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Abstract.

Over the past years, microbially-driven models have been developed to improve simulations of soil organic carbon (SOC),
and have been put forward as an improvement to assess of the fate of SOC stocks under environmental change. While these
models do include a better mechanistic representation of SOC cycling compared to cascading reservoir-based approaches, the
complexity of these models implies that data on SOC stocks are insufficient to constrain the additional model parameters. In
this study, we constructed a novel depth-explicit SOC model (SOILcarb) that incorporates multiple processes influencing the
d13C and A'™C values of SOC and assessed if including data on the §'3C and A'*C value of SOC during parameter reduces
model equifinality, the phenomenon that multiple parameter combinations lead to a similar model output. To do so, we used
SOILcarb to simulate depth profiles of total SOC and its 6'3C and A'*C values. The results show that when the model is
calibrated based on only SOC stock data, the residence time of subsoil organic carbon (OC) is not simulated correctly, thus
effectively making the model of limited use to predict SOC stocks driven by, for example, environmental changes. Including
data on §'3C in the calibration process reduced model equifinality only marginally. In contrast, including data on A'*C in the
calibration process resulted in simulations of the residence time of subsoil OC consistent with measurements, while reducing
equifinality only for model parameters related to the residence time of OC associated with soil minerals. Multiple model
parameters could not be constrained even when data on both §'*C and A'C were included. Our results show that equifinality
is an important phenomenon to consider when developing novel SOC models, or when applying established ones. Reducing
uncertainty caused by this mechanism is necessary to increase confidence in predictions of the soil carbon — climate feedback

in a world subject to environmental change.

1 Introduction

Soils are an important component of the global carbon cycle, storing a vast amount of organic carbon (OC) (Scharlemann et al.,
2014; Ciais et al., 2013). However, it is often overlooked that about 77 % of the soil organic carbon (SOC) in the upper 3 m of
soil is present below a depth of 0.3 m (Lal, 2018). Furthermore, while topsoil (< 0.3 m depth) OC is generally characterized
by average residence times ranging from years to decades (Baisden et al., 2013; Schrumpf and Kaiser, 2015), subsoil (> 0.3 m

depth) OC typically has residence times up to centuries or millennia (Balesdent et al., 2018; Luo et al., 2019). Despite these
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long residence times, subsoil OC is likely to play an important role in the climate — soil carbon feedback, as subsoil OC has
been shown to be susceptible to losses upon soil warming (Hicks Pries et al., 2017; Soong et al., 2021; Jia et al., 2019). A
correct representation of the rate of OC cycling along the soil profile in biogeochemical models is necessary to make accurate
predictions about climate — soil carbon feedbacks. When these rates are overestimated, the simulated size of the SOC stock
will adapt too fast to changes in OC inputs. This leads to an underestimation of the time it takes for soils to increase their OC
storage due to increases in, for example, net primary productivity or OC inputs in agroecosystems (He et al., 2016; Wang et al.,
2019).

Classical models simulating subsoil OC dynamics are based on conceptual pools with intrinsic turnover times, with the sim-
ulated carbon generally cascading along a sequence of model pools. The rate of OC turnover is generally calculated as a
function of abiotic factors and the chemistry of organic compounds. Such models have been developed as stand-alone models
(e.g. Elzein and Balesdent, 1995; Ota et al., 2013; Wang et al., 2015), or have been incorporated in ecosystem models (Camino-
Serrano et al., 2018; Koven et al., 2013). These biogeochemical models have been criticized, as they do not incorporate the
emerging understanding of the controls on soil organic carbon (SOC) dynamics (Blankinship et al., 2018; Schmidt et al., 2011;
Dungait et al., 2012; Bradford et al., 2016). For example, these models do not explicitly simulate soil microbes, which are
both decomposers and important precursors of stabilized SOC (Denef et al., 2010; Késtner and Miltner, 2018; Kogel-Knabner,
2002; Six et al., 2006), and organo-mineral associations, which protect SOC from decomposition (Kleber et al., 2015, 2021;
Sollins et al., 1996). In addition, model pools with a strong inherent recalcitrance, such as the ‘passive pool’ in models such
as Daycent (Parton et al., 1987) and the ‘humified organic matter pool’ in RothC (Coleman et al., 1997), are assumed to be
the result of humification, a theory that is being considered flawed and obsolete (Kleber and Lehmann, 2019; Lehmann and
Kleber, 2015).

As a reaction to this emerging understanding of the controls on SOC dynamics over the past decades, several mechanistic,
microbially-driven models simulating depth profiles of SOC have been developed (e.g., Ahrens et al., 2015, 2020; Dwivedi
et al., 2017; Riley et al., 2014; Yu et al., 2020; Zhang et al., 2021). These models share multiple characteristics, such as the
explicit representation of soil microbes and the protection of SOC by association with soil minerals. Moreover, the increasing
residence time of SOC with soil depth is simulated as an emerging function of biotic and abiotic soil properties (Ahrens et al.,
2020). This improves the mechanistic representation of SOC dynamics in these models compared to first-order decay models,
which generally use an exponentially decreasing parameter with depth to force the decreasing processing rate of soil organic
carbon along the soil profile (Koven et al., 2013; Wang et al., 2015, 2020).

This new generation of SOC models is characterised by an increase in model complexity and in the number of model param-
eters (Campbell and Paustian, 2015; Lawrence et al., 2009). This is an important consideration, as an increase in parameter
uncertainty can outweigh model improvements due to a better mechanistic description of the system, thereby increasing the
overall model error (Van Rompaey and Govers, 2002). Finding an optimal balance between errors related to process represen-
tation and data availability is of major importance to create confidence in model outputs (Schindler and Hilborn, 2015). A too
complex model with respect to the availability of data can result in multiple combinations of parameter values that lead to a

near-optimal solution, so-called "behavioural models’. This phenomenon has been referred to in literature by multiple terms,
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such as equifinality (e.g. Beven, 2006, 1993), non-uniqueness (Beven, 2006) or non-identifiability of model parameters (Brun
et al., 2001; Sierra et al., 2015). Equifinality is a major issue for models simulating hydrology (e.g. Beven and Freer, 2001),
soil organic carbon (e.g. Sierra et al., 2015; Braakhekke et al., 2013; Marschmann et al., 2019), soil nitrogen (e.g. Schulz
et al., 1999) and ecosystem models in general (e.g. Luo et al., 2009; Tang and Zhuang, 2008). In the case of SOC models,
models characterised by equifinality are often able to make correct predictions of current SOC stocks, although these stocks
can be predicted by different distributions of SOC over the simulated model pools (Braakhekke et al., 2013). The problems
(and uncertainty) arise when different behavioural models are used to make predictions of SOC stocks based on changing en-
vironmental conditions or OC inputs. In this case, behavioural models starting from an identical initial SOC stock can produce
a wide range in predicted values, from which it is generally not possible to identify the correct model (and parameter set) (Luo
et al., 2016, 2017). In the present article, we use the term parameter equifinality for this phenomenon. In addition, the term
overparameterisation is used for the situation when the number of model parameters is too large with respect to the available
observational support for the processes represented by these parameters.

One way to reduce parameter equifinality is to include additional constraints on model parameter values during the calibration
process (Braakhekke et al., 2014). This has been done for multiple classical SOC models, by simulating, in addition to total
SOC, depth profiles of the ratio of stable carbon isotopes (§'*C) (Amundson and Baisden, 2000; van Dam et al., 1997; Poage
and Feng, 2004), radioisotopes (A™C) (Baisden and Parfitt, 2007; Jenkinson and Coleman, 2008; Koven et al., 2013; Tifafi
et al., 2018; Braakhekke et al., 2014) or a combination of both (Wang et al., 2020; Baisden et al., 2002), or 210pp (Braakhekke
et al., 2013). Some mechanistic models also simulate the behaviour of '*C (Ahrens et al., 2015, 2020; Dwivedi et al., 2017;
Yu et al., 2020). While it has been shown that simulating these additional variables puts meaningful constraints on parameter
values, measurements of the necessary data is costly and hence such data are not widely available. On the other hand, §'3C iso-
tope ratios can be rapidly and relatively cheaply measured. While these isotopes do not decay radioactively like '“C, multiple
processes that take place over decadal to centennial timescales influence depth patterns of the 6'3C value of SOC. For example,
it has been shown that long-term changes in the §'3C value of vegetation (Keeling, 1979; Schubert and Jahren, 2015) influence
the §'3C value of SOC along the depth profile considerably (Paul et al., 2019). In addition, there is evidence that microbial
necromass, which constitutes up to 50 % of SOC (Rumpel and Kogel-Knabner, 2010; Wang et al., 2021; Angst et al., 2021), is
generally enriched in '3C compared to their substrate (Dijkstra et al., 2006; Gleixner et al., 1993; Miltner et al., 2004). Explic-
itly simulating the fate of microbial necromass, and its '3C isotopes, therefore has the potential to better constrain the rate of
the formation of stabilized microbial necromass in soils (Santri&kova et al., 2018). Lastly, as above- and belowground C inputs
to the soil generally have different §'C values (Bowling et al., 2008; Werth and Kuzyakov, 2010), simulating the §'3C value of
these inputs has the potential to better constrain the vertical mixing of OC from different sources along the soil profile. To the
best of our knowledge, the potential of using '3C isotope data to further constrain the parameter values of a microbially-driven
and depth-explicit SOC model has to date not been explored.

Therefore, the aim of this study is to assess to what extent the inclusion of simulating the 6'3C and A'#C values of SOC,
in addition to SOC itself, allows to better constrain model parameter values of a microbially-driven and depth-explicit SOC

model; thereby reducing model equifinality. To do so, we constructed a novel depth-explicit SOC model that incorporates
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multiple processes that influence the §'3C and A'*C value of SOC. We hypothesized that (1) calibrating a microbially-explicit
model using only carbon stock data results in substantial parameter equifinality and (2) underestimates the residence time of
subsoil OC (following He et al. (2016)), while (3) using simulated depth profiles of § 13C or AC, or a combination of both,
as additional constraints on parameter values will narrow the range in optimised parameter values which result in behavioural
models (i.e. a model solution that cannot easily be rejected). As the §'>C value of SOC is generally not simulated in mech-
anistic SOC models, we also discuss the effect of different mechanisms on simulated depth profile of §'3C. As equifinality
in SOC models has received only limited research attention, increasing awareness of, and solving, this problem will increase
confidence in simulations of the role soils can play in climate change mitigation or increasing SOC stocks to improve soil

health in agroecosystems.

2 Materials and Methods
2.1 The SOILcarb model

This section provides a brief description of the main processes simulated in SOILcarb (Simulation of Organic carbon and its
Isotopes by Linking carbon dynamics in the rhizosphere and bulk soil). A detailed model description and overview of the
equations is provided in the Supplementary Information, as well as an overview of the state variables (Table S5) and model
parameters (Table S6). The presented version of SOILcarb was used to simulate depth profiles of OC dynamics in natural forest
soils. We note that the main aim of the developed model for the present manuscript was to show the effect of equifinality on
model outcomes, and that the application of SOILcarb to other environments requires further testing.

The vertical soil profile is simulated down to 1 m depth, for layers with an increasing thickness with depth. SOILcarb has
been programmed in R (R Core Team, 2024), with the differential equations regulating the flows of OC being solved using the
Isodes solver from the DeSolve package (Soetaert et al., 2010). For the presented simulations, the model was run for a period of
15,000 years up to the year 2004. It is noted that the current model does not include the effect of temperature and soil moisture,

limiting the model to predict SOC and its isotopic signature under steady-state environmental conditions.
2.1.1 Simulation of organic carbon dynamics

SOILcarb is divided into three compartments: (1) litter layer, (2) rhizosphere and (3) bulk soil (Fig. 1). The litter layer is sim-
ulated spatially separated from the soil compartments. The rhizosphere and bulk soil compartments are used to conceptually
separate the parts of the soil where most OC inputs occur and OC cycles relatively fast (the rhizosphere) from the zone where
available OC for microbes is relatively limited due to mineral protection and where OC cycles relatively slow (the bulk soil).
Inputs of OC in the litter layer originate from litterfall, which is separated into particulate OC (Cppc.;) and dissolvable OC
(Cpoc.1)- Depolymerisation and microbial uptake of Cppc; and Cpoc.; are simulated using the equilibrium chemistry approx-
imation (Tang and Riley, 2013) (the model assumes that DOC needs to be depolymerised before uptake, as a considerable
portion of DOC is generally not bio-available (Risse-Buhl et al., 2013; Shen et al., 2015; Andreasson et al., 2009)), while
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microbial turnover is simulated as a logistic growth process (Georgiou et al., 2017). Microbial OC uptake in all compartments
is reduced based on a fixed carbon use efficiency (CUE), with the remaining OC being transformed to CO,. Carbon from the
litter layer is transferred to the bulk soil through bioturbation of Cppc; and leaching of Cpoc.;.

