
A microbially-driven and depth-explicit soil organic carbon model
constrained by carbon isotopes to reduce parameter equifinality
Marijn Van de Broek1, Gerard Govers2, Marion Schrumpf3, and Johan Six1

1Department of Environmental Systems Science, ETH Zurich, Zürich, Switzerland
2Division of Geography and Tourism, Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
3Department for Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany

Correspondence: Marijn Van de Broek (Marijn.vandebroek@usys.ethz.ch)

Abstract.

Over the past years, microbially-driven models have been developed to improve simulations of soil organic carbon (SOC),

and have been put forward as an improvement to assess of the fate of SOC stocks under environmental change. While these

models do include a better mechanistic representation of SOC cycling compared to cascading reservoir-based approaches, the

complexity of these models implies that data on SOC stocks are insufficient to constrain the additional model parameters. In5

this study, we constructed a novel depth-explicit SOC model (SOILcarb) that incorporates multiple processes influencing the

δ13C and ∆14C values of SOC and assessed if including data on the δ13C and ∆14C value of SOC during parameter reduces

model equifinality, the phenomenon that multiple parameter combinations lead to a similar model output. To do so, we used

SOILcarb to simulate depth profiles of total SOC and its δ13C and ∆14C values. The results show that when the model is

calibrated based on only SOC stock data, the residence time of subsoil organic carbon (OC) is not simulated correctly, thus10

effectively making the model of limited use to predict SOC stocks driven by, for example, environmental changes. Including

data on δ13C in the calibration process reduced model equifinality only marginally. In contrast, including data on ∆14C in the

calibration process resulted in simulations of the residence time of subsoil OC consistent with measurements, while reducing

equifinality only for model parameters related to the residence time of OC associated with soil minerals. Multiple model

parameters could not be constrained even when data on both δ13C and ∆14C were included. Our results show that equifinality15

is an important phenomenon to consider when developing novel SOC models, or when applying established ones. Reducing

uncertainty caused by this mechanism is necessary to increase confidence in predictions of the soil carbon – climate feedback

in a world subject to environmental change.

1 Introduction

Soils are an important component of the global carbon cycle, storing a vast amount of organic carbon (OC) (Scharlemann et al.,20

2014; Ciais et al., 2013). However, it is often overlooked that about 77 % of the soil organic carbon (SOC) in the upper 3 m of

soil is present below a depth of 0.3 m (Lal, 2018). Furthermore, while topsoil (< 0.3 m depth) OC is generally characterized

by average residence times ranging from years to decades (Baisden et al., 2013; Schrumpf and Kaiser, 2015), subsoil (> 0.3 m

depth) OC typically has residence times up to centuries or millennia (Balesdent et al., 2018; Luo et al., 2019). Despite these
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long residence times, subsoil OC is likely to play an important role in the climate – soil carbon feedback, as subsoil OC has25

been shown to be susceptible to losses upon soil warming (Hicks Pries et al., 2017; Soong et al., 2021; Jia et al., 2019). A

correct representation of the rate of OC cycling along the soil profile in biogeochemical models is necessary to make accurate

predictions about climate – soil carbon feedbacks. When these rates are overestimated, the simulated size of the SOC stock

will adapt too fast to changes in OC inputs. This leads to an underestimation of the time it takes for soils to increase their OC

storage due to increases in, for example, net primary productivity or OC inputs in agroecosystems (He et al., 2016; Wang et al.,30

2019).

Classical models simulating subsoil OC dynamics are based on conceptual pools with intrinsic turnover times, with the sim-

ulated carbon generally cascading along a sequence of model pools. The rate of OC turnover is generally calculated as a

function of abiotic factors and the chemistry of organic compounds. Such models have been developed as stand-alone models

(e.g. Elzein and Balesdent, 1995; Ota et al., 2013; Wang et al., 2015), or have been incorporated in ecosystem models (Camino-35

Serrano et al., 2018; Koven et al., 2013). These biogeochemical models have been criticized, as they do not incorporate the

emerging understanding of the controls on soil organic carbon (SOC) dynamics (Blankinship et al., 2018; Schmidt et al., 2011;

Dungait et al., 2012; Bradford et al., 2016). For example, these models do not explicitly simulate soil microbes, which are

both decomposers and important precursors of stabilized SOC (Denef et al., 2010; Kästner and Miltner, 2018; Kögel-Knabner,

2002; Six et al., 2006), and organo-mineral associations, which protect SOC from decomposition (Kleber et al., 2015, 2021;40

Sollins et al., 1996). In addition, model pools with a strong inherent recalcitrance, such as the ‘passive pool’ in models such

as Daycent (Parton et al., 1987) and the ‘humified organic matter pool’ in RothC (Coleman et al., 1997), are assumed to be

the result of humification, a theory that is being considered flawed and obsolete (Kleber and Lehmann, 2019; Lehmann and

Kleber, 2015).

As a reaction to this emerging understanding of the controls on SOC dynamics over the past decades, several mechanistic,45

microbially-driven models simulating depth profiles of SOC have been developed (e.g., Ahrens et al., 2015, 2020; Dwivedi

et al., 2017; Riley et al., 2014; Yu et al., 2020; Zhang et al., 2021). These models share multiple characteristics, such as the

explicit representation of soil microbes and the protection of SOC by association with soil minerals. Moreover, the increasing

residence time of SOC with soil depth is simulated as an emerging function of biotic and abiotic soil properties (Ahrens et al.,

2020). This improves the mechanistic representation of SOC dynamics in these models compared to first-order decay models,50

which generally use an exponentially decreasing parameter with depth to force the decreasing processing rate of soil organic

carbon along the soil profile (Koven et al., 2013; Wang et al., 2015, 2020).

This new generation of SOC models is characterised by an increase in model complexity and in the number of model param-

eters (Campbell and Paustian, 2015; Lawrence et al., 2009). This is an important consideration, as an increase in parameter

uncertainty can outweigh model improvements due to a better mechanistic description of the system, thereby increasing the55

overall model error (Van Rompaey and Govers, 2002). Finding an optimal balance between errors related to process represen-

tation and data availability is of major importance to create confidence in model outputs (Schindler and Hilborn, 2015). A too

complex model with respect to the availability of data can result in multiple combinations of parameter values that lead to a

near-optimal solution, so-called ’behavioural models’. This phenomenon has been referred to in literature by multiple terms,
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such as equifinality (e.g. Beven, 2006, 1993), non-uniqueness (Beven, 2006) or non-identifiability of model parameters (Brun60

et al., 2001; Sierra et al., 2015). Equifinality is a major issue for models simulating hydrology (e.g. Beven and Freer, 2001),

soil organic carbon (e.g. Sierra et al., 2015; Braakhekke et al., 2013; Marschmann et al., 2019), soil nitrogen (e.g. Schulz

et al., 1999) and ecosystem models in general (e.g. Luo et al., 2009; Tang and Zhuang, 2008). In the case of SOC models,

models characterised by equifinality are often able to make correct predictions of current SOC stocks, although these stocks

can be predicted by different distributions of SOC over the simulated model pools (Braakhekke et al., 2013). The problems65

(and uncertainty) arise when different behavioural models are used to make predictions of SOC stocks based on changing en-

vironmental conditions or OC inputs. In this case, behavioural models starting from an identical initial SOC stock can produce

a wide range in predicted values, from which it is generally not possible to identify the correct model (and parameter set) (Luo

et al., 2016, 2017). In the present article, we use the term parameter equifinality for this phenomenon. In addition, the term

overparameterisation is used for the situation when the number of model parameters is too large with respect to the available70

observational support for the processes represented by these parameters.

