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Abstract 11 

Ground-level ozone (O3) has emerged as a significant air pollutant in China, attracting increasing attention from 12 

both the scientific community and policymakers. Chemical transport models (CTM) serve as crucial tools in 13 

addressing O3 pollution, with frequent applications in predicting O3 concentrations, identifying source 14 

contributions, and formulating effective control strategies. The accuracy and reliability of the simulated O3 15 

concentrations are typically assessed through model performance evaluation (MPE). However, the wide array of 16 

CTMs available, variations in input data, model setups, and other factors result in a broad range of simulated O3 17 

concentration differences from observed values, highlighting the necessity for standardized benchmarks in O3 18 

evaluation.  19 

Built upon our previous work, this study conducted a thorough literature review of CTM applications simulating 20 

O3 in China from 2006 to 2021. 216 relevant articles out of a total of 667 reviewed were identified to extract 21 

quantitative MPE results and key model configurations. From our analysis, two sets of benchmark values for six 22 

commonly used MPE metrics are proposed for CTM applications in China, categorized into “goal” benchmarks 23 

representing optimal model performance and “criteria” benchmarks representing achievable model performance 24 

across a majority of studies. It is recommended that the normalized mean bias (NMB) for hourly O3 and daily 8-25 

hr maximum O3 concentrations should ideally fall within ±15% and ±10%, respectively, to meet the “goal” 26 

benchmark. If the “criteria” benchmarks are to be met, the NMB should be within ±30% and ±20%, respectively. 27 

Moreover, uncertainties in O3 predictions due to uncertainties in various model inputs were quantified using the 28 

decoupled direct method (DDM) in a commonly used CTM. For the simulation period of June 2021, the total 29 

uncertainty of simulated O3 ranged 4-25 μg/m3, with anthropogenic volatile organic compound (AVOC) 30 

emissions contributing most to the uncertainty of O3 in coastal regions and O3 boundary conditions playing a 31 

dominant role in the northwest region. The proposed benchmarks for assessing simulated O3 concentrations, in 32 

conjunction with our previous studies on PM2.5 and other criteria air pollutants, represent a comprehensive and 33 

systematic effort to establish a model performance framework for CTM applications in China. These benchmarks 34 

aim to support the growing modeling community in China by offering a robust set of evaluation metrics and 35 

establishing a consistent evaluation methodology relative to the body of prior research, thereby helping to 36 

establish the credibility and reliability of their CTM applications. These statistical benchmarks need to be 37 

periodically updated as models advance and better inputs become available in the future. 38 
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1 Introduction 40 

Tropospheric ozone (O3) is a secondary air pollutant generated by complicated photochemical reactions involving 41 

nitrogen oxides (NOx) and volatile organic compounds (VOC) (Seinfeld and Pandis, 2016). Ozone has negative 42 

impacts on human health (GBD, 2021), vegetation and ecosystem productions (Ainsworth et al., 2012). Due to  43 

rapid economic development and fast industrialization and urbanization over the past several decades, China has 44 

experienced heavy haze pollution in winter and severe O3 pollution in summer, the latter extending into the late-45 

winter haze season (Li et al., 2021). Despite efforts to reduce fine particulate matter (PM2.5) and heavy haze days 46 

(Wang et al., 2022; Bai et al., 2019; Chu et al., 2020), ground-level O3 concentrations have continued to increase 47 

in recent years (Dang and Liao, 2019; Li et al., 2019; Liu et al., 2019a; Lu et al., 2020; Wang et al., 2017; Yao et 48 

al., 2023; Chen et al., 2023; Xu et al., 2023). The challenge in controlling O3 pollution lies in the significant 49 

influences of meteorological conditions on O3 formation and its nonlinear relationship with precursors (Wang et 50 

al., 2022b). In addition, O3 pollution exhibits strong regional characteristics, necessitating regional-scale control 51 

efforts (Yang et al., 2021a). 52 

Application of chemical transport models (CTMs) has become increasingly popular in addressing O3-related 53 

issues in China (Yang and Zhao, 2023), providing insights into the role of local emissions and regional transport 54 

(Shen et al., 2022), sectoral contributions (Liu et al., 2020a), policy effectiveness (Liu et al., 2023b), and 55 

predictions of future O3 levels (Yang and Zhao, 2023). Ensuring the representativeness of CTM simulations is 56 

crucial, and can benefit from establishing performance standards or benchmarks to help put CTM results in 57 

context relative to the existing body of work. While other regions (e.g., the U.S. and Europe) have proposed 58 

evaluation criteria for simulated O3 (Emery et al., 2017), they may not be suitable for China. The increasing 59 

prevalence of CTM applications in China necessitates specific CTM benchmarks tailored to this region. 60 