In the rhizosphere, OC inputs are separated into (1) rhizodeposits, providing bio-available OC (Cpjpay-) to the soil, and (2)
root turnover, providing particulate OC (Cpoc.,) to the soil. Depolymerisation of Cppc., t0 Cpipay-» i simulated using reverse
Michaelis-Menten kinetics, whereby the rate of depolymerisation is modified based on the ratio of microbes in the rhizosphere
(Chic-r) to Cpoc.r (see Supplementary Information). Uptake of Cpipgyr Y Chicr 1s simulated using forward Michaelis-Menten
kinetics, whereby the rate of OC uptake is modified based on the ratio of Cyc.; t0 Chipay-r- Following microbial turnover in the
rhizosphere (simulated using a logistic growth function), the soluble portion of microbial cells (the cytoplasm) is transferred
back to Cpipar-r» While the non-soluble portion of microbial cells is transferred to the DOC pool in the bulk soil (Cpoc.p). A
fixed portion of Cp;yqay. 1S transferred to Cpoc.p, to allow the direct adsorption of root-derived OC on soil minerals, without first
passing through a soil microbe. From Cpgc.,, OC can be either protected by adsorption on soil minerals (Cp;y,.5), rendering it
inaccessible to microbial uptake, or be taken up by microbes in the bulk soil (C;..5). Competition for Cpoc., between minerals
and microbes is simulated using the equilibrium chemistry approximation (Tang and Riley, 2013). De-protection of C,;,.p is
simulated as a first-order process. Vertical transport of OC along the soil profile occurs as (1) bioturbation, simulated as a
diffusion process (for Cpoc.rs Cpoc-bs Cmin-p and Cpicp), and (2) leaching, simulated as an advection process (for Cp;pqy. and
Cpoc-p)- It has been shown that the rate of de-protection of mineral-associated OC is influenced by root exudates (Keiluweit
et al., 2015). Therefore, the simulated rate of de-protection of OC from minerals is a function of the portion of the soil
occupied by the rhizosphere, calculated following Finzi et al. (2015). In addition, the amount of mineral surfaces available
for the protection of OC is scaled according to the rhizosphere volume (i.e., the larger the rhizosphere volume, the larger the

amount of minerals which are in contact with OC originating from the rhizosphere).
2.1.2 Simulation of §'*C and A'C of organic carbon

In SOILcab, fluxes of 13C and *C between model pools follow fluxes of 12C. The model first calculates fluxes of 12C between
pools and subsequently uses the ratio of '2C leaving every pool to the total amount of '2C of the respective pools to calculate

how much '3C and '*C leave every pool:

F12C
ool *
120}000[

Fre=XC, (1)

Where Fx is the flux of 1*C or *C leaving a pool, Fi:. is the previously calculated flux of 12C leaving the same pool, XCpool
is the amount of 1*C or '*C in the pool which loses C, and 2, is the amount of '*C in the pool which loses C. The model
parameters are thus defined based on the '2C content of every pool.

The simulated processes that affect temporal variations in the §'3C value of SOC are (1) annual changes in the 6'3C value
of atmospheric CO,, directly affecting the §'3C value of vegetation, (2) the effect of atmospheric CO, concentration on ki-

netic fractionation against '3C during plant photosynthesis, (3) differences in the §'3C value of aboveground plant biomass,
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Figure 1. Conceptual model of SOILcarb showing the model pools and fluxes of organic carbon in the litter layer, rhizosphere and bulk soil.

POC = particulate organic matter; DOC = dissolvable organic matter.

belowground biomass and rhizodeposits, and (4) heterotrophic CO, assimilation by soil microbes. The same processes affect
the temporal variation of the A'*C of SOC, in addition to radioactive decay. Note that no preferential microbial mineralisation
of 12C relative to '>C is simulated, as consistent empirical evidence for this is lacking (Bostrom et al., 2007; Ehleringer et al.,
2000).

The difference in the §'3C value between atmospheric CO, and aboveground biomass is calculated for every time step as the

sum of a fixed and variable component:

difflgcatm—leaf (t) = difffixed + diffvariable (t) (2)

Where diffjxeq is a constant representing a fixed and user-provided difference in 6'°C between atmospheric CO; and above-
ground biomass, and diff,qriasie(t) Tepresents the effect of atmospheric CO, concentration on kinetic fractionation against *C
during photosynthesis for every time step (see supplementary information Sect. 1.6.3).

The value of diffsc.q is provided by the user for the last simulation year, and is assumed to be constant throughout the

simulation. For every simulated time step, the 6'*C value of aboveground biomass is subsequently calculated from a long-term
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series of average annual 6'3C values of atmospheric CO,, which was compiled from Schmitt et al. (2012), Bauska et al. (2015)
and Graven et al. (2017) (see Fig. S2). The annual A'C value of OC inputs from aboveground biomass is determined from a
compiled series of annual average A'*C values of atmospheric CO, (from Reimer et al. (2013), Hua et al. (2013) and Hammer
and Levin (2017), see Fig. S3). It was assumed that during photosynthesis, the fractionation against '*CO, is twice that of
against '3COj, as the mass difference between '*CO, and '>CO, is twice than that between '3CO, and '>CO, (Schuur et al.,
2016).

The second simulated mechanism affecting temporal changes in the §'3C and A'*C values of OC inputs to the soil is
the effect of the atmospheric CO, concentration on kinetic fractionation against '3C during photosynthesis. This is based
on observations showing that for C3 plants, the magnitude of fractionation against '3C during photosynthesis increases with
increasing atmospheric CO, concentration (Keeling et al., 2017; Schubert and Jahren, 2012, 2015). It has been shown that
accounting for this mechanism improves simulations of depth profiles of the '*C value of SOC (Paul et al., 2019). The model
simulates a linear effect of the atmospheric CO, concentration on kinetic fractionation against 6'*C during photosynthesis

(Keeling et al., 2017):

diffvariable(t) = ([COQ](tend) - [COQ](t)) -5 )

Where [COs](tenq) is the atmospheric CO; concentration (ppm) in the last simulated calendar year (tend), [CO5](t) is atmo-
spheric CO, concentration in every other simulated year ¢ and S represents the change in fractionation against '3C by plants
per unit change in atmospheric CO, concentration (%o ppm™'; Schubert and Jahren (2015)). The value of S was fixed at 0.014
%o ppm™', following Keeling et al. (2017).

With respect to variations in the §'3C value of SOC with depth, a first simulated process is caused by differences in §'3C
between aboveground biomass, roots, and rhizodeposits. The §'3C value of aboveground biomass is calculated for every time
step using Eq. 2, while the §'3C values of roots and rhizodeposits are calculated using user-defined differences in §'*C between
aboveground vegetation on the one hand, and roots and rhizodeposits respectively, on the other hand (see supplementary infor-
mation Sect. 1.6.4). The second mechanism is heterotrophic CO, assimilation by soil microbes (Santriickov et al., 2005, 2018;
Nel and Cramer, 2019; Akinyede et al., 2020, 2022). In our model simulations, we assumed that soil microbes derive 1.1 % of
their OC from heterotrophic CO, assimilation, as quantified for a soil in Hainich National Park by Akinyede et al. (2020) (see
supplementary information Sect 1.3.1). To simulate the effect of the §'*C and A'*C values of soil CO, along the depth profile
on the microbial §'3C and A'C values due to heterotrophic CO, assimilation, depth profiles of the §'3CO, and A'*CO, were
simulated using a one-dimensional CO, diffusion model (Amundson and Davidson, 1990; Cerling, 1984; Goffin et al., 2014)

(see supplementary information Sect. 1.4).
2.2 Study site

The model was applied to a deciduous forest site in Hainich National Park (Germany; 51°04’N, 10° 27’ E), using data from
Schrumpf et al. (2013). The soil is an eutric Cambisol with a sand, silt and clay content of ca. 3, 38 and 59 %, respectively
(Schrumpf et al., 2011, 2013). Soil samples were collected in 2004 in three replicates for depth intervals of 0-5, 5-10, 10-20,
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20-30, 30-40, 40-50 and 50-60 cm. Using density fractionation on 2 mm sieved soil, the amount of OC in (1) the free light
fraction (referred to as particulate organic carbon (POC)), (2) the occluded light fraction and (3) the heavy fraction (referred
to as mineral-associated organic carbon (MAOC)) was obtained. As SOILcarb does not simulate aggregate dynamics, the total
amount of measured OC was reduced by the amount of OC in the occluded light fraction, which constituted 8.4% of total SOC
down to 60 cm. Therefore, when referring to total SOC in this manuscript, we refer to the sum of POC and MAOC. Measured
values of total OC, POC, MAOC, and §'3C and A!C of the POC and the MAOC fractions were used for model calibration
purposes. More information about the study site and data processing is provided in Schrumpf et al. (2011, 2013).

The annual amount of litterfall and root production at the study site was obtained from Kutsch et al. (2010), who, using
measurements between 2000 and 2007, obtained an annual average rate of aboveground litter input of 209 & 14 g C m yr!
and root production of 232 4+ 15 g C m2 yr'!. The annual production of rhizodeposit OC was calculated by multiplying the
annual root carbon production by 0.4, the median ratio of net rhizodeposition to the root biomass from a meta-analysis from
forest soils by Pausch and Kuzyakov (2018). We note that this number is likely to be an underestimation because it does not
account for post-rhizodeposition losses. This led to a total annual belowground OC flux of 324 g C m™2, of which 92 g C m™ as
rhizodeposits (29 %). The root and rhizodeposit inputs were distributed over the upper 1 m of the soil following the asymptotic
nonlinear model of Gale and Grigal (1987) (see supplementary information Sect. 1.3.3). To calibrate the amount of OC in the
simulated litter layer, measurements of the litter and organic layer by Schrumpf et al. (2013) were combined (580 g C m™2).
The depth profile of OC stocks in the POC and MAOC fractions were obtained by combining measured OC concentrations for
the respective fractions with the bulk density of the same depth layers (Schrumpf et al., 2013).

The §'3C value for the litter layer was calculated to be 0.1 %o lower than the average 6'*C value of leaves (see below),
following Knohl et al. (2005), resulting in a §'3C value of -29.2 %o. The A'*C value of the litter layer (98.7 %o) was measured
in 2004 by Schrumpf et al. (2013). The §'3C value of root inputs in 2004 was derived from the average measured §'*C value
of POC below 0.2 m depth (-27.8 %o), assuming that this POC is mostly derived from roots. The §'C value of aboveground
vegetation was derived from the measured difference of 1.5 %o in the §'3C value between roots and leaf area index-weighted
leaves at the same site (Knohl et al., 2005), resulting in a § 13C value for aboveground biomass in 2004 of -29.3 %o. As
measurements of the §'3C value of root exudates were not available, a range of reasonable values was tested and the resulting
0'3C values of SOC and MAOC depth profiles were compared to measured values. The tested §'>C of root exudates that
resulted in the closest fit of measured and modelled depth profiles of §'3C was -28.9 %, which was used for all subsequent
simulations. The heavier isotopic signature of root exudates compared to leaves is in line with the fact that root exudates are
composed of sugars, amino acids and organic acids, among other chemical compounds (Pinton et al., 2007), which are enriched

in 1*C compared to bulk leaves (Bowling et al., 2008).
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2.3 Parameter optimisation
2.3.1 Litter parameter optimisation

Parameter optimization was performed using the differential evolution (DE) algorithm from the DEoptim package in R (Mullen
et al., 2011; Ardia et al., 2011), an evolutionary optimization algorithm to find optimal global parameter values in a complex
multidimensional parameter space. Parameter optimization was performed separately for the litter and soil layers. For the
litter layer, 3 parameter values were optimized: the half-saturation constants for POC depolymerisation (K,, poc—;) and
DOC depolymerisation and uptake (/,,, poc—i), in addition to the maximum rate for both of these processes (V4. 1)- No
information on the distribution of the total amount of litter C between the simulated model pools (Cpoc.;, Cpoc.; and Cpic.)
was present. As the focus of the present study is on OC dynamics in the soil, the amount of measured OC in the litter layer
was assumed to be distributed as follows: 33 % as DOC, 66 % as POC and 1 % as microbial C. We note that these portions
were not based on data, but on our best estimates of a reasonable distribution of OC in the litter layer of a temperate forest. The
error for simulations of the litter layer was calculated by summing the squared relative errors for the individual litter pools and

isotopic constraints:

® /' meas; — mod; \
i+ = E o T 4
clit ( meas; ) @)

i=1
Where €y is the total error for the litter layer (unitless), meas are the measured pools, mod are the modelled pools and i refers

to the calibrated model pool (Cpoc.;» Cpoc. and Cic.j, 6'3Cyi and ACyy,, where the latter two refer to the §'3C and A4C
values of total litter OC).

2.3.2 Soil parameter optimisation

During parameter optimization, the measured POC fraction was compared to the modelled Cpoc.; pool, while the measured
MAOC pool was compared to the simulated OC in the bulk soil, referred to here as Cpyy (i.e., the sum of Cyyin—1, Cpoc—b
and C),i.—p). To assess the effect of isotopic constraints (6'°C and A'*C) on optimized parameter values of SOILcarb, the

model parameters were optimised with 4 different scenarios:

Scenario 1: optimisation with OC data only. The optimised model pools are the amount of OC in POC (C'po¢c—.) and in
the bulk soil (Cpyik).

Scenario 2: optimisation with OC and 6'3C data. The optimised model pools are Cpoc—r, Chuik» 6 >Cpoc.r and §'3 Cpyyy.

Scenario 3: optimisation with OC and A'#C data. The optimised model pools are Cpoc—_r, Chuk, A*Cpocr and
AMChyi.

Scenario 4: optimization with OC, §'3C and A'*C data. The optimised model pools are Cpoc—r,» Chuik, 0 >Cpocar,
5B Chuik, A™Cpoc.r and A Cryi.
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In addition, parameter sets were rejected during the calibration if the simulated model outcome did not meet the following
criteria: (1) the amount of Cp;qy_, has to be smaller than the amount of Cppoc_, and (2) the total mass of OC in soil
microbes (i.e., the sum of C,,;.—, and C),;.—p) cannot exceed 5 % of total simulated SOC. The errors of the respective pools
were calculated as squared relative errors, similar to Eq. 4. The errors for the same model pool along the depth profile were
summed to obtain the total error for every pool.