One way to reduce parameter equifinality is to include additional constraints on model parameter values during the calibration

process (Braakhekke et al., 2014). This has been done for multiple classical SOC models, by simulating, in addition to total

SOC, depth profiles of the ratio of stable carbon isotopes (δ13C) (Amundson and Baisden, 2000; van Dam et al., 1997; Poage

and Feng, 2004), radioisotopes (∆14C) (Baisden and Parfitt, 2007; Jenkinson and Coleman, 2008; Koven et al., 2013; Tifafi75

et al., 2018; Braakhekke et al., 2014) or a combination of both (Wang et al., 2020; Baisden et al., 2002), or 210Pb (Braakhekke

et al., 2013). Some mechanistic models also simulate the behaviour of 14C (Ahrens et al., 2015, 2020; Dwivedi et al., 2017;

Yu et al., 2020). While it has been shown that simulating these additional variables puts meaningful constraints on parameter

values, measurements of the necessary data is costly and hence such data are not widely available. On the other hand, δ13C iso-

tope ratios can be rapidly and relatively cheaply measured. While these isotopes do not decay radioactively like 14C, multiple80

processes that take place over decadal to centennial timescales influence depth patterns of the δ13C value of SOC. For example,

it has been shown that long-term changes in the δ13C value of vegetation (Keeling, 1979; Schubert and Jahren, 2015) influence

the δ13C value of SOC along the depth profile considerably (Paul et al., 2019). In addition, there is evidence that microbial

necromass, which constitutes up to 50 % of SOC (Rumpel and Kögel-Knabner, 2010; Wang et al., 2021; Angst et al., 2021), is

generally enriched in 13C compared to their substrate (Dijkstra et al., 2006; Gleixner et al., 1993; Miltner et al., 2004). Explic-85

itly simulating the fate of microbial necromass, and its 13C isotopes, therefore has the potential to better constrain the rate of

the formation of stabilized microbial necromass in soils (Šantrůčková et al., 2018). Lastly, as above- and belowground C inputs

to the soil generally have different δ13C values (Bowling et al., 2008; Werth and Kuzyakov, 2010), simulating the δ13C value of

these inputs has the potential to better constrain the vertical mixing of OC from different sources along the soil profile. To the

best of our knowledge, the potential of using 13C isotope data to further constrain the parameter values of a microbially-driven90

and depth-explicit SOC model has to date not been explored.

Therefore, the aim of this study is to assess to what extent the inclusion of simulating the δ13C and ∆14C values of SOC,

in addition to SOC itself, allows to better constrain model parameter values of a microbially-driven and depth-explicit SOC

model; thereby reducing model equifinality. To do so, we constructed a novel depth-explicit SOC model that incorporates
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multiple processes that influence the δ13C and ∆14C value of SOC. We hypothesized that (1) calibrating a microbially-explicit95

model using only carbon stock data results in substantial parameter equifinality and (2) underestimates the residence time of

subsoil OC (following He et al. (2016)), while (3) using simulated depth profiles of δ13C or ∆14C, or a combination of both,

as additional constraints on parameter values will narrow the range in optimised parameter values which result in behavioural

models (i.e. a model solution that cannot easily be rejected). As the δ13C value of SOC is generally not simulated in mech-

anistic SOC models, we also discuss the effect of different mechanisms on simulated depth profile of δ13C. As equifinality100

in SOC models has received only limited research attention, increasing awareness of, and solving, this problem will increase

confidence in simulations of the role soils can play in climate change mitigation or increasing SOC stocks to improve soil

health in agroecosystems.

2 Materials and Methods

2.1 The SOILcarb model105

This section provides a brief description of the main processes simulated in SOILcarb (Simulation of Organic carbon and its

Isotopes by Linking carbon dynamics in the rhizosphere and bulk soil). A detailed model description and overview of the

equations is provided in the Supplementary Information, as well as an overview of the state variables (Table S5) and model

parameters (Table S6). The presented version of SOILcarb was used to simulate depth profiles of OC dynamics in natural forest

soils. We note that the main aim of the developed model for the present manuscript was to show the effect of equifinality on110

model outcomes, and that the application of SOILcarb to other environments requires further testing.

The vertical soil profile is simulated down to 1 m depth, for layers with an increasing thickness with depth. SOILcarb has

been programmed in R (R Core Team, 2024), with the differential equations regulating the flows of OC being solved using the

lsodes solver from the DeSolve package (Soetaert et al., 2010). For the presented simulations, the model was run for a period of

15,000 years up to the year 2004. It is noted that the current model does not include the effect of temperature and soil moisture,115

limiting the model to predict SOC and its isotopic signature under steady-state environmental conditions.

2.1.1 Simulation of organic carbon dynamics

SOILcarb is divided into three compartments: (1) litter layer, (2) rhizosphere and (3) bulk soil (Fig. 1). The litter layer is sim-

ulated spatially separated from the soil compartments. The rhizosphere and bulk soil compartments are used to conceptually

separate the parts of the soil where most OC inputs occur and OC cycles relatively fast (the rhizosphere) from the zone where120

available OC for microbes is relatively limited due to mineral protection and where OC cycles relatively slow (the bulk soil).

Inputs of OC in the litter layer originate from litterfall, which is separated into particulate OC (CPOC-l) and dissolvable OC

(CDOC-l). Depolymerisation and microbial uptake of CPOC-l and CDOC-l are simulated using the equilibrium chemistry approx-

imation (Tang and Riley, 2013) (the model assumes that DOC needs to be depolymerised before uptake, as a considerable

portion of DOC is generally not bio-available (Risse-Buhl et al., 2013; Shen et al., 2015; Andreasson et al., 2009)), while125
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microbial turnover is simulated as a logistic growth process (Georgiou et al., 2017). Microbial OC uptake in all compartments

is reduced based on a fixed carbon use efficiency (CUE), with the remaining OC being transformed to CO2. Carbon from the

litter layer is transferred to the bulk soil through bioturbation of CPOC-l and leaching of CDOC-l.

In the rhizosphere, OC inputs are separated into (1) rhizodeposits, providing bio-available OC (Cbioav-r) to the soil, and (2)

root turnover, providing particulate OC (CPOC-r) to the soil. Depolymerisation of CPOC-r to Cbioav-r is simulated using reverse130

Michaelis-Menten kinetics, whereby the rate of depolymerisation is modified based on the ratio of microbes in the rhizosphere

(Cmic-r) to CPOC-r (see Supplementary Information). Uptake of Cbioav-r by Cmic-r is simulated using forward Michaelis-Menten

kinetics, whereby the rate of OC uptake is modified based on the ratio of Cmic-r to Cbioav-r. Following microbial turnover in the

rhizosphere (simulated using a logistic growth function), the soluble portion of microbial cells (the cytoplasm) is transferred

back to Cbioav-r, while the non-soluble portion of microbial cells is transferred to the DOC pool in the bulk soil (CDOC-b). A135

fixed portion of Cbioav-r is transferred to CDOC-b, to allow the direct adsorption of root-derived OC on soil minerals, without first

passing through a soil microbe. From CDOC-b, OC can be either protected by adsorption on soil minerals (Cmin-b), rendering it

inaccessible to microbial uptake, or be taken up by microbes in the bulk soil (Cmic-b). Competition for CDOC-b between minerals

and microbes is simulated using the equilibrium chemistry approximation (Tang and Riley, 2013). De-protection of Cmin-b is

simulated as a first-order process. Vertical transport of OC along the soil profile occurs as (1) bioturbation, simulated as a140

diffusion process (for CPOC-r, CDOC-b, Cmin-b and Cmic-b), and (2) leaching, simulated as an advection process (for Cbioav-r and

CDOC-b). It has been shown that the rate of de-protection of mineral-associated OC is influenced by root exudates (Keiluweit

et al., 2015). Therefore, the simulated rate of de-protection of OC from minerals is a function of the portion of the soil

occupied by the rhizosphere, calculated following Finzi et al. (2015). In addition, the amount of mineral surfaces available

for the protection of OC is scaled according to the rhizosphere volume (i.e., the larger the rhizosphere volume, the larger the145

amount of minerals which are in contact with OC originating from the rhizosphere).

