (i.e., the auto-correlation, the
covariance structure and the mean of each stochastic input) can be specified a priori, I suppose
that, in theory, the MFUQ method could be applied. But I wonder if this is practically feasible.
I think that the Discussion would benefit from a short paragraph about this point.”

We added the follwing to the discussion:

This study focused on investigating the e�cacy of using MFSE to accelerate the quantification
of parametric uncertainty using deterministic ice-sheet models. We did not quantify the
uncertainty arising from model inadequacy. Recently Verjans et al. (2022), attempted to
quantify model uncertainty by developing stochastic ice-sheet models designed to simulate
the impact of glaciological processes that exhibit variability that cannot be captured by
the spatiotemporal resolution typically employed by ice-sheet models, such as calving and
subglacial hydrology. The MFSE algorithms presented in this paper can be applied to such
stochastic models, by sampling the model parameters and treating the stochasticity of model
as noise. However, the noise typically reduces the correlation between models and thus the
e�ciency of MFSE (Reuter et al., 2024). Moreover, this study only focused on estimating
the mean and variance of mass change. Consequently, the e�cacy of MFSE may change
when estimating statistics – such as probability of failure, entropic risk, and average value
at risk (Rockafellar and Uryasev, 2013; Jakeman et al., 2022) – to quantify the impact of
rare instabilities and feedback mechanisms in the system. We anticipate that larger number
of pilot samples than the amount used in this study will be needed to estimate such tail
statistics, potentially reducing the e�ciency of MFSE.

133. “L567 Appendix B.”

Fixed.

134. “Figure 13 (1) Changing the color scale here is absolutely necessary.”
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It was di�cult to find a color scheme that more clearly highlighted the di↵erence. However,
we believe the other two plots in Figure 13 supported our argument that the models did not
produce exactly the same predictions. Consequently, we removed the left panel of Figure 13.

135. “Figure 13 (2) If I understand correctly, the basal friction field should be model-independent.
The di↵erences only stem from the interpolation method. This should be specified in the
caption. Furthermore, this Figure seems to confirm my comment about Remark 5.2.”

See response 112

136. “L589 “variance” should be standard deviation here, since Gigaton units are specified.”

Fixed.

137. “L590 “significance”: the word significant is misused here, because no statistical test has been
performed. If a statistical test has been performed, please specify which one, and provide p-
values. Furthermore, even the meaning of “the significance of these numbers” is not clear to
me.”

We now state:

However, the exact values of these statistics were impacted by our modeling choices.

138. “L593 In this study, the basal friction field distribution was derived assuming that all other
variables were perfectly known. In reality, di↵erent sources of uncertainty can mix. Please
cite Gudmundsson and Raymond (2008) and add one or two sentences about this to the
Discussion.”

We added further discussion of the limitations of our approach. For more details, see our
response to comment 80.

139. “L614 Please mention here that this study explores the use of MFUQ for low-order moments
only. One can wonder if this method can be used for statistics such as skewness or quantiles
in the tails of the distribution. This can be particularly important for evaluating the response
to an input that could introduce instabilities and feedback mechanisms in the system, such as
ocean or SMB forcing.”

We have added the following to the discussion:

Moreover, this study only focused on estimating the mean and variance of mass change.
Consequently, the e�cacy of MFSE may change when estimating statistics such as probability
of failure, entropic risk, average value at risk, etc. to quantify the impact of rare instabilities
and feedback mechanisms in the system. We anticipate that larger number of pilot samples,
than used here, will be needed to estimate such tail statistics, thus potentially reducing the
e�ciency of MFSE.

140. “L616 Here, and in many other instances, the authors insist about the fact that MFUQ can be
used at continental scale to estimate uncertainty on ice-sheet mass change statistics. However,
such a statement is not well-supported by their results. Just looking at the results, one can
argue that the MFUQ framework presented here requires 36 CPU days for a single glacier.
Scaling this linearly to the Greenland ice sheet results in O(1 � 10) years of computation.
Thus, there should be a slightly more in-depth explanation of why MFUQ is applicable for
studies at the ice-sheet-scale.”

The following statement from the original paper, is one example that raised the reviewers
concerns:
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“Thus, MFSE reduced the cost of estimating uncertainty from over two and a half years of
CPU time to just over a month, assuming the models are evaluated in serial.”

To address the reviewers concern, we had added the following statement to the discussion.

Note that while applying MFSE to the Humboldt Glacier took over a month of serial com-
putations, the clock time needed for MFSE can be substantially reduced because MFSE is
embarrassingly parallel. Each simulation run in the pilot stage can be run in parallel without
communication between. Similarly, for the exploitation phase. Moreover, each simulation can
be computed in parallel. Consequently, while using MFSE for continental scale UQ studies
may require years of serial CPU time, distributed computing could substantially reduce this
cost, potentially one to two orders of magnitude. The exact reduction would depend on the
number of CPUs used.

141. “L618 “substantially”: please quantify and provide a citation.”

We now state: Mass loss from ice sheets is anticipated to contribute 10s of cm to sea-level
rise in the next century under all but the lowest emission scenarios (Edwards et al., 2021).

142. “L638 I do not understand the underlying meaning of this sentence. Please expand or remove
it.”

We now state:

Moreover, while the utility of the lower-fidelity models ultimately chosen for MFSE were not
clear at the onset of the study, we were still able to estimate uncertainty at a fraction of the
cost of single fidelity MC. This was achieved despite the need to conduct a pilot study that
evaluated all models a small number of times.

143. “L641 Antarctica and Greenland.”

Fixed.

144. “L661 Again, the meaning of accurate is unclear here. It would be more correct to explain
that the approximation level depends on the variance retained in the truncation.”

We now state: In order to compute a low-rank approximation of the matrix T we truncated the

spectral decomposition of W = U
⇣
(⇤+ I)�

1
2 � I

⌘
U> by discarding the eigenvalues �i such

that
���1 � 1p

�i+1

��� ⌧ 1. This ensured that the low-rank approximation of T well approximated

T in the spectral norm sense.

145. “L668 Please define K here as well. Otherwise, the reader needs to go back to the main text.”

Fixed.

146. “L674 I do not see why the representation is “bi-Laplacian”. I wonder if this term is not
inadvertently misused here. Could this please be clarified? I believe that applying the Laplace
approximation has no link with the bi-Laplacian operator, but sorry if I am misunderstanding
here.”

The bi-laplacian is used to define the prior-distribution of the log normal basal friction field.
We dropped the mention of bi-laplcian to avoid confusion.

147. “L685 Typo: in this study”

Fixed.
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148. “L686 Typo: modes”

Fixed.

149. “L700 I believe that MF estimator should be ACV estimator”

Fixed.

150. “L701 I believe that MFUQ estimator should be ACV estimator”

Fixed.

151. “L702 This should be: The mean and variance bootstrapped (...).”

Fixed.

152. “L706 This should be: the uncertainty in the mean mass change (...)”

Fixed.

153. “L706-708 Please refer to Figure B5.”

Fixed.

4 Reviewer 3 (Dan Goldberg)

4.1 General comments

“The manuscript, An evaluation of multi-fidelity methods for quantifying uncertainty in projections
of ice-sheet mass change by Jakeman et al, uses a new computational approach to determining the
posterior uncertainty of ice mass change in a glacier forecast conditioned on observational data
and uncertainty. The main contribution is a Multi Fidelity Uncertainty Quantification (MFUQ)
scheme which samples from a probability distribution (see below) and provides an inexpensive means
of Monte Carlo variance reduction in the calculated statistics that requires far less simulation time.
This is achieved through generating ensembles from models that are of lower fidelity (coarser reso-
lution / longer time steps) whose dependencies on the input parameters are similar. The probability
distribution which is sampled – that of the sliding parameter conditioned on observations and model
physics – would be too expensive to find via Monte Carlo methods. Rather, a method introduced
by others in the literature – which approximates this posterior as Gaussian and finds a low rank
approximation to the inverse covariance matrix to make the problem tractable – is used.

The methodology introduced in the paper – the MFUQ scheme – is fairly well described and
seems quite useful, and its results deserve to be shown.

However, there are a number of major issues I have with the manuscript. Aside from a num-
ber of writing issues, such as inconsistent statements and introducing of terms and symbols without
definition or explanation (see specific comments), I feel that the messaging of the paper in the intro-
duction is not in line with what the authors have actually done. Furthermore they have downplayed
or overlooked recent works in the literature – works which, in some cases, bring the methodology of
this study into question. I will highlight these in general comments below.

Finally I should point out first though that it monte carlo methods are not my area of expertise. I
have some specific comments about certain things that looked as thought they might be typos or need
more explanation. Largely however I do not have much to say about the actual MFUQ methodology
and its presentation, and I hope that other referees can assess it better. ”
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4.2 High-level comments

154. “The paper sets out to deal with parametric uncertainty, which is the case. But the introduc-
tion is written in a way that makes it seem that MFUQ is used to solve the “full” problem –
that is, quantifying the probability density of mass change conditioned on the model and ob-
servations, which can be termed p(Q|m,U) where Q is the mass change, m is the model and
U is the observations. But in truth a di↵erent method (Hessian-based) was used to find the
posterior density of the frictional field q, and then this was sampled from to find the posterior
of Q i.e. p(Q|m, q)p(q|m,U) – and p(Q|q) is the only component being determined by MFSE.
I think this could be potentially very misleading and give the impression that MFSE is capable
of the “full” problem when from the results of the paper it definitely is not. This is very
important: given the newness of the fields of ice-sheet modelling and ice-sheet uncertainty
quantification there is extensive misunderstanding about which problems can be tackled by
sampling methods and which require alternative methods. Although this is somewhat covered
in lines 61-71 of the manuscript, the passage requires familiarity with the field and with both
MC and Hessian-based UQ. It needs to be much more clear – with mathematical formality –
which distribution is being quantified using MFSE.”

We now state the following in the introduction:

“This study investigated the e�cacy of using MFUQ methods to reduce the computational
cost needed to accurately estimate statistics summarizing the uncertainty in predictions of
sea-level rise obtained using ice-sheet models parameterized by large numbers of inputs.” To
facilitate a computationally feasible investigation, we focused on reducing the computational
cost of estimating the mean and variance of mass change in the Humboldt Glacier in northern
Greenland. This mass change was driven by uncertainty in the spatially varying basal friction
between the ice sheet and land mass, under a single climate change scenario between 2007
and 2100. Specifically, letting f denote the mass change at 2100 computed by a mono-layer
higher-order (MOLHO) (Dias dos Santos et al., 2022) model M, ✓ denote the parameters
of the model characterizing the Basal friction field, and y denote the observational data, we
estimated the mean and variance of the distribution p(f | M,y) = p(f | ✓)p(✓ | M,y) in
two steps. First, using a piecewise linear discretization of a log-normal basal friction field, we
used Bayesian inference to calibrate the resulting 11,536 dimensional uncertain variable to
match available observations of glacier surface velocity. Specifically, we constructed a low-rank
Gaussian approximation (Isaac et al., 2015; Recinos et al., 2023; Barnes et al., 2021; Johnson
et al., 2023; Perego et al., 2014) of the Bayesian posterior distribution of the model parameters
p(✓ | M,y) using a Blatter-Pattyn model (Ho↵man et al., 2018). Second, we estimated the
mean and mass of glacier mass change using 13 di↵erent model fidelities (including the highest-
fidelity model), based on di↵erent numerical discretizations of the MOLHO and shallow-shelf
(SSA) physics approximations (Morland and Johnson, 1980; Weis et al., 1999).

155. “The manuscript is also misleading about contributions in this paper versus in the literature.
Specific examples are given below, but the manuscript does not acknowledge previous authors’
attempts to quantify the uncertainty of high-dimensional parametric uncertainty. In particu-
lar, a recent paper in The Cryosphere (Recinos et al, 2023, hereby shortened as BR23) has
been overlooked. The authors can certainly be forgiven for this of course as the paper came out
only last year, but it is extremely relevant to many of the assumptions and calculations within
the manuscript (and is mentioned extensively in the specific comments below). Additionally,
based on this paper there are several assumptions and/or approximations that give me serious
reservations about this paper’s results – these are easily identifiable in the specific comments
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where BR23 is mentioned.”

We apologize for missing the work in BR23. We agree that the paper is highly relevant to
this manuscript. We have edited the paper to address the reviewers reservations about the
results we present. First, in our response to comment 156 we show that despite linearizing
when computing the posterior distribution of the parameters, the parameter-to-QoI map is
nonlinear. Second, we acknowledge that BR23 presents a more rigorous approach to setting
the hyper-parameters of the prior imposed on the Basal friction field which is then used during
Bayesian inference and we now state the positive benefits of this approach in multiple places
in our paper. However, aside from our approach for choosing the prior hyper-parameters, the
method we used for Bayesian inference, which is also used in BR23, is state-of-the-art in the
ice-sheet community. Moreover, the goal of our study was to demonstrate the e�cacy of MFSE
on a ice sheet problem that has challenges representative of papers used to predict ice-sheet
evolution and not to produce scientifically meaningful values for sea-level rise. We detail the
limitations of our study in the discussion. Finally, we do not believe our approach and BR23
are mutually exclusive. Indeed, we believe that when adjoints are available in a ice sheet code,
then the linearization approach in BR23 could be used to provide a highly-computationally
e�cient and accurate low-fidelity model that could be used to further increase the accuracy
and computational gains of MFSE reported in this manuscript.

We now state in the introduction:

Most recent studies have focused on estimating uncertainty in the predictions of ice-sheet
model with small numbers of parameters, e.g. (Nias et al., 2023; Ritz et al., 2015; Schlegel
et al., 2018; Jantre et al., 2024), despite large numbers of parameters being necessary to
calibrate ice sheet model to observations (Barnes et al., 2021; Johnson et al., 2023; Perego
et al., 2014). However, recently Recinos et al. (2023) used the adjoint sensitivity method to
construct a linear approximation of the map from a high-dimensional parameterization of un-
certain basal friction coe�cient, and ice sti↵ness, to quantities of interest (QoI) – specifically
the loss of ice volume above flotation predicted by a shallow-shelf approximation model at var-
ious future times. The linearized map and the Gaussian characterization of the distribution
of the parameter uncertainty was then exploited to estimate statistics of the QoI. While this
method is very computationally e�cient, linearizing the parameter-to-QoI map will introduce
errors (bias) into estimates of uncertainty, which will depend on how accurately the linearized
parameter-to-QoI map approximates the true map (Koziol et al., 2021). Moreover, the ap-
proach requires using adjoints or automatic di↵erentiation to estimate gradients, which many
ice-sheet models do not support. Consequently, in this study we focused on Multi-fidelity
statistical estimation (MFSE) methods that do not require gradients.

We removed our claim that we were the first to compute uncertainty in QoI when using
Bayesian inference to calibrate a large number of model parameters. We now state in the
introduction:

Our study makes two novel contributions to previously published glaciology literature. First,
it represents the first application of MFSE methods to quantify the impact of high-dimensional
parameter uncertainty on transient projections of ice-sheet models defined a realistic physical
domains. Our results demonstrate that MFSE can reduce the serial computational time
required for a precise UQ study of ice-sheet contribution to sea-level rise from years to a
month. Note, Gruber et al. (2022) previously applied MFSE to a ice-sheet model; however,
their study was highly simplified, as it only quantified uncertainty arising from two uncertain
parameters of an ice-sheet model define on a simple geometric domain. Second, our paper

28



provides a comprehensive discussion of the practical issues that arise when using MFSE, which
are often overlooked in all MFSE literature.

This statement also includes reference to an earlier attempt at using MFSE with ice-sheet
models. Please refer to our response to comment 64 for more details on the limitations of
that study.

156. “The underlying premise of the paper is that, given a Hessian-based approximation of the
posterior parameter density has already been carried out, “traditional” means of sampling from
this posterior density is too expensive. But another such approach – using the linearization
of the mass change model f(q) (using either Automatic Di↵erentiation or some other form of
di↵erentiation) to project the posterior uncertainty of q onto the quantity of interest – exists,
and is not at all mentioned. Playing devil’s advocate, such an approach assumes near-linearity
of f(q), but linearity has already been assumed in the posterior calculation of q. Moreover at
least two prior papers – Isaac et al (2015) and BR23 – have used this method (see eq. 24
of Isaac et al 2015, or eq. 15 of BR23), and the latter comprehensively tested the linearity
assumption. Given this, I would expect acknowledgement of this very relevant and related
approach, its drawbacks and benefits, and fit (or lack thereof) to the current problem”

Again, we apologize for missing the work in BR23. We agree that the method we used to
compute the Laplace approximation of the posterior (also used in Isaac et al (2015) and BR23
is only exact if the model used to predict the observations is linear. This approach was only
computationally feasiable for us (and in the other papers) because we could solve adjoint
equations to compute the action of the Hessian of the misfit (between the model and the
observations) on a vector using our steady-state model implemented in MALI. However, our
codes do not have the ability to solve adjoint equations to compute gradients of the transient
model used to predict mass change at year 2100. Consequently, we could not linearize the
parameter-to-QoI map as done in BR23. A forward finite di↵erence approximation of the
gradient would require 11,537 model evaluations. However, if the parameter-to-QoI could
be linearized computationally e�ciently, using it to compute the mean and variance of mass
change would introduce an error because the map is nonlinear see Figure 1). Specifically,
Figure 1) plots one-dimensional sweeps through the 11,536 dimensional parameter space used
to represent Basal friction computed using the lowest fidelity model in our 13 model ensem-
ble, that is SSA3km,365days. Each sweep is along a random direction through the parameter
space that pass through the origin (which corresponds to using the mean friction field). The
extremes of the sweep correspond to ±�, where � is the standard deviation of the posterior
along the sweeps. It is clear that the parameter-to-QoI map is nonlinear but because we can-
not linearize the map we cannot compute the error introduced when using it to estimate the
mean and variance of mass change. However, if a linearized map was available we could use
it as an additional computationally e�cient low-fidelity model when using MFSE to compute
statistics. The exact benefit of doing so would depend on the correlation between the new
model and the other models we used in the paper.