In a first step, we selected 11 parameters which were deemed to be most critical and for which no measured values nor
reasonable estimates were available in the literature (Table S1). After optimization of these parameters, a sensitivity analysis
was performed (see Sect. 2.5.1). This led to the identification of 9 model parameters that were optimised (Table S2) under the
4 scenarios outlined above.

Two model parameters were not retained for calibration. The first one is the rate of DOC advection (v), because of its
limited sensitivity (Fig. S5). The second parameter is the e-folding depth of bioturbation (z;), to avoid correlations with the
biodiffusion coefficient (D, (0)) despite having an influence on model results (Fig. S5). We note that although the parameters
Vinaz,poc—r and Vi, 420, mic—r had a minimal influence on model outcomes, these were retained to assess if parameters in the
rhizosphere were prone to equifinality. For the optimisation of parameter values using the DE algorithm, 300 iterations were
run. During each iteration 180 parameter combinations were tested, resulting in a total of 54,000 model runs per optimisation

scenario.
2.4 Assessment of parameter equifinality

After parameter optimisation using the DE algorithm, equifinality of the optimized parameters was analyzed. Multiple methods
are available to this end, such as GLUE (Beven and Binley, 1992) and Bayesian approaches (e.g. Vrugt, 2016), but these
methods require prior information on the parameter value distribution to perform optimally. As this information was not
available for the optimised parameters, an alternative approach was developed.

The DE algorithm efficiently explores the multi-dimensional parameter space by proposing new sets of parameter combi-
nations during every iteration, based on previously generated parameter sets. To assess if multiple parameter combinations
resulted in behavioural models, we kept track of all tested sets of parameter values during the optimisation procedure. For
every calibration scenario, this resulted in 54,000 non-unique parameter sets that were generated in the parameter space. In
a next step, the model was run using the unique parameter combinations, and the results and respective model errors were
stored. The parameter sets resulting in the 10 % lowest errors were retained, and were considered to be behavioural models,
after visually assessing that the model results were within the uncertainty of the measured values (Fig. 3). To assess how the
different calibration scenarios influenced model results, the depth profiles of total OC, §'3C and A'*C were plotted for every
calibration scenario (Fig. 3). To assess how each scenario influenced the range in optimal parameter values that resulted in be-
havioural models, the range in these parameter values for the different calibration scenarios was plotted (Fig. 4). All parameter
values explored by the DE algorithm were plotted to confirm that the entire parameter space within the provided boundaries
was explored (Fig. 4). Last, to assess correlations between parameters leading to behavioural models, correlation plots for these

parameter values were developed using the Pearson correlation coefficient (Fig. 5).
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2.5 Sensitivity analysis
2.5.1 Selection of calibration parameters

To assess the influence of the 11 parameters that were initially selected for optimization (Table S1), a sensitivity analysis
was carried out using the PAWN method (Pianosi and Wagener, 2015). This is a density-based global sensitivity analysis
that quantifies the model sensitivity related to uncertainties of input parameters based on the cumulative distribution function
(CDF) of the output distribution. This is done for the CDF when all parameters are varied (the unconditional CDF) and when
one parameter is kept constant (the conditional CDF). The distance between both cumulative distributions is used to quantify
the sensitivity of model to different parameters, and is calculated using the Kolmogorov-Smirnov (KS) statistic. The advantage
of this method is that it does not assume that the variance of the model output is a measure for model uncertainty, making it
more suitable to deal with e.g. multi-modal or skewed distributions than variance-based sensitivity analyses. The parameter sets
to calculate the conditional and unconditional CDFs were obtained using the Matlab® version of SAFE toolbox (Pianosi et al.,
2015), which was also used to post-process the results and calculate the KS statistic. In addition to the parameters to be tested,
a dummy parameter with no influence on the model results was included in the sensitivity analysis. The KS statistic calculated
for the dummy parameter was subtracted from the KS statistics of the model parameters before the results were analysed. We
used 500 parameter sets to calculate the unconditional CDFs, 500 parameter sets to calculate the conditional CDFs and 50
conditioning values sampled from the one-dimensional space of each tested parameter, following recommendations by Pianosi
and Wagener (2015). The parameter values were varied over the range that resulted in the 10 % best solutions in the first round

of model optimisation (see Sect. 2.3.2 and Table S1).
2.5.2 Sensitivity of parameters influencing the simulated §'3C depth profile

In a second sensitivity analysis, the sensitivity of the shape of the simulated 6'3C depth profile to five model parameters was
tested: (1) the 6'°C value of OC inputs from aboveground biomass (§'3Cjeq ), (2) the §'3C value of root OC inputs (6*3Cp0t),
(3) the §'3C of rhizodeposit OC inputs (6'3Clegudates), (4) the fraction of microbial biomass derived from soil CO, () and
(5) the change in fractionation against '*C by plants per unit change in atmospheric CO, concentration (). The value of these
parameters was varied over a range that results in a change in 6'3C value of 1 %o (Table S4) to assure a uniform effect of the
parameter ranges on the simulated depth profiles of §'3C, except for o, which was varied over the range of values reported
in literature. We note that the process of absorption was not included in this sensitivity analysis, as there is no preferential
absorption of >C, 13C or '*C on minerals in the model. The sensitivity of three characteristics of the simulated §'*C depth
profiles was assessed: (1) the §'°C value in the top centimeter of the soil, the 6'*C value at a depth of 0.40 m, and (3) the
difference in §'C between these two soil layers. The sensitivity analysis was performed using the PAWN method (Sect. 2.5.1)
to calculate the global sensitivity of these parameters. In addition, a local sensitivity analysis was performed by plotting depth
profiles of §'3C for the range over which these parameters were varied during the global sensitivity analysis with the PAWN

method.

11



330

335

340

3 Results
3.1 Simulation of depth profiles of OC, §'*C and A'*C using the optimal parameters

Model simulations for the litter and the soil compartments of SOILcarb align well with measurements after parameter optimiza-
tion using all available data. The simulated amount of OC, §'3C and A'*C in the litter layer closely align with measurements
after parameter optimisation based on OC, §'3C and A'*C data (Fig. S6). In addition, the temporal evolution of §'3C and A*C
reflect changes in the value of these isotopes of atmospheric CO; over the past 150 years.

Similarly for the soil, after parameters are optimised using measurements of depth profiles of OC, §'3C and A'*C of the
POC and MAOC pools, the measurements of both pools are simulated very well by the model (Fig. 2).

This indicates that the model captures differences in the amount of OC in POC and MAOC, in addition to the residence
time of OC in these pools. Concerning simulated depth profiles of §'*CO, and A'*CO, along the soil profile (Fig. S8), the
model simulated §'*CO, values of ca. 4 %o larger compared to available OC, and positive A'*CO, values similar to the A'*C

available OC, in agreement with general observations (Trumbore, 2000; Cerling et al., 1991).

S Sog %rganicsc%rbon (°§>)5 (b) 513C (%) (c) A™C (%)
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U — — .
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Figure 2. Simulated depth profiles of (A) OC(%), (B) 6'*C(%o) and (C) A'*C(%o) of the POC and bulk soil carbon pools (i.e., the sum of
Cmin—bs Cpoc—p and Cpyic—p), based on the calibration combining data on OC, & 3C and A'™C for these pools. Circles indicate measured
values for POC (green), mineral-associated carbon (brown) and total carbon (black) by Schrumpf et al. (2013). Error bars indicate the
standard deviation on the measurements of POC and MAOC (when no error bars are visible, the error was smaller than the size of the circles

showing the averages).

3.2 Simulation of OC depth profiles using different isotopic constraints

Calibrating the model with an increasing number of constraints (data on SOC, §'3C and/or A'*C) led to an increasing accu-
racy of simulated depth profiles of §'°C and A'C. The results presented in Fig. 2 show an example of the model using the
most optimal parameter set. However, a frequentist model optimisation that tunes model parameters to simulate the average

measurements as closely as possible does not account for the fact that multiple parameter sets may result in a solution that is
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within measurement uncertainty (i.e., behavioural models). This was further explored by retaining the parameter sets that led
to the 10 % best solutions obtained during the DE optimisation, as these were within the uncertainty of measurements (Fig. 3).

When the model is optimised using only data on the OC% of POC and MAOC (Fig. 3 A-C), simulated depth profiles of
OC% show a close fit to measurements (¢ = 0.006 [unitless]; € being the average weighted squared relative error for the POC
and bulk soil C pools (i.e., MAOC), see Sect. 2.3.2), while simulated values of §13C along the depth profile are overestimated,
most notably in the topsoil (€ = 0.269). Simulated A'#C values are underestimated for most simulations (€ = 0.58), with a large
spread in simulated values, indicating that the turnover rate of OC along the soil profile is highly variable in this calibration
scenario. For the second calibration scenario, the model was optimised using data on OC% and 6'3C of POC and MAOC (Fig.
3 D-F). Retained model results show a close fit between modelled and measured depth profiles of OC% (€ = 0.036) and §'*C (¢
= 0.159). Although simulations of topsoil A*C show a closer fit with measurements compared to an optimization using OC%
data only, the average A'*C values of SOC are overestimated below a depth of 0.2 m (€ = 0.352). This indicates that including
813C as a calibration constraint is not sufficient to correctly simulate AMC values, and thus turnover rates, of subsoil OC. The
latter was only the case when data on A'*C was used to constrain model parameters (Fig. 3 G-L). Model optimisation using
data on OC% and A*C, either with or without data on §'3C, resulted in a close fit between modeled and measured values of
OC% (€ = 0.049 and 0.014 resp.) and both isotopic ratios. It is noted that the simulated 6'*C depth profiles had a lower error
when data on §'3C was included as a calibration constraint (¢ = 0.181) compared to when it was excluded (¢ = 0.241).

The average error of OC% for the behavioural models was the lowest when only OC% data was used as a calibration
constraint (€ = 0.006) and highest for the scenario using OC% data combined with §'*C and A'*C (€ = 0.049). In contrast,
the overall model error (calculated as the sum of the errors for the simulated depth profiles of OC%, 6'3C and A'*C) was the
lowest for the scenario constrained by all available data (€ = 0.34), while it was the highest for the optimization scenario using
data on only OC% (€ = 0.85). This indicates that while the former optimization scenario does not result in the overall best fit for
the simulated depth profiles of OC%, it results in the best overall model performance, given that processes such as the vertical
mixing of aboveground and belowground OC (as shown by the 6'3C values along the soil profile) and the turnover rate of OC

(as shown by the A'*C values) are simulated more correctly.
3.3 Parameter equifinality

All model parameters were subject to equifinality for all calibration scenarios, i.e., there was always a range in parameter values
that resulted in behavioural models. For the retained behavioural models, it was assessed how including different calibration
constraints affected (1) the range and (2) the absolute values of the parameters (Fig. 4). In an ideal situation, the parameter
values resulting in behavioural models during a parameter optimization procedure (1) are correct in their absolute values and
(2) do not show a large variation. To evaluate the first condition, it is assumed that the scenario in which parameter values are
constrained using data on OC, ¢ 13C and A™C resulted in the most reliable parameter values, as this scenario led to the lowest
average model error (€ = 0.34, Fig. 3) and most reliably simulated the turnover rate of SOC along the soil profile. Similarly,

it was assumed that the parameter values of the scenario using data on OC only results in the least reliable parameter values
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Figure 3. Optimised depth profiles of total OC, §"*C and A'*C, obtained by optimizing the model using measurements of the POC and
MAOC pools under different calibration scenarios: (1) optimisation using OC data only (A-C), (2) optimisation using OC and 6">C data
(D-F), (3) optimisation using OC and A™C data (G-1) and (4) optimisation using C, ¢ 3C and A™C data (J-L). These simulations show
the 10 % best solution obtained using the DE algorithm. In each row, blue lines show depth profiles that were optimised, while grey lines
show simulations of isotopes using the same optimised parameters. Dots and error bars show measured data by Schrumpf et al. (2013). The
average error, calculated as a weighted average of the errors for POC and bulk soil OC (squared relative errors, see Sect. 2.3.2), is denoted

by €, the interquantile range is shown between squared brackets.

(€ = 0.85). To evaluate the second criteria, the interquartile range of the parameter values resulting in behavioural models was
calculated (Fig. 4).

Adding data on 6'3C to the calibration constraints, in addition to data on OC, improved only the value of the intensity of
bioturbation (Dj(0)), i.e., resulting in values similar to the values obtained with the optimization scenario using data on OC,
0'3C and A'™C. As simulated depth profiles of §'3C are partly shaped by mixing of aboveground and belowground OC, it is

expected that adding information on the §'3C of OC better constrains parameters simulating this process. However, the optimal
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values of Dj(0), after constraining with OC and §'3C, exhibited a substantial range. Adding data on A'*C to the calibration
constraints, in addition to data on OC, most notably improved the values of kgeprotect (0), as is clear from the better prediction
of the A'*C value along the soil profile (Fig. 3 I). Other parameters had values different from the optimisation using C, §'3C
and A'"C, and/or had a substantial variation.

The most notable observation from these results is that for six out of the nine calibrated model parameters (all except K, 445,
Ko,poc-» and Kgeproreer(0)), including data on OC, §'*C and A'C did not result in substantially more constrained parameter
values compared to when only data on OC is used (Fig. 4). These parameters regulate the simulated amounts of bio-available
OC and DOC, two model pools that could not be explicitly constrained using available data. It thus seems that while adding
data on §'3C and A'*C better constrains parameters related to the turnover of the largest SOC pool (mineral-associated C), it
does not help to constrain the size of other model pools, which may compensate for each other to result in a correct amount of
simulated total OC.