This study aims to develop customized CTM benchmarks for O3 simulations in China, building upon our prior 61 

work that proposed evaluation indicators and benchmarks for simulating other criteria air pollutants (Huang et al., 62 

2021; Zhai et al., 2024). A thorough literature review was conducted on O3 simulations using CTMs from 2006 to 63 

2021. Detailed information regarding O3 performance was extracted and analyzed to recommended model 64 

performance evaluation (MPE) metrics and to propose benchmarks tailored to China. Furthermore, uncertainties 65 

in O3 predictions due to various model inputs were quantified using the decoupled direct method of sensitivity 66 

analysis (DDM, Cohan and Napelenok, 2011) in a commonly used CTM. The structure of this study is as follows: 67 

Section 2 outlines the data source and methodology utilized. Section 3 describes the current status of O3 68 

simulation studies in China and proposes recommended evaluation metrics and associated benchmarks. Section 4 69 

delves into discussions on O3 uncertainties arising from different model inputs and conclusions are given in 70 

Section 5.  71 

2 Methodology 72 

2.1 Data collection 73 

The methodology for data compilation was consistent with our prior studies for other criteria pollutants (Huang et 74 

al., 2021; Zhai et al., 2024) and is briefly described here. We considered published O3 simulations using five 75 

CTMs: the Community Multiscale Air Quality (CMAQ, https://www.epa.gov/cmaq, accessed on 2024-07-12) 76 

model, the Comprehensive Air quality Model with extensions (CAMx, https://camx.com, accessed on 2024-07-77 
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12), the Goddard Earth Observing System coupled with chemistry (GEOS-Chem, https://geoschem.github.io, 78 

accessed on 2024-07-12), the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem, 79 

https://www2.acom.ucar.edu/wrf-chem, accessed on 2024-07-12), and the Nested Air Quality Prediction 80 

Modeling System (NAQPMS) (Wang et al., 2014; Ge et al., 2014). We gathered relevant publications using a 81 

combination of three keywords in Web of Science: “O3”, the models’ names (one of the five models), and 82 

“China”, with a time range between 2006 and 2021. This process identified a total of 667 records (250 studies for 83 

CMAQ, 186 for WRF-Chem, 163 for GEOS-Chem, 36 for CAMx, and 32 for NAQPMS), with subsequent 84 

refinement steps to exclude duplicates, non-English publications, conference papers, and journals unrelated to air 85 

quality. Through manual selection, which involved identifying studies that provide extractable results (i.e., 86 

studies offering explicit results from model performance evaluations), a final set of 216 studies was chosen for 87 

detailed analysis (see Table S1 for a complete list of publications). 88 

Detailed information regarding model configurations (e.g., modeling period, spatial resolution, gas-phase 89 

chemistry, initial/boundary conditions) and results of 23 MPE metrics (Table S2) were extracted and compiled 90 

from those 216 studies. For consistency, we converted O3 concentrations reported in parts per billion by volume 91 

(ppbv) to μg/m³ using a factor of 2.14 (equivalent to 273.15 K at 101.325 kPa) for consistency. Ten regions in 92 

China (Table S3), including the Beijing–Tianjin–Hebei (BTH) region, Yangtze River Delta (YRD) region, Pearl 93 

River Delta (PRD) region, Sichuan Basin (SCB), North China Plain (NCP), and five other regions (Figure 1), 94 

were identified for further analysis. 95 

2.2 Recommended benchmarks for O3  96 

Among the 23 collected MPE metrics, we derived recommended benchmarks for the six most frequently used 97 

metrics (see Table S4 for definitions): mean bias (MB), normalized mean bias (NMB), root mean square error 98 

(RMSE), normalized mean error (NME), correlation coefficient (R), and index of agreement (IOA). The 99 

derivation of benchmarks follows previous studies by  Simon et al. (2012) and Emery et al. (2017). Briefly, each 100 

metric’s rank-ordered (from best to worst, for instance, from 1 to 0 for R) distribution was generated to identify 101 

the values at the 33rd and 67th percentiles. As highlighted in Emery et al. (2017), these percentiles serve to 102 

categorize the entire distribution into three performance categories: studies falling within the 33rd percentile  (the 103 

“goal”) attain the best performance that current models can be expected to acheive, those between the 33rd and 104 

67th percentiles (the “criteria”) attain typical performance achieved by the majority of modeling studies, while 105 

those beyond the 67th percentile indicate relatively poor performance for the particular metric under consideration. 106 