We added the following remark to Section 5.1 of the revised manuscript:

The models we used here are all di↵erent numerical discretizations of the two di↵erent physics
models. However, in the future we could also use alternative classes of low-fidelity models
if they become available. For example, we could use linearizations of the parameter-to-QoI
map (as done in (Recinos et al., 2023), if our MOLHO and/or SSA codes become capable of
e�ciently computing the gradient of the map by solving adjoint equations or by using auto-
matic di↵erentiation. Such an approach would require only one non-linear forward transient
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solve of the governing equations followed by lone linear solve of the corresponding backward
adjoint. Once constructed, the linearized map could then be evaluated very cheaply and used
to reduce the MSE of the MFSE estimators, provided the error introduced by the lineariza-
tion was not substantial. Other types of surrogates could also be used in principle, however,
the large number of parameters used pose significant challenges to traditional methods such
as the Gaussian processes used in Jantre et al. (2024). Recently developed machine-learning
surrogates (Jouvet et al., 2021; Brinkerho↵ et al., 2021; He et al., 2023) could be competitive
alternatives to the low fidelity models considered in this work.
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Figure 1: One-dimensional sweeps through the 11,536 dimensional parameter space used to repre-
sent Basal friction. Each sweep is along a random direction through the parameter space that pass
through the origin (which corresponds to using the mean friction field). The extremes of the sweep
correspond to ±�, where � is the standard deviation of the posterior along the sweeps.

We did not include Figure 1 in the revised manuscript because we believe it distracts from
the main message of the manuscript, that is that MFSE can substantially reduce the com-
putational cost of computing statistics of prediction uncertainty. However, we did add the
following statements and plots.

The left panel of Figure 13 (Figure 2 in this response document) plots the time evolution of
mass loss predicted by the three models selected by our final ACV estimator. The right panel
plots the distribution of mass loss at the final year, 2100, computed using the SSA1.5km,365days

model. The bias of the SSA1.5km,365days is clear in both plots, for example, in the right panel
the mean of the blue distribution is not close to the mean computed by the ACV estimator.
However, we must emphasize that, by construction, the ACV estimate of the mean mass loss,
and its variance, is unbiased with respect to the highest-fidelity model MOLHO1km,9days. We
also point out that while our Laplace approximation of the posterior is a Gaussian, the push-
forward of this distribution through the SSA1.5km,365days model model is nonlinear. Specif-
ically, the push-forward of a Gaussian through a linear model remains Gaussian; however,
in this case, the right tail of the push-forward density is longer than the left tail, indicating
that it is not Gaussian. This suggests that the mapping from the basal friction parameters
to the quantity of interest is nonlinear. We were unable to compute reasonable push-forward
densities with the simulations obtained from the other two models used to construct the ACV
estimator due to an insu�cient number of simulations. However, we believe it is reasonable
to assume that the parameter-to-QoI map if these models is also non-linear.
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Figure 2: (Left) The evolution of mass loss predicted by the three models we used in our final
ACV estimator, corresponding to each of the simulations used to construct the estimator. (Right)
The probability of mass loss computed using the SSA1.5km,365days model. The black vertical line
represents the ACV estimate of the mean, while the gray shaded region represents plus and minus
2 standard deviations, again computed by the ACV estimator.

4.3 Specific comments

157. “L23-25. This is a good outlay of the di↵erent sources of uncertainty. What is missing
is a definitive statement that the only type of uncertainty being quantified in this paper is
parametric uncertainty.”

We now state explicitly that we are quantified parametric uncertainty in the introduction.
We also now point out that model form error and model discretization error impact the bias
of our MFSE estimates of mean and variance in section 4. See our response to comment 63
for details.

158. “L26-27. “but the impact of discretization errors has not been explicitly considered with other
sources of uncertainty”. And it has not in this study either, right? As I understand it the
MFUQ scheme is solely to estimate parameter uncertainty of the 1km, 9-day MOLHO model
– it did not quantify disc. uncertainty despite using di↵erent discretizations.”

You are correct. We apologize for our sloppy statement that may have led reviewers to believe
we were quantifying discretization uncertainty. We have edited the introduction accordingly.
See our responses to comments 155 and 63.

159. “L37-41. This is a good place to cite works such as Isaac et al 2015 (and various papers by
Noemi Petra e.g. Petra et al 2013), and BR23.”

See our response to comment 155 that explains our changes to the introduction intended to
clarify which studies are low-dimensional and which are high-dimensional.

160. “L60-61. As noted above, quantifying the impact of a high-dimensional parameterization of
basal friction on long-term projections is not novel (cf. BR23 – unless you are distinctly
saying that 40 years is not long-term and 80 years is!)”

We were not aware of BR23 and now we have read agree that quantifying the impact of
a high-dimensional parameterization of basal friction on long-term projections is not novel.
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Consequently, we removed that claim and now state in the introduction: We discussed the
changes made to the introduction in our response to comment 155.

161. “L62-64. As noted above, Isaac et al, whose methodology you cite and use, arguably did this.”
We do not think that Isaac et al “quantified the impact of a high-dimensional parameteriza-
tions of basal friction on long-term ice-sheet projections” as stated in the first sentence on
line 62. However, we agree we are using the method from Isaac et al for inference. We hope
our revised introduction clarifies these facts.

162. “L66. I’m not sure why you include Isaac 2015 in a list of papers using low-dimensional
parameterisations – they used O(106) parameters in their basal sliding parameterization.”

The original manuscript stated “In contrast, previous UQ studies (Nias et al., 2023; Ritz et
al., 2015; Schlegel et al., 65 2018; Jantre et al., 2024) only employed low-dimensional param-
eterizations despite high-dimensional parameterizations being necessary to calibrate ice-sheet
models to observational data (Barnes et al., 2021; Isaac et al., 2015; Johnson et al., 2023;
Perego et al., 2014)”. We cited Isaac et al to point out that high-dimensional parameteri-
zations are needed to calibrate ice-sheet models well not saying they used a low-dimensional
parameterization. Again we hope the new introduction clarifies this point.

163. “Fig 2, 3, 5, 6, 7, and 13: you need to show the coordinate axes in all visualisations of
the model domain – and there should be one figure showing the placement of Humboldt in
Greenland.”

We regenerated all figures in the revised document to improve readability.

164. “L181: “covariance” – prior or posterior?”

We changed it to prior covariance.

165. “L190-193. I have deep concerns about your parameter choices. Firstly, what is the pointwise
variance? Secondly, how did you arrive at this correlation length as suitable – on what basis?
I do not see any physical reasoning leading to it. You are saying that the data essentially
does not need to constrain variability on a scale smaller than this, which I don’t think is
an accurate statement. BR23 chose far smaller autocorrelations ( 3km) using some degree
of physical inference, and moreover showed that it was necessary to give reasonable values of
posterior uncertainty (see comment on TABLE 1 regarding this assessment), and it is possible
that in choosing such large numbers you are making the posterior uncertainty artificially small
by choosing an overly-informative prior. This may be why you only needed ¡ 1000 eigenvalues
to represent the posterior as shown in the appendix. (see BR23 for details.)”

Thank you for pointing us to the reference BR23. We believe it provides a computationally
tractable method for tuning the hyper-parameters of the prior when automatic di↵erentiation
(AD) is available with an ice-sheet code. Unfortunately, our codes do not have AD capabilities
for transient simulations. (We do have them for steady state simulations. Indeed we use AD
to compute the action of the hessian when constructing the Laplace approximation of the
posterior.) Because we did not have AD, we had to tune the hyper-parameters heuristically.
We informally varied the hyper-parameters of the prior and used our judgment to pick a
correlation length and variance that resulted in a posterior MAP point that was able to match
the observations well. We have expanded Remark 5.1 to better discuss how we heuristically
choose the parameters: “In this study we used our domain experience to determine the best
values of the prior hyper-parameters �, �, ⌘ reported in Section 2.3 and the likelihood hyper-
parameter ↵ reported in Section 3. However, varying these hyper-parameters, would likely
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change the estimates of uncertainty in ice-sheet predictions produced by this study. Similar
to previous studies (Isaac et al., 2015), we did not investigate these sensitivities extensively.
We heuristically chose the prior hyper-parameters so that the prior samples would have a
variance and spatial variability that we deemed inline with our experience. Further, we found
that reducing ↵ substantially from the value we ultimately used while keeping the prior hyper-
parameter fixed prevented the MAP point from capturing the high-frequency content of the
basal friction field needed to accurately match the observed surface velocities. Future studies
should investigate the sensitivity of mass change to the values of the hyper-parameters more
rigorously using an approach such as the one developed by Recinos et al. (2023).”

Despite not using the rigorous tuning procedure in BR23, we believe that our calibration is
still close to state-of-the-art and is su�cient to demonstrate the ability of MFSE to reduce
the computational cost of computing uncertainty. Moreover, the results in BR23 have further
motivated us to consider adding AD capabilities to our models for future studies. However,
doing so will require substantial human hours and so will not be feasible for this paper.

166. “L205. How did you generate mass balance? Did you run a regional climate model that
incorporates firn and snow processes? If so, say so. Did you use a parameterization? If so,
state it and the source.”

We added the following to Section 2.4: “Second, the MIROC5 climate forcing from the CMIP5
for the Representative Concentration Pathway (RCP) 2.6 scenario was used to generate the
surface mass balance (di↵erence between ice accumulation and ablation) fH and drive the
ice-sheet evolution from 2007 to 2100.” This surface mass balance was provided by the Ice
Sheet Model Intercomparison Project for CMIP6 (ISMIP6), which down-scaled output from
Earth system models using the state-of-the-art regional climate model MAR (Nowicki et al.,
2020).

167. “L231. On what basis do you assume they are uncorrelated? The fact that the products are not
posted with spatial correlations of error is not a reason – this is simply too di�cult for them
to calculate. Please highlight this, and state what the consequences of such an assumption
could be for estimating posterior uncertainty.”

We have added the following statement.

In this study we assumed that the observational data are independent, as also assumed in
(Recinos et al., 2023) Moreover, we also assumed our Gaussian error model to be exact.
However, neither of these assumptions are likely to perfect in reality. Consequently, our
results must be viewed with some caution. For example, Koziol et al. (2021) showed that,
for an idealized problem, ignoring spatial correlation in the observational noise can lead to
uncertainty being underestimated.

168. “Section 4: in general I think this section should be read over very carefully to look for typos
and variables introduced without definition. Ill mention several below but these sections (the
ones that I read closely) seem to have been written hastily.”

We have corrected mistakes pointed out by you and the other reviewers as well as some
additional ones. We will also spend considerable e↵ort to improve section 4 in the revised
manuscript.

169. “L263, mean Qµ: mean of what?? And what is Q? and are these “true” statistics or estima-
tors since they have no subscript?”

We have made extensive edits to this section, including clarifying what Qµ represents.
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170. “L265. Try to be consistent with tense throughout, and definitely within a sentence: “The
second step simulates the model at each realization ... and computed the mass change..””

We have corrected tense here and throughout the document. See comment 66.

171. “L271: “Any MC estimator Q” – do you mean Qµ
↵ or Q�

2

↵ , or both or neither?”

See response 40.

172. “Eq 11 – can you show how this is derived? At first glance it looked similar to the identity
E[(X � E[X])2] = E[X2] � (E[X])2 but I could not derive it using similar reasoning.” The
right most expression is correct. However the middle expression had a typo which has been
corrected. You can find a derivation of the final expression for bias in one of our software
tutorials. https://sandialabs.github.io/pyapprox/auto_tutorials/multi_fidelity/

plot_monte_carlo.html. We did not include this proof in the paper.

173. “L279 did you mean MSE (II), rather than MSE (11)?”

We mean Eq. 11. All in text equation references in the paper have been changed from
(EQNO) to Eq. (EQNO).

174. “L279: I don’t believe that all of these sources of uncertainty go into the bias term. My
interpretation is that, for the purpose of your MFUQ, you are given a density of q arising
from the Isaac methodology. You then have a deterministic function fa(X) which is given by
your high fidelity model and its discretization, and is therefore deterministic. You are seeking
properties of the probability distribution induced by fa and the only actual uncertainty is how
fast the MC converges. Model uncertainty and discretization uncertainty, while very real, are
not accounted for in such a calculation.”

Line 279 stated “The bias term of the MSE (11) is caused by using a numerical model, with
inadequacy and discretization errors, to compute the mass change.”

We hope that our response to comment 63 answers this question.

175. “L280 what does MSE (10) mean?”

We now say Constructing a SFMC estimator with a small MSE, Eq. (10), ...

176. “L280 ensures, for any set of model input samples,”

Fixed.

177. “First eq in 4.2.1 (not numbered) – is the 2nd term in brackets not divided by N1?” You are
correct. See response 15.

178. “L316 – QoI not defined previously.”

We now define QoI as quantities of interest the first time it is introduced.

179. “L324 – for the union of these sets to be null, both need to be null. Should it be an intersection
symbol?”

We fixed this mistake.

180. “Eq 18. You seem to be estimating these statistics using straighforward (Näıve) MC. Why
is this OK given the whole thrust of your study is that MC is too expensive to apply to the
statistics of the ice model?”
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You raised an important aspect of MF UQ. All current theory assumes that quantities such
as (18) in the original manuscript are known exactly. However, in practice they must be
estimated using estimates such as (18), typically with a small number of so called pilot
samples. An important contribution of this paper is to show that estimating these quantities
introduces an error that can be non-trivial. We also provide a strategy for estimating the
impact of this pilot error. See figures 10a, 11, a, b and c in the initial submission. In the
initial submission we stated the following in the second paragraph after equation (18).

“Unfortunately, using a finite P introduces errors into (16) and (17), which in turn induces
error in the ACV estimator covariance. This error can be decreased by using a large P but
this would require additional evaluations of expensive numerical models, which we were trying
to avoid. Consequently, in this study we investigated the sensitivity of the number of pilot
samples on the accuracy of ACV MC estimators.”

181. “L418-422. State # of elements In models”

We now state:

The number of elements associated with the four meshes with characteristic element sizes
1km, 1.5km, 2km and 3km, were 2611, 9238, 13744, 22334, respectively. The number of
nodes for the same four meshes were 1422, 4846, 7154, 11536.

182. “L424 in the 1st para of 2.4 you state you use FEniCS. MALI is a C++ model with Fortran
libraries and not, to my knowledge, written with fenics. Which model(s) did you use???”

We have added the following to the paper to Section 5.1:

Lastly, note that we used a di↵erent model, to the 13 described above, for the Bayesian cali-
bration of the basal friction parameters. Specifically, we used the C++ code MALI (Ho↵man
et al., 2018), which can solve the Blatter-Pattyn equations (Pattyn, 2003; Dukowicz et al.,
2010) and compute the action of the Hessian on a vector. MALI e�ciently computed these
Hessian-vector products, needed to compute our Laplace approximation of the posterior in
Eq. (14), by solving the adjoint equations for the steady state Blatter-Pattyn equations. How-
ever, SSA equations (Section 2.1.3) are not currently implemented in MALI and the MOLHO
(Section 2.1.2) equations have only recently been implemented (after the simulations for this
work were perfomed). Consequently, we used FEniCS (Alnæs et al., 2015) to implement both
MOLHO and SSA to ensure that the relative computational timings of these models would
be consistent. Solving the Blatter-Pattyn model using the C++-based MALI code and solving
MOLHO and SSA using the python based FEniCS, would have corrupted the MFSE results.
Moreover, implementing SSA in MALI would be time consuming because it is currently only
used to solve 3D models and not 2D models, such as SSA. Indeed, a partial motivation for
this study was to to determine the utility of implementing the SSA equations in MALI.

183. “Fig 10 – I might be misunderstanding the methods but shouldn’t there be units??”

Figure 10a plots a dimensionless quantity it is the ratio (variance of the MC estimators) of
two quantities with the same units. We added Eq (30) to clarify the quantities plotted.

184. “Table 1. This value is presented without validation. It is possible to do a “sanity check”.
BR23 use 2 essentially independent measurements of velocity (ITS LIVE and MEaSUREs)
to invert for parameters and simulate mass loss. If the di↵erence seen is of almost negligible
probability under the calculated posterior for mass loss - then there must be an issue with the
calculated posterior. You are capable of doing this as well ...”
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We do not have access to two di↵erent observational data sets for the Humboldt Glacier for
the year 2007. We used the best available data set (MEaSUREs) for our Bayesian calibration
starting in 2007. Yet, while ITS LIVE velocity data exists for this year, its coverage at
Humboldt is limited, so we could not perform an inversion using ITS LIVE data alone.

Additionally, while such a sanity check is indeed valuable, computing exactly the correct
posterior is not the focus of this paper. Rather the goal of this paper is to demonstrate the
utility of using MFSE to quantify uncertainty in the predictions of ice sheet models using a
problem setup (data, calibration etc.) that is close to what is used in practice by the best
papers in the literature, e.g. in BR23. Changing the prior would likely change the exact
values of mass change we reported, but it would likely not substantially change the variance
reduction we observed. The variance reduction of a statistic is the ratio of the single-fidelity
MC estimator variance divided by the MFSE estimator variance. Thus, when estimating the
mean mass change, the exact value of the statistic cancels. We have expanded the discussion
of the limitations of our study in the summary and conclusions sections.