For all optimization scenarios, there were significant correlations between the optimized parameter values (as shown by the
colored cells in Fig. 5 and Fig. S9). A first reason for the correlations between optimized parameter values is a consequence
of the model structure, as parameter values can compensate inputs to and outputs from a model pool so its steady state size is
similar. For example, when only data on OC was used to optimize model parameters (i.e., the optimization objective was only to
get a good fit between measured and modelled total OC%, irrespective of, for example, the turnover rate of OC), there is a strong
correlation (R? = -0.69) between the rate of OC desorption from minerals (Kgeprotect (0)) and the affinity of DOC to adsorption
(km_ads; note that lower values of k,,, imply a higher affinity). This is to be expected, as low and high rates, respectively, of
both C inputs and outputs to mineral-associated OC, will lead to a similar size of this pool, although with respective slow
and fast turnover rates. In contrast, when the turnover of the mineral-associated OC pool is included as a calibration criterion
(through its A'C value), this correlation is absent, as only a narrow range in desorption rates (Kdeprotect (0)) result in the
correct turnover rate of this pool (Fig. 4 (I)).

A second reason for such correlations is related to the formulation of the mathematical equations. For example, parameters
in the numerator and denominator of an equation may compensate for each other. This is clear from the scenario including most
optimization data (Fig. 5 (B)), where there is strong correlation between V44 qas and K, 445, Which occur in the numerator
and denominator, respectively, of the equation representing the rate of DOC adsorption on minerals. While such correlations
are generally unwanted (they are an expression of equifinality) and complicate the optimization procedure, they reflect the
ability of the optimization algorithm to find parameter values that lead to a narrow range of adsorption rates, resulting in the

correct simulation of the turnover time of the mineral-associated OC pool.
3.4 Sensitivity of parameters affecting simulated §'3C depth profiles

Different model parameters had a distinct effect on the simulated depth profiles of §'3C. The global sensitivity analysis of
parameters affecting the 6'3C value of both topsoil and subsoil OC (Fig. 6, A - C) showed that the §'3C value of topsoil OC
was most influenced by the §'3C value of leaves, while the other tested parameters had a limited effect. The subsoil (0.40 m

depth) §'3C was influenced most by the 5'*C of roots and the effect of atmospheric CO, concentration on isotopic fractionation
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against §'*CO, during photosynthesis. The influence of the §'*C value of leaves on the subsoil §'3C was negligible, indicating

that the incorporation of aboveground biomass into the soil profile was limited to the uppermost soil layers. The change in

420

effect of atmospheric CO, concentration on isotopic fractionation against §'*CO, during photosynthesis. The local sensitivity
analysis (Fig. 6, D - H) confirmed these results, showing that the factors having the largest effect on absolute values of §'3C

along the soil profile were the §'3C values of leaves and roots, and the effect of atmospheric CO, concentration on isotopic

fractionation against §'*CO, during photosynthesis.
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Figure 5. Correlation between the optimised parameters for the calibration scenarios using data on (A) OC only and (B) OC, §'3C and A™C
(B). Numbers are the correlation coefficients, while colors are shown for parameter combinations with a significant correlation (p < 0.05).

Correlation plots for the other calibration scenarios are shown in Fig. S9

4 Discussion
4.1 Simulation of §'*C depth profiles in SOILcarb: mechanisms and challenges

During the past decades, multiple mechanisms have been put forward to explain the generally-observed increase in the §'3C
value of SOC with depth in temperate ecosystems. Here, it is assessed to which extent these mechanisms are reflected in the
model outcomes. Three main mechanisms that have been proposed are simulated by SOILcarb. The first mechanism concerns
inputs of '3C-depleted aboveground litter at the soil surface and vertical mixing with '*C-enriched belowground inputs along
the soil profile (e.g. Wynn et al., 2006; Jagercikova et al., 2017). The sensitivity analysis showed that this mechanism plays an
important role in shaping the depth profile of the 6'*C value of SOC at the studied site (Fig. 6D). This effect played a role down
to a depth of ca. 0.3 m, as shown by a model simulation in which the mixing of above- and belowground vegetation was the
only mechanism affecting the §'3C depth profile (Fig. S10). The second mechanism concerns temporal variations in the §'3C
value of vegetation, and thus C inputs to the soil (e.g. Paul et al., 2019; Wynn et al., 2006). In SOILcarb, this effect has been par-
titioned into (1) temporal changes in the §'*C value of atmospheric CO, (Keeling, 1979) and (2) the effect of atmospheric CO,
concentration on the discrimination against '3CO, during photosynthesis (i.e., a higher atmospheric CO, concentration leads
to more intense fractionation against '3CO, by plants, and thus lower §'3C values (Schubert and Jahren, 2012)). Additional
simulations with SOILcarb show that when only the first mechanism is considered, the simulated 6'3C of SOC increases with
ca. 1 %o with depth (Fig. S11). While this process thus contributes substantially to the observed increase in §'>C with depth,
including the effect of atmospheric CO, concentration on the fractionation against §'>*CO, during plant photosynthesis was

necessary to simulate the measured increase in §'3C with soil depth of ca. 2 %o (Fig. 2B). The last mechanisms is heterotrophic
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Figure 6. Sensitivity of simulated §'C depth profiles to five model parameters: (1) the change in fractionation against *C by plants per
unit change in atmospheric CO, concentration (S), (2) the fraction of microbial biomass carbon derived from CO, assimilation (), (3) the
§3C of rhizodeposit OC inputs (5'3Clopudates), (4) the §'3C value of root OC inputs (§'3C00¢) and (5) the §'*C value of leaf OC inputs
03 Clea £). The sensitivity of these parameters is calculated for topsoil & 3C (0.01 m depth), subsoil §"*C (0.40 m depth) and the difference
in 6"3C between these layers. The top row (A - C) shows the results for the global sensitivity analysis, while the bottom row (D - H) shows the
results for the local sensitivity analysis. The A values in the lower row (D - H) indicate the maximum difference in the simulated 6'*C values
for the topsoil and subsoil, while the ranges in the lower left corners of these graphs show the range over which the respective parameter

values were varied.

CO, assimilation by soil microbes (e.g. Santrickovd et al., 2018; Nel and Cramer, 2019). The sensitivity analysis showed that
this was the mechanism with the lowest impact on the difference in §'*C between the topsoil and the subsoil, with the effect
on the range in subsoil §'3C being 0.23 %o when the value of « varies over the range reported in the literature (Fig. 6E). Our
model simulations thus suggest that, in contrast to proposals of this mechanism being important based on empirical studies,
the potential effect is limited. At the study site, this is caused by the limited amount of CO, that is assimilated by soil microbes
(1.1 % of total microbial biomass; Akinyede et al. (2020)) and the limited difference between the §'3C value of SOC and soil
CO, of 4.4 %o (Cerling et al., 1991).

While numerical simulations of depth profiles of 6'3C help to quantify the importance of different mechanisms shaping the
vertical profile, these simulations are prone to uncertainties. For example, the absolute values of the §'*C of SOC depend on
the §'3C value of vegetation (Fig. 6F - H). In the present study, we relied on measurements made at the study site to obtain
this information, but these measurements are often not available. Estimating the §'C of vegetation based on literature values
when measured data is not available is unlikely to be reliable, as §'*C values of C3 vegetation vary over a large range (between
ca. -23 - -32 %o) depending on, for example, precipitation (Kohn, 2010) and vegetation type (Martinelli et al., 2021). Also the
d'3C value of different plant organs varies considerably (Bowling et al., 2008). Most notably, estimating the §'3C value of root
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exudates is challenging. Thus, there is considerable uncertainty on estimates of the §'>C value of different sources of OC inputs
to the soil. Therefore, model users should be aware of large uncertainties in simulated absolute values of the §'>C of SOC when

measured values are not available, and thus balance the benefits of simulating 6'>C versus the increased uncertainty.
4.2 Overparameterisation and equifinality in soil biogeochemical models

Our result show that overparameterisation, which arises when a numerical model has too many parameters compared to the data
available to constrain parameter values, has important consequences for the correct simulation of SOC dynamics. As many of
the recently developed SOC model have a similar structure and use similar equations, it is likely that this is a general issue for
such models (Sierra et al., 2015; Marschmann et al., 2019), as has previously been shown for conventional turnover-based pool
models (Braakhekke et al., 2013; Luo et al., 2016, 2017). Using only data on total C concentration of the POC and MAOC pools
to constrain parameter values resulted in many parameter combinations that led to behavioural models for total C, i.e. with a
close fit to observations. However, simulated A'*C values within the soil profile were generally underestimated, while §'3C
values were slightly overestimated (Fig. 3A-C). This does not confirm our second hypothesis, which anticipated an overesti-
mation of the turnover rate of SOC. Nevertheless, this shows that, if only total SOC stocks are used as the calibration criterion,
turnover times of SOC are simulated incorrectly, despite a correct simulation of the total SOC inventory. This is important, as
a correct simulation of the turnover time of SOC is crucial to make reliable projections of changes in the global C cycle for
the coming decades (He et al., 2016; Wang et al., 2019). Similar conclusions were drawn at the plot scale by Braakhekke et al.
(2014), who found that the turnover rate for the slowest SOC pool in their model was substantially overestimated without A'*C
data as a constraint on parameter values. Furthermore, for simulations of the turnover rate of SOC at the global scale, models
optimised without data on A™C resulted in a substantial overestimation of the turnover rate of SOC (He et al., 2016). It is thus
clear that, without data on the age of SOC as a parameter constraint during calibration, the turnover rate of SOC, especially in
the subsoil, is unlikely to be simulated correctly.

Soil biogeochemical models not only suffer from overparameterisation, but also from parameter equifinality, i.e. the phe-
nomenon that multiple parameter sets lead to model results that cannot readily be rejected (Marschmann et al., 2019; Sierra
et al., 2015; Tang and Zhuang, 2008). In line with our first hypothesis, a model constrained by data on only SOC stocks was
characterised by substantial equifinality (Fig. 3 A-C). However, contrary to our third hypothesis, including data on the §'3C
and/or A'C values of SOC to constrain parameter values during calibration did not substantially reduce the range in most
parameter values leading to behavioural models, as shown by the interquartile distances in Fig. 4. Two exceptions were the
range in rates of deprotection of OC (Kgeprotect(0)) and affinity of DOC for adsorption (k,, 4q4s), Which were substantially
reduced when data on §'3C and A'*C were included during optimization.

In line with previous studies, we found that the parameters of the Michaelis-Menten equation (V,,,,, in the numerator and K,
in the denominator) were subject to substantial equifinality (Sierra et al., 2015; Marschmann et al., 2019). The wide use of this
equation in microbially-driven soil biogeochemical models thus suggests that equifinality of these parameters is common, as
information on both the maximum rate (represented by V,,,,.) and the rate-limiting property (represented by K,,,) is generally

not available. Other parameters of SOILcarb subject to equifinality are representing processes that can compensate for each
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other to result in a similar total pool size. For example, as shown by the positive correlation between the rate of bioturbation
(Dy(0)) and the rate of C uptake by microbes in the bulk soil (V44 poc—s): the more OC in the bulk soil diffuses downwards,

the faster microbes need to process it to simulate the measured OC content.
4.3 Ways forward to identify and reduce equifinality in microbially-driven SOC models

Sierra et al. (2015) show that equifinality is likely to be an issue in microbially-driven SOC models. These authors used
the identifiability analysis by Brun et al. (2001) to show that for a relatively simple non-linear microbial model, only 2 or 3
parameters could be uniquely identified using calibration data on soil respiration and A'*C values of bulk soil and respired CO,.
Similarly, Marschmann et al. (2019) studied five microbially-driven SOC models of varying complexity, and found substantial
equifinality in every model, including a simple 2-pool microbial models. From previous studies and the results presented here,
it seems that equifinality in soil biogeochemical models can only be partly reduced by including more generally available data,
while a reduction in complexity might be needed to fully resolve this issue.

A consequence of equifinality is that it undermines confidence in projected changes in the SOC stock due to environmental
changes, as behavioural models can make similar projections for the near future, but greatly diverge on a decadal timescale (Luo
etal., 2016, 2017). Therefore, identifying and reducing equifinality in soil biogeochemical models is an important prerequisite
to increase confidence in the predictions by such models. This is particularly important as these models are incorporated in
Earth system models to make predictions of the response of the SOC stock to changes in the Earth’s climate (e.g., Wieder
et al., 2024), or to assess how changes in agricultural management practices can increase the amount of SOC to mitigate
climate change and assign carbon credits (e.g., Mathers et al., 2023).

One way forward to better constrain parameters in microbially-driven SOC models is to include additional data during the
parameter calibration process. As show in the present and previous studies (He et al., 2016; Wang et al., 2019), the residence
time of SOC along the soil profile can be better constrained by including data on A'*C during calibration. Reducing the range
in acceptable parameter values related to soil microbial dynamics is, however, more challenging, as this data is often lacking,
especially for the subsoil or over large spatial scales. Therefore, it is likely that parameters related to soil microbial dynamics
in soil biogeochemical models will have to be optimised until more data become available, or fixed at values derived from
measurements.