2.1.2 Simulation of δ13C and ∆14C of organic carbon

In SOILcab, fluxes of 13C and 14C between model pools follow fluxes of 12C. The model first calculates fluxes of 12C between

pools and subsequently uses the ratio of 12C leaving every pool to the total amount of 12C of the respective pools to calculate

how much 13C and 14C leave every pool:150

FXC =X Cpool ·
F12C

12Cpool
(1)

Where FXC is the flux of 13C or 14C leaving a pool, F12C is the previously calculated flux of 12C leaving the same pool, XCpool

is the amount of 13C or 14C in the pool which loses C, and 12C
pool is the amount of 12C in the pool which loses C. The model

parameters are thus defined based on the 12C content of every pool.

The simulated processes that affect temporal variations in the δ13C value of SOC are (1) annual changes in the δ13C value155

of atmospheric CO2, directly affecting the δ13C value of vegetation, (2) the effect of atmospheric CO2 concentration on ki-

netic fractionation against 13C during plant photosynthesis, (3) differences in the δ13C value of aboveground plant biomass,
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Figure 1. Conceptual model of SOILcarb showing the model pools and fluxes of organic carbon in the litter layer, rhizosphere and bulk soil.

POC = particulate organic matter; DOC = dissolvable organic matter.

belowground biomass and rhizodeposits, and (4) heterotrophic CO2 assimilation by soil microbes. The same processes affect

the temporal variation of the ∆14C of SOC, in addition to radioactive decay. Note that no preferential microbial mineralisation

of 12C relative to 13C is simulated, as consistent empirical evidence for this is lacking (Boström et al., 2007; Ehleringer et al.,160

2000).

The difference in the δ13C value between atmospheric CO2 and aboveground biomass is calculated for every time step as the

sum of a fixed and variable component:

diff13Catm−leaf (t) = difffixed + diffvariable(t) (2)

Where difffixed is a constant representing a fixed and user-provided difference in δ13C between atmospheric CO2 and above-165

ground biomass, and diffvariable(t) represents the effect of atmospheric CO2 concentration on kinetic fractionation against 13C

during photosynthesis for every time step (see supplementary information Sect. 1.6.3).

The value of difffixed is provided by the user for the last simulation year, and is assumed to be constant throughout the

simulation. For every simulated time step, the δ13C value of aboveground biomass is subsequently calculated from a long-term
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series of average annual δ13C values of atmospheric CO2, which was compiled from Schmitt et al. (2012), Bauska et al. (2015)170

and Graven et al. (2017) (see Fig. S2). The annual ∆14C value of OC inputs from aboveground biomass is determined from a

compiled series of annual average ∆14C values of atmospheric CO2 (from Reimer et al. (2013), Hua et al. (2013) and Hammer

and Levin (2017), see Fig. S3). It was assumed that during photosynthesis, the fractionation against 14CO2 is twice that of

against 13CO2, as the mass difference between 14CO2 and 12CO2 is twice than that between 13CO2 and 12CO2 (Schuur et al.,

2016).175

The second simulated mechanism affecting temporal changes in the δ13C and ∆14C values of OC inputs to the soil is

the effect of the atmospheric CO2 concentration on kinetic fractionation against 13C during photosynthesis. This is based

on observations showing that for C3 plants, the magnitude of fractionation against 13C during photosynthesis increases with

increasing atmospheric CO2 concentration (Keeling et al., 2017; Schubert and Jahren, 2012, 2015). It has been shown that

accounting for this mechanism improves simulations of depth profiles of the δ13C value of SOC (Paul et al., 2019). The model180

simulates a linear effect of the atmospheric CO2 concentration on kinetic fractionation against δ13C during photosynthesis

(Keeling et al., 2017):

diffvariable(t) = ([CO2](tend)− [CO2](t)) ·S (3)

Where [CO2](tend) is the atmospheric CO2 concentration (ppm) in the last simulated calendar year (tend), [CO2](t) is atmo-

spheric CO2 concentration in every other simulated year t and S represents the change in fractionation against 13C by plants185

per unit change in atmospheric CO2 concentration (‰ ppm-1; Schubert and Jahren (2015)). The value of S was fixed at 0.014

‰ ppm-1, following Keeling et al. (2017).

With respect to variations in the δ13C value of SOC with depth, a first simulated process is caused by differences in δ13C

between aboveground biomass, roots, and rhizodeposits. The δ13C value of aboveground biomass is calculated for every time

step using Eq. 2, while the δ13C values of roots and rhizodeposits are calculated using user-defined differences in δ13C between190

aboveground vegetation on the one hand, and roots and rhizodeposits respectively, on the other hand (see supplementary infor-

mation Sect. 1.6.4). The second mechanism is heterotrophic CO2 assimilation by soil microbes (Šantrůčková et al., 2005, 2018;

Nel and Cramer, 2019; Akinyede et al., 2020, 2022). In our model simulations, we assumed that soil microbes derive 1.1 % of

their OC from heterotrophic CO2 assimilation, as quantified for a soil in Hainich National Park by Akinyede et al. (2020) (see

supplementary information Sect 1.3.1). To simulate the effect of the δ13C and ∆14C values of soil CO2 along the depth profile195

on the microbial δ13C and ∆14C values due to heterotrophic CO2 assimilation, depth profiles of the δ13CO2 and ∆14CO2 were

simulated using a one-dimensional CO2 diffusion model (Amundson and Davidson, 1990; Cerling, 1984; Goffin et al., 2014)

(see supplementary information Sect. 1.4).

2.2 Study site

The model was applied to a deciduous forest site in Hainich National Park (Germany; 51°04’N, 10° 27’ E), using data from200

Schrumpf et al. (2013). The soil is an eutric Cambisol with a sand, silt and clay content of ca. 3, 38 and 59 %, respectively

(Schrumpf et al., 2011, 2013). Soil samples were collected in 2004 in three replicates for depth intervals of 0-5, 5-10, 10-20,
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20-30, 30-40, 40-50 and 50-60 cm. Using density fractionation on 2 mm sieved soil, the amount of OC in (1) the free light

fraction (referred to as particulate organic carbon (POC)), (2) the occluded light fraction and (3) the heavy fraction (referred

to as mineral-associated organic carbon (MAOC)) was obtained. As SOILcarb does not simulate aggregate dynamics, the total205

amount of measured OC was reduced by the amount of OC in the occluded light fraction, which constituted 8.4% of total SOC

down to 60 cm. Therefore, when referring to total SOC in this manuscript, we refer to the sum of POC and MAOC. Measured

values of total OC, POC, MAOC, and δ13C and ∆14C of the POC and the MAOC fractions were used for model calibration

purposes. More information about the study site and data processing is provided in Schrumpf et al. (2011, 2013).