185. “L550. “the SSA model was not..” can you provide an example or evidence of this?” The
original manuscript stated: “While the highest-fidelity model MOLHO was capable of captur-
ing ice-sheet dynamics that the SSA model was not, that is vertical changes in the horizontal
velocities,” Moreover, Figure 13 in the original manuscript shows that these two model pro-
duce di↵erent estimates of thickness at the final time. A reference to figure 13 has been placed
in the discussion.

186. “L565. Im confused – I thought that the MFUQ was needed as you are sampling from a
distribution of 600 dimensions (the number of Eigenvals retained in the Hessian based UQ).
If you have only 10 dimensions can you not use standard (näıve) MC?”

The original submission stated. “Our study used a high-dimensional representation of the
basal friction field that is capable of capturing high-frequency modes, however it has been com-
mon in previous studies to use lower-dimensional parameterizations. Consequently, we inves-
tigated the impact of using a low-frequency/lower-dimensional representation of the friction
field on the e�ciency of ACV estimators using ice-sheet models. Specifically, we estimated
the mean and variance of the mass change using a 10 dimensional Karhunen Loeve expansion
(KLE) to represent the posterior uncertainty of the basal friction field (complete details are
presented in B). ”

Note, while we retained 1125 modes from the prior-preconditioned hessian, computing uncer-
tainty in the QoI still required sampling the 11,536 variables used to parameterize the friction
field. Only the KLE study required sampling 10 variables. Moreover, the dimensionality of
the parameter space does not explicitly e↵ect the MSE of a MC estimator, see equations (11)
and (12) in the original manuscript. We explored the use of MFMC because the number
of variables parameterizing the friction field was 11,536 (reported in the introduction of the
original submission) prevented us from using surrogate methods. We also do not have the
capability to compute gradients of mass loss using adjoint methods such as done in BR23.
Our investigation of the impact of using a 10 term KLE was to show that one must avoid the
temptation to use a lower-dimensional parameterization of the friction field, to enable the use
of surrogates or increase the performance of MFSE, as doing so severely underestimates un-
certainty. BR23 shows this very well and we have added a citation to that paper. Specifically,
we now state in the discussion

(Recinos et al., 2023) also demonstrated that lower-dimensional parameterizations of uncer-
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tainty cause uncertainty to be estimated.

187. “L567: Appendix B”.

Fixed.
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Abstract. This study investigated the computational benefits of using multi-fidelity statistical estimation (MFSE) algorithms

to quantify uncertainty in the mass change of Humboldt Glacier, Greenland, between 2007 and 2100 using a single climate

change scenario. The goal of this study was to determine whether MFSE can use multiple models of varying cost and accuracy

to reduce the computational cost of estimating the mean and variance of the projected mass change of a glacier. The problem

size and complexity were chosen to reflect the challenges posed by future continental scale studies while still facilitating a5

computationally feasible investigation of MFSE methods. When quantifying uncertainty introduced by a high-dimensional

parameterization of basal friction field, MFSE was able to reduce the mean-squared error in the estimates of the statistics by

well over an order of magnitude when compared to a single-fidelity approach that only used the highest-fidelity model. This

significant reduction in computational cost was achieved despite the low-fidelity models used being incapable of capturing

the local features of the ice flow fields predicted by the high-fidelity model. The MFSE algorithms were able to effectively10

leverage the high correlation between each model’s predictions of mass change, which all responded similarly to perturbations

in the model inputs. Consequently, our results suggest that MFSE could be highly useful for reducing the cost of computing

continental scale probabilistic projections of sea-level rise due to ice-sheet mass change.

1 Introduction

The most recent Intergovernmental Panel on Climate Change (IPCC) report predicts that the melting of ice sheets will con-15

tribute significantly to future rises in sea level (Masson-Delmotte et al., 2021), but the amount of sea-level rise is subject to a

large degree of uncertainty. For example, estimates of the sea-level rise in 2100, caused by melting of the Greenland Ice Sheet,

range from 0.01 m to 0.18 m. Moreover, projections of the Antarctic Ice Sheet’s contribution to sea-level rise are subject to

even larger uncertainty (Bakker et al., 2017; Masson-Delmotte et al., 2021; Edwards et al., 2019). Consequently, there is a

strong need to accompany recent improvements in the numerical modeling of ice-sheet dynamics with rigorous methods that20

quantify uncertainty in model predictions.
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Accurately quantifying uncertainty in ice-sheet predictions requires estimating the impacts of all sources of model variability.

Prediction uncertainty is caused by three main factors: 1) the inadequacy of the governing equations used by the model to

approximate reality; 2) the errors introduced by the numerical discretization used to solve the governing equations; and 3)

the uncertainty in model parameters used to parameterize future climate forcing and the current condition of the ice sheet,25

among others. Several studies have demonstrated that model discretization significantly affects model predictions (Cornford

et al., 2013; Durand et al., 2009), but the impact of discretization errors has not been explicitly considered with other sources

of uncertainty. In addition, while the comparison of model outputs has been used to estimate uncertainty arising from model

inadequacy (Goelzer et al., 2018), such studies are not guaranteed to estimate the true model inadequacy (Knutti et al., 2010).

Consequently, several recent efforts have focused solely on quantifying parametric uncertainty (Nias et al., 2023; Edwards30

et al., 2021; Ritz et al., 2015; Schlegel et al., 2018; Recinos et al., 2023), as we do in this study.

Parametric uncertainty is often estimated using Monte Carlo (MC) statistical estimation methods, which compute statistics

or construct probability densities using a large number of model simulations evaluated at different random realizations of the

uncertain model parameters. However, the substantial computational cost of evaluating ice-sheet models limits the number

of model simulations that can be run, and thus the precision of uncertainty estimates. For example, when estimating the35

mean of a model with MC, the mean squared error (MSE) in the estimated value only decreases linearly as the number of

model simulations increases. Therefore, recent UQ efforts constructed emulators (also known as surrogates) of the numerical

model from a limited amount of simulation data, and then sampled the surrogate to quantify uncertainty (Berdahl et al., 2021;

Bulthuis et al., 2019; Edwards et al., 2019; Jantre et al., 2024). While surrogates can improve the computational tractability

of UQ when uncertainty is parameterized by a small number of parameters, their application becomes impractical when there40

are more than 10-20 variables. This limitation arises because the amount of simulation data required to build these surrogates

grows exponentially with the number of parameters (Jakeman, 2023). Consequently, there is a need for methods capable of

quantifying uncertainty in ice-sheet models parameterized by a large number of uncertain parameters, such as a those used to

characterize a spatially varying basal friction field.

Most recent studies have focused on estimating uncertainty in the predictions of ice-sheet model with small numbers of45

parameters, e.g. (Nias et al., 2023; Ritz et al., 2015; Schlegel et al., 2018; Jantre et al., 2024), despite large numbers of

parameters being necessary to calibrate ice sheet model to observations (Barnes et al., 2021; Johnson et al., 2023; Perego et al.,

2014). However, recently Recinos et al. (2023) used the adjoint sensitivity method to construct a linear approximation of the

map from a high-dimensional parameterization of uncertain basal friction coefficient and ice stiffness, to quantities of interest

(QoI) – specifically the loss of ice volume above flotation predicted by a shallow-shelf approximation model at various future50

times. The linearized map and the Gaussian characterization of the distribution of the parameter uncertainty was then exploited

to estimate statistics of the QoI. While this method is very computationally efficient, linearizing the parameter-to-QoI map will

introduce errors (bias) into estimates of uncertainty, which will depend on how accurately the linearized parameter-to-QoI map

approximates the true map (Koziol et al., 2021). Moreover, the approach requires using adjoints or automatic differentiation

to estimate gradients, which many ice-sheet models do not support. Consequently, in this study we focused on Multi-fidelity55

statistical estimation (MFSE) methods that do not require gradients.
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MFSE methods (Giles, 2015; Peherstorfer et al., 2016; Gorodetsky et al., 2020; Schaden and Ullmann, 2020) utilize models

of varying fidelity, that is models with different inadequacy, numerical discretization and computational cost, to efficiently

and accurately quantify parameteric uncertainty. Specifically, MFSE methods produce unbiased statistics of a trusted highest-

fidelity model by combining a small number of simulations of that model with larger amounts of data from multiple lower-60

cost models. Note that while low-fidelity models with different discretization and inadequacy error are used, MFSE does not

quantify the impact of these two types of errors on the high-fidelity statistics. Furthermore, provided the low-fidelity models are

highly correlated with the high-fidelity model and are substantially cheaper to simulate, the mean squared error (MSE) of the

MFSE statistic will often be an order of magnitude smaller than the estimate obtained using solely high-fidelity evaluations, for

a fixed computational budget. However, such gains have yet to be realized when quantifying uncertainty in ice-sheet models.65

This study investigated the efficacy of using MFSE methods to reduce the computational cost needed to estimate statistics

summarizing the uncertainty in predictions of sea-level change obtained using ice-sheet models parameterized by large num-

bers of parameters. To facilitate a computationally feasible investigation, we focused on reducing the computational cost of

estimating the mean and variance of mass change in the Humboldt Glacier in northern Greenland. This mass change was driven

by uncertainty in the spatially varying basal friction between the ice sheet and land mass, under a single climate change sce-70

nario between 2007 and 2100. Specifically, letting f denote the mass change at 2100 computed by a mono-layer higher-order

(MOLHO) (Dias dos Santos et al., 2022) model M, ✓ denote the parameters of the model characterizing the Basal friction field,

and y denote the observational data, we estimated the mean and variance of the distribution p(f | M,y) = p(f | ✓)p(✓ | M,y)

in two steps. First, using a piecewise linear discretization of a log-normal basal friction field, we used Bayesian inference to

calibrate the resulting 11,536 dimensional uncertain variable to match available observations of glacier surface velocity. Specif-75

ically, we constructed a low-rank Gaussian approximation (Isaac et al., 2015; Recinos et al., 2023; Barnes et al., 2021; Johnson

et al., 2023; Perego et al., 2014) of the Bayesian posterior distribution of the model parameters p(✓ | M,y) using a Blatter-

Pattyn model (Hoffman et al., 2018). Second, we estimated the mean and mass of glacier mass change using 13 different model

fidelities (including the highest-fidelity model), based on different numerical discretizations of the MOLHO and shallow-shelf

(SSA) physics approximations (Morland and Johnson, 1980; Weis et al., 1999).80

Our study makes two novel contributions to previously published glaciology literature. First, it represents the first application

of MFSE methods to quantify the impact of high-dimensional parameter uncertainty on transient projections of ice-sheet

models defined a realistic physical domains. Our results demonstrate that MFSE can reduce the serial computational time

required for a precise UQ study of ice-sheet contribution to sea-level rise from years to a month. Note, Gruber et al. (2022)

previously applied MFSE to a ice-sheet model; however, their study was highly simplified, as it only quantified uncertainty85

arising from two uncertain parameters of an ice-sheet model defined on a simple geometric domain. Second, our paper provides

a comprehensive discussion of the practical issues that arise when using MFSE, which are often overlooked in MFSE literature.

This paper is organized as follows. First, Section 2 details the different ice-sheet models considered by this study and the

parameterization of uncertainty employed. Second, Section 3 presents the calibration of the ice sheet model and how the

posterior samples were generated. Third, Section 4 presents the MFSE methods that were used to quantify uncertainty. Fourth,90
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Section 5 presents the numerical results of the study and Section 6 presents our findings. Finally, conclusions are drawn in

Section 7.

2 Methods

This section presents the model formulations (Section 2.1) and the numerical discretization of these models (Section 2.2) we

used to model ice-sheet evolution, as well as the sources of model uncertainty we considered (Section 2.3) when quantifying95

uncertainty in the mass change from Humboldt Glacier between 2007 and 2100.

2.1 Model Formulations

Ice-sheets behave as a shear thinning fluid and can be modeled with the nonlinear Stokes equation (Cuffey and Paterson, 2010).

This section details the Stokes equations and two computationally less expensive simplifications, MOLHO (Dias dos Santos

et al., 2022) and SSA (Morland and Johnson, 1980; Weis et al., 1999) which were used to quantify uncertainty in predictions100

of the contribution of Humboldt glacier to sea-level rise.

Let x and y denote the horizontal coordinates and z the vertical coordinate, chosen such that the sea level, assumed to remain

constant during the period of interest, corresponds to z = 0. We approximated the ice domain at time t as a vertically extruded

domain ⌦ defined as

⌦(t) := {(x,y,z) s.t. (x,y) 2 ⌃, and l(x,y, t) < z < s(x,y, t)},

where ⌃ ⇢ R2 denotes the horizontal extent of the ice, �l(t) := {(x,y,z) s.t. z = l(x,y, t), (x,y) 2 ⌃} denotes the lower sur-

face of the ice at time t, and �s(t) := {(x,y,z) s.t. z = s(x,y, t), (x,y) 2 ⌃} denotes the upper surface of the ice1.

The Stokes, MOLHO, and SSA models defined the thickness of the ice H(x,y, t) = s(x,y, t) � l(x,y, t) as the difference

between the ice-sheet surface s(x,y, t) and the bottom of the ice-sheet l(x,y, t). The bottom of the ice-sheet was allowed to105

be both grounded to the bed topography b(x,y), such that l(x,y, t) = b(x,y), or floating such that l(x,y, t) = � ⇢

⇢w
H(x,y, t),

where ⇢ and ⇢w are the densities of ice and ocean water, respectively. Different boundary conditions were then applied on the

grounded portion �g of the ice bottom and on the floating portion �f of the ice bottom, where �g \�f = ; and the ice bottom

was given by �g [ �f . The lateral boundary of ⌦ was also partitioned into the ice-sheet margin (either terrestrial or marine

margin) �m and an internal (artificial) boundary �d marking the interior extent of the Humboldt Glacier that was considered.110

The relevant domains of the ice-sheet are depicted in Figure 1.

The Stokes equations model the horizontal ice velocities (u(x,y,z, t),v(x,y,z, t)), vertical ice velocity w(x,y,z, t) and

thickness H(x,y, t) of an ice-sheet as a function of the three spatial dimensions (x,y,z). In contrast, the MOLHO model

makes simplifications based on the observation that ice-sheets are typically shallow, i.e. their horizontal extent is much greater

than their thickness. These simplifications lead to a model that does not explicitly estimate the vertical velocity w and only115

simulates the horizontal velocities u(x,y,z, t), v(x,y,z, t) as functions of the three spatial coordinates. Contrasting again, the
1For simplicity here we assume that ⌃ does not change in time. This implies that the ice-sheet cannot extend beyond ⌃ but it can become thicker or thinner

(to the point of disappearing in some regions).
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Figure 1. (Left) Conceptual model of an ice sheet in the x� z plane. (Right) The boundaries (blue lines) of Humboldt Glacier in Greenland.

SSA model makes the additional assumption that the horizontal components of velocity do not vary with thickness (a reasonable

approximation in regions where motion is dominated by basal slip) so that the horizontal velocities u(x,y, t),v(x,y, t) are

solved for only as functions of (x,y). In summary, the simpler 2D SSA model is formulated to simulate grounded ice with

significant sliding at the bed or ice shelves, while the 3D MOLHO model is designed to capture the evolution of ice sheets over120

frozen and thawed beds, as well as ice shelves.

The Stokes, MOLHO, and SSA models all evolve ice thickness H(x,y, t) according to

@tH + r · (ūH) = fH , H � 0, (1)

where ū :=
1

H

sZ

l

udz is the thickness-integrated velocity and fH is a forcing term that accounts for accumulation (e.g. snow

accumulation) and ablation (e.g. melting) at the upper (s) and lower (l) surfaces of the ice sheet. However, each model deter-125

mines the velocities of the ice sheet differently. The following three subsections detail how each model computes the velocity

of the ice sheet.
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2.1.1 Stokes model

This section introduces the Stokes model, which while not used in this study due to its impractical computational cost, forms

the basis of the other three models used in this study. Specifically, the governing equations of the Stokes model are130

�r ·� = ⇢g (2)

r ·u = 0. (3)

The velocities u = (u,v,w) are dependent on the pressure p, ⇢ denotes the density of ice, � = 2µD� pI denotes the stress

tensor of the ice and Dij(u) = 1
2

⇣
@ui
@xj

+ @uj

@xi

⌘
denotes the strain rate tensor of the ice; here we used the shorthand u =

(u,v,w) = (u1,u2,u3). The stress tensor is dependent on the non-linear viscosity of the ice which satisfies135

µ =
1

2
A(T )�q De(u)q�1, (4)

where A is the ice flow factor that depends on the ice temperature T and q  1; in our study we set q = 1
3 , which is a typical

choice (Hillebrand et al., 2022). In addition, the effective strain rate De(u) satisfies De(u) = 1p
2
|D(u)|, where | · | denotes the

Frobenius norm.

When used to model ice sheets, the Stokes equation must be accompanied by the following boundary conditions:
8
>>>>>>>><

>>>>>>>>:

�n = 0 on �s stress free, atmospheric pressure neglected

�n = ⇢w g min(z,0)n on �m boundary condition at the ice margin

u = ud on �d Dirichlet condition at internal boundary (ice-flow divide)

u ·n = 0, (�n)k = �uk on �g impenetrability + sliding condition

�n = ⇢w g zn on �f hydrostatic pressure of ocean under ice shelves

Here �(x,y) is a linearized sliding (or friction) coefficient and n the unit outward-pointing normal to the boundary and the140

subscript k denotes the component tangential to the bed. The boundary condition at the margin includes an ocean back-pressure

term when the margin is partially submerged (z < 0). For a terrestrial margin, z > 0, the boundary condition becomes a stress-

free condition.