Equifinality also implies that it is unlikely that the development of even more complex models will immediately pay off
in terms of improved accuracy in predictions. Defining the optimal model structure for simulation and prediction, given the
data that are available, is therefore as important as further increasing our process understanding. Multiple methods are avail-
able to identify parameter equifinality in environmental models, including the GLUE methodology (Beven and Binley, 1992),
Bayesian methods (Vrugt, 2016), the parameter identifiability method from Brun et al. (2001), the Manifold Boundary Ap-
proximation Method (Marschmann et al., 2019) and methods to assess local structural parameter identifiability (Stigter et al.,
2017), among others (Miao et al., 2011). Many of these methods are easily accessible to researchers in the form of packages in
R and other software environments. This should enable modellers to identify this phenomenon in their models and thus reduce

model complexity when appropriate.
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A last way forward to better constrain model parameters is the construction of integrated databases that bring together data
on multiple aspect of the SOM cycle (e.g. OC fractionation, stable and radioisotopes, mineralogy, microbial characteristics,
environmental drivers, etc.) (Sierra et al., 2015). While in the recent past several efforts have been made to construct global
databases with data related to SOC cycling (e.g. ISRAD ((Lawrence et al., 2020)), WOSIS (Batjes et al., 2020), SoDaH (Wieder
etal., 2021), LUCAS (Orgiazzi et al., 2018), among others), the use of these databases to identify and reduce equifinality in soil
biogeochemical models has been, surprisingly, very limited. Thus, this is a low-hanging fruit that would significantly increase

our confidence in projections of the soil carbon - climate feedback for the coming decades.

5 Conclusions

In this study, a new mechanistic, depth-explicit SOC model (SOILcarb) was presented and used to assess the potential to
decrease parameter equifinality by including data on §'3C and A'*C data of two soil fractions (POC and MAOC) as constraints
on parameter values during model optimisation. Our results show that while the optimized model was able to simulate depth
profiles of total OC, §'3C and A'%C in line with measurements, all optimised model parameters were prone to equifinality.
Including §'3C data, in addition to total OC, did little to improve simulations of the turnover rate of SOC or limit parameter
equifinality. Adding A'*C data as a calibration constraint, in contrast, allowed the correct simulation of the turnover rate of
SOC, while only substantially reducing equifinality for the parameter regulating desorption rate of OC from minerals. Adding
a combination of §'*C and A'C data improved the simulation of the §'3C value in the topsoil, and the rate of sorption and
desorption of OC on minerals along the soil profile, and thus the turnover rate of SOC along the soil profile. Our results show
that more data is needed to reliably constrain parameter values of microbially-driven models. As these data are generally not
available at larger spatial scales, it is unlikely that including more complexity in soil biogeochemical models will improve
simulations in the near future, while more emphasis should be put on finding a better balance between model complexity and
available data. This is an important prerequisite to increase confidence in projections of the soil carbon - climate feedback in a

world subject to climatic change.

Code availability. The R codes of SOILcarb have been submitted together with this manuscript for review purposes. Upon acceptance of the

manuscript, the codes will be made publicly available on the GitHub page of the first author.

Author contributions. MVdB developed the model codes with inputs from all co-authors, and took the lead in writing the manuscript. All

co-authors contributed to writing the final submitted manuscript.

Competing interests. The authors declare that they have no conflict of interest.

21



Acknowledgements. This work was partly supported by the Swiss National Science Foundation (SNSF, Ambizione grant number PZ00OP2_193617
/1, granted to MVdB).

22



555

560

565

570

575

580

585

590

References

Ahrens, B., Braakhekke, M. C., Guggenberger, G., Schrumpf, M., and Reichstein, M.: Contribution of sorption, DOC transport and microbial
interactions to the 14C age of a soil organic carbon profile: Insights from a calibrated process model, Soil Biology and Biochemistry, 88,
390-402, https://doi.org/10.1016/j.s0ilbio.2015.06.008, iISBN: 0038-0717 Publisher: Elsevier Ltd, 2015.

Ahrens, B., Guggenberger, G., Rethemeyer, J., John, S., Marschner, B., Heinze, S., Angst, G., Mueller, C. W., Kogel-Knabner, 1., Leuschner,
C., Hertel, D., Bachmann, J., Reichstein, M., and Schrumpf, M.: Combination of energy limitation and sorption capacity explains 14C
depth gradients, Soil Biology and Biochemistry, 148, 1-15, https://doi.org/10.1016/j.s0ilbi0.2020.107912, 2020.

Akinyede, R., Taubert, M., Schrumpf, M., Trumbore, S., and Kiisel, K.: Rates of dark CO2 fixation are driven by microbial biomass in a
temperate forest soil, Soil Biology and Biochemistry, 150, 107 950, https://doi.org/10.1016/j.s0ilbi0.2020.107950, 2020.

Akinyede, R., Taubert, M., Schrumpf, M., Trumbore, S., and Kiisel, K.: Dark CO2 fixation in temperate beech and pine forest soils, Soil
Biology and Biochemistry, 165, 108 526, https://doi.org/10.1016/j.s0ilbio.2021.108526, 2022.

Amundson, R. and Baisden, W. T.: Stable Isotope Tracers and Mathematical Models in Soil Organic Matter Studies, in: Methods in Ecosystem
Science, edited by Sala, O. E., Jackson, R. B., Mooney, H. A., and Howarth, R. W., pp. 117-137, Springer, New York, NY, ISBN 978-1-
4612-1224-9, https://doi.org/10.1007/978-1-4612-1224-9_9, 2000.

Amundson, R. G. and Davidson, E. A.: Carbon dioxide and nitrogenous gases in the soil atmosphere, Journal of Geochemical Exploration,
38, 1341, https://doi.org/10.1016/0375-6742(90)90091-N, 1990.

Andreasson, F., Bergkvist, B., and Baath, E.: Bioavailability of DOC in leachates, soil matrix solutions and soil water extracts from beech
forest floors, Soil Biology and Biochemistry, 41, 1652-1658, https://doi.org/10.1016/j.s0ilbio.2009.05.005, 2009.

Angst, G., Mueller, K. E., Nierop, K. G. J., and Simpson, M. J.: Plant- or microbial-derived? A review on the molecular composition of
stabilized soil organic matter, Soil Biology and Biochemistry, 156, 108 189, https://doi.org/10.1016/j.s0ilbio.2021.108189, 2021.

Ardia, D., Boudt, K., Carl, P,, Mullen, K. M., and Peterson, B. G.: Differential Evolution with DEoptim: An Application to Non-Convex
Portfolio Optimization, R Journal, 3, 27-34, https://doi.org/10.32614/RJ-2011-005, 2011.

Baisden, W. T. and Parfitt, R. L.: Bomb 14C enrichment indicates decadal C pool in deep soil?, Biogeochemistry, 85, 59-68,
https://doi.org/10.1007/s10533-007-9101-7, 2007.

Baisden, W. T., Amundson, R., Brenner, D. L., Cook, A. C., Kendall, C., and Harden, J. W.: A multiisotope C and N modeling analysis
of soil organic matter turnover and transport as a function of soil depth in a California annual grassland soil chronosequence, Global
Biogeochemical Cycles, 16, https://doi.org/10.1029/2001GB001823, iSBN: 0886-6236, 2002.

Baisden, W. T., Parfitt, R. L., Ross, C., Schipper, L. A., and Canessa, S.: Evaluating 50 years of time-series soil radiocarbon data: towards
routine calculation of robust C residence times, Biogeochemistry, 112, 129-137, https://doi.org/10.1007/s10533-011-9675-y, 2013.

Balesdent, J., Basile-Doelsch, 1., Chadoeuf, J., Cornu, S., Derrien, D., Fekiacova, Z., and Hatté, C.: Atmosphere—soil carbon transfer as a
function of soil depth, Nature, 559, 599-602, https://doi.org/10.1038/s41586-018-0328-3, 2018.

Batjes, N. H., Ribeiro, E., and van Oostrum, A.: Standardised soil profile data to support global mapping and modelling (WoSIS snapshot
2019), Earth System Science Data, 12, 299-320, https://doi.org/10.5194/essd-12-299-2020, publisher: Copernicus GmbH, 2020.

Bauska, T. K., Joos, F., Mix, A. C., Roth, R., Ahn, J., and Brook, E. J.: Links between atmospheric carbon dioxide, the land carbon reservoir
and climate over the past millennium, Nature Geoscience, 8, 383-387, https://doi.org/10.1038/nge02422, iSBN: 1752-0894, 2015.

Beven, K.: Prophecy, reality and uncertainty in distributed hydrological modelling, Advances in Water Resources, 16, 41-51,

https://doi.org/10.1016/0309-1708(93)90028-E, 1993.

23


https://doi.org/10.1016/j.soilbio.2015.06.008
https://doi.org/10.1016/j.soilbio.2020.107912
https://doi.org/10.1016/j.soilbio.2020.107950
https://doi.org/10.1016/j.soilbio.2021.108526
https://doi.org/10.1007/978-1-4612-1224-9_9
https://doi.org/10.1016/0375-6742(90)90091-N
https://doi.org/10.1016/j.soilbio.2009.05.005
https://doi.org/10.1016/j.soilbio.2021.108189
https://doi.org/10.32614/RJ-2011-005
https://doi.org/10.1007/s10533-007-9101-7
https://doi.org/10.1029/2001GB001823
https://doi.org/10.1007/s10533-011-9675-y
https://doi.org/10.1038/s41586-018-0328-3
https://doi.org/10.5194/essd-12-299-2020
https://doi.org/10.1038/ngeo2422
https://doi.org/10.1016/0309-1708(93)90028-E

595

600

605

610

615

620

625

Beven, K.: A manifesto for the equifinality thesis, Journal of Hydrology, 320, 18-36, https://doi.org/10.1016/j.jhydrol.2005.07.007, 2006.

Beven, K. and Binley, A.: The future of distributed models: Model calibration and uncertainty prediction, Hydrological Processes, 6, 279—
298, https://doi.org/10.1002/hyp.3360060305, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/hyp.3360060305, 1992.

Beven, K. and Freer, J.: Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental
systems using the GLUE methodology, Journal of Hydrology, 249, 11-29, https://doi.org/10.1016/S0022-1694(01)00421-8, 2001.

Blankinship, J. C., Berhe, A. A., Crow, S. E., Druhan, J. L., Heckman, K. A., Keiluweit, M., Lawrence, C. R., Marin-Spiotta, E., Plante, A. F,,
Rasmussen, C., Schidel, C., Schimel, J. P, Sierra, C. A., Thompson, A., Wagai, R., and Wieder, W. R.: Improving understanding of soil or-
ganic matter dynamics by triangulating theories, measurements, and models, Biogeochemistry, 140, 1-13, https://doi.org/10.1007/s10533-
018-0478-2, iISBN: 1053301804, 2018.

Bostrom, B., Comstedt, D., and Ekblad, A.: Isotope fractionation and 13C enrichment in soil profiles during the decomposition of soil organic
matter, Oecologia, 153, 89-98, https://doi.org/10.1007/s00442-007-0700-8, iSBN: 0029-8549, 2007.

Bowling, D. R., Pataki, D. E., and Randerson, J. T.: Carbon Isotopes in Terrestrial Ecosystem Pools and CO2 Fluxes, New Phytologist, 178,
24-40, https://doi.org/10.2307/30147703, iSBN: 0028646X, 2008.

Braakhekke, M., Beer, C., Schrumpf, M., Ekici, A., Ahrens, B., Hoosbeek, M. R., Kruijt, B., Kabat, P, and Reichstein, M.: The use of
radiocarbon to constrain current and future soil organic matter turnover and transport in a temperate forest, Journal of Geophysical
Research: Biogeosciences, 119, 372-391, https://doi.org/10.1002/2013JG002420, 2014.

Braakhekke, M. C., Wutzler, T., Beer, C., Kattge, J., Schrumpf, M., Ahrens, B., Schoning, 1., Hoosbeek, M. R., Kruijt, B., Kabat, P., and
Reichstein, M.: Modeling the vertical soil organic matter profile using Bayesian parameter estimation, Biogeosciences, 10, 399—420,
https://doi.org/10.5194/bg-10-399-2013, 2013.

Bradford, M. A., Wieder, W. R., Bonan, G. B., Fierer, N., Raymond, P. A., and Crowther, T. W.: Managing uncertainty in soil carbon
feedbacks to climate change, Nature Climate Change, 6, 751-758, https://doi.org/10.1038/nclimate3071, publisher: Nature Publishing
Group, 2016.

Brun, R., Reichert, P, and Kinsch, H. R.: Practical identifiability analysis of large environmental simu-
lation models, Water Resources Research, 37, 1015-1030, https://doi.org/10.1029/2000WR900350, _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1029/2000WR900350, 2001.

Camino-Serrano, M., Guenet, B., Luyssaert, S., Ciais, P., Bastrikov, V., Vos, B. D., Gielen, B., Gleixner, G., Jornet-Puig, A., Kaiser, K.,
Kothawala, D., Lauerwald, R., Pefiuelas, J., Schrumpf, M., Vicca, S., Vuichard, N., Walmsley, D., and Janssens, I. A.: ORCHIDEE-SOM:
modeling soil organic carbon (SOC) and dissolved organic carbon (DOC) dynamics along vertical soil profiles in Europe, Geoscientific
Model Development, 11, 937-957, https://doi.org/10.5194/gmd-11-937-2018, 2018.

Campbell, E. E. and Paustian, K.: Current developments in soil organic matter modeling and the expansion of model applications: a re-
view, Environmental Research Letters, 10, 1 — 36, https://doi.org/10.1088/1748-9326/10/12/123004, iSBN: 1748-9326 Publisher: IOP
Publishing, 2015.

Cerling, T. E.: The stable isotopic composition of modern soil carbonate and its relationship to climate, Earth and Planetary Science Letters,
71, 229-240, https://doi.org/10.1016/0012-821X(84)90089-X, 1984.

Cerling, T. E., Solomon, D. K., Quade, J., and Bowman, J. R.: On the isotopic composition of carbon in soil carbon dioxide, Geochimica et
Cosmochimica Acta, 55, 3403-3405, https://doi.org/10.1016/0016-7037(91)90498-T, 1991.