The annual amount of litterfall and root production at the study site was obtained from Kutsch et al. (2010), who, using210

measurements between 2000 and 2007, obtained an annual average rate of aboveground litter input of 209 ± 14 g C m-2 yr-1

and root production of 232 ± 15 g C m-2 yr-1. The annual production of rhizodeposit OC was calculated by multiplying the

annual root carbon production by 0.4, the median ratio of net rhizodeposition to the root biomass from a meta-analysis from

forest soils by Pausch and Kuzyakov (2018). We note that this number is likely to be an underestimation because it does not

account for post-rhizodeposition losses. This led to a total annual belowground OC flux of 324 g C m-2, of which 92 g C m-2 as215

rhizodeposits (29 %). The root and rhizodeposit inputs were distributed over the upper 1 m of the soil following the asymptotic

nonlinear model of Gale and Grigal (1987) (see supplementary information Sect. 1.3.3). To calibrate the amount of OC in the

simulated litter layer, measurements of the litter and organic layer by Schrumpf et al. (2013) were combined (580 g C m-2).

The depth profile of OC stocks in the POC and MAOC fractions were obtained by combining measured OC concentrations for

the respective fractions with the bulk density of the same depth layers (Schrumpf et al., 2013).220

The δ13C value for the litter layer was calculated to be 0.1 ‰ lower than the average δ13C value of leaves (see below),

following Knohl et al. (2005), resulting in a δ13C value of -29.2 ‰. The ∆14C value of the litter layer (98.7 ‰) was measured

in 2004 by Schrumpf et al. (2013). The δ13C value of root inputs in 2004 was derived from the average measured δ13C value

of POC below 0.2 m depth (-27.8 ‰), assuming that this POC is mostly derived from roots. The δ13C value of aboveground

vegetation was derived from the measured difference of 1.5 ‰ in the δ13C value between roots and leaf area index-weighted225

leaves at the same site (Knohl et al., 2005), resulting in a δ13C value for aboveground biomass in 2004 of -29.3 ‰. As

measurements of the δ13C value of root exudates were not available, a range of reasonable values was tested and the resulting

δ13C values of SOC and MAOC depth profiles were compared to measured values. The tested δ13C of root exudates that

resulted in the closest fit of measured and modelled depth profiles of δ13C was -28.9 ‰, which was used for all subsequent

simulations. The heavier isotopic signature of root exudates compared to leaves is in line with the fact that root exudates are230

composed of sugars, amino acids and organic acids, among other chemical compounds (Pinton et al., 2007), which are enriched

in 13C compared to bulk leaves (Bowling et al., 2008).
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2.3 Parameter optimisation

2.3.1 Litter parameter optimisation

Parameter optimization was performed using the differential evolution (DE) algorithm from the DEoptim package in R (Mullen235

et al., 2011; Ardia et al., 2011), an evolutionary optimization algorithm to find optimal global parameter values in a complex

multidimensional parameter space. Parameter optimization was performed separately for the litter and soil layers. For the

litter layer, 3 parameter values were optimized: the half-saturation constants for POC depolymerisation (Km_POC−l) and

DOC depolymerisation and uptake (Km_DOC−l), in addition to the maximum rate for both of these processes (Vmax_l). No

information on the distribution of the total amount of litter C between the simulated model pools (CPOC-l, CDOC-l and Cmic-l)240

was present. As the focus of the present study is on OC dynamics in the soil, the amount of measured OC in the litter layer

was assumed to be distributed as follows: 33 % as DOC, 66 % as POC and 1 % as microbial C. We note that these portions

were not based on data, but on our best estimates of a reasonable distribution of OC in the litter layer of a temperate forest. The

error for simulations of the litter layer was calculated by summing the squared relative errors for the individual litter pools and

isotopic constraints:245

ϵlit =

5∑
i=1

(
measi −modi

measi

)2

(4)

Where ϵlit is the total error for the litter layer (unitless), meas are the measured pools, mod are the modelled pools and i refers

to the calibrated model pool (CPOC-l, CDOC-l and Cmic-l, δ13Clit and ∆14Clit, where the latter two refer to the δ13C and ∆14C

values of total litter OC).

2.3.2 Soil parameter optimisation250

During parameter optimization, the measured POC fraction was compared to the modelled CPOC-r pool, while the measured

MAOC pool was compared to the simulated OC in the bulk soil, referred to here as Cbulk (i.e., the sum of Cmin−b, CDOC−b

and Cmic−b). To assess the effect of isotopic constraints (δ13C and ∆14C) on optimized parameter values of SOILcarb, the

model parameters were optimised with 4 different scenarios:

– Scenario 1: optimisation with OC data only. The optimised model pools are the amount of OC in POC (CPOC−r) and in255

the bulk soil (Cbulk).

– Scenario 2: optimisation with OC and δ13C data. The optimised model pools are CPOC−r, Cbulk, δ13CPOC-r and δ13Cbulk.

– Scenario 3: optimisation with OC and ∆14C data. The optimised model pools are CPOC−r, Cbulk, ∆14CPOC-r and

∆14Cbulk.

– Scenario 4: optimization with OC, δ13C and ∆14C data. The optimised model pools are CPOC−r, Cbulk, δ13CPOC-r,260

δ13Cbulk, ∆14CPOC-r and ∆14Cbulk.
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In addition, parameter sets were rejected during the calibration if the simulated model outcome did not meet the following

criteria: (1) the amount of Cbioav−r has to be smaller than the amount of CPOC−r and (2) the total mass of OC in soil

microbes (i.e., the sum of Cmic−r and Cmic−b) cannot exceed 5 % of total simulated SOC. The errors of the respective pools

were calculated as squared relative errors, similar to Eq. 4. The errors for the same model pool along the depth profile were265

summed to obtain the total error for every pool.

In a first step, we selected 11 parameters which were deemed to be most critical and for which no measured values nor

reasonable estimates were available in the literature (Table S1). After optimization of these parameters, a sensitivity analysis

was performed (see Sect. 2.5.1). This led to the identification of 9 model parameters that were optimised (Table S2) under the

4 scenarios outlined above.270

Two model parameters were not retained for calibration. The first one is the rate of DOC advection (ν), because of its

limited sensitivity (Fig. S5). The second parameter is the e-folding depth of bioturbation (zb), to avoid correlations with the

biodiffusion coefficient (Db(0)) despite having an influence on model results (Fig. S5). We note that although the parameters

Vmax,POC−r and VmaxU,mic−r had a minimal influence on model outcomes, these were retained to assess if parameters in the

rhizosphere were prone to equifinality. For the optimisation of parameter values using the DE algorithm, 300 iterations were275

run. During each iteration 180 parameter combinations were tested, resulting in a total of 54,000 model runs per optimisation

scenario.

2.4 Assessment of parameter equifinality

After parameter optimisation using the DE algorithm, equifinality of the optimized parameters was analyzed. Multiple methods

are available to this end, such as GLUE (Beven and Binley, 1992) and Bayesian approaches (e.g. Vrugt, 2016), but these280

methods require prior information on the parameter value distribution to perform optimally. As this information was not

available for the optimised parameters, an alternative approach was developed.