2.1.2 Mono-layer higher-order (MOLHO)

The MOLHO model (Dias dos Santos et al., 2022) is based on the Blatter-Pattyn approximation (Pattyn, 2003; Dukowicz et al.,145

2010) which can be derived by neglecting the terms wx and wy (the derivatives of w with respect to x and y, respectively) in

the strain-rate tensor D and using the incompressibility condition (r ·u = 0) such that wz can be expressed solely in terms of

ux and vy and

D =

2

66664

ux
1
2 (uy + vx) 1

2uz

1
2 (uy + vx) vy

1
2uz

1
2uz

1
2vz �(ux + vy)

3

77775
. (5)
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This leads (Jouvet, 2016) to the following elliptic equations for the horizontal velocities (u,v)150

�r · (2µD̂) = �⇢grxy s, (6)

where rxy := [@x,@y]>, and

D̂ =

2

4 2ux + vy
1
2 (uy + vx) 1

2uz

1
2 (uy + vx) ux + 2vy

1
2vz

3

5 . (7)

such that the viscosity µ in Eq. (4) has the effective strain rate

De =

r
u2

x
+ v2

y
+ uxvy +

1

4
(uy + vx)2 +

1

4
u2

z
+

1

4
v2

z
.

MOLHO is derived from the weak form of the Blatter-Pattyn model Eq. (6), with the ansatz that the velocity can be expressed

as

u(x,y,z) = ub(x,y)�b +uv(x,y)�v

✓
s � z

H

◆
, with �b = 1, and �v(⇣) = 1 � ⇣

1
q +1,

where the functions �b and �v are also used to define the test functions of the weak formulation of the MOLHO model. This

ansatz allows the Blatter-Pattyn model to be simplified into a system of two two-dimensional partial differential equations155

(PDEs) for ub and uv — Dias dos Santos et al. (2022) give a detailed derivation — such that the thickness-averaged velocity

satisfies ū = ub + (1+q)
(1+2q) uv , where q is the same coefficient appearing in the viscosity definition Eq. (4).

We used the following boundary conditions when using MOLHO to simulate ice-flow
8
>>>>>>>><

>>>>>>>>:

2µD̂n = 0 on �s stress free, atmospheric pressure neglected

2µD̂n =  n on �m boundary condition at at ice margin

u = ud on �d Dirichlet condition at internal boundary (ice-flow divide)

2µD̂n = �uk on �g sliding condition

2µD̂n = 0 on �f free slip under ice shelves.

Additionally, we approximated the term  = ⇢g(s � z) + ⇢w g min(z,0) by its thickness-averaged value  ̄ = 1
2gH(⇢�r2⇢w),

where r = max
�
1 � s

H
,0
�

is the the submerged ratio.

2.1.3 Shallow Shelf Approximation (SSA)160

The SSA model (Morland and Johnson, 1980) is a simplification of the Blatter-Pattyn model that assumes the ice-velocity is

uniform in z, so u = ū and thus uz = 0,vz = 0. This simplification yields

D =

2

664

ux
1
2 (uy + vx) 0

1
2 (uy + vx) vy 0

0 0 �(ux + vy)

3

775 , D̂ =

2

4 2ux + vy
1
2 (uy + vx) 0

1
2 (uy + vx) ux + 2vy 0

3

5 , (8)
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and De =
q

u2
x

+ v2
y
+ uxvy + 1

4 (uy + vx)2. Consequently, the SSA is a single two-dimensional PDE in ⌃

�r ·
⇣
2µHD̂(ū)

⌘
+�ū = �⇢gHrxys, in ⌃,

where µ̄ = 1
2 Ā(T )�q De(ū)q�1, and Ā is the thickness-averaged flow factor. This study explored the use of SSA with the

boundary conditions 8
<

:
2µD̂(ū)n =  ̄n on �m boundary condition at ice margin

ū = ūd on �d Dirichlet condition at internal boundary.

With abuse of notation, here �m and �d denotes subsets of the boundary of ⌃.

2.2 Numerical discretization165

The ability to predict ice-sheet evolution accurately is dictated not only by the governing equations used, but also by the

properties of the numerical methods used to solve the governing equations. In this study, we discretized the thickness and the

velocity equations of the MOLHO and SSA models using the popular Galerkin-based finite element method with piecewise

linear elements, which we implemented in FEniCS (Alnæs et al., 2015). The coupled thickness and velocity equations were

solved in a semi-implicit fashion using a Backward Euler time discretization for the thickness and lagging the evaluation of170

the velocity. The thickness equation was stabilized using the streamline upwind method. Additionally, the advection term was

integrated by part and the thickness was treated implicitly. The discretized problem was solved using the PETSc (Balay et al.,

1998) SNES nonlinear solver. Using this time evolution process, we did not observe any numerical instabilities when using the

time-step sizes adopted in this study.

Because the thickness H obtained from Eq. (1) is not guaranteed to be positive due to the forcing term fH and that the175

discretization used is not positivity preserving, we adopted two different approaches to guarantee the positivity of the thickness

computed by our finite element models. The first approach involved updating the thickness value at each node so that it was

greater than or equal to a minimum thickness value Hm = 1 m. The second approach used an optimization-based approach

(Bochev et al., 2020) to preserve the thickness constraint (H � Hm) and guarantee that the total mass change is always consis-

tent with the forcing term in regions where the ice is present and with the boundary fluxes. The first approach is computationally180

cheaper than the second, but unlike the second method does not conserve mass.

In addition to mass conservation, the number of finite elements and the time-step size both affect the error in the finite

element approximation of the governing equations of the MOLHO and SSA models. In this study we investigated the impact

of the number of finite elements, which we also refer to as the spatial mesh resolution, and time-step size, on the precision of

statistical estimates of mass-change. Specifically, the MOLHO and SSA models were both used to simulate ice-sheet evolution185

with four different finite element meshes and four different time-step sizes. More details on the spatial mesh and time-step sizes

used are given in Section 5.1. Figure 2 compares the four different finite element meshes used to model the Humboldt Glacier.

Due to the differences in the characteristic element size of each mesh, the computational domain of each mesh is different.

However, we will show that this did not prevent the use of these meshes in our study.
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Figure 2. Comparison of the four finite element meshes used to model the Humboldt Glacier with characteristic finite-element sizes of 1km,

1.5km, 2km, and 3km, shown left to right.

2.3 Parameterization of uncertainty190

Many factors introduce parametric uncertainty into the predictions of ice-sheet models, including atmospheric forcing, ice

rheology, basal friction, ice temperature, calving, and submarine melting. While all these sources of parametric uncertainty

may significantly impact predictions of mass change from ice sheets, this study focused on quantifying uncertainty due to

unknown basal friction, which is considered one of the largest sources of prediction uncertainty after future environmental

forcing (Nias et al., 2018; Joughin et al., 2019; Brondex et al., 2019; Åkesson et al., 2021; Hillebrand et al., 2022; Nias et al.,195

2023). This singular focus was made to improve our ability to assess whether MFSE is useful for quantifying uncertain in

ice-sheet modeling with high-dimensional parameter uncertainty, which most existing UQ methods cannot tractably address.

By doing so, we ensured that the conclusions drawn by our study can be plausibly extended to studies considering additional

sources of uncertainty. This ensures that the conclusions drawn by our study can be plausibly extended to studies considering

additional sources of uncertainty.200

The uncertainty in basal friction �, which impacts the boundary conditions of the MOLHO and SSA models, can be parame-

terized in a number of ways. For example, a lumped approach would assign a single scalar random variable to the whole domain

or a semi-distributed approach may use different constants in predefined subdomains, e.g. catchments, of the glacier. In this

study, we adopted a fully distributed approach that treated the friction as a log-Gaussian random field that is ✓ = log(�)2 RN✓ ,

with a Gaussian prior distribution p(✓) ⇠ N (µ,C) with µ = 0.205

Following Isaac et al. (2015), we defined the prior covariance operator C to be a infinite-dimensional Laplacian squared

operator. Specifically, we used a finite-dimensional discretization of the operator ⌃prior ⇡ C with

⌃
�1
prior = KM

�1
K, (9)
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where K2 RN✓⇥N✓ and M2 RN✓⇥N✓ are finite elements matrices for the elliptic and mass operators, defined as

Kij = �

Z

�l

r�i(x) · r�j(x)dx+ �

Z

�l

�i(x) ·�j(x)dx+ ⇠

Z

@�l

�i(x) ·�j(x)dx, (10)210

Mij =

Z

�l

�i(x) ·�j(x)dx, (11)

and �i are finite element basis functions and x = (x,y). The first term in the definition of K is the Laplacian operator, the

second term is a mass operator representing a source term, and the last term is a boundary mass operator for Robin boundary

conditions. The ratio of the coefficients � and � determines the correlation length l =
p

�

�
of the covariance. In our simulations,215

we set � = 2000 km, � = 2 km�1 and ⇠ = 20, hence l ⇡ 31.6 km. These values were found to balance the smoothness of

realizations of the friction field with the ability to capture the fine scale friction features needed to produce an acceptable match

between the model prediction of surface velocity and the observed values. Two random samples from the prior distribution of

the log-friction are depicted in Figure 3.

Figure 3. Two random samples from the prior distribution of the log-friction p(✓)⇠N (0,⌃prior), where ⌃prior is defined in Eq. (9).

The parameterization of the prior in Eq. (9) has two main advantages. First, computationally efficient linear algebra can be220

used to draw samples from the prior distribution. In this study we drew samples from the prior using

✓ = µprior +Ln, n ⇠ N (0,IN✓ )

with µprior = 0, IN✓ is the identity matrix with N✓ rows, L = K
�1

M
1
2 , such that ⌃prior = LL

>, and we lump the mass matrix

M. The second advantage is that this Gaussian prior enables an efficient procedure for computing the posterior distribution of

the friction field constrained by the observations, which we present in Section 3.225
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2.4 Additional model setup

Additional details regarding the model setup are as follows. First, the glacier’s bed topography, ice surface elevation, and

ice thickness were obtained from observations (refer to Hillebrand et al. (2022) for details) and interpolated onto the finite

element mesh. Second, the MIROC5 climate forcing from the CMIP5 for the Representative Concentration Pathway (RCP)

2.6 scenario was used to generate the surface mass balance (difference between ice accumulation and ablation) fH and drive230

the ice-sheet evolution from 2007 to 2100. This surface mass balance was provided by the Ice Sheet Model Intercomparison

Project for CMIP6 (ISMIP6), which down-scaled output from Earth system models using the state-of-the-art regional climate

model MAR (Nowicki et al., 2020). Finally, the ice front was kept fixed such that any ice that moved beyond the calving front

is assumed to melt, and any explicit ocean forcing was ignored.

3 Calibration235

The goal of this study was to investigate uncertainty in predictions of the future mass change of Humboldt Glacier. However,

generating realistic predictions with a model requires calibrating that model to available data. Consequently, in this paper we

calibrated the basal friction field of our numerical models to measurements of surface velocity of the ice sheet. We processed

Humboldt Glacier geometry data and surface velocity observations for year 2007 as detailed in Hillebrand et al. (2022). The

geometry was assumed to be error free and the ice sheet was assumed to be at thermal equilibrium. Thus, we calibrated the240

friction field by fitting the outputs of a high-resolution steady-state thermo-coupled flow model to the observational data.

Ice-sheet models are typically calibrated using deterministic optimization methods that find the values of the model param-

eters that lead to the best match between observations and the model prediction of the observations, e.g MacAyeal (1993);

Morlighem et al. (2010); Petra et al. (2012); Perego et al. (2014); Goldberg et al. (2015). However, such approaches produce a

single optimized parameter value to represent the uncertainty in the model parameters that arises from using a limited amount245

of noisy observational data.

Bayesian inference uses Bayes’ Theorem to quantify the probability of the parameters conditioned on the data p(✓ | y)2 R,

known as the posterior distribution, as proportional to the conditional probability of observing the data given the parameters

p(y | ✓)2 R, known as the likelihood, multiplied by the prior probability assigned to the parameters p(✓)2 R,

p(✓ | y) / p(y | ✓)p(✓).250

In this work we assumed that the observational data (surface velocities y = uobs2 R2Nobs ), were corrupted by centered

Gaussian noise ⌘ ⇠ N (0,⌃noise)2 R2Nobs . Specifically, given a Blatter-Pattyn flow model g(✓)2 R2Nobs that maps the logarithm

of the basal friction to the computed surface velocity, we assumed y = g(✓)+⌘ such that the likelihood function was given by

p(y | ✓) = (2⇡|⌃noise|)� 1
2 exp

✓
�1

2
(y� g(✓))>

⌃
�1
noise(y� g(✓))

◆
.

Here, g(✓) denotes the output of the steady-state ice-sheet model at the locations of the observations for a given realization255

of the model parameters. We were able to calibrate the model using only a steady model without time-stepping because we

11



assumed that the velocity data were collected over a short period of time over which the ice sheet state is approximately steady.

We also assumed that the observations were uncorrelated and set

⌃noise =
1

↵

2

4 UerrM
�1
s

Uerr

UerrM
�1
s

Uerr

3

5 2 R2Nobs⇥2Nobs , (12)

where Uerr = Diag(uerr) is the diagonal matrix containing the root mean square errors uerr2 RNobs of the surface velocity260

magnitudes, and Ms2 RNobs is the mass matrix computed on the upper surface �s and ↵ is a scaling term. We set ↵= 8 km�2.

Before continuing, we wish to emphasize two important aspects of the calibration used in this study that mean our results

must be viewed with some caution. First, we assumed the observational data to be uncorrelated, as assumed in most ice-sheet

inference studies, including (Recinos et al., 2023; Isaac et al., 2015). Moreover, we also assumed our Gaussian error model to

be exact. However, neither of these assumptions are likely to be perfect in reality. For example, Koziol et al. (2021) showed that,265

for an idealized problem, ignoring spatial correlation in the observational noise can lead to uncertainty being underestimated.

Second, our optimization of the MAP point was constrained by the coupled velocity flow equations and steady-state enthalpy

equation, which is equivalent to implicitly assume that the ice is at thermal equilibrium. Theoretically, this assumption could be

avoided if the temperature tendencies were known, but they are not. Alternatively, transient optimization over long time periods,

comparable to the temperature time scales, could be used. However, this approach would be computationally expensive and270

would require including time-varying temperature data (e.g., inferred by ice cores) which are very sparse.

Quantifying uncertainty in mass-change projections conditioned on observational data requires drawing samples from the

posterior of log(�), evaluating the transient model at each sample and computing estimates of statistics summarizing the

prediction uncertainty using those evaluations. Typically, samples are drawn using Markov Chain Monte Carlo (Hoffman and

Gelman, 2014), however such methods can be computationally intractable for high-dimensional uncertain variables (Bui-Thanh275

et al., 2013), such as the variable we used to parameterize basal friction. Consequently, we used the two-step method presented

in Bui-Thanh et al. (2013); Isaac et al. (2015) to construct a Laplace approximation of the posterior. Please note that, recently

variational inference has been used to infer high-dimensional basal friction (Brinkerhoff, 2022), however we did not use such

methods in out study.

First, we performed a PDE-constrained deterministic optimization to compute the maximum a posteriori (MAP) point ✓MAP280

✓MAP = argmin
✓

1

2
(y� g(✓))>

⌃
�1
noise(y� g(✓)) +

1

2
(✓�µprior)

>
⌃

�1
prior(✓�µprior), (13)

which maximizes the posterior p(✓ | y). For linear models and Gaussian priors, the MAP point has close ties with the optimal

solution obtained using Tikhonov regularization (Stuart, 2010). Specifically, the first term above minimizes the difference

between the model predictions and the observations and the second term penalizes the deviation of the optimal point from the

prior mean.285

Second, we constructed a low-rank quadratic approximation of the log posterior, centered at the MAP point

log(p(✓ | y)) ⇡ C � 1

2
(✓�✓MAP)

>
⌃

�1
post(✓�✓MAP), (14)
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where

⌃
�1
post = HMAP +⌃

�1
prior (15)

and HMAP2 RN✓⇥N✓ is the Hessian of 1
2 (y� g(✓))>

⌃
�1
noise(y� g(✓)) at ✓ = ✓MAP and C is a constant independent of ✓.290

This resulted in a Gaussian approximation of the posterior p(✓ | y) ⇡ N (✓MAP,⌃post), also known as a Laplace approximation

of the posterior. Naively computing the posterior covariance using the aforementioned formula for ⌃post is computationally

intractable. That approach requires solving 2N✓ linearized (adjoint) flow models to computing and inverting the large dense

matrix HMAP, which require O(N✓
3) operations. For reference, in this study we use N✓ =11,356 variables to parameterize

the basal friction and the adjoints of the flow model had 227,120 unknowns. Consequently, we used a low-rank Laplace295

approximation which is detailed in Appendix A to efficiently draw random samples from the posterior distribution.

The posterior characterizes the balance between the prior uncertainty in the friction field and the model-observation mis-

match, weighted by the observational noise. In the limit of infinite observational data, the posterior distribution will collapse to

a single value. However, in practice when using a finite amount of data, the posterior will only change substantially from the

prior in directions of the parameter space informed by the available data, which were captured by our low-rank approximation.300

4 Uncertainty quantification

This study investigated the efficacy of using MFSE to compute the uncertainty in predictions of future mass change from

Humboldt Glacier. We defined mass change to be the difference between the final mass2 of the glacier at t = 2100 and its

mass at t = 2007. While the mass change is a functional of the ice-sheet thickness H , for simplicity the following discussion

simply refers to the mass change as a scalar function of only the model parameters, that is f↵(✓)2 R, where ↵ indexes the305

model fidelity that was used to simulate the ice sheet. Previous UQ studies computed statistics summarizing the uncertainty in

ice-sheet predictions, such as mean and variance, using single-fidelity Monte Carlo (SFMC) quadrature, that is MC quadrature

applied to a single physics model with a fixed numerical discretization ↵, for example Ritz et al. (2015); Schlegel et al. (2018).