Ciais, P., Sabine, C., Bala, L., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., Defries, R., Galloway, J., Heimann, M., Jones, C., Le Quéré,
C., Myneni, R. B., Piao, S., and Thornton, B.: Carbon and Other Biogeochemical Cycles, in: Climate Change 2013: The Physical Science

24


https://doi.org/10.1016/j.jhydrol.2005.07.007
https://doi.org/10.1002/hyp.3360060305
https://doi.org/10.1016/S0022-1694(01)00421-8
https://doi.org/10.1007/s10533-018-0478-2
https://doi.org/10.1007/s10533-018-0478-2
https://doi.org/10.1007/s10533-018-0478-2
https://doi.org/10.1007/s00442-007-0700-8
https://doi.org/10.2307/30147703
https://doi.org/10.1002/2013JG002420
https://doi.org/10.5194/bg-10-399-2013
https://doi.org/10.1038/nclimate3071
https://doi.org/10.1029/2000WR900350
https://doi.org/10.5194/gmd-11-937-2018
https://doi.org/10.1088/1748-9326/10/12/123004
https://doi.org/10.1016/0012-821X(84)90089-X
https://doi.org/10.1016/0016-7037(91)90498-T

630

635

640

645

650

655

660

665

Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by
Stocker, T. F.,, Qin, D., Plattner, G.-K., Tigmor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge
University Press, Carmbridge, United Kingdom and New York, NY, USA, 2013.

Coleman, K., Jenkinson, D. S., Crocker, G. J., Grace, P. R., Klir, J., Korschens, M., Poulton, P. R., and Richter, D. D.: Simulating trends in
soil organic carbon in long-term experiments using RothC-26.3, Geoderma, 81, 29—44, https://doi.org/10.1016/S0016-7061(97)00079-7,
1997.

Denef, K., Plante, A. F., and Six, J.: Characterization of soil organic matter, in: Soil Carbon Dynamics: An Integrated Methodology, edited
by Heinemeyer, A., Bahn, M., and Kutsch, W. L., pp. 91-126, Cambridge University Press, Cambridge, ISBN 978-0-521-86561-6,
https://doi.org/10.1017/CB0O9780511711794.007, 2010.

Dijkstra, P., Ishizu, A., Doucett, R., Hart, S. C., Schwartz, E., Menyailo, O. V., and Hungate, B. A.: 13C and 15N natural abundance of the
soil microbial biomass, Soil Biology and Biochemistry, 38, 3257-3266, https://doi.org/10.1016/].s0ilbio.2006.04.005, 2006.

Dungait, J. A. J., Hopkins, D. W., Gregory, A. S., and Whitmore, A. P.: Soil organic matter turnover is governed by accessibility not
recalcitrance, Global Change Biology, 18, 1781-1796, https://doi.org/10.1111/j.1365-2486.2012.02665.x, iSBN: 1354-1013, 2012.

Dwivedi, D., Riley, W. J., Torn, M. S., Spycher, N., Maggi, F, and Tang, J. Y.: Mineral properties, microbes, transport, and
plant-input profiles control vertical distribution and age of soil carbon stocks, Soil Biology and Biochemistry, 107, 244-259,
https://doi.org/10.1016/j.s0ilbi0.2016.12.019, iISBN: 0038-0717 Publisher: Elsevier Ltd, 2017.

Ehleringer, J. R., Buchmann, N., and Flanagan, L. B.: Carbon Isotope Ratios in Belowground Carbon Cycle Processes, Ecological Applica-
tions, 10, 412-422, https://doi.org/10.2307/2641103, publisher: Ecological Society of America, 2000.

Elzein, A. and Balesdent, J.: Mechanistic Simulation of Vertical Distribution of Carbon Concentrations and Residence Times in Soils,
Soil Science Society of America Journal, 59, 1328, https://doi.org/10.2136/sssaj1995.03615995005900050019x%, iSBN: 9788578110796
Publisher: Cambridge University Press, 1995.

Finzi, A. C., Abramoff, R. Z., Spiller, K. S., Brzostek, E. R., Darby, B. A., Kramer, M. A., and Phillips, R. P.: Rhizosphere pro-
cesses are quantitatively important components of terrestrial carbon and nutrient cycles, Global Change Biology, 21, 2082-2094,
https://doi.org/10.1111/gcb.12816, 2015.

Gale, M. R. and Grigal, D. E.: Vertical root distributions of northern tree species in relation to successional status, Canadian Journal of Forest
Research, 17, 829-834, https://doi.org/10.1139/x87-131, iISBN: 9783540773405, 1987.

Georgiou, K., Abramoff, R. Z., Harte, J., Riley, W. J., and Torn, M. S.: Microbial community-level regulation explains soil carbon responses
to long-term litter manipulations, Nature Communications, 8, 1-10, https://doi.org/10.1038/s41467-017-01116-z, publisher: Springer US,
2017.

Gleixner, G., Danier, H. J., Werner, R. a., and Schmidt, H. L.: Correlations between the 13C Content of Primary and Secondary
Plant Products in Different Cell Compartments and That in Decomposing Basidiomycetes., Plant physiology, 102, 1287-1290,
https://doi.org/10.1104/pp.102.4.1287, iISBN: 4981617135, 1993.

Goffin, S., Aubinet, M., Maier, M., Plain, C., Schack-Kirchner, H., and Longdoz, B.: Characterization of the soil CO2 production and
its carbon isotope composition in forest soil layers using the flux-gradient approach, Agricultural and Forest Meteorology, 188, 45-57,
https://doi.org/10.1016/j.agrformet.2013.11.005, publisher: Elsevier B.V., 2014.

Graven, H., Allison, C. E., Etheridge, D. M., Hammer, S., Keeling, R. F., Levin, 1., Meijer, H. A. J., Rubino, M., Tans, P. P,, Trudinger,
C. M., Vaughn, B. H., and White, J. W. C.: Compiled records of carbon isotopes in atmospheric CO 2 for historical simulations in CMIP6,
Geoscientific Model Development, 10, 4405-4417, https://doi.org/10.5194/gmd-10-4405-2017, 2017.

25


https://doi.org/10.1016/S0016-7061(97)00079-7
https://doi.org/10.1017/CBO9780511711794.007
https://doi.org/10.1016/j.soilbio.2006.04.005
https://doi.org/10.1111/j.1365-2486.2012.02665.x
https://doi.org/10.1016/j.soilbio.2016.12.019
https://doi.org/10.2307/2641103
https://doi.org/10.2136/sssaj1995.03615995005900050019x
https://doi.org/10.1111/gcb.12816
https://doi.org/10.1139/x87-131
https://doi.org/10.1038/s41467-017-01116-z
https://doi.org/10.1104/pp.102.4.1287
https://doi.org/10.1016/j.agrformet.2013.11.005
https://doi.org/10.5194/gmd-10-4405-2017

670

675

680

685

690

695

700

Hammer, S. and Levin, I.: Monthly mean atmospheric d14CO2 at Jungfraujoch and Schauinsland from 1986 to 2016 [dataset],
https://doi.org/10.11588/data/10100, 2017.

He, Y., Trumbore, S. E., Torn, M. S., Harden, J. W., Vaughn, L. J. S., Allison, S. D., and Randerson, J. T.: Radiocarbon constraints imply
reduced carbon uptake by soils during the 21st century, Science, 353, 14191424, https://doi.org/10.1126/science.aad4273, iSBN: 1095-
9203 (Electronic) 0036-8075 (Linking), 2016.

Hicks Pries, C. E., Castanha, C., Porras, R. C., and Torn, M. S.: The whole-soil carbon flux in response to warming, Science, 355, 1420-1423,
https://doi.org/10.1126/science.aal1319, 2017.

Hua, Q., Barbetti, M., and Rakowski, A. Z.: Atmospheric radiocarbon for the period 1950-2010, Radiocarbon, 55, 2059-2072,
https://doi.org/10.2458/azu_js_rc.v55i2.16177, iSBN: 0033-8222lescape}, 2013.

Jagercikova, M., Cornu, S., Bourles, D., Evrard, O., Hatté, C., and Balesdent, J.: Quantification of vertical solid matter transfers in soils
during pedogenesis by a multi-tracer approach, Journal of Soils and Sediments, 17, 408—422, https://doi.org/10.1007/s11368-016-1560-9,
2017.

Jenkinson, D. S. and Coleman, K.: The turnover of organic carbon in subsoils. Part 2. Modelling carbon turnover, European Journal of Soil
Science, 59, 400413, https://doi.org/10.1111/j.1365-2389.2008.01026.x, iISBN: 1351-0754, 2008.

Jia, J., Cao, Z., Liu, C., Zhang, Z., Lin, L., Wang, Y., Haghipour, N., Wacker, L., Bao, H., Dittmar, T., Simpson, M. J., Yang, H., Crowther,
T. W., Eglinton, T. I, He, J.-S., and Feng, X.: Climate warming alters subsoil but not topsoil carbon dynamics in alpine grassland, Global
Change Biology, 25, 4383—4393, https://doi.org/10.1111/gcb.14823, 2019.

Keeling, C. D.: The Suess effect: 13Carbon-14Carbon interrelations, Environment International, 2, 229-300, https://doi.org/10.1016/0160-
4120(79)90005-9, iSBN: 0160-4120, 1979.

Keeling, R. F., Graven, H. D., Welp, L. R., Resplandy, L., Bi, J., Piper, S. C., Sun, Y., Bollenbacher, A., and Meijer, H. A. J.: Atmospheric
evidence for a global secular increase in carbon isotopic discrimination of land photosynthesis, Proceedings of the National Academy of
Sciences, 114, 10361 — 10 366, https://doi.org/10.1073/pnas.1619240114, iSBN: 1619240114, 2017.

Keiluweit, M., Bougoure, J. J., Nico, P. S., Pett-Ridge, J., Weber, P. K., and Kleber, M.: Mineral protection of soil carbon counteracted by
root exudates, Nature Climate Change, 5, 588-595, https://doi.org/10.1038/nclimate2580, iSBN: 1758-678X, 2015.

Kleber, M. and Lehmann, J.: Humic Substances Extracted by Alkali Are Invalid Proxies for the Dynamics and Functions of Organic Matter
in Terrestrial and Aquatic Ecosystems, Journal of Environment Quality, 48, 207-216, https://doi.org/10.2134/jeq2019.01.0036, 2019.

Kleber, M., Eusterhues, K., Keiluweit, M., Mikutta, C., Mikutta, R., and Nico, P. S.: Chapter One - Mineral-Organic Associations: Formation,
Properties, and Relevance in Soil Environments, in: Advances in Agronomy, edited by Sparks, D. L., vol. 130, pp. 1-140, Academic Press,
https://doi.org/10.1016/bs.agron.2014.10.005, 2015.

Kleber, M., Bourg, I. C., Coward, E. K., Hansel, C. M., Myneni, S. C. B., and Nunan, N.: Dynamic interactions at the mineral-organic
matter interface, Nature Reviews Earth & Environment, 2, 402—421, https://doi.org/10.1038/s43017-021-00162-y, bandiera_abtest: a
Cg_type: Nature Research Journals Number: 6 Primary_atype: Reviews Publisher: Nature Publishing Group Subject_term: Carbon cy-
cle;Geochemistry Subject_term_id: carbon-cycle;geochemistry, 2021.

Knohl, A., Werner, R. A., Brand, W. A., and Buchmann, N.: Short-term variations in §13C of ecosystem respiration reveals link between
assimilation and respiration in a deciduous forest, Oecologia, 142, 70-82, https://doi.org/10.1007/s00442-004-1702-4, 2005.

Kohn, M. J.: Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate, Proceedings of the
National Academy of Sciences, 107, 19 691-19 695, https://doi.org/10.1073/pnas.1004933107, publisher: Proceedings of the National
Academy of Sciences, 2010.

26


https://doi.org/10.11588/data/10100
https://doi.org/10.1126/science.aad4273
https://doi.org/10.1126/science.aal1319
https://doi.org/10.2458/azu_js_rc.v55i2.16177
https://doi.org/10.1007/s11368-016-1560-9
https://doi.org/10.1111/j.1365-2389.2008.01026.x
https://doi.org/10.1111/gcb.14823
https://doi.org/10.1016/0160-4120(79)90005-9
https://doi.org/10.1016/0160-4120(79)90005-9
https://doi.org/10.1016/0160-4120(79)90005-9
https://doi.org/10.1073/pnas.1619240114
https://doi.org/10.1038/nclimate2580
https://doi.org/10.2134/jeq2019.01.0036
https://doi.org/10.1016/bs.agron.2014.10.005
https://doi.org/10.1038/s43017-021-00162-y
https://doi.org/10.1007/s00442-004-1702-4
https://doi.org/10.1073/pnas.1004933107

705

710

715

720

725

730

735

740

Koven, C. D., Riley, W. J., Subin, Z. M., Tang, J. Y., Torn, M. S., Collins, W. D., Bonan, G. B., Lawrence, D. M., and Swenson, S. C.:
The effect of vertically resolved soil biogeochemistry and alternate soil C and N models on C dynamics of CLM4, Biogeosciences, 10,
7109-7131, https://doi.org/10.5194/bg-10-7109-2013, iSBN: 1726-4189, 2013.

Kutsch, W. L., Persson, T., Schrumpf, M., Moyano, F. E., Mund, M., Andersson, S., and Schulze, E.-D.: Heterotrophic soil respi-
ration and soil carbon dynamics in the deciduous Hainich forest obtained by three approaches, Biogeochemistry, 100, 167-183,
https://doi.org/10.1007/s10533-010-9414-9, 2010.