We present the benchmarks for hourly O3, maximum daily 8-hr average O3 (8-hr max O3), and daily maximum 1-107 

hr O3 (1-hr max O3), depending on data availability. 108 

2.3 Uncertain analysis of O3 simulation 109 

In addition to developing the MPE benchmarks for simulated ozone, we further quantified uncertainties in 110 

predicted ozone concentrations using one of the five models (i.e., CMAQ). The CMAQ version 5.3.2 111 

(https://www.epa.gov/cmaq, accessed on April 17, 2024) was employed to simulate O3 during June 2021 in 112 

China. Base model configurations are the same as our previous study (Sun et al., 2024) and are briefly described 113 

here. The modeling domain covers the entirety of China and adjacent Asian regions (Figure 1) with a spatial 114 

resolution of 36 km × 36 km grid and 23 vertical layers. Meteorological fields are simulated using the Weather 115 
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Research and Forecasting model (WRF version 4.0). CB6 and AERO7 were chosen as the gas-phase and aerosol 116 

mechanisms, respectively. Emissions data include the 2019 Multi-resolution Emission Inventory for China 117 

(MEIC-2019) (http://www.meicmodel.org, accessed on June 23, 2022) and the 2010 Emissions Database for 118 

Global Atmospheric Research (EDGAR, http://www.meicmodel.org, accessed on June 23, 2022). Natural 119 

emissions were generated based on the Model of Emissions of Gases and Aerosols from Nature (MEGAN 120 

version 3.1, https://bai.ess.uci.edu/megan, accessed on June 23, 2022). The CMAQ default O3 profile (with a 121 

uniform O3 concentration of 29 ppb) was used as the initial and boundary conditions (BCs). A 10-day spin-up run 122 

was conducted to mitigate the influence of initial conditions. 123 

We followed Dunker et al. (2020) to quantify the uncertainties of predicted O3 concentrations due to six model 124 

inputs: anthropogenic NOx (ANOx) and VOC (AVOC) emissions for China, biogenic VOC (BVOC) and soil 125 

NOx (SNOx) within China; dry deposition velocities for O3; and BCs for O3. The uncertainties associated with 126 

each of the inputs (Table S5) are based on previous studies addressing emission uncertainties (Cheng et al., 2019), 127 

deposition velocities, and BCs (Beddows et al., 2017; Derwent et al., 2018). Like Dunker et al. (2020), these 128 

uncertainties were considered independent and lognormally distributed. The CMAQ decoupled direct method 129 

(DDM) was used to generate first-order sensitivities of O3 to each of the inputs (excluding dry deposition). For 130 

dry deposition, we conducted two parallel simulations in which the O3 dry deposition velocities were manually 131 

changed by ±10%, and the changes in simulated O3 concentrations were treated as the O3 sensitivities to dry 132 

deposition velocity:  133 

𝑆𝐷𝐸𝑃
(1)

=
𝐶1.1𝑑𝑒𝑝_𝑂3

− 𝐶0.9𝑑𝑒𝑝_𝑂3

2
∗ 10 Eq. (1) 

where S(1)
DEP is the O3 sensitivity to dry deposition velocities, and C1.1dep_O3 and C0.9dep_O3 represent the simulated 134 

O3 concentrations as dry deposition velocities are increased and decreased by 10%, respectively. The sensitivities 135 

obtained were then combined with their respective uncertainties, enabling us to quantify the contributions to the 136 

variance in O3 concentrations. For example, the O3 uncertainties due to dry deposition are calculated as:  137 

un(DEP) = 𝑣𝑎𝑟(𝐷𝐸𝑃) = [
ln(𝑓𝐷𝐸𝑃)

2
∗ 𝑆𝐷𝐸𝑃

(1)
]

2

 Eq. (2) 

where un(DEP) represents the uncertainty of O3 due to dry deposition at 1σ, and fDEP (=2 from Table S5) is the 138 

uncertainty factor for dry deposition and follows an assumpation of a lognormal distribution. 139 

The contribution of dry deposition to the total uncertainty in O3 is calculated as follows: 140 

% 𝐷𝐸𝑃 =
𝑣𝑎𝑟(𝐷𝐸𝑃)

𝑣𝑎𝑟(𝐴𝑁𝑂𝑥) + 𝑣𝑎𝑟(𝐴𝑉𝑂𝐶𝑠) + 𝑣𝑎𝑟(𝐵𝑁𝑂𝑥) +
𝑣𝑎𝑟(𝐵𝑉𝑂𝐶𝑠) + 𝑣𝑎𝑟