However, in this study we used MFSE to reduce the computational cost of quantifying uncertainty. Specific details on the

MFSE methods investigated are given in the following subsections.310

4.1 Single-fidelity Monte Carlo quadrature

SFMC quadrature is a highly versatile procedure that can be used to estimate a wide range of statistics for nearly any function

regardless of the number of parameters involved. SFMC can be used used to compute the mean Qµ2 R and variance Q�
22 R of

the Humboldt glacier mass change predicted by a single model using a three-step procedure. The first step randomly samples N

realizations of the the model parameters ⇥ = {✓(n)}N

n=1 from their posterior distribution. The second step simulates the model315

at each realization of the random variable (basal friction field) and computes the mass change at the final time f (n)
↵ = f↵(✓(n)).

2In this work, we compute the mass of the glacier considering only the ice above flotation, which is what contributes to sea-level change

13



The third step approximates the mean and variance using the unbiased estimators

E⇡ [f↵] ⇡ Qµ

↵
(⇥) = N�1

NX

n=1

f (n)
↵

(16)

V⇡ [f↵] ⇡ Q�
2

↵
(⇥) = (N � 1)�1

NX

n=1

⇣
f (n)

↵
� Qµ

↵
(⇥)

⌘2
, (17)

where we use the script ⇡ on the exact expectation E⇡ [f↵] and variance V⇡ [f↵] to make clear these statistics are always320

computed by sampling from the distribution of ✓. In out study, we sampled from the posterior distribution of the basal friction

parameters, i.e. ⇡(✓) = p(✓ | M,y).

MC estimators converge to the true mean and variance of f↵ as the number of samples tends to infinity, but using a finite

number of samples N introduces an error into the MC estimator that depends on the sample realizations used to compute the

estimators. That is, two different realizations of N parameter samples ⇥, and the associated QoI values, will produce two325

different mean and variance estimates (see Figure 4). Consequently, any MC estimator Q↵(⇥) of an exact statistic Q, such as

Qµ

↵
(⇥) and Q�

2

↵
(⇥), is a random variable.

�0.3 �0.2 �0.1 0.0 0.1 0.2 0.3
Q�(�)

0

2
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12

p(
Q

�
(�

))

Q0(�100)

Q0

Q1(�1000)

Q1

Figure 4. The bias-variance trade-off of MC estimators, stated of the same computational cost is depicted in blue and orange, The blue

represents the true mean of a computationally expensive model f0 and the orange line represents the mean of a model f1 that is 10-times

cheaper but less accurate. The models are only conceptual and not related to the ice-sheet models used in this study and were designed so

that evaluating f0 100 times took the same computational effort as evaluating f1 1000 times. The histograms are constructed by computing

the mean 1000 times using different realizations of the parameters set ⇥N , where N denotes the number of parameter samples in ⇥N . The

blue and orange histograms were computed using the 1000 different estimates of the means of f0 and f1, respectively.
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The mean-squared error (MSE) is typically used to quantify the error in a MC estimate of a statistic and is given by

E⇥

h
(Q↵(⇥) � Q)2

i
= E⇥

h
(Q↵(⇥) �E⇥ [Q↵(⇥)] +E⇥ [Q↵(⇥)] � Q)2

i
= V⇥ [Q↵(⇥)]| {z }

I

+(E⇥ [Q↵(⇥)] � Q)2| {z }
II

, (18)

where E⇥ [·] and V⇥ [·] respectively denote taking the expectation and the variance over different realizations of the set of330

parameter realizations ⇥. The MSE of an MC estimator, Eq. (18), consists of two terms referred to as the estimator variance (I)

and the estimator bias (II). The bias term of the MSE is caused by using a numerical model, with inadequacy and discretization

errors, to compute the mass change. More specifically, letting Q1 denote the exact value of the statistic of a numerical model

with zero discretization error but non-zero model inadequacy error, and Q0 denote the highest-fidelity computationally tractable

model approximation of Q1, then the bias can be decomposed into three terms335

(E [Q↵(⇥)] � Q) = (E⇥ [Q↵(⇥)] � Q0 + Q0 � Q1 + Q1 � Q) = (E⇥ [Q↵(⇥)] � Q0) + (Q0 � Q1) + (Q1 � Q) (19)

The first term is caused by using a model f↵ with numerical discretization that is inferior to that employed by the highest

fidelity model f0. The second term represents the error in the statistic introduced by the numerical discretization of the highest-

fidelity model. The third term quantifies the model inadequacy error caused by the numerical model being an approximation of

reality. The variance of an MC estimator comes from using a finite number of samples and decreases as the number of samples340

increases. For example, the variances of the estimators of mean and variance are, respectively,

V⇥ [Qµ

↵
(⇥)] =

1

N
V⇡ [f↵] , V⇥

h
Q�

2

↵
(⇥)

i
=

1

N

✓
2

(N � 1)
V⇡ [f↵]2 +V⇡

⇥
(f↵ �E⇡ [f↵])2

⇤◆
, (20)

where the variances involving f↵ are exact statistics of the model, which are typically unknown. A detailed derivation of the

expression for V⇡

h
Q�

2

↵
(⇥)

i
can be found in Dixon et al. (2023).

Constructing a SFMC estimator of statistics, such as the mean Eq. (16) or variance Eq. (17), with a small MSE ensures that345

the value of the estimator will be likely close to the true value, for any set of model parameters samples. However, when using

numerical models approximating a physical system, constructing an unbiased estimator of Q is not possible. All models are

approximations of reality and thus the model inadequacy contribution Q1 �Q to the bias decomposition in Eq. (19) can never

be driven to zero. Additionally, it is impractical to quantify the discretization error Q1 � Q0. Consequently, SFUQ methods

focus on producing unbiased estimators of Q0, such that E⇥ [Q↵(⇥)] = Q0.350

Unfortunately, even when ignoring inadequacy and discretization errors, constructing a SFMC estimator with a small MSE,

Eq. (18), using a computationally expensive high-fidelity model is computationally demanding. The cost is high because the

variance term of the MSE of an estimator, Eq. (18), only decreases linearly with the number of samples. In contrast, N can be

significantly increased if a cheaper, lower-fidelity model is used, but the corresponding decrease in the estimator variance will

be offset by an increase in its bias. Consequently, the bias and variance of any estimator (see Figure 4) should be balanced, but355

most SFMC analyses do not consider this trade-off explicitly when choosing the fidelity of the model used. In the following

section we detail how to use MFSE to substantially improve the precision of estimated statistics for a fixed computational cost.
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4.2 Two-model multi-fidelity uncertainty quantification

MFSE leverages the correlation between models of varying cost and fidelity to reduce the computational cost of constructing

MC estimators with a desired MSE. While various multi-fidelity estimators have been developed, this study used approximate360

control variate (ACV) estimators (implemented in PyApprox (Jakeman, 2023)), which include most existing estimators, in-

cluding Multi-level Monte Carlo (MLMC) (Giles, 2015) and Multi-fidelity Monte Carlo (MFMC) (Peherstorfer et al., 2016),

as special cases. 3 In this section, we describe how to construct an ACV estimate of the mean of a model using two models.

We then introduce the ACV procedure we used to compute the mean and variance of our our highest-fidelity ice-sheet model

using an ensemble of 13 models.365

Using only high-fidelity model simulations to estimate a statistic with single-fidelity MC produces an unbiased estimator of

Q0. However, when the computational cost of running a high-fidelity model limits the number of model simulations that can

be used, the variance and thus the MSE, of the MC estimator will be large. Fortunately, the MSE error of the estimator can

be reduced by correcting the high-fidelity estimator with statistics computed using lower-fidelity models. For example, given

a high-fidelity model f0(✓) and a single low-fidelity model f1(✓), an MFMC ACV estimator approximates the mean of the370

high-fidelity model using

Qµ

ACV(⇥0,⇥1) = N�1
0

N0X

n=1

f0(✓
(n)
0 ) + ⌘

0

@N�1
0

N0X

n=1

f1(✓
(n)
0 ) � N�1

1

N1X

j=1

f1(✓
(j)
1 )

1

A (21)

= Qµ

0 (⇥0) + ⌘(Qµ

1 (⇥0) � Qµ

1 (⇥1)) ⇡ E⇥ [f0] . (22)

The two-model ACV estimator in Eq.(21) uses a weighted combination of a high-fidelity MC estimator and two low-fidelity

estimators. The high-fidelity model evaluations are used to ensure the ACV estimator is unbiased, i.e. E⇥ [Qµ

ACV(⇥0,⇥1)] =375

E⇡ [f0], while the low-fidelity evaluations are used to reduce the variance of the estimator. The estimator of the low-fidelity

mean Qµ

1 (⇥0) is referred to as a control variate because it is a random variable, which is correlated with the random estimator

Qµ

0 (⇥0), and can be used to control the variance of that high-fidelity estimator. The term Qµ

1 (⇥1) ⇡ Qµ

1 is an approxima-

tion of the true low-fidelity statistic Q1 that is used to ensure that the ACV estimator is unbiased, i.e. E⇥ [Qµ

ACV(⇥0,⇥1)] =

E⇥ [Qµ

0 (⇥)]+⌘ (E⇥ [Qµ

1 (⇥0)] �E⇥ [Qµ

1 (⇥1)]) = Qµ

0 +⌘ (Qµ

1 � Qµ

1 ) = Qµ

0 . The weight ⌘ can either be fixed, e.g. MLMC sets380

⌘ = �1, or optimized to minimize the MSE of the estimator. However, an ACV estimator will always be unbiased, with respect

to Q0, regardless of the value of ⌘, because the expected values of the second and third terms will always cancel.

Computing the ACV estimate of the high-fidelity mean in Eq. (21) requires two different sets of model evaluations. These

evaluations must be obtained by first drawing two sets of samples ⇥0 = {✓(n)
0 }N0

n=1,⇥1 = {✓(n)
1 }N1

n=1 from the distribution

of the random variables. In our study, we draw random samples from the posterior distribution of the log basal friction, i.e385

p(✓ | M,y). The high-fidelity model must be evaluated on all the samples in ⇥0 and the low-fidelity model must be evaluated

on both the sets ⇥0 and ⇥1. Typically N0 < N1. In most practical applications, such as this study, the model f0 used with an
3Multilevel Best Linear Unbiased Estimators] Recently, multilevel best linear unbiased estimators (MLBLUEs) Schaden and Ullmann (2020) were de-

veloped as an alternative to ACV estimators to estimate the expectation of a high-fidelity model using an ensemble of models of varying cost and fidelity.

However, we did not use MBLUEs in this study because they can only be used to estimate the mass-change mean and not its variance.
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ACV estimate is chosen to be the highest-fidelity model that can be simulate O(10) times, However, when a model utilizes a

numerical discretization that can be refined indefinitely, MLMC can be used to adaptively set Q0 such that the discretization

error Q0 � Q1, in Eq. (18), is equal to the variance V⇥ [QACV] of the MLMC estimator.390

The ACV estimator is an unbiased estimator of the mean high-fidelity model. So the MSE, Eq. (18) ignoring the model

inadequacy and model discretization errors, is equal to the variance of the estimator, which when ⇥0 ⇢ ⇥1 is

V⇥ [Qµ

ACV(⇥0,⇥1)] = N�1
0 V⇡ [f0]

✓
1 � N1 � N0

N1
Corr⇡[f0,f1]

2

◆
(23)

Thus, for fixed N0 and N1, if the high and low-fidelity models are highly correlated, the ACV estimator will be much more

accurate than the SFMC estimator, see Eq. (20). Moreover, the values of N0,N1 can be optimized to minimize the error of an395

ACV estimator given a fixed computational budget. In the following section, we provide more details on how to construct ACV

estimator using more than one-low fidelity model, including information on how to optimize ⌘ and the number of samples used

to evaluate each model.

4.3 Many model multi-fidelity uncertainty quantification

Given an ensemble of M + 1 models {f↵(✓)}M

↵=0 an ACV MC estimator can be used to compute a vector-valued estimator400

Q0 = [Q0,1, · · · ,Q0,K ]> 2 RK of statistics of the highest fidelity model f0; the specific instances of the ice-sheet models used

by this study are presented in Section 5.1. The vector Q0 may be comprised of a single type of statistic computed for multiple

quantities of interest (QoI), multiple statistics of a single QoI, or a combination of both. For example, in this study we computed

the ACV estimator of the mean and variance of the mass change, that is Q0 = [Qµ

0 ,Q�
2

0 ]> 2 R2.

Any ACV estimators QACV = [Qµ

ACV,Q�
2

ACV]> 2 R2 of the vector-valued high-fidelity statistic Q0 can be expressed as405
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where Qµ

m
(⇥⇤

m
) and Qµ

m
(⇥m) are single model MC estimates of the mean, E⇥ [fm] Eq.(16), computed using the m-th model,

m = 0, . . . ,M , using different sample sets ⇥⇤
m

and ⇥m. Similarly, Q�
2

m
(⇥⇤

m
) and Q�

2

m
(⇥m) are estimates of the model variance,

V⇥ [fm] Eq.(17), computed using the m-th model, In more compact notation

QACV(⇥ACV) = Q0(⇥0) +⌘�(⇥�), (24)410

where , ⇥� = {⇥⇤
1,⇥1, . . . ,⇥⇤

M
,⇥M}, and ⇥ACV = {⇥0,⇥�},

�(⇥�) =

2

6664

�1(⇥⇤
1,⇥1)
...

�M (⇥⇤
M

,⇥M )

3

7775
2 R2M

�m(⇥⇤
m

,⇥m) =

2

4 Qµ

m
(⇥⇤

m
) � Qµ

m
(⇥m)

Q�
2

m
(⇥⇤

M
) � Q�

2

m
(⇥m)

3

5 2 R2, m = 1, . . . ,M (25)
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and the entries of ⌘2 R2⇥2M are called control variate weights.

A multi-model ACV estimator is constructed by evaluating the highest-fidelity model at a single set of samples ⇥0 and

evaluating each low-fidelity model at two sets of samples ⇥⇤
↵

= {✓(n)}N↵⇤
n=1 and ⇥↵ = {✓(n)}N↵

n=1. Different ACV estimators415

can be produced by changing the way each sample set is structured. For example, MFMC estimators sample the uncertain

parameters such that ⇥⇤
↵

⇢ ⇥↵ and ⇥⇤
↵

= ⇥↵�1 and MLMC estimators sample such that ⇥⇤
↵

\ ⇥↵ = ;, and ⇥⇤
↵

= ⇥↵�1.

By construction any ACV estimator is an unbiased estimator of Q0 because E⇥ [�↵] = 0,↵> 0. Consequently, the MSE

of the ACV estimator, Eq. (18), can be minimized by optimizing the determinant of the estimator covariance matrix. When

estimating a single statistic (K = 1), this is equivalent to minimizing the variance of the estimator. Given sample sets ⇥ACV,420

the determinant of the covariance of an ACV estimator, Cov⇥ [QACV,QACV] in Eq. (27), can be minimized using the optimal

weights

⌘(⇥ACV) = �Cov⇥ [Q0,�]Cov⇥ [�,�]�1 , Cov⇥ [Q0,�] 2 R2⇥2M , Cov⇥ [�,�] 2 R2M⇥2M , (26)

which produces an ACV estimator with covariance

Cov⇥ [QACV,QACV] (⇥ACV) = Cov⇥ [Q0,Q0] �Cov⇥ [Q0,�]Cov⇥ [�,�]�1Cov⇥ [Q0,�]> 2 R2⇥2, (27)425

where the dependence of � and Q0 on the sample sets ⇥� and ⇥0 was dropped to improve readability. Note that, in Eq. (26)

and Eq. (27), and the remainder of this paper, we use Cov [v,v] as long hand for V [v] to emphasize that the covariance is a

matrix when the random variable v is a vector.

4.4 Computational considerations for multi-fidelity uncertainty quantification

The approximation of model statistics using ACV estimators is broken into two steps. The first step, referred to as the pilot430

study or exploration phase, involves collecting evaluations of each model on a common set of samples. These evaluations

are used to compute the so called pilot statistics that are needed to evaluate Eq. (26) and Eq. (27). Subsequently, these pilot

statistics are used to find the optimal sample allocation of the best estimator (see Algorithm 1). The second step, known as the

exploitation phase, involves evaluating each model according to the optimal sample allocation and then computing the model

statistics using Eq. (24). We will discuss the important computational aspects of these two phases in the following subsections.435

4.4.1 Estimating pilot statistics.

Computing the covariance of an ACV estimator, Cov⇥ [QACV,QACV] in Eq. (27), requires estimates of the covariance between

the estimator discrepancies �, Eq. (25), with each other and the high-fidelity estimator and the covariance of the high-fidelity

estimator, i.e. Cov⇥ [�,�] and Cov⇥ [Q0,�]. In practice, these quantities, which we call pilot statistics, are unknown and

must be estimated with a pilot study. Specifically, following standard practice (Peherstorfer and Willcox, 2016), we used MC440

quadrature with P , so-called, pilot samples ⇥pilot = {✓(p)}P

p=1 to compute the pilot statistics. This involves computing the

high-fidelity and all the low-fidelity models at the same set of samples ⇥pilot. For example, we approximated Cov⇡ [f↵,f� ],
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which is needed to compute the quantities in Eq. (27), by

Cov⇡ [f↵,f� ] ⇡ P�1
PX

p=1

⇣
f↵(✓(p)) � Qµ

↵
(⇥pilot)

⌘⇣
f�(✓(p)) � Qµ

�
(⇥pilot)

⌘
2 R2⇥2, (28)

Please refer to Dixon et al. (2023) to see the additional quantities needed to compute the covariance blocks of Cov⇥ [�↵,�� ]445

and Cov⇥ [Q0,�↵], which are required to compute the estimator covariance Cov⇥ [QACV,QACV] of a vector-valued statistic

that consists of both the mean and variance of a model. Finally, we recorded the CPU time needed to simulate each model at

all pilot samples and set the model costs w> = [w0,w1, . . . ,wM ]2 RM+1 to be the the median simulation time of each model.