The DE algorithm efficiently explores the multi-dimensional parameter space by proposing new sets of parameter combi-

nations during every iteration, based on previously generated parameter sets. To assess if multiple parameter combinations

resulted in behavioural models, we kept track of all tested sets of parameter values during the optimisation procedure. For285

every calibration scenario, this resulted in 54,000 non-unique parameter sets that were generated in the parameter space. In

a next step, the model was run using the unique parameter combinations, and the results and respective model errors were

stored. The parameter sets resulting in the 10 % lowest errors were retained, and were considered to be behavioural models,

after visually assessing that the model results were within the uncertainty of the measured values (Fig. 3). To assess how the

different calibration scenarios influenced model results, the depth profiles of total OC, δ13C and ∆14C were plotted for every290

calibration scenario (Fig. 3). To assess how each scenario influenced the range in optimal parameter values that resulted in be-

havioural models, the range in these parameter values for the different calibration scenarios was plotted (Fig. 4). All parameter

values explored by the DE algorithm were plotted to confirm that the entire parameter space within the provided boundaries

was explored (Fig. 4). Last, to assess correlations between parameters leading to behavioural models, correlation plots for these

parameter values were developed using the Pearson correlation coefficient (Fig. 5).295
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2.5 Sensitivity analysis

2.5.1 Selection of calibration parameters

To assess the influence of the 11 parameters that were initially selected for optimization (Table S1), a sensitivity analysis

was carried out using the PAWN method (Pianosi and Wagener, 2015). This is a density-based global sensitivity analysis

that quantifies the model sensitivity related to uncertainties of input parameters based on the cumulative distribution function300

(CDF) of the output distribution. This is done for the CDF when all parameters are varied (the unconditional CDF) and when

one parameter is kept constant (the conditional CDF). The distance between both cumulative distributions is used to quantify

the sensitivity of model to different parameters, and is calculated using the Kolmogorov-Smirnov (KS) statistic. The advantage

of this method is that it does not assume that the variance of the model output is a measure for model uncertainty, making it

more suitable to deal with e.g. multi-modal or skewed distributions than variance-based sensitivity analyses. The parameter sets305

to calculate the conditional and unconditional CDFs were obtained using the Matlab® version of SAFE toolbox (Pianosi et al.,

2015), which was also used to post-process the results and calculate the KS statistic. In addition to the parameters to be tested,

a dummy parameter with no influence on the model results was included in the sensitivity analysis. The KS statistic calculated

for the dummy parameter was subtracted from the KS statistics of the model parameters before the results were analysed. We

used 500 parameter sets to calculate the unconditional CDFs, 500 parameter sets to calculate the conditional CDFs and 50310

conditioning values sampled from the one-dimensional space of each tested parameter, following recommendations by Pianosi

and Wagener (2015). The parameter values were varied over the range that resulted in the 10 % best solutions in the first round

of model optimisation (see Sect. 2.3.2 and Table S1).

2.5.2 Sensitivity of parameters influencing the simulated δ13C depth profile

In a second sensitivity analysis, the sensitivity of the shape of the simulated δ13C depth profile to five model parameters was315

tested: (1) the δ13C value of OC inputs from aboveground biomass (δ13Cleaf ), (2) the δ13C value of root OC inputs (δ13Croot),

(3) the δ13C of rhizodeposit OC inputs (δ13Cexudates), (4) the fraction of microbial biomass derived from soil CO2 (α) and

(5) the change in fractionation against 13C by plants per unit change in atmospheric CO2 concentration (S). The value of these

parameters was varied over a range that results in a change in δ13C value of 1 ‰ (Table S4) to assure a uniform effect of the

parameter ranges on the simulated depth profiles of δ13C, except for α, which was varied over the range of values reported320

in literature. We note that the process of absorption was not included in this sensitivity analysis, as there is no preferential

absorption of 12C, 13C or 14C on minerals in the model. The sensitivity of three characteristics of the simulated δ13C depth

profiles was assessed: (1) the δ13C value in the top centimeter of the soil, the δ13C value at a depth of 0.40 m, and (3) the

difference in δ13C between these two soil layers. The sensitivity analysis was performed using the PAWN method (Sect. 2.5.1)

to calculate the global sensitivity of these parameters. In addition, a local sensitivity analysis was performed by plotting depth325

profiles of δ13C for the range over which these parameters were varied during the global sensitivity analysis with the PAWN

method.
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3 Results

3.1 Simulation of depth profiles of OC, δ13C and ∆14C using the optimal parameters

Model simulations for the litter and the soil compartments of SOILcarb align well with measurements after parameter optimiza-330

tion using all available data. The simulated amount of OC, δ13C and ∆14C in the litter layer closely align with measurements

after parameter optimisation based on OC, δ13C and ∆14C data (Fig. S6). In addition, the temporal evolution of δ13C and ∆14C

reflect changes in the value of these isotopes of atmospheric CO2 over the past 150 years.

Similarly for the soil, after parameters are optimised using measurements of depth profiles of OC, δ13C and ∆14C of the

POC and MAOC pools, the measurements of both pools are simulated very well by the model (Fig. 2).335

This indicates that the model captures differences in the amount of OC in POC and MAOC, in addition to the residence

time of OC in these pools. Concerning simulated depth profiles of δ13CO2 and ∆14CO2 along the soil profile (Fig. S8), the

model simulated δ13CO2 values of ca. 4 ‰ larger compared to available OC, and positive ∆14CO2 values similar to the ∆14C

available OC, in agreement with general observations (Trumbore, 2000; Cerling et al., 1991).

Figure 2. Simulated depth profiles of (A) OC(%), (B) δ13C(‰) and (C) ∆14C(‰) of the POC and bulk soil carbon pools (i.e., the sum of

Cmin−b, CDOC−b and Cmic−b), based on the calibration combining data on OC, δ13C and ∆14C for these pools. Circles indicate measured

values for POC (green), mineral-associated carbon (brown) and total carbon (black) by Schrumpf et al. (2013). Error bars indicate the

standard deviation on the measurements of POC and MAOC (when no error bars are visible, the error was smaller than the size of the circles

showing the averages).

3.2 Simulation of OC depth profiles using different isotopic constraints340

Calibrating the model with an increasing number of constraints (data on SOC, δ13C and/or ∆14C) led to an increasing accu-

racy of simulated depth profiles of δ13C and ∆14C. The results presented in Fig. 2 show an example of the model using the

most optimal parameter set. However, a frequentist model optimisation that tunes model parameters to simulate the average

measurements as closely as possible does not account for the fact that multiple parameter sets may result in a solution that is
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within measurement uncertainty (i.e., behavioural models). This was further explored by retaining the parameter sets that led345

to the 10 % best solutions obtained during the DE optimisation, as these were within the uncertainty of measurements (Fig. 3).

When the model is optimised using only data on the OC% of POC and MAOC (Fig. 3 A-C), simulated depth profiles of

OC% show a close fit to measurements (ϵ̄ = 0.006 [unitless]; ϵ̄ being the average weighted squared relative error for the POC

and bulk soil C pools (i.e., MAOC), see Sect. 2.3.2), while simulated values of δ13C along the depth profile are overestimated,

most notably in the topsoil (ϵ̄ = 0.269). Simulated ∆14C values are underestimated for most simulations (ϵ̄ = 0.58), with a large350

spread in simulated values, indicating that the turnover rate of OC along the soil profile is highly variable in this calibration

scenario. For the second calibration scenario, the model was optimised using data on OC% and δ13C of POC and MAOC (Fig.