Kistner, M. and Miltner, A.: SOM and Microbes—What Is Left From Microbial Life, in: The Future of Soil Carbon, pp. 125-163, Elsevier,
ISBN 978-0-12-811687-6, https://doi.org/10.1016/B978-0-12-811687-6.00005-5, 2018.

Kogel-Knabner, I.: The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter, Soil Biology
and Biochemistry, 34, 139-162, https://doi.org/10.1016/S0038-0717(01)00158-4, 2002.

Lal, R.: Digging deeper: A holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems, Global Change
Biology, 24, 3285-3301, https://doi.org/10.1111/gcb.14054, iSBN: 0000000154871, 2018.

Lawrence, C. R., Neff, J. C., and Schimel, J. P.: Does adding microbial mechanisms of decomposition improve soil organic matter mod-
els? A comparison of four models using data from a pulsed rewetting experiment, Soil Biology and Biochemistry, 41, 1923-1934,
https://doi.org/10.1016/j.s0ilbi0.2009.06.016, iSBN: 0780379896 Publisher: Elsevier Ltd, 2009.

Lawrence, C. R., Beem-Miller, J., Hoyt, A. M., Monroe, G., Sierra, C. A., Stoner, S., Heckman, K., Blankinship, J. C., Crow, S. E., McNicol,
G., Trumbore, S., Levine, P. A., Vinduskova, O., Todd-Brown, K., Rasmussen, C., Hicks Pries, C. E., Schidel, C., McFarlane, K., Doetterl,
S., Hatté, C., He, Y., Treat, C., Harden, J. W., Torn, M. S., Estop-Aragonés, C., Asefaw Berhe, A., Keiluweit, M., Della Rosa Kuhnen, A.,
Marin-Spiotta, E., Plante, A. F., Thompson, A., Shi, Z., Schimel, J. P., Vaughn, L. J. S., von Fromm, S. F., and Wagai, R.: An open-source
database for the synthesis of soil radiocarbon data: International Soil Radiocarbon Database (ISRaD) version 1.0, Earth System Science
Data, 12, 61-76, https://doi.org/10.5194/essd-12-61-2020, publisher: Copernicus GmbH, 2020.

Lehmann, J. and Kleber, M.: The contentious nature of soil organic matter, Nature, 528, 60—68, https://doi.org/10.1038/nature16069, iSBN:
0028-0836, 2015.

Luo, Y., Weng, E., Wu, X., Gao, C., Zhou, X., and Zhang, L.: Parameter Identifiability, Constraint, and Equifinality in Data Assimilation with
Ecosystem Models, Ecological Applications, 19, 571-574, https://www.jstor.org/stable/27645995, publisher: [Wiley, Ecological Society
of America], 2009.

Luo, Z., Wang, E., Shao, Q., Conyers, M. K., and Liu, D. L.: Confidence in soil carbon predictions undermined by the uncertainties in ob-
servations and model parameterisation, Environmental Modelling & Software, 80, 26-32, https://doi.org/10.1016/j.envsoft.2016.02.013,
2016.

Luo, Z., Wang, E., and Sun, O. J.: Uncertain future soil carbon dynamics under global change predicted by models constrained by total carbon
measurements, Ecological Applications, 27, 1001-1009, https://www.jstor.org/stable/26155933, publisher: [Wiley, Ecological Society of
America], 2017.

Luo, Z., Wang, G., and Wang, E.: Global subsoil organic carbon turnover times dominantly controlled by soil properties rather than climate,
Nature Communications, 10, 3688, https://doi.org/10.1038/s41467-019-11597-9, publisher: Springer US, 2019.

Marschmann, G. L., Pagel, H., Kiigler, P., and Streck, T.: Equifinality, sloppiness, and emergent structures of mechanistic soil biogeochemical
models, Environmental Modelling & Software, 122, 104 518, https://doi.org/10.1016/j.envsoft.2019.104518, 2019.

Martinelli, L. A., Nardoto, G. B., Soltangheisi, A., Reis, C. R. G., Abdalla-Filho, A. L., Camargo, P. B., Domingues, T. F., Faria, D.,
Figueira, A. M., Gomes, T. F, Lins, S. R. M., Mardegan, S. F., Mariano, E., Miatto, R. C., Moraes, R., Moreira, M. Z., Oliveira, R. S.,

27


https://doi.org/10.5194/bg-10-7109-2013
https://doi.org/10.1007/s10533-010-9414-9
https://doi.org/10.1016/B978-0-12-811687-6.00005-5
https://doi.org/10.1016/S0038-0717(01)00158-4
https://doi.org/10.1111/gcb.14054
https://doi.org/10.1016/j.soilbio.2009.06.016
https://doi.org/10.5194/essd-12-61-2020
https://doi.org/10.1038/nature16069
https://www.jstor.org/stable/27645995
https://doi.org/10.1016/j.envsoft.2016.02.013
https://www.jstor.org/stable/26155933
https://doi.org/10.1038/s41467-019-11597-9
https://doi.org/10.1016/j.envsoft.2019.104518

745

750

755

760

765

770

775

Ometto, J. P. H. B., Santos, F. L. S, Sena-Souza, J., Silva, D. M. L., Silva, J. C. S. S., and Vieira, S. A.: Determining ecosystem func-
tioning in Brazilian biomes through foliar carbon and nitrogen concentrations and stable isotope ratios, Biogeochemistry, 154, 405423,
https://doi.org/10.1007/s10533-020-00714-2, 2021.

Mathers, C., Black, C. K., Segal, B. D., Gurung, R. B., Zhang, Y., Easter, M. J., Williams, S., Motew, M., Campbell, E. E., Brummitt, C. D.,
Paustian, K., and Kumar, A. A.: Validating DayCent-CR for cropland soil carbon offset reporting at a national scale, Geoderma, 438,
116 647, https://doi.org/10.1016/j.geoderma.2023.116647, 2023.

Miao, H., Xia, X., Perelson, A. S., and Wu, H.: On Identifiability of Nonlinear ODE Models and Applications in Viral Dynamics, SIAM
Review, 53, 3-39, https://doi.org/10.1137/090757009, 2011.

Miltner, A., Richnow, H.-H., Kopinke, F.-D., and Kistner, M.: Assimilation of CO2 by soil microorganisms and transformation into soil
organic matter, Organic Geochemistry, 35, 1015-1024, https://doi.org/10.1016/j.orggeochem.2004.05.001, iSBN: 0146-6380, 2004.

Mullen, K., Ardia, D., Gil, D., Windover, D., and Cline, J.: DEoptim: An R Package for Global Optimization by Differential Evolution,
Journal of Statistical Software, 40, 1-26, https://doi.org/10.18637/jss.v040.i06, 2011.

Nel, J. A. and Cramer, M. D.: Soil microbial anaplerotic CO2 fixation in temperate soils, Geoderma, pp. 170-178,
https://doi.org/10.1016/j.geoderma.2018.08.014, publisher: Elsevier, 2019.

Orgiazzi, A., Ballabio, C., Panagos, P, Jones, A., and Fernindez-Ugalde, O.: LUCAS Soil, the largest expandable soil
dataset for Europe: a review, European Journal of Soil Science, 69, 140-153, https://doi.org/10.1111/ejss.12499, _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/ejss.12499, 2018.

Ota, M., Nagai, H., and Koarashi, J.: Root and dissolved organic carbon controls on subsurface soil carbon dynamics: A model approach,
Journal of Geophysical Research: Biogeosciences, 118, 1646—1659, https://doi.org/10.1002/2013JG002379, 2013.

Parton, W. J, Schimel, D. S, Cole, C. V., and Ojima, D. S.: Analysis of Factors Control-
ling Soil Organic Matter Levels in Great Plains Grasslands, Soil Science Society of America Jour-
nal, 51, 1173-1179, https://doi.org/https://doi.org/10.2136/ss5aj1987.03615995005100050015x, _eprint:
https://acsess.onlinelibrary.wiley.com/doi/pdf/10.2136/ss5aj1987.03615995005100050015x, 1987.

Paul, A., Balesdent, J., and Hatté, C.: 13C-14C relations reveal that soil 13C-depth gradient is linked to historical changes in vegetation 13C,
Plant and Soil, https://doi.org/10.1007/s11104-019-04384-4, iSBN: 1110401904384 Publisher: Plant and Soil, 2019.

Pausch, J. and Kuzyakov, Y.: Carbon input by roots into the soil: Quantification of rhizodeposition from root to ecosystem scale, Global
Change Biology, 24, 1-12, https://doi.org/10.1111/gcb.13850, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/gcb.13850, 2018.

Pianosi, F. and Wagener, T.: A simple and efficient method for global sensitivity analysis based on cumulative distribution functions, Envi-
ronmental Modelling & Software, 67, 1-11, https://doi.org/10.1016/j.envsoft.2015.01.004, 2015.

Pianosi, F., Sarrazin, F., and Wagener, T.: A Matlab toolbox for Global Sensitivity Analysis, Environmental Modelling & Software, 70,
80-85, https://doi.org/10.1016/j.envsoft.2015.04.009, 2015.

Pinton, R., Varanini, Z., and Nannipieri, P., eds.: The Rhizosphere: Biochemistry and Organic Substances at the Soil-Plant Interface, Second
Edition, CRC Press, Boca Raton, 2 edn., ISBN 978-0-429-12831-8, https://doi.org/10.1201/9781420005585, 2007.

Poage, M. A. and Feng, X.: A theoretical analysis of steady state § 13 C profiles of soil organic matter, Global Biogeochemical Cycles, 18,
1-13, https://doi.org/10.1029/2003GB002195, 2004.

R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, https:

/Iwww.R-project.org/, 2024.

28


https://doi.org/10.1007/s10533-020-00714-2
https://doi.org/10.1016/j.geoderma.2023.116647
https://doi.org/10.1137/090757009
https://doi.org/10.1016/j.orggeochem.2004.05.001
https://doi.org/10.18637/jss.v040.i06
https://doi.org/10.1016/j.geoderma.2018.08.014
https://doi.org/10.1111/ejss.12499
https://doi.org/10.1002/2013JG002379
https://doi.org/https://doi.org/10.2136/sssaj1987.03615995005100050015x
https://doi.org/10.1007/s11104-019-04384-4
https://doi.org/10.1111/gcb.13850
https://doi.org/10.1016/j.envsoft.2015.01.004
https://doi.org/10.1016/j.envsoft.2015.04.009
https://doi.org/10.1201/9781420005585
https://doi.org/10.1029/2003GB002195
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/

780

785

790

795

800

805

810

815

Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M.,
Grootes, P. M., Guilderson, T. P, Haflidason, H., Hajdas, 1., Hatté, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A.,
Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C.
S. M., and Plicht, J. v. d.: Intcal13 and marine13 radiocarbon age calibration curves 0 — 50,000 years cal bp, Radiocarbon, 55, 1869—-1887,
https://doi.org/10.2458/rc.v51i4.3569, iSBN: 0033-8222, 2013.

Riley, W. J., Maggi, F., Kleber, M., Torn, M. S., Tang, J. Y., Dwivedi, D., and Guerry, N.: Long residence times of rapidly decomposable
soil organic matter: application of a multi-phase, multi-component, and vertically resolved model (BAMS1) to soil carbon dynamics,
Geoscientific Model Development, 7, 13351355, https://doi.org/10.5194/gmd-7-1335-2014, iSBN: 1991-959X, 2014.

Risse-Buhl, U., Hagedorn, F., Diimig, A., Gessner, M. O., Schaaf, W., Nii-Annang, S., Gerull, L., and Mutz, M.: Dynamics, chemical
properties and bioavailability of DOC in an early successional catchment, Biogeosciences, 10, 4751-4765, https://doi.org/10.5194/bg-10-
4751-2013, publisher: Copernicus GmbH, 2013.

Rumpel, C. and Kogel-Knabner, I.: Deep soil organic matter—a key but poorly understood component of terrestrial C cycle, Plant and Soil,
338, 143-158, https://doi.org/10.1007/s11104-010-0391-5, 2010.

Scharlemann, J. P., Tanner, E. V., Hiederer, R., and Kapos, V.: Global soil carbon: understanding and managing the largest terrestrial carbon
pool, Carbon Management, 5, 81-91, https://doi.org/10.4155/cmt.13.77, 2014.

Schindler, D. E. and Hilborn, R.: Prediction, precaution, and policy under global climate change, Science, 347, 953-954, 2015.

Schmidt, M. W. L, Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, L. a., Kleber, M., Kogel-Knabner, 1., Lehmann, J.,
Manning, D. a. C., Nannipieri, P, Rasse, D. P., Weiner, S., and Trumbore, S. E.: Persistence of soil organic matter as an ecosystem
property., Nature, 478, 49-56, https://doi.org/10.1038/nature10386, 2011.

Schmitt, J., Schneider, R., Elsig, J., Leuenberger, D., Lourantou, A., Chappellaz, J., Kohler, P, Joos, F., Stocker, T. F., Leuen-
berger, M., and Fischer, H.: Carbon Isotope Constraints on the Deglacial CO2 Rise from Ice Cores, Science, 336, 711-714,
https://doi.org/10.1126/science.1217161, 2012.

Schrumpf, M. and Kaiser, K.: Large differences in estimates of soil organic carbon turnover in density fractions by using single and repeated
radiocarbon inventories, Geoderma, 239-240, 168—178, https://doi.org/10.1016/j.geoderma.2014.09.025, publisher: Elsevier B.V., 2015.