Unfortunately, using a finite P introduces sampling errors into Cov⇥ [�,�] and Cov⇥ [Q0,�], which in turn induces error

in the ACV estimator covariance, Eq. (27). This error can be decreased by using a large P but this would require additional450

evaluations of expensive numerical models, which we were trying to avoid. Consequently, in this study we investigated the

sensitivity of the number of pilot samples on the error in ACV MC estimators. Results of this study are presented in Section 5.

4.4.2 Optimal computational resource allocation.

The covariance of an ACV estimator, Cov⇥ [QACV,QACV] in Eq. (27), is dependent on how samples are allocated to the sets

⇥↵,⇥⇤
↵

, which we call the sample allocation A. A uniquely defines the allocation strategy by listing the number of samples455

of each set ⇥↵ and ⇥⇤
↵

and their pairwise intersections. Namely, A = {N0,N↵\� ,N↵⇤\� ,N↵\�⇤ ,N↵⇤\�⇤ | ↵,� = 1, . . . ,M},

where N↵\� = |⇥↵ \ ⇥� |, N↵⇤\� = |⇥⇤
↵

\ ⇥� |, N↵\�⇤ = |⇥↵ \ ⇥⇤
�
|, N↵⇤\�⇤ = |⇥⇤

↵
\ ⇥⇤

�
| denote the number of samples

in the intersections of pairs of sets, and N↵[� = |⇥↵ [⇥� |, N↵⇤[� = |⇥⇤
↵

[⇥� |, N↵[�⇤ = |⇥↵ [⇥⇤
�
|, N↵⇤[�⇤ = |⇥⇤

↵
[⇥⇤

�
|

denote the number of samples in the union of pairs of sets . Thus, the best ACV estimator can be theoretically found by solving

the constrained non-linear optimization problem460

min
A2A

Det[Cov⇥ [QACV,QACV] (A)] s.t. W (w,A)  Wmax. (29)

In the above equation, A is the set of all possible sample allocations and the constraint ensures that the computational cost of

computing the ACV estimator

W (w,A) =
MX

↵=0

N↵⇤[↵w↵

is smaller than a computational budget Wmax2 R. The solution to this optimization problem is often called the optimal sample465

allocation.

Unfortunately, a tractable algorithm for solving Eq. (29) has not yet been developed, largely due to the extremely high

number of possible sample allocations in the set A. Consequently, various ACV estimators have been derived in the literature

that simplify the optimization problem, by specifying what we call the sample structure T , which restricts how samples are

shared between the sets ⇥↵,⇥⇤
↵

. For example, optimizing the estimator variance, Eq. (23), of a two model MFMC (Peherstorfer470
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et al., 2016) mean estimator, Eq. (21), requires solving

min
N0,N1

N�1
0 V [f0]

✓
1 � N1 � N0

N1
Corr[f0,f1]

2

◆

s.t. N0w0 + N1w1  Wmax, T = {N0\1⇤ = N0,N0[1⇤ = N0,N0\1 = N0,N0[1 = N1,N1⇤\1 = N0,N1⇤[1 = N1}.

Alternatively, minimizing the estimator variance of the two model MLMC (Giles, 2015)4 mean estimator requires solving

min
N0,N1

N�1
0 V [f1 � f0] + (N1 � N0)

�1V [f1]475

s.t. N0w0 + N1w1  Wmax, T = {N0\1⇤ = N0,N0[1⇤ = N0,N0\1 = 0,N0[1 = N1,N1⇤\1 = 0,N1⇤[1 = N1}.

MLMC and MFMC employ sample structures T that simplify the general expression for the estimator covariance

Cov⇥ [QACV,QACV] in Eq. (27). These simplifications were used to derive analytically solutions of the sample allocation opti-

mization problem in Eq. (29) when estimating the mean, E⇥ [f0] in Eq. (16), for a scalar-valued model. However, the optimal480

sample allocation of MLMC and MFMC must be computed numerically when estimating other statistics, such as variance

V⇥ [f0] in Eq. (17). Similarly, numerical optimization must be used to optimize the estimator covariance, Cov⇥ [QACV,QACV]

in Eq. (27), of most other ACV estimators, including the ACVMF and ACVIS (Gorodetsky et al., 2020), as well as their tunable

generalizations (Bomarito et al., 2022).

Each existing ACV estimator was developed to exploit alternative sample structures T to improve the performance of ACV485

estimators in different settings. For example, a three model ACVMF estimator performs well when the low-fidelity models are

conditionally independent of the high-fidelity model. Imposing this conditional independence is useful when knowing one-

low-fidelity does not provide any additional information about the second low-fidelity model, given enough samples of the

high-fidelity model. This situation can arise when the low-fidelity models use different physics simplifications of the high-

fidelity model. In contrast, MLMC assumes that each model in the hierarchy is conditionally independent of all other models490

given the next highest fidelity model. This allows MLMC to perform well with with a set of models ordered in a hierarchy by

bias relative to the exact solution of the governing equations.

The performance of different ACV estimators is problem dependent. Consequently, in this paper we investigated the use

of a large number of different ACV estimators from the literature. For each estimator we used the general purpose numerical

optimization algorithm proposed in Bomarito et al. (2022) to find the optimal sample allocations that minimize the determinant495

of the estimator covariance.5

4MLMC estimators set all the control variate weights in Eq. (24) to ⌘ = �1. Refer to Gorodetsky et al. (2020) for more details on the connections between

ACV and MLMC.
5The presentation of the optimization algorithms in (Bomarito et al., 2022) focuses on the estimation of a single statistic, but can be trivially be extended

to the vector-valued QoI considered here.
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4.4.3 Model and estimator selection.

Using data from all available models may produce an estimator with larger MSE than an estimator that is only constructed

using a subset of the available models. This occurs when a subset of the low-fidelity models correlate much better with the

high-fidelity model than the rest of the low-fidelity models. For instance, some low-fidelity models may fail to capture physical500

behaviours that are important to estimating the QoI. Consequently, it is difficult to determine the best estimator a priori.

However, we can accurately predict the relative performance of any ACV estimator using only the model simulations run

during the pilot study. Thus, in this study we enumerated a large set of estimator types encoded by the different sample

structures T and model subsets.

Algorithm 1 summarizes the procedure we use to choose the best ACV estimator. Line 8 loops over all model subsets S . In505

this study, we enumerated all permutations of the sets of models that contained the high-fidelity model and at most 3 low-fidelity

models. Line 10 enumerates each parametrically defined estimator E. We enumerated the large sets of parametrically defined

generalized multi-fidelity (GMF), generalized independent sample (GIS) and generalized recursive difference (GRD) ACV

estimators introduced by Bomarito et al. (2022). These sets of estimators include ACVMF, MFMC, MLMC (with optimized

control variate weights) as special cases. For each estimator E and model subset S , line 12 was used to find the optimal sample510

allocation AE , using the pilot values {f↵(⇥pilot)}↵2S when minimizing Eq. (29). Lines 13-16 were used to record the best

estimator found at each iteration of the outer-loops.

Whether a model is useful for reducing the MSE error of a multi-fidelity estimator depends on the correlations between

that model, the high-fidelity, and the other low-fidelity models. For toy parameterized PDE problems, such as the diffusion

equation with an uncertain diffusion coefficient, theoretical convergence rates and theoretical estimates of computational costs515

can be used to rank models. However, for the models we used in this study, and likely many other ice-sheet studies, ordering

models hierarchically, that is, by bias or correlation relative to the highest-fidelity model, before evaluating them is challenging.

Indeed, the best model ensemble for multi-fidelity UQ may not be hierarchical (see Gorodetsky, 2020). Yet, estimators such

as MLMC and MFMC only work well on model hierarchies. Consequently, having a practical approach for learning the best

model ensemble is needed. Yet, to date this issue has received little attention in the multi-fidelity literature. Section 5 provides520

a sorely needed discussion of the impact of the pilot study on model selection and the error a multi-fidelity estimator.

5 Results

This section presents the results of our MFSE study. First, we describe the ensemble of numerical models we used to solve the

governing equations presented in Section 5.1. Second, we summarize the results of our Bayesian model calibration. Third, in

Section 5.3 we present the results of our pilot study. Specifically, we compare the computational costs of each model and their525

SFMC-based estimates of the mean and variance of the mass change computed using the pilot samples. We also report the

MSE of ACV estimators predicted using the pilot and note the subset of models they employed. Fourth, we detail the impact

of increasing the number of pilot samples on the predicted MSE of the ACV estimators in Section 5.4. Finally, we quantify the
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Algorithm 1 Estimator selection

1: Input

2: {f↵(⇥pilot)}M↵=0 Pilot evaluations of each model

3: Output

4: Abest Best estimator sample allocation

5: Jbest Best estimator objective

6: Jbest 1
7: . Loop over all low-fidelity model subsets

8: for S ✓ {1, . . . ,M} do

9: . Loop over all MF estimators, e.g MLMC, MFMF, ACVMF, etc

10: for E 2 E do

11: . Compute the optimal estimator objective JE and sample allocation AE for the current estimator and

subset of models
12: JE ,AE  Solve Eq. (29) using AE,S and {f↵(⇥pilot)}↵2S

13: if JE < Jbest then

14: . Update the best estimator

15: Abest AE

16: Jbest JE

17: end if

18: end for

19: end for

improvement in the precision of MFSE estimates of mass-change statistics relative to SFMC in Section 5.5. All results were

generated with the PyApprox software package (Jakeman, 2023).530

5.1 Multi-fidelity model ensemble

In this study we investigated the use of 13 different models of varying computational cost and fidelity to compute glacier mass

change. Specifically, we used MFSE to estimate the mean and variance of a highly-resolved finite element model using an

ensemble of 12 low-fidelity models. We compactly denote the fidelity of each model using the notation PHYSICSNAMEdx,dt,

where PHYSICSNAME refers to the governing equations solved, dx denotes the size of the representative spatial element and535

dt the size of the time-step. The four different meshes we used are shown in Figure 2.

The highest-fidelity model we considered in this study was a MOLHO-based model denoted by MOLHO⇤
1km,9days

, where

the star indicates that the model was modified to conserve mass. The low-fidelity model ensemble consisted of four MOLHO-

based low-fidelity models, MOLHO1km,36days, MOLHO1.5km,36days,MOLHO2km,36days, MOLHO3km,36days, and eight SSA-

based low-fidelity models SSA1km,36days,SSA1.5km,36days, SSA2km,36days, SSA3km,36days, SSA1km,365days, SSA1.5km,365days,540
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SSA2km,365days, SSA3km,365days. The number of elements associated with the four meshes with characteristic element sizes

1km, 1.5km, 2km and 3km, were 2611, 9238, 13744, 22334, respectively. The number of nodes for the same four meshes were

1422, 4846, 7154, 11536. Note, no low-fidelity model enforced the conservation of mass.

The models we used were all different numerical discretizations of two distinct physics models. However, in the future we

could also use alternative classes of low-fidelity models, if they become available. For example, we could use linearizations545

of the parameter-to-QoI map, proposed by Recinos et al. (2023), if our MOLHO and/or SSA codes become capable of effi-

ciently computing the gradient of the map. Such an approach would require only one non-linear forward transient solve of the

governing equations followed by a linear solve of the corresponding backward adjoint. Once constructed, the linearized map

could then be evaluated very cheaply and used to reduce the estimator variance, Cov⇥ [QACV,QACV] in Eq. (27), of the MFSE

estimators, provided the error introduced by the linearization is not substantial. Other types of surrogates could also be used in550

principle, however, the large number of parameters used pose significant challenges to traditional methods such as the Gaussian

processes used in Jantre et al. (2024). Recently developed machine-learning surrogates (Jouvet et al., 2021; Brinkerhoff et al.,

2021; He et al., 2023) could be competitive alternatives to the low fidelity models considered in this work.

Lastly, note that we used a different model, to the 13 described above, for the Bayesian calibration of the basal friction param-

eters. Specifically, we used the C++ code MALI (Hoffman et al., 2018), which can solve the Blatter-Pattyn equations (Pattyn,555

2003; Dukowicz et al., 2010) and compute the action of the Hessian on a vector. MALI efficiently computed these Hessian-

vector products, needed to compute our Laplace approximation of the posterior in Eq. (14), by solving the adjoint equations

for the steady state Blatter-Pattyn equations. However, SSA equations (Section 2.1.3) are not currently implemented in MALI

and the MOLHO (Section 2.1.2) equations have only recently been implemented (after the simulations for this work were per-

fomed). Consequently, we used FEniCS (Alnæs et al., 2015) to implement both MOLHO and SSA to ensure that the relative560

computational timings of these models would be consistent. Solving the Blatter-Pattyn model using the C++-based MALI code

and solving MOLHO and SSA using the python based FEniCS, would have corrupted the MFSE results. Moreover, imple-

menting SSA in MALI would be time consuming because it is currently only used to solve 3D models and not 2D models, such

as SSA. Indeed, a partial motivation for this study was to to determine the utility of implementing the SSA equations in MALI.

5.2 Bayesian model calibration565

In this study we used the MALI ice-sheet code (Hoffman et al., 2018; Tezaur et al., 2021) to calibrate the basal friction field on

the finest mesh, as described in Section 3. The MAP point of the posterior, determined using Eq. (13), is depicted in the left

panel of Figure 5. The pointwise variance of the Laplace approximation of the posterior of the log-friction (i.e. the diagonal of

Eq. (15)) is depicted in the right-panel of Figure 5. When this figure is compared to the pointwise variance of the prior (i.e. the

diagonal of Eq. (9)) depicted in the center panel of Figure 5, it is clear that conditioning the prior uncertainty on the surface570

velocity significantly reduced the uncertainty in the basal friction field. This conclusion is further corroborated by Figure 6,

which compares a random sample from the prior and a random sample from the posterior. The minimum and maximum values

of the posterior sample of the log-friction are much smaller than the same bounds of the prior sample. However, the posterior

sample has much higher-frequency content because the data only informed the lower-frequency modes of the friction field.
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Figure 5. (Left) Log of the basal friction MAP point, ✓MAP computed using Eq. (13). (Center) Pointwise prior variance, i.e. the diagonal

entries of ⌃prior, defined in Eq. (9). (Right) Pointwise posterior variance, i.e. the diagonal entries of, ⌃post, defined in Eq. (15).

Figure 6. (Left) A random sample from the prior distribution of the log-friction p(✓)⇠N (0,⌃prior), where ⌃prior is defined in Eq. (9).

(Right) A random sample from the Laplace approximation of the posterior p(✓ | M,y)⇠N (✓MAP,⌃post), defined in Eq. (14).

To demonstrate a projection to 2100 using a calibrated model, figure 7 depicts the difference between the final (year 2100)575

and initial (year 2007) ice thickness and the final surface velocity of Humboldt Glacier computed by the highest-fidelity

model (MOLHO⇤
1km,9days

) for a random posterior realization of the basal friction field. The final ice thickness shown differs

substantially from the initial thickness with thickness decreasing substantially at lower elevations of the glacier in the ablation

zone where increasingly negative surface mass balance occurs through 2100. In general, the glacier speeds up as negative

surface mass balance causes the surface to steepen near the terminus. The largest speedup occurs in the region of fast flow in580

the north where basal friction is small. Also note that the high-frequency differences present in the thickness difference was

due to the high-frequency oscillations in the posterior sample, see Figure 6.

Remark 5.1 (Prior sensitivity). In this study we used our domain experience to determine the best values of the prior

hyper-parameters �,�,⌘ reported in Section 2.3 and the likelihood hyper-parameter ↵ in Eq. (12). However, varying these

hyper-parameters, would likely change the estimates of uncertainty in ice-sheet predictions produced by this study. Similar585
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Figure 7. (Left) The difference between the final and initial ice thickness in meters and (Right) the surface velocity of Humboldt Glacier.

The left box is a zoomed in picture of the top right tip of the glacier. The black line in the inset was used to plot cross-sections of the

thickness and friction profiles at 2100 in a region with high velocities (see Figure 14). Both the left and right figures were generated using

the highest-fidelity model MOLHO⇤
1km,9days evaluated at one random realization of the posterior of the basal friction field.

to previous studies (Isaac et al., 2015), we did not investigate these sensitivities extensively. We heuristically chose the prior

hyper-parameters so that the prior samples would have a variance and spatial variability that we deemed inline with our

domain experience. Further, we found that reducing ↵ substantially from the value we ultimately used while keeping the prior

hyper-parameter fixed, prevented the MAP point from capturing the high-frequency content of the basal friction field needed to

accurately match the observed surface velocities. Future studies should investigate the sensitivity of mass change to the values590

of the hyper-parameters more rigorously using an approach such as the one developed by Recinos et al. (2023).