3 D-F). Retained model results show a close fit between modelled and measured depth profiles of OC% (ϵ̄ = 0.036) and δ13C (ϵ̄

= 0.159). Although simulations of topsoil ∆14C show a closer fit with measurements compared to an optimization using OC%

data only, the average ∆14C values of SOC are overestimated below a depth of 0.2 m (ϵ̄ = 0.352). This indicates that including355

δ13C as a calibration constraint is not sufficient to correctly simulate ∆14C values, and thus turnover rates, of subsoil OC. The

latter was only the case when data on ∆14C was used to constrain model parameters (Fig. 3 G-L). Model optimisation using

data on OC% and ∆14C, either with or without data on δ13C, resulted in a close fit between modeled and measured values of

OC% (ϵ̄ = 0.049 and 0.014 resp.) and both isotopic ratios. It is noted that the simulated δ13C depth profiles had a lower error

when data on δ13C was included as a calibration constraint (ϵ̄ = 0.181) compared to when it was excluded (ϵ̄ = 0.241).360

The average error of OC% for the behavioural models was the lowest when only OC% data was used as a calibration

constraint (ϵ̄ = 0.006) and highest for the scenario using OC% data combined with δ13C and ∆14C (ϵ̄ = 0.049). In contrast,

the overall model error (calculated as the sum of the errors for the simulated depth profiles of OC%, δ13C and ∆14C) was the

lowest for the scenario constrained by all available data (ϵ̄ = 0.34), while it was the highest for the optimization scenario using

data on only OC% (ϵ̄ = 0.85). This indicates that while the former optimization scenario does not result in the overall best fit for365

the simulated depth profiles of OC%, it results in the best overall model performance, given that processes such as the vertical

mixing of aboveground and belowground OC (as shown by the δ13C values along the soil profile) and the turnover rate of OC

(as shown by the ∆14C values) are simulated more correctly.

3.3 Parameter equifinality

All model parameters were subject to equifinality for all calibration scenarios, i.e., there was always a range in parameter values370

that resulted in behavioural models. For the retained behavioural models, it was assessed how including different calibration

constraints affected (1) the range and (2) the absolute values of the parameters (Fig. 4). In an ideal situation, the parameter

values resulting in behavioural models during a parameter optimization procedure (1) are correct in their absolute values and

(2) do not show a large variation. To evaluate the first condition, it is assumed that the scenario in which parameter values are

constrained using data on OC, δ13C and ∆14C resulted in the most reliable parameter values, as this scenario led to the lowest375

average model error (ϵ̄ = 0.34, Fig. 3) and most reliably simulated the turnover rate of SOC along the soil profile. Similarly,

it was assumed that the parameter values of the scenario using data on OC only results in the least reliable parameter values
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Figure 3. Optimised depth profiles of total OC, δ13C and ∆14C, obtained by optimizing the model using measurements of the POC and

MAOC pools under different calibration scenarios: (1) optimisation using OC data only (A-C), (2) optimisation using OC and δ13C data

(D-F), (3) optimisation using OC and ∆14C data (G-I) and (4) optimisation using C, δ13C and ∆14C data (J-L). These simulations show

the 10 % best solution obtained using the DE algorithm. In each row, blue lines show depth profiles that were optimised, while grey lines

show simulations of isotopes using the same optimised parameters. Dots and error bars show measured data by Schrumpf et al. (2013). The

average error, calculated as a weighted average of the errors for POC and bulk soil OC (squared relative errors, see Sect. 2.3.2), is denoted

by ϵ̄, the interquantile range is shown between squared brackets.

(ϵ̄ = 0.85). To evaluate the second criteria, the interquartile range of the parameter values resulting in behavioural models was

calculated (Fig. 4).

Adding data on δ13C to the calibration constraints, in addition to data on OC, improved only the value of the intensity of380

bioturbation (Db(0)), i.e., resulting in values similar to the values obtained with the optimization scenario using data on OC,

δ13C and ∆14C. As simulated depth profiles of δ13C are partly shaped by mixing of aboveground and belowground OC, it is

expected that adding information on the δ13C of OC better constrains parameters simulating this process. However, the optimal
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values of Db(0), after constraining with OC and δ13C, exhibited a substantial range. Adding data on ∆14C to the calibration

constraints, in addition to data on OC, most notably improved the values of kdeprotect(0), as is clear from the better prediction385

of the ∆14C value along the soil profile (Fig. 3 I). Other parameters had values different from the optimisation using C, δ13C

and ∆14C, and/or had a substantial variation.

The most notable observation from these results is that for six out of the nine calibrated model parameters (all except Km,ads,

Km,DOC-b and kdeprotect(0)), including data on OC, δ13C and ∆14C did not result in substantially more constrained parameter

values compared to when only data on OC is used (Fig. 4). These parameters regulate the simulated amounts of bio-available390

OC and DOC, two model pools that could not be explicitly constrained using available data. It thus seems that while adding

data on δ13C and ∆14C better constrains parameters related to the turnover of the largest SOC pool (mineral-associated C), it

does not help to constrain the size of other model pools, which may compensate for each other to result in a correct amount of

simulated total OC.

For all optimization scenarios, there were significant correlations between the optimized parameter values (as shown by the395

colored cells in Fig. 5 and Fig. S9). A first reason for the correlations between optimized parameter values is a consequence

of the model structure, as parameter values can compensate inputs to and outputs from a model pool so its steady state size is

similar. For example, when only data on OC was used to optimize model parameters (i.e., the optimization objective was only to

get a good fit between measured and modelled total OC%, irrespective of, for example, the turnover rate of OC), there is a strong

correlation (R2 = -0.69) between the rate of OC desorption from minerals (kdeprotect(0)) and the affinity of DOC to adsorption400

(km_ads; note that lower values of km imply a higher affinity). This is to be expected, as low and high rates, respectively, of

both C inputs and outputs to mineral-associated OC, will lead to a similar size of this pool, although with respective slow

and fast turnover rates. In contrast, when the turnover of the mineral-associated OC pool is included as a calibration criterion

(through its ∆14C value), this correlation is absent, as only a narrow range in desorption rates (kdeprotect(0)) result in the

correct turnover rate of this pool (Fig. 4 (I)).405

A second reason for such correlations is related to the formulation of the mathematical equations. For example, parameters

in the numerator and denominator of an equation may compensate for each other. This is clear from the scenario including most

optimization data (Fig. 5 (B)), where there is strong correlation between Vmax_ads and Km_ads, which occur in the numerator

and denominator, respectively, of the equation representing the rate of DOC adsorption on minerals. While such correlations

are generally unwanted (they are an expression of equifinality) and complicate the optimization procedure, they reflect the410

ability of the optimization algorithm to find parameter values that lead to a narrow range of adsorption rates, resulting in the

correct simulation of the turnover time of the mineral-associated OC pool.