Schrumpf, M., Schulze, E. D., Kaiser, K., and Schumacher, J.: How accurately can soil organic carbon stocks and stock changes be quantified
by soil inventories?, Biogeosciences, 8, 1193-1212, https://doi.org/10.5194/bg-8-1193-2011, publisher: Copernicus GmbH, 2011.

Schrumpf, M., Kaiser, K., Guggenberger, G., Persson, T., Kogel-Knabner, 1., and Schulze, E.-D.: Storage and stability of organic
carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals, Biogeosciences, 10, 1675-1691,
https://doi.org/10.5194/bg-10-1675-2013, iSBN: 1726-4170, 2013.

Schubert, B. A. and Jahren, A. H.: The effect of atmospheric CO2 concentration on carbon isotope fractionation in C3 land plants, Geochimica
et Cosmochimica Acta, 96, 29-43, https://doi.org/10.1016/j.gca.2012.08.003, publisher: Elsevier Ltd, 2012.

Schubert, B. A. and Jahren, A. H.: Global increase in plant carbon isotope fractionation following the Last Glacial Maximum caused by
increase in atmospheric pCO2, Geology, 43, 435438, https://doi.org/10.1130/G36467.1, 2015.

Schulz, K., Beven, K., and Huwe, B.: Equifinality and the Problem of Robust Calibration in Nitrogen Budget Simu-
lations, Soil Science Society of America Journal, 63, 1934-1941, https://doi.org/10.2136/ss52j1999.6361934x, _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.2136/sssaj1999.6361934x, 1999.

Schuur, E. A. G., Druffel, E., and Trumbore, S. E., eds.: Radiocarbon and Climate Change, Springer International Publishing, ISBN 978-3-
319-25641-2, https://doi.org/10.1007/978-3-319-25643-6, 2016.

29


https://doi.org/10.2458/rc.v51i4.3569
https://doi.org/10.5194/gmd-7-1335-2014
https://doi.org/10.5194/bg-10-4751-2013
https://doi.org/10.5194/bg-10-4751-2013
https://doi.org/10.5194/bg-10-4751-2013
https://doi.org/10.1007/s11104-010-0391-5
https://doi.org/10.4155/cmt.13.77
https://doi.org/10.1038/nature10386
https://doi.org/10.1126/science.1217161
https://doi.org/10.1016/j.geoderma.2014.09.025
https://doi.org/10.5194/bg-8-1193-2011
https://doi.org/10.5194/bg-10-1675-2013
https://doi.org/10.1016/j.gca.2012.08.003
https://doi.org/10.1130/G36467.1
https://doi.org/10.2136/sssaj1999.6361934x
https://doi.org/10.1007/978-3-319-25643-6

820

825

830

835

840

845

850

Shen, Y., Chapelle, F. H., Strom, E. W., and Benner, R.: Origins and bioavailability of dissolved organic matter in groundwater, Biogeochem-
istry, 122, 61-78, https://doi.org/10.1007/s10533-014-0029-4, 2015.

Sierra, C. A., Malghani, S., and Miiller, M.: Model structure and parameter identification of soil organic matter models, Soil Biology and
Biochemistry, 90, 197-203, https://doi.org/10.1016/j.s0ilbio.2015.08.012, 2015.

Six, J., Frey, S. D., Thiet, R. K., and Batten, K. M.: Bacterial and Fungal Contributions to Carbon Sequestration in Agroecosystems, Soil
Science Society of America Journal, 70, 555, https://doi.org/10.2136/sss2j2004.0347, iSBN: 0361-5995, 2006.

Soetaert, K., Petzoldt, T., and Setzer, R. W.: Solving Differential Equations in R: Package deSolve, Journal of Statistical Software, 33, 1-25,
https://doi.org/10.18637/jss.v033.109, 2010.

Sollins, P., Homann, P., and Caldwell, B. A.: Stabilization and destabilization of soil organic matter: mechanisms and controls, Geoderma,
74, 65-105, https://doi.org/10.1016/S0016-7061(96)00036-5, 1996.

Soong, J. L., Castanha, C., Pries, C. E. H., Ofiti, N., Porras, R. C., Riley, W. J., Schmidt, M. W. L., and Torn, M. S.: Five years of whole-
soil warming led to loss of subsoil carbon stocks and increased CO2 efflux, Science Advances, https://doi.org/10.1126/sciadv.abd1343,
publisher: American Association for the Advancement of Science, 2021.

Stigter, J. D., Beck, M. B., and Molenaar, J.: Assessing local structural identifiability for environmental models, Environmental Modelling &
Software, 93, 398—408, https://doi.org/10.1016/j.envsoft.2017.03.006, 2017.

Tang, J. and Zhuang, Q.: Equifinality in parameterization of process-based biogeochemistry models: A significant uncertainty source to the
estimation of regional carbon dynamics, Journal of Geophysical Research: Biogeosciences, 113, https://doi.org/10.1029/2008JG000757,
_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2008JG000757, 2008.

Tang, J. Y. and Riley, W. J.: A total quasi-steady-state formulation of substrate uptake kinetics in complex networks and an example applica-
tion to microbial litter decomposition, Biogeosciences, 10, 8329-8351, https://doi.org/10.5194/bg-10-8329-2013, publisher: Copernicus
GmbH, 2013.

Tifafi, M., Camino-Serrano, M., Hatté, C., Morras, H., Moretti, L., Barbaro, S., Cornu, S., and Guenet, B.: The use of radiocarbon 14 C to
constrain carbon dynamics in the soil module of the land surface model ORCHIDEE (SVN r5165), Geoscientific Model Development,
11, 4711-4726, https://doi.org/10.5194/gmd-11-4711-2018, 2018.

Trumbore, S.: Age of Soil Organic Matter and Soil Respiration: Radiocarbon Constraints on Belowground C Dynam-
ics, Ecological Applications, 10, 399-411, https://doi.org/10.1890/1051-0761(2000)010[0399:A0SOMA]2.0.CO;2, _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1890/1051-0761%282000%29010%5B0399%3 AAOSOMA %5D2.0.CO%3B2, 2000.

van Dam, D., van Breemen, N., and Veldkamp, E.: Soil organic carbon dynamics: variability with depth in forested and deforested soils under
pasture in Costa Rica, Biogeochemistry, 39, 343-375, https://doi.org/10.1023/A:1005880031579, 1997.

Van Rompaey, A. J. J. and Govers, G.: Data quality and model complexity for regional scale soil erosion prediction, International Journal
of Geographical Information Science, 16, 663—-680, https://doi.org/10.1080/13658810210148561, publisher: Taylor & Francis _eprint:
https://doi.org/10.1080/13658810210148561, 2002.

Vrugt, J. A.: Markov chain Monte Carlo simulation using the DREAM software package: Theory, concepts, and MATLAB implementation,
Environmental Modelling & Software, 75, 273-316, https://doi.org/10.1016/j.envsoft.2015.08.013, 2016.

Wang, B., An, S., Liang, C., Liu, Y., and Kuzyakov, Y.: Microbial necromass as the source of soil organic carbon in global ecosystems, Soil

Biology and Biochemistry, 162, 108 422, https://doi.org/10.1016/j.s0ilbi0.2021.108422, 2021.

30


https://doi.org/10.1007/s10533-014-0029-4
https://doi.org/10.1016/j.soilbio.2015.08.012
https://doi.org/10.2136/sssaj2004.0347
https://doi.org/10.18637/jss.v033.i09
https://doi.org/10.1016/S0016-7061(96)00036-5
https://doi.org/10.1126/sciadv.abd1343
https://doi.org/10.1016/j.envsoft.2017.03.006
https://doi.org/10.1029/2008JG000757
https://doi.org/10.5194/bg-10-8329-2013
https://doi.org/10.5194/gmd-11-4711-2018
https://doi.org/10.1890/1051-0761(2000)010[0399:AOSOMA]2.0.CO;2
https://doi.org/10.1023/A:1005880031579
https://doi.org/10.1080/13658810210148561
https://doi.org/10.1016/j.envsoft.2015.08.013
https://doi.org/10.1016/j.soilbio.2021.108422

855

860

865

870

875

880

885

Wang, J., Xia, J., Zhou, X., Huang, K., Zhou, J., Huang, Y., Jiang, L., Xu, X., Liang, J., Wang, Y.-P., Cheng, X., and Luo, Y.:
Evaluating the simulated mean soil carbon transit times by Earth system models using observations, Biogeosciences, 16, 917-926,
https://doi.org/10.5194/bg-16-917-2019, 2019.

Wang, Z., Doetterl, S., Vanclooster, M., Wesemael, B. V., and Oost, K. V.: Constraining a coupled erosion and soil organic carbon model
using hillslope-scale patterns of carbon stocks and pool composition, Journal of Geophysical Research: Biogeosciences, 120, 452465,
https://doi.org/10.1002/2014JG002768, 2015.

Wang, Z., Qiu, J., and Van Oost, K.: A multi-isotope model for simulating soil organic carbon cycling in eroding landscapes (WATEM_C
v1.0), Geoscientific Model Development, 13, 4977-4992, https://doi.org/10.5194/gmd-13-4977-2020, publisher: Copernicus GmbH,
2020.

Werth, M. and Kuzyakov, Y.: 13C fractionation at the root-microorganisms—soil interface: A review and outlook for partitioning studies,
Soil Biology and Biochemistry, 42, 1372—1384, https://doi.org/10.1016/j.50ilbi0.2010.04.009, iSBN: 0038-0717 Publisher: Elsevier Ltd,
2010.

Wieder, W. R., Pierson, D., Earl, S., Lajtha, K., Baer, S. G., Ballantyne, F., Berhe, A. A., Billings, S. A., Brigham, L. M., Chacon, S. S.,
Fraterrigo, J., Frey, S. D., Georgiou, K., de Graaff, M.-A., Grandy, A. S., Hartman, M. D., Hobbie, S. E., Johnson, C., Kaye, J., Kyker-
Snowman, E., Litvak, M. E., Mack, M. C., Malhotra, A., Moore, J. A. M., Nadelhoffer, K., Rasmussen, C., Silver, W. L., Sulman, B. N.,
Walker, X., and Weintraub, S.: SoDaH: the SOils DAta Harmonization database, an open-source synthesis of soil data from research
networks, version 1.0, Earth System Science Data, 13, 1843—1854, https://doi.org/10.5194/essd-13-1843-2021, publisher: Copernicus
GmbH, 2021.

Wieder, W. R., Hartman, M. D., Kyker-Snowman, E., Eastman, B., Georgiou, K., Pierson, D., Rocci, K. S., and Grandy, A. S.: Sim-
ulating Global Terrestrial Carbon and Nitrogen Biogeochemical Cycles With Implicit and Explicit Representations of Soil Micro-
bial Activity, Journal of Advances in Modeling Earth Systems, 16, €2023MS004 156, https://doi.org/10.1029/2023MS004156, _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1029/2023MS004156, 2024.

Wynn, J. G., Harden, J. W., and Fries, T. L.: Stable carbon isotope depth profiles and soil organic carbon dynamics in the lower Mississippi
Basin, Geoderma, 131, 89-109, https://doi.org/10.1016/j.geoderma.2005.03.005, 2006.

Yu, L., Ahrens, B., Wutzler, T., Schrumpf, M., and Zaehle, S.: Jena Soil Model (JSM v1.0; revision 1934): a microbial soil organic carbon
model integrated with nitrogen and phosphorus processes, Geoscientific Model Development, 13, 783-803, https://doi.org/10.5194/gmd-
13-783-2020, 2020.

Zhang, Y., Lavallee, J. M., Robertson, A. D., Even, R., Ogle, S. M., Paustian, K., and Cotrufo, M. F.: Simulating measurable ecosystem carbon
and nitrogen dynamics with the mechanistically defined MEMS 2.0 model, Biogeosciences, 18, 3147-3171, https://doi.org/10.5194/bg-
18-3147-2021, publisher: Copernicus GmbH, 2021.

Santrii¢kov4, H., Bird, M. I, Elhottova, D., Novék, I., Picek, T., Simek, M., and Tykva, R.: Heterotrophic Fixation of CO2 in Soil, Microbial
Ecology, 49, 218-225, https://doi.org/10.1007/s00248-004-0164-x, iISBN: 0959-9428, 2005.

Santrii¢kova, H., Kotas, P., Barta, J., Urich, T., Capek, P, Palmtag, J., Alves, R. J. E., Biasi, C., Didkov4, K., Gentsch, N., Gittel, A.,
Guggenberger, G., Hugelius, G., Lashchinsky, N., Martikainen, P. J., Mikutta, R., Schleper, C., Schnecker, J., Schwab, C., Shibis-
tova, O., Wild, B., and Richter, A.: Significance of dark CO2 fixation in arctic soils, Soil Biology and Biochemistry, 119, 11-21,
https://doi.org/10.1016/j.s0ilbio.2017.12.021, iSBN: 0038-0717, 2018.

31


https://doi.org/10.5194/bg-16-917-2019
https://doi.org/10.1002/2014JG002768
https://doi.org/10.5194/gmd-13-4977-2020
https://doi.org/10.1016/j.soilbio.2010.04.009
https://doi.org/10.5194/essd-13-1843-2021
https://doi.org/10.1029/2023MS004156
https://doi.org/10.1016/j.geoderma.2005.03.005
https://doi.org/10.5194/gmd-13-783-2020
https://doi.org/10.5194/gmd-13-783-2020
https://doi.org/10.5194/gmd-13-783-2020
https://doi.org/10.5194/bg-18-3147-2021
https://doi.org/10.5194/bg-18-3147-2021
https://doi.org/10.5194/bg-18-3147-2021
https://doi.org/10.1007/s00248-004-0164-x
https://doi.org/10.1016/j.soilbio.2017.12.021