Remark 5.2 (Interpolating basal friction). In this study we drew samples from the posterior distribution of the friction param-

eters defined on the finest spatial mesh. However, a posterior sample defined on the fine mesh cannot be used to predict mass

change with a low-fidelity model defined on a coarser mesh. Consequently, before using a low-fidelity model with a coarse

mesh to predict mass change, we first interpolated each sample of the posterior distribution of the basal friction field defined595

on the finest mesh onto the mesh used by the low-fidelity model.

5.3 Initial Pilot study

This section details the results of the pilot study that we used to obtain the computational cost, w, of each model and the pilot

statistics, e.g. Eq. (28), needed to construct ACV estimators. First, we evaluated each of our 13 models at the same 20 random

pilot samples of the model parameters ⇥pilot, i.e. 20 different basal friction fields drawn from the Laplace approximation of the600

posterior distribution p(✓ | M,y), Eq. (14). Second we computed the median computational cost (wall-time), w, required to
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solve each model at one pilot sample. The median computational costs are plotted in the top panel of Figure 8 and the total

cost of the evaluating all 13 models was approximately 144 hours. Third, using the pilot samples, we computed the SFMC

estimators of the mean, Eq. (16), and standard deviation , using the square-root of Eq. (17), of the mass change predicted by

each of the 13 models. The middle and lower panels of Figure 8 show that the means and standard deviations of each model605

differ. However in the next section, we show that despite the differences between the statistics computed using each model and

the differences between the ice-evolution predicted by each model (see Figure 14), MFSE was able to effectively increase the

precision of the mean and variance of the mass change, relative to SFMC.
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Figure 8. (Top) The median computational cost w (wall-time in hours) of simulating each model used in this study for one realization of the

random parameters. (Middle) The mean mass loss – negative expected mass change – (gigatons) at 2100. (Bottom) The standard deviation of

the mass change (gigatons) at 2100. Each quantity was computed using 20 pilot samples.

The exact gain in performance achieved by MFSE is dependent on the correlations between each model and the other pilot

quantities needed to compute Cov⇥ [�,�] and Cov⇥ [Q0,�] in Eq. (27). Consequently, in Figure 9 we plot the entries of the610

correlation matrix, Corr⇡[f ,f ] with f = [f0, . . . ,fM ]>. This figure shows that, despite the differences between each model’s

prediction of ice thickness and velocities at the final time (see Figure 14), as well as the variations in the SFMC estimate of

the mean and variance computed using each model, the correlation between each model’s prediction of the mass change is

high.6 However, inspecting the correlation between models can only qualitatively suggest the relative utility of each model for

reducing the error of an MFSE estimator. Thus, to be more precise, we used Eq. (29), and our pilot statistics, to predict the615

determinant of the the ACV estimator covariance, Det[Cov⇥ [QACV,QACV]]. Specifically, we made these predictions assuming

that a budget of 160 high-fidelity model evaluations would be allocated to the high-and low-fidelity models. Moreover, this

cost was assumed additional to the computational cost of simulating each model at the pilot samples. We then computed the so
6The correlation between MOLHO⇤

1km,9days and MOLHO1km,36days, reported in Figure 9, was not exactly 1. Each correlation was rounded to 4

significant digits.
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called variance reductions of the ACV estimator

R⇥[Qµ

ACV] = V⇥ [Qµ

0 ]/V⇥ [Qµ

ACV] and R⇥[Q�
2

ACV] = V⇥

h
Q�

2

0

i
/V⇥

h
Q�

2

ACV

i
(30)620

by extracting the diagonal elements of the estimator covariance, Cov⇥ [QACV,QACV] in Eq. (27). To ensure a fair comparison

we compared the ACV estimator variance to the SFMC estimator variance obtained using a computational budget equivalent

to 160 high-fidelity evaluations plus the computational cost of collecting the pilot model evaluations.
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Figure 9. The correlations, , Corr⇡[f ,f ] with f = [f0, . . . ,fM ]>, between the 13 ice-sheet models considered by this study using 20 pilot

samples.

Existing literature assumes that the pilot statistics used with Eq. (29) are exact, however using a small number of pilot

samples can introduce error into the estimator covariance Cov⇥ [QACV,QACV]. Moreover, we found that the error introduced625

by using a small number of pilot samples can be substantial, yet it is typically ignored in existing literature. Consequently, in

Figure 10a we plot the variance reduction of the ACV estimators of the mean, Qµ

ACV, and variance, Q�
2

ACV, of mass loss for

21 different bootstraps of the 20 pilot samples (1 bootstrap was just the original pilot data and each bootstrap set contained

20 samples). The plot is created by randomly sampling the model evaluations with replacement, computing the pilot statistics

with those samples, and solving Eq. (29). Please note that, while we enumerate over numerous estimators, each with a different630

variance reduction, the variability in the plots is induced entirely by the bootstrapping procedure we employed. The box plots

report the largest variance reduction, across all estimators, for each bootstrapped sample.

The median variance reduction was over 40 for the ACV estimators of both the mean and variance of the mass change. In

other words, our initial pilot study predicted that using ACV estimators would reduce the cost of estimating uncertainty in

projections of the mass change by over a factor of 40 when compared to SFMC estimators, which only use the highest-fidelity635

model. However, the box plots in Figure 10a highlight that using only 20 samples introduces a large degree of uncertainty into

the estimated variance reduction. The 10% quantile of the variance reduction for both the mean and variance estimators were

close to 30.
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Figure 10. (a) The predicted variance reductions R⇥[Q
µ
ACV] (mean) and R⇥[Q

�2

ACV] (variance), see Eq. (30), obtained using bootstrapping

of the initial 20 pilot samples. The red lines represent the median estimator variance reductions. The lower and upper whiskers represent the

10% and 90% quantiles. Note, two outliers, with values 73 and 125, do not appear on the plot for R[Q�2

ACV]. (b) The model subsets chosen

by the bootstrapped estimators using the initial 20 pilot samples.

The estimators obtained by bootstrapping the initial 20 pilot samples not only had different estimator variances (see Fig-

ure 10a), they also predicted that different model subsets (combinations of models) are needed to minimize the estimator640

variance. Figure 10b plots the model subsets chosen by the bootstrapped estimators and the number of times (frequency) each

subset was chosen; the set (0, 9, 10, 12) was chosen when the original 20 pilot samples were used (bootstrapping was not used).

Moreover, bootstrapping the estimators also revealed that using all models simultaneously, to reduce the variance of the ACV

estimator, was not as effective as using a smaller subset of models. Specifically, only eight out of the 13 models considered

were chosen at least once by a bootstrapped estimator. The models MOLHO1.5km,36days, MOLHO2km,36days, SSA1km,36days,645

SSA1.5km,36days, SSA2km,36days, were never selected by any of the bootstrapped estimators. Moreover, in some cases only

two low-fidelity models were chosen and in other cases three low-fidelity models were chosen. Lastly, not only did the chosen

model subsets vary between bootstrapped estimators, the type of estimator chosen also varied. In 7 cases, a hierarchical rela-

tionship was identified and in the other 14 cases a non-hierarchical relationship was identified; a non-hierarchical estimator was

chosen using the original 20 pilot samples (the 21st estimator). Recall, a model ensemble is hierarchical if it can be ordered650

by bias or correlation relative to the highest-fidelity model and each low-fidelity is only used to reduce the variance of the

estimator of the next highest-fidelity model in a recursive fashion.
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Figure 11. The predicted variance reductions, R[Qµ
ACV] (mean) and R[Q�2

ACV] (variance), see Eq. (30), of the best ACV estimators obtained

by bootstrapping the final 30 pilot samples, while enforcing a limit on the number of models an estimator can use, including the highest-

fidelity model. The red lines indicate the median estimator variance reductions. The lower and upper whiskers represent the 10% and 90%

quantiles.

5.4 Secondary pilot study

Upon quantifying the impact of only using 20 pilot samples on the estimator covariance, Cov⇥ [QACV,QACV], and the model

subsets, S , chosen by Algorithm 1, we incremented the number of pilot samples we used to compute the performance of the655

ACV estimators. To avoid wasting computational resources in our secondary pilot study, we only evaluated the 8 models, se-

lected by at least one bootstrapped estimator, on an additional 10 pilot samples. The combined cost of the initial and secondary

pilot study was approximately 197 hours, which equated to the equivalent of approximately 47 simulations of the highest-

fidelity model. Note that only the models included in the second pilot were simulated 30 times. The models only included in

the first pilot were simulated 20 times.660

Figure 11c plots the variance reductions of the mean and variance of mass loss , given by R[Qµ

ACV] and R[Q�
2

ACV], respec-

tively, as the maximum number of models used by the ACV estimators is increased. Note, an estimator allowed to choose four

models may still choose less than four models, which will happen when some of those models are not highly-informative. 21

different bootstraps of the final 30 pilot samples were used to quantify the error of the variance reductions caused by only using

a small number of pilot samples. Comparing Figure 11c with Figure 10a, which plots variance reductions using only 20 pilot665

samples, we observed that increasing the number of pilot samples decreased the variability of the estimator variances. However,

this increasing the number of pilot samples also increased the computational cost of the pilot study, which in turn reduced the

reported median variance reduction. That is, the median variance reductions obtained using 30 pilot samples (Figure 11c) was

lower than the median variance reductions reported using 20 pilot samples (Figure 10a).

The median variance reduction decreased because ACV estimators utilize the pilot samples solely to compute pilot statistics,670

such as variance, and do not reuse these samples for calculating the final statistics. In contrast, an equivalent SFMC estimator

can leverage both the pilot and exploitation budgets to estimate the final statistics. In other words, the variance of an SFMC
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estimator decreases linearly with the number of pilot samples, whereas the variance of an ACV estimator does not exhibit the

same behavior. Specifically, the variance of an ACV estimator is only marginally affected by an increase in the number of pilot

samples, as the sample allocation becomes more optimal.675

While increasing the number of pilot samples decreased variability, we believed that the benefit of further increasing the

number of pilot samples would be outweighed by the resulting drop in the variance reduction. Despite the remaining variability

in the variance reduction, we were able to confidently conclude that the MSE of the final ACV estimator we would construct

would be much smaller than the MSE of a SFMC estimator of the same cost because even the smallest variance reduction was

greater than 14. Consequently, we used the unaltered 30 pilot samples to determine the ACV estimator and its optimal sample680

allocation, which we used to construct our final estimates of the mean and variance of the mass change. The best estimator

chosen was an MFMC estimator that used the three models MOLHO⇤
1km,9days

, MOLHO1km,36days, SSA1.5km,365days.

5.5 Multi-fidelity sea-level rise projections

The cost of constructing our final estimator, QACV in Eq. (24), was equal to the sum of the pilot cost (197.13 hours) and

the exploitation cost (160 ⇥ 4.18) hours, which was approximately 36 days on a single CPU. The pilot cost was the sum of685

evaluating all 13 models on the initial 20 pilot samples and 8 models on an additional 10 pilot samples (see Section 5.4). The

exploitation cost was fixed at the beginning of the study to the computational cost equivalent to evaluating the high-fidelity

model 160 times, which takes a median time of 4.18 hour to simulate on a single realization of basal friction. The number of

samples allocated to evaluating each model by the ACV estimator during the exploitation phase are shown Figure 12. Only two

samples of the high-fidelity model were used. Yet, while running these simulations only accounted for approximately 1.25%690

of the total computational cost budget, these samples ensured the estimators were unbiased, with respect to the highest-fidelity

model. In contrast, many more evaluations of the lower fidelity models were used. The lower computational costs of these

models and their high-correlation with each other and the highest-fidelity model were effectively exploited to significantly

reduce the MSE of the ACV estimator relative to the SFMC estimator.

We constructed our final estimator of the mean, Qµ

ACV, and variance, Q�
2

ACV, of the mass change by evaluating each model695

at the number of samples determined by Figure 12. All models were evaluated at the same two samples, the two low-fidelity

models were both evaluated at another 351 samples, and the SSA1.5km,365days model was evaluated at another 10130 samples.

The small number of samples allocated to the highest-fidelity model was due to the extremely high-correlation between that

model and the model MOLHO1km,36days. This high-correlation suggests that the temporal discretization error of the highest-

fidelity model is smaller than the spatial discretization error.700

Note, the exact number of samples allocated to each model that we reported is determined by the properties of the MFMC

estimator chosen, however, if another estimator, for example MLMC, was chosen to use the same models the way samples are

shared between models would likely change.7

The mean and standard deviation computed using the best ACV estimator were �639.06 ± 0.23 and 17.68 ± 6.67, respec-

tively. It is clear that with our budget we were able to confidently estimate the expected mass change at year 2100. However,705

737 of the 10130 SSA1.5km,365days model simulations failed so an additional 37 simulations at new random realizations of the friction field were run.
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Figure 12. The optimal number of samples (number inside rectangles), computed using Eq. (29), required by the best ACV estimator to

simulate each model.

our estimates of the standard deviation in the mass change were less precise. We could improve the precision of both estimated

statistics by further increasing the exploitation budget; however, we choose not to do so, as our results emphasize that estimat-

ing statistics high-order statistics, such as variance, is more computationally demanding than estimating a mean. Moreover, the

precision requirements of a UQ study should be determined by the stakeholders, which will use the uncertainty estimates to

make decisions.710

The left panel of Figure 13 plots the time evolution of mass loss predicted by the three models selected by our final ACV

estimator. The right panel plots the distribution of mass loss at the final year, 2100, computed using the SSA1.5km,365days

model. The bias of the SSA1.5km,365days is clear in both plots, for example, in the right panel the mean of the blue distribution

is not close to the mean computed by the ACV estimator. However, we must emphasize that, by construction, the ACV estimate

of the mean mass loss, and its variance, is unbiased with respect to the highest-fidelity model MOLHO1km,9days. We also715

point out that while our Laplace approximation of the posterior is a Gaussian, the push-forward of this distribution through

the SSA1.5km,365days model model is nonlinear. Specifically, the push-forward of a Gaussian through a linear model remains

Gaussian; however, in this case, the right tail of the push-forward density is longer than the left tail, indicating that it is

not Gaussian. This suggests that the mapping from the basal friction parameters to the quantity of interest is nonlinear. We

were unable to compute reasonable push-forward densities with the simulations obtained from the other two models used to720

construct the ACV estimator due to an insufficient number of simulations. However, we believe it is reasonable to assume that

the parameter-to-QoI map if these models is also non-linear.

6 Discussion

The cost of constructing our final estimator was equal to the pilot cost and the exploitation cost, totalling 197.13 + (160 ⇥
4.18) hours, or approximately 36 days. Additionally, the median variance reduction obtained by the bootstrapped estimators725
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Figure 13. (Left) The evolution of mass loss predicted by the three models we used in our final ACV estimator, corresponding to each of the

simulations used to construct the estimator. (Right) The probability of mass loss computed using the SSA1.5km,365days model. The black

vertical line represents the ACV estimate of the mean, while the gray shaded region represents plus and minus 2 standard deviations, again

computed by the ACV estimator.

was V⇥ [Qµ

0 ]/V⇥ [Qµ

ACV] = 38.24 for estimating the mean and V⇥ [Qµ

0 ]/V⇥

h
Q�

2

ACV

i
= 28.91 for estimating the variance of

the mass change. Achieving the same precision with SFMC estimators using only the highest fidelity model would require

approximately 28.91 ⇥ 160 ⇥ 4.18 hours = 805 days. This calculation used the smallest variance reduction motivated by the

observation that high-fidelity simulation data can be used to compute both mean and variance. Thus, MFSE reduced the cost

of estimating uncertainty from over two and a half years of CPU time to just over a month, assuming the models are evaluated730

in serial. Note that while applying MFSE to the Humboldt Glacier took over a month of serial computations, the clock time

needed for MFSE can be substantially reduced because MFSE is embarrassingly parallel. Each simulation run in the pilot

stage can be run in parallel without communication between. Similarly, for the exploitation phase. Moreover, each simulation

ca can be computed in parallel. Consequently, while using MFSE for continental scale UQ studies may require years of serial

CPU time, distributed computing could substantially reduce this cost, potentially one to two orders of magnitude. The exact735

reduction would depend on the number of CPUs used and the scalability of the computational models.

While the highest-fidelity model, MOLHO, was capable of capturing ice-sheet dynamics that the SSA model was not – that

is vertical changes in the horizontal velocities (Figure 14 shows the different ice-thickness predicted at the final time by the

MOLHO and SSA model) – the best ACV estimator was still able to use the simplified physics of SSA to reduce the MSE of

the best ACV estimator. Moreover, the best ACV estimator also used evaluations of the SSA model on a coarse mesh, which740

failed to resolve all the local features of the friction and ice-sheet flow-field (see Figure 14) and did not conserve mass, unlike

the highest fidelity model. This result demonstrates that, provided there is high correlation between the model predictions of a

QoI, MFSE can be effective when there is high correlation between the model predictions of a QoI, even when the model states
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vary differently across time and space for a single realization of the random model parameters. Moreover, future MFSE studies

may benefit from not only using low-fidelity models derived from different physics assumptions and numerical discretizations745

but also those based on data driven models, such as machine learning operators (He et al., 2023; Lowery et al., 2024) or

adjoint-based linearizations (Recinos et al., 2023). However, if such models are used, the computational cost of constructing

them must also be considered (Peherstorfer, 2019), just as we accounted for the pilot cost in this study.
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Figure 14. (Left) The basal friction, �, along the cross section (black line) depicted in the right panel of Figure 7. (Right) The difference

between the thickness fields simulated by the MOLHO⇤
1km,9days model and the SSA1.5km,365days along the same cross section.

Our study used a high-dimensional representation of the basal friction field capable of capturing high-frequency modes.