3.4 Sensitivity of parameters affecting simulated δ13C depth profiles

Different model parameters had a distinct effect on the simulated depth profiles of δ13C. The global sensitivity analysis of

parameters affecting the δ13C value of both topsoil and subsoil OC (Fig. 6, A - C) showed that the δ13C value of topsoil OC415

was most influenced by the δ13C value of leaves, while the other tested parameters had a limited effect. The subsoil (0.40 m

depth) δ13C was influenced most by the δ13C of roots and the effect of atmospheric CO2 concentration on isotopic fractionation
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Figure 4. Ranges in parameter values that resulted in the retained model simulations in Fig. 3. The ranges are shown for all optimised

parameters, grouped per calibration scenario. Black dots show the retained parameter values, while boxplots show the quantiles of these

optimal parameter values. Grey dots show all parameter values tested by the DE algorithm in the range of the retained values. The median

and interquartile range (between brackets) of the retained values are shown on the right side of the graphs.

against δ13CO2 during photosynthesis. The influence of the δ13C value of leaves on the subsoil δ13C was negligible, indicating

that the incorporation of aboveground biomass into the soil profile was limited to the uppermost soil layers. The change in

the δ13C value along the soil profile (∆13C topsoil - subsoil) was most sensitive to the δ13C leaves, the δ13C of roots and the420

effect of atmospheric CO2 concentration on isotopic fractionation against δ13CO2 during photosynthesis. The local sensitivity

analysis (Fig. 6, D - H) confirmed these results, showing that the factors having the largest effect on absolute values of δ13C

along the soil profile were the δ13C values of leaves and roots, and the effect of atmospheric CO2 concentration on isotopic

fractionation against δ13CO2 during photosynthesis.
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Figure 5. Correlation between the optimised parameters for the calibration scenarios using data on (A) OC only and (B) OC, δ13C and ∆14C

(B). Numbers are the correlation coefficients, while colors are shown for parameter combinations with a significant correlation (p < 0.05).

Correlation plots for the other calibration scenarios are shown in Fig. S9

.

4 Discussion425

4.1 Simulation of δ13C depth profiles in SOILcarb: mechanisms and challenges

During the past decades, multiple mechanisms have been put forward to explain the generally-observed increase in the δ13C

value of SOC with depth in temperate ecosystems. Here, it is assessed to which extent these mechanisms are reflected in the

model outcomes. Three main mechanisms that have been proposed are simulated by SOILcarb. The first mechanism concerns

inputs of 13C-depleted aboveground litter at the soil surface and vertical mixing with 13C-enriched belowground inputs along430

the soil profile (e.g. Wynn et al., 2006; Jagercikova et al., 2017). The sensitivity analysis showed that this mechanism plays an

important role in shaping the depth profile of the δ13C value of SOC at the studied site (Fig. 6D). This effect played a role down

to a depth of ca. 0.3 m, as shown by a model simulation in which the mixing of above- and belowground vegetation was the

only mechanism affecting the δ13C depth profile (Fig. S10). The second mechanism concerns temporal variations in the δ13C

value of vegetation, and thus C inputs to the soil (e.g. Paul et al., 2019; Wynn et al., 2006). In SOILcarb, this effect has been par-435

titioned into (1) temporal changes in the δ13C value of atmospheric CO2 (Keeling, 1979) and (2) the effect of atmospheric CO2

concentration on the discrimination against 13CO2 during photosynthesis (i.e., a higher atmospheric CO2 concentration leads

to more intense fractionation against 13CO2 by plants, and thus lower δ13C values (Schubert and Jahren, 2012)). Additional

simulations with SOILcarb show that when only the first mechanism is considered, the simulated δ13C of SOC increases with

ca. 1 ‰ with depth (Fig. S11). While this process thus contributes substantially to the observed increase in δ13C with depth,440

including the effect of atmospheric CO2 concentration on the fractionation against δ13CO2 during plant photosynthesis was

necessary to simulate the measured increase in δ13C with soil depth of ca. 2 ‰ (Fig. 2B). The last mechanisms is heterotrophic
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Figure 6. Sensitivity of simulated δ13C depth profiles to five model parameters: (1) the change in fractionation against 13C by plants per

unit change in atmospheric CO2 concentration (S), (2) the fraction of microbial biomass carbon derived from CO2 assimilation (α), (3) the

δ13C of rhizodeposit OC inputs (δ13Cexudates), (4) the δ13C value of root OC inputs (δ13Croot) and (5) the δ13C value of leaf OC inputs

(δ13Cleaf ). The sensitivity of these parameters is calculated for topsoil δ13C (0.01 m depth), subsoil δ13C (0.40 m depth) and the difference

in δ13C between these layers. The top row (A - C) shows the results for the global sensitivity analysis, while the bottom row (D - H) shows the

results for the local sensitivity analysis. The ∆ values in the lower row (D - H) indicate the maximum difference in the simulated δ13C values

for the topsoil and subsoil, while the ranges in the lower left corners of these graphs show the range over which the respective parameter

values were varied.

CO2 assimilation by soil microbes (e.g. Šantrůčková et al., 2018; Nel and Cramer, 2019). The sensitivity analysis showed that

this was the mechanism with the lowest impact on the difference in δ13C between the topsoil and the subsoil, with the effect

on the range in subsoil δ13C being 0.23 ‰ when the value of α varies over the range reported in the literature (Fig. 6E). Our445

model simulations thus suggest that, in contrast to proposals of this mechanism being important based on empirical studies,

the potential effect is limited. At the study site, this is caused by the limited amount of CO2 that is assimilated by soil microbes

(1.1 % of total microbial biomass; Akinyede et al. (2020)) and the limited difference between the δ13C value of SOC and soil

CO2 of 4.4 ‰ (Cerling et al., 1991).

While numerical simulations of depth profiles of δ13C help to quantify the importance of different mechanisms shaping the450

vertical profile, these simulations are prone to uncertainties. For example, the absolute values of the δ13C of SOC depend on

the δ13C value of vegetation (Fig. 6F - H). In the present study, we relied on measurements made at the study site to obtain

this information, but these measurements are often not available. Estimating the δ13C of vegetation based on literature values

when measured data is not available is unlikely to be reliable, as δ13C values of C3 vegetation vary over a large range (between

ca. -23 - -32 ‰) depending on, for example, precipitation (Kohn, 2010) and vegetation type (Martinelli et al., 2021). Also the455

δ13C value of different plant organs varies considerably (Bowling et al., 2008). Most notably, estimating the δ13C value of root
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exudates is challenging. Thus, there is considerable uncertainty on estimates of the δ13C value of different sources of OC inputs

to the soil. Therefore, model users should be aware of large uncertainties in simulated absolute values of the δ13C of SOC when

measured values are not available, and thus balance the benefits of simulating δ13C versus the increased uncertainty.

4.2 Overparameterisation and equifinality in soil biogeochemical models460

Our result show that overparameterisation, which arises when a numerical model has too many parameters compared to the data

available to constrain parameter values, has important consequences for the correct simulation of SOC dynamics. As many of

the recently developed SOC model have a similar structure and use similar equations, it is likely that this is a general issue for

such models (Sierra et al., 2015; Marschmann et al., 2019), as has previously been shown for conventional turnover-based pool

models (Braakhekke et al., 2013; Luo et al., 2016, 2017). Using only data on total C concentration of the POC and MAOC pools465

to constrain parameter values resulted in many parameter combinations that led to behavioural models for total C, i.e. with a

close fit to observations. However, simulated ∆14C values within the soil profile were generally underestimated, while δ13C

values were slightly overestimated (Fig. 3A-C). This does not confirm our second hypothesis, which anticipated an overesti-

mation of the turnover rate of SOC. Nevertheless, this shows that, if only total SOC stocks are used as the calibration criterion,

turnover times of SOC are simulated incorrectly, despite a correct simulation of the total SOC inventory. This is important, as470

a correct simulation of the turnover time of SOC is crucial to make reliable projections of changes in the global C cycle for

the coming decades (He et al., 2016; Wang et al., 2019). Similar conclusions were drawn at the plot scale by Braakhekke et al.