However, previous studies have commonly used lower-dimensional parameterizations (Nias et al., 2023; Ritz et al., 2015;750

Schlegel et al., 2018; Jantre et al., 2024). Consequently, we investigated the impact of using a low-frequency, low-dimensional

representation of the friction field on the efficiency of ACV estimators applied to ice-sheet models. Specifically, we estimated

the mean and variance of the mass change using a 10-dimensional Karhunen Loeve expansion (KLE) to represent the posterior

uncertainty of the basal friction field (complete details are presented in Appendix B). We found that using the low-dimensional

KLE smoothed realizations of the basal friction, which in turn drastically improved the variance reduction of MFSE to over755

a factor of 200. However, only using 10 modes to represent the basal friction caused the variance of the mass change to be

substantially underestimated. (Recinos et al., 2023) also demonstrated that lower-dimensional parameterizations can result in

misleading estimates. Consequently, while low-dimensional representations of friction enable faster UQ, the results may be

misleading. Thus, future research is needed to balance the increased bias introduced by the low-dimensional parameterization

with the improved variance reduction properties of an ACV estimator.760

This study emphasizes that the relative effectiveness of ACV estmators – such as MLMC, MFMC, and ACVMF – is prob-

lem dependent. Although each MFSE algorithm in the literature has its own theoretical advantages and disadvantages, it is

often difficult to determine which will be the most effective at the onset of a study. Indeed, several types of estimators enu-
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merated by this study yielded estimates of the mean and variance of the mass change with similar precision. For example,

Figures 11a, 11b, 11c show that while using three models is clearly better than using two, there is little, if any, marginal benefit765

in moving from three to four models, as indicated by the size of the box plots. Moreover, it is difficult to determine a priori

the numerical discretizations and model physics needed by a model ensemble to produce an ACV estimator with the smallest

MSE. Consequently, we used a small pilot sample to compute the correlation between model outputs and then use the analytical

properties of ACV estimators to predict the MSE of each estimator produced by popular MFSE algorithms.

While pilot studies are required for ACV methods, our results suggest that using a small number of pilot samples can770

introduce non-trivial variability into the optimal sample allocation used by ACV estimators. Consequently, we introduced

a novel two-step bootstrapping procedure to quantify the impact of a small number of pilot samples. While our two step

procedure was able to down select from a large set of possible models, further research is needed to develop algorithms that can

efficiently conduct pilot studies involving a large numbers of models. Furthermore, it is essential that new algorithms balance

the computational cost of computing the correlation between models with the impact the error in the estimated correlations775

when determining the optimal MSE of an ACV estimator.

Our study predicted the mean and standard deviation of mass change (in Gigatons) from Humboldt Glacier to be -639.06

and 17.68 respectively. However, the exact values of these statistics were impacted by our modeling choices. First, we only

quantified uncertainty due to unknown basal friction which ignores other contributions to mass-loss variability arising from

uncertain climate and ice-sheet processes such as iceberg calving, subglacial hydrology, and submarine melting. Including780

these processes would have likely affected both the mean and variance of the mass change. Indeed, our predicted mass loss

is significantly less than in two recent studies of Humboldt Glacier (Hillebrand et al., 2022; Carr et al., 2024) due to our use

of a low-emissions climate scenario and our neglect of ocean forcing. Moreover, introducing more complicated physics in the

highest-fidelity model, such as calving, could degrade the performance of MFSE. For example, ice melt at the boundary can

induce strong dynamical responses in a marine-terminating glacier, which could potentially reduce the correlation between785

models that do not capture this phenomenon. However, despite our imperfect description of uncertainty, we believe our study

reflects the challenges of a more comprehensive study while still facilitating a computationally feasible investigation of MFSE

methods.

This study focused on investigating the efficacy of using MFSE to accelerate the quantification of parametric uncertainty

using deterministic ice-sheet models. We did not quantify the uncertainty arising from model inadequacy. Recently Verjans790

et al. (2022), attempted to quantify model uncertainty by developing stochastic ice-sheet models designed to simulate the

impact of glaciological processes that exhibit variability that cannot be captured by the spatiotemporal resolution typically

employed by ice-sheet models, such as calving and subglacial hydrology. The MFSE algorithms presented in this paper can be

applied to such stochastic models, by sampling the model parameters and treating the stochasticity of model as noise. However,

the noise typically reduces the correlation between models and thus the efficiency of MFSE (Reuter et al., 2024). Moreover,795

this study only focused on estimating the mean and variance of mass change. Consequently, the efficacy of MFSE may change

when estimating statistics – such as probability of failure, entropic risk, and average value at risk (Rockafellar and Uryasev,

2013; Jakeman et al., 2022) – to quantify the impact of rare instabilities and feedback mechanisms in the system. We anticipate
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that larger number of pilot samples than the amount used in this study will be needed to estimate such tail statistics, potentially

reducing the efficiency of MFSE.800

Many recent studies have conducted formal uncertainty quantification of projections of ice-sheet change considering nu-

merous sources of uncertainty, such as climate forcing, iceberg calving, basal friction parameters, and ice viscosity. Although,

these generally deal with scalar parameters, such as a single calving threshold stress (Aschwanden and Brinkerhoff, 2022;

Jantre et al., 2024) or scalar adjustment factors to basal friction and ice viscosity fields (Nias et al., 2023; Felikson et al.,

2023; Jantre et al., 2024). However, recently automatic differentiation was used to linearize the parameter-to-QoI map of an805

SSA model to facilitate computationally efficiently quantify the uncertainty caused by high-dimensional parameterizations of

basal friction and ice-stiffness (Recinos et al., 2023), Additionally, other UQ studies have primarily relied on a large number

of simulations from a single low fidelity model (e.g., Nias et al., 2019; Bevan et al., 2023), sometimes with informal valida-

tion using a small number of higher-fidelity simulations (e.g., Nias et al., 2023), or on the construction of surrogate models

to sufficiently sample the parameter space (e.g., Bulthuis et al., 2019; Berdahl et al., 2021; DeConto et al., 2021; Hill et al.,810

2021; Aschwanden and Brinkerhoff, 2022; Jantre et al., 2024). Furthermore, another set of studies quantified the uncertainty

associated with the use of many different numerical models — termed an "ensemble of opportunity" — which includes a wide

range of modeling choices that sample parameter values and model fidelity in an unsystematic manner (Edwards et al., 2021;

Seroussi et al., 2023; Van Katwyk et al., 2023; Yoo et al., 2024). While this study is limited in scope, because it focus on solely

estimating parametric uncertainty induced by basal friction variability, our results demonstrate that even when low-fidelity815

ice-sheet models do not capture the flow features predicted by higher-fidelity models, they can still be effectively utilized by

MFSE methods to reduce the cost of quantifying high-dimensional parametric uncertainty in ice-sheet model predictions. Con-

sequently, low-fidelity models, when used with MFSE methods, may be able to substantially reduce the computational cost of

future efforts to quantify uncertainty in the projection of the mass change from the entire Greenland and Antarctic ice sheets.

7 Conclusions820

Mass loss from ice sheets is anticipated to contribute O(10) cm to sea-level rise in the next century under all but the lowest

emission scenarios (Edwards et al., 2021). However, projections of sea-level rise due to ice-sheet mass change are inherently

uncertain, and quantifying the impact of this uncertainty is essential for making these projections useful to policy makers

and planners. Unfortunately, accurately estimating uncertainty is challenging because it requires numerous simulations of a

computationally expensive numerical model. Consequently, we evaluated the efficacy of MFSE for reducing the computational825

cost of quantifying uncertainty in projections of mass loss from Humboldt Glacier, Greenland.

This study used MFSE to estimate the mean and the variance of uncertain mass-change projections caused by uncertainty in

glacier basal friction using 13 different models of varying computational cost and fidelity. While ice sheets are subject to other

sources of uncertainty, focus was given to basal friction because its inherent high-dimensionality typically make quantifying its

impact on the uncertainty in model predictions challenging. Yet, despite this challenge, we found that for a fixed computational830
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budget, MFSE was able to reduce the MSE in our estimates of the mean and variance of the mass change by over an order-of-

magnitude compared to a SFMC based approach that just used simulations from the highest fidelity model.

In out study, we were able to use MFSE to substantially reduce the MSE error in the statistics by exploiting the correlation

between the predictions of the mass change produced by each model. However, it was not necessary to using simulations

from all of the models to reduce the MSE. Indeed, the MFSE algorithm determined that only three models (including the835

highest-fidelity model) were needed to minimize the MSE in the statistics given our computational budget. The low-fidelity

models selected used: 1) simplifications of the high-fidelity model physics, 2) were solved on coarser resolution spatial and

temporal meshes, and 3) were solved without the requirement of mass conservation. These simplifications result in significant

computational cost savings relative to use of the high-fidelity model alone. This result demonstrated that MFSE can be effective

even when the lower-fidelity models are incapable of capturing the local features of the ice flow fields predicted by the high-840

fidelity model. Moreover, while the utility of the lower-fidelity models ultimately chosen for MFSE were not clear at the onset

of the study, we were still able to estimate uncertainty at a fraction of the cost of single fidelity MC. This was achieved despite

the need to conduct a pilot study that evaluated all models a small number of times.

Finally, this study demonstrated that MFSE can be used to reduce the computational cost of quantifying parametric uncer-

tainty in projections of a single glacier, which suggests that MFSE could plausibly be used for continental-scale studies of845

ice-sheet evolution in Greenland and Antarctica. Future research should increase the complexity of this study in two directions.

First, future studies should include additional sources of ice-sheet uncertainty beyond the basal friction field studied here, for

example uncertain surface mass balance and ocean forcing. Second, future studies should include the use of model fidelities

that capture additional physical processes such as calving, fracture, and ocean-forced melting. Consequently, while our find-

ings should be interpreted with caution given the aforementioned limitations they encourage future studies to utilize MFSE for850

reducing the cost of computing probabilistic projections of sea-level rise due to ice-sheet mass change.

Code availability. The code used to construct ACV estimators has been released in the open-source Python package PyApprox https://github.

com/sandialabs/pyapprox.

Appendix A: Low-rank Laplace approximation

Following Bui-Thanh et al. (2013); Isaac et al. (2015) we computed the covariance of the Laplace approximation of the855

posterior distribution of the friction parameters, Eq. (14), using

⌃post =
⇣
HMAP +⌃

�1
prior

⌘�1
= L

⇣
L

>
HMAPL+ I

⌘�1
L

>,

where HMAP is the Hessian of 1
2 (y� g(✓))>

⌃
�1
noise(y� g(✓)) at ✓ = ✓MAP, L = K

�1
M

1
2 and the entries of K and M are

defined in Eq. (10) and Eq. (11), respectively.

Drawing samples from this Gaussian posterior is computationally challenging because the posterior covariance ⌃post de-860

pends on the Hessian HMAP which is a high-dimensional dense matrix. Consequently, following Bui-Thanh et al. (2013) and
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Isaac et al. (2015) we constructed a low-rank approximation of the prior-preconditioned Hessian L
>
HMAPL using matrix-free

randomized methods that requires only multiplications of the Hessian with random vectors. Specifically, computing a spectral

decomposition of

L
>
HMAPL = U⇤U

>, (A1)865

with U orthogonal and ⇤ diagonal matrices and noting

⌃post = L

⇣
U⇤U

> + I

⌘�1
L

> = L

⇣
U(⇤+ I)U>

⌘�1
L

> = LU(⇤+ I)�1
U

>
L

>

we factorized ⌃post as

⌃post = TT
>, T = LU(⇤+ I)� 1

2U
> = LU

⇣
(⇤+ I)� 1

2 � I

⌘
U

> +L.

In order to perform a low-rank approximation of the matrix T we truncated the spectral decomposition of W = U

⇣
(⇤+ I)� 1

2 � I

⌘
U

>870

by discarding the eigenvalues �i such that
���1 � 1p

�i+1

��� ⌧ 1. This ensured that the low-rank approximation of T well approx-

imated T in the spectral norm sense. The eigenvalues and two eigenvectors of the spectral decomposition we computed are

depicted in Figure A1.

Figure A1. (Left) Eigenvalues �i of the prior-preconditioned Hessian, computed by solving Eq. (A1), and (Center) its eigenvectors associated

to the largest and (Right) third largest eigenvalue. Note that similarly to Isaac et al. (2015), we plot the eigenvectors Vi = LUi that are

orthonormal with respect to the prior-induced dot-product, that is, V>
i ⌃

�1
priorVj = �ij .

We computed the truncated spectral decomposition using randomized algorithms (see Hartland et al. (2023); Halko et al.

(2011)) implemented in PyAlbany, see Liegeois et al. (2023). The algorithms used were matrix-free and only required the875

multiplication of L>
HMAPL with vectors. Moreover, as described in Hartland et al. (2023); Isaac et al. (2015), the multipli-

cation of the Hessian with a vector required solving two adjoint systems of the flow model. Similarly, the multiplication of the

matrix L with a vector required the solution of the two-dimensional linear elliptic system with matrix K, defined in Eq. (10).

Consequently, we were able to efficiently draw samples from the posterior distribution of the friction parameters using

✓post = ✓MAP +Tn, n ⇠ N (0,I).880
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Appendix B: Low-dimensional representation of basal friction using a Karhunen-Loeve expansion

In our main study we found that when using a high-dimensional representation of the uncertainty in the basal friction field,

bootstrapped ACV estimators rarely chose to use models that had coarse spatial meshes relative to the mesh used by the

high-fidelity model. This was likely due to the fact that our high-dimensional representation of the friction uncertainty was

constructed on the high-fidelity mesh and interpolated onto coarser meshes. To verify this hypothesis we investigated using a885

lower-dimensional representation of the friction field based on a Karhunen Loeve expansion (KLE) of the friction field that

smoothed out the high-frequency variations in the posterior samples of the friction field we used in our main study.

Construction of the KLE

In our investigations we used a KLE

✓ = ✓MAP +
DX

i=1

p
�i i ⌘i, ⌘i ⇠ N (0,1) (B1)890

to provide a low-dimension representation of the Laplace approximation of the posterior of the log basal friction field. We

computed the eigenvalues �i and the orthonormal eigenvectors  i by solving the eigenvalue problem

⌃post i = �i i, (B2)

using the randomized matrix-free methods Hartland et al. (2023); Halko et al. (2011).

While a KLE basis could have been constructed on any of the four meshes we considered, in this study we solved the895

discretized eigenvalue problem using the finest mesh. The 1st, 2nd, and 10th modes of the KLE used in this study are depicted

in Figure B1. Note, unlike what is typically seen when constructing a KLE of a field with a pointwise variance that is constant

across the domain, the low-frequency KLE modes constructed here are localized where the posterior uncertainty is highest.

The finite element basis on the finest mesh was then used to interpolate the KLE basis from the fine mesh onto the coarser

meshes. This procedure ensured that varying the coefficients of the KLE basis (the random parameters to the model) would900

affect each model similarly regardless of the mesh discretization employed. Similarly to the KLE basis, the mean of the log

KLE field (taken to be the mean of the Laplace approximation) was computed on the finest mesh.

Figure B2 compares a realization of the log of the basal friction perturbation (mean zero) drawn from the Laplace approxi-

mation of the posterior and a random random realization of the log of the basal friction perturbation computed using the KLE.

It is clear that the KLE smooths out much of the high-frequency content present in the realization drawn from the Laplace905

approximation of the posterior.

Pilot study

In this section, we detail the pilot study we undertook to investigate the impact of using a low-dimensional KLE to represent

friction when using MFSE to estimate statistics of mass change. We did not move beyond the pilot study to compute the values

of the statistics to limit the computational cost of this supplementary study.910

38



Figure B1. From left to right, the 1st, 2nd, and 10th mode of the KLE, Eq.(B1), used in this study, computed using Eq.(B2).

Figure B2. (Left) The mean of the log of the basal friction, ✓MAP in Eq. (13). (Center) A random realization of the log of the basal friction

drawn from the Laplace approximation of the posterior p(✓ | M,y)⇠N (✓MAP,⌃post). (Right) A random realization of the log of the 10-

dimensional basal friction computed using the KLE approximation, Eq. (B1), of the posterior.

First, we evaluated each of our 13 models at 20 random pilot samples of the KLE. Second we computed the pilot statistics

needed to find the best ACV estimator. Third we bootstrapped the pilot samples to estimate the median and confidence intervals

on the variance reduction obtained by the best ACV estimator.

The mean and variance bootstrapped variance reduction are depicted in Figure B4. The variance reductions reported are

almost an order of magnitude larger than those reported for MFSE based on the Laplace approximation of the posterior. This915

improved performance is because correlations between the models (Figure B3) are significantly higher than the correlations

obtained when sampling from the Laplace approximation of the posterior (Figure 9). However, the KLE representation un-

derestimates the uncertainty in the predicted mass change at 2100. Specifically, the standard deviation of the mass change

computed using 20 pilot samples of the highest-fidelity model using the Laplace approximation of the posterior is significantly

higher than the standard deviation computed using the KLE. Please refer to Figure B5.920
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Figure B3. The correlations, Corr⇡[f ,f ] with f = [f0, . . . ,fM ]>, between the 13 ice-sheet models considered by this study using 20 pilot

samples of the KLE using Eq.(B1).
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Figure B4. The predicted variance reductions R⇥[Q
µ
ACV] (mean) and R⇥[Q

�2

ACV] (variance), see Eq. (30), obtained using bootstrapping of

the 20 pilot samples of the KLE, Eq.(B1). The red lines represent the median estimator variance reductions. The lower and upper whiskers

represent the 10% and 90% quantiles.
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