(2014), who found that the turnover rate for the slowest SOC pool in their model was substantially overestimated without ∆14C

data as a constraint on parameter values. Furthermore, for simulations of the turnover rate of SOC at the global scale, models

optimised without data on ∆14C resulted in a substantial overestimation of the turnover rate of SOC (He et al., 2016). It is thus475

clear that, without data on the age of SOC as a parameter constraint during calibration, the turnover rate of SOC, especially in

the subsoil, is unlikely to be simulated correctly.

Soil biogeochemical models not only suffer from overparameterisation, but also from parameter equifinality, i.e. the phe-

nomenon that multiple parameter sets lead to model results that cannot readily be rejected (Marschmann et al., 2019; Sierra

et al., 2015; Tang and Zhuang, 2008). In line with our first hypothesis, a model constrained by data on only SOC stocks was480

characterised by substantial equifinality (Fig. 3 A-C). However, contrary to our third hypothesis, including data on the δ13C

and/or ∆14C values of SOC to constrain parameter values during calibration did not substantially reduce the range in most

parameter values leading to behavioural models, as shown by the interquartile distances in Fig. 4. Two exceptions were the

range in rates of deprotection of OC (kdeprotect(0)) and affinity of DOC for adsorption (km,ads), which were substantially

reduced when data on δ13C and ∆14C were included during optimization.485

In line with previous studies, we found that the parameters of the Michaelis-Menten equation (Vmax in the numerator and Km

in the denominator) were subject to substantial equifinality (Sierra et al., 2015; Marschmann et al., 2019). The wide use of this

equation in microbially-driven soil biogeochemical models thus suggests that equifinality of these parameters is common, as

information on both the maximum rate (represented by Vmax) and the rate-limiting property (represented by Km) is generally

not available. Other parameters of SOILcarb subject to equifinality are representing processes that can compensate for each490
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other to result in a similar total pool size. For example, as shown by the positive correlation between the rate of bioturbation

(Db(0)) and the rate of C uptake by microbes in the bulk soil (Vmax,DOC−b): the more OC in the bulk soil diffuses downwards,

the faster microbes need to process it to simulate the measured OC content.

4.3 Ways forward to identify and reduce equifinality in microbially-driven SOC models

Sierra et al. (2015) show that equifinality is likely to be an issue in microbially-driven SOC models. These authors used495

the identifiability analysis by Brun et al. (2001) to show that for a relatively simple non-linear microbial model, only 2 or 3

parameters could be uniquely identified using calibration data on soil respiration and ∆14C values of bulk soil and respired CO2.

Similarly, Marschmann et al. (2019) studied five microbially-driven SOC models of varying complexity, and found substantial

equifinality in every model, including a simple 2-pool microbial models. From previous studies and the results presented here,

it seems that equifinality in soil biogeochemical models can only be partly reduced by including more generally available data,500

while a reduction in complexity might be needed to fully resolve this issue.

A consequence of equifinality is that it undermines confidence in projected changes in the SOC stock due to environmental

changes, as behavioural models can make similar projections for the near future, but greatly diverge on a decadal timescale (Luo

et al., 2016, 2017). Therefore, identifying and reducing equifinality in soil biogeochemical models is an important prerequisite

to increase confidence in the predictions by such models. This is particularly important as these models are incorporated in505

Earth system models to make predictions of the response of the SOC stock to changes in the Earth’s climate (e.g., Wieder

et al., 2024), or to assess how changes in agricultural management practices can increase the amount of SOC to mitigate

climate change and assign carbon credits (e.g., Mathers et al., 2023).

One way forward to better constrain parameters in microbially-driven SOC models is to include additional data during the

parameter calibration process. As show in the present and previous studies (He et al., 2016; Wang et al., 2019), the residence510

time of SOC along the soil profile can be better constrained by including data on ∆14C during calibration. Reducing the range

in acceptable parameter values related to soil microbial dynamics is, however, more challenging, as this data is often lacking,

especially for the subsoil or over large spatial scales. Therefore, it is likely that parameters related to soil microbial dynamics

in soil biogeochemical models will have to be optimised until more data become available, or fixed at values derived from

measurements.515

Equifinality also implies that it is unlikely that the development of even more complex models will immediately pay off

in terms of improved accuracy in predictions. Defining the optimal model structure for simulation and prediction, given the

data that are available, is therefore as important as further increasing our process understanding. Multiple methods are avail-

able to identify parameter equifinality in environmental models, including the GLUE methodology (Beven and Binley, 1992),

Bayesian methods (Vrugt, 2016), the parameter identifiability method from Brun et al. (2001), the Manifold Boundary Ap-520

proximation Method (Marschmann et al., 2019) and methods to assess local structural parameter identifiability (Stigter et al.,

2017), among others (Miao et al., 2011). Many of these methods are easily accessible to researchers in the form of packages in

R and other software environments. This should enable modellers to identify this phenomenon in their models and thus reduce

model complexity when appropriate.
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A last way forward to better constrain model parameters is the construction of integrated databases that bring together data525

on multiple aspect of the SOM cycle (e.g. OC fractionation, stable and radioisotopes, mineralogy, microbial characteristics,

environmental drivers, etc.) (Sierra et al., 2015). While in the recent past several efforts have been made to construct global

databases with data related to SOC cycling (e.g. ISRAD ((Lawrence et al., 2020)), WOSIS (Batjes et al., 2020), SoDaH (Wieder

et al., 2021), LUCAS (Orgiazzi et al., 2018), among others), the use of these databases to identify and reduce equifinality in soil

biogeochemical models has been, surprisingly, very limited. Thus, this is a low-hanging fruit that would significantly increase530

our confidence in projections of the soil carbon - climate feedback for the coming decades.

5 Conclusions

In this study, a new mechanistic, depth-explicit SOC model (SOILcarb) was presented and used to assess the potential to

decrease parameter equifinality by including data on δ13C and ∆14C data of two soil fractions (POC and MAOC) as constraints

on parameter values during model optimisation. Our results show that while the optimized model was able to simulate depth535

profiles of total OC, δ13C and ∆14C in line with measurements, all optimised model parameters were prone to equifinality.

Including δ13C data, in addition to total OC, did little to improve simulations of the turnover rate of SOC or limit parameter

equifinality. Adding ∆14C data as a calibration constraint, in contrast, allowed the correct simulation of the turnover rate of

SOC, while only substantially reducing equifinality for the parameter regulating desorption rate of OC from minerals. Adding

a combination of δ13C and ∆14C data improved the simulation of the δ13C value in the topsoil, and the rate of sorption and540

desorption of OC on minerals along the soil profile, and thus the turnover rate of SOC along the soil profile. Our results show

that more data is needed to reliably constrain parameter values of microbially-driven models. As these data are generally not

available at larger spatial scales, it is unlikely that including more complexity in soil biogeochemical models will improve

simulations in the near future, while more emphasis should be put on finding a better balance between model complexity and

available data. This is an important prerequisite to increase confidence in projections of the soil carbon - climate feedback in a545

world subject to climatic change.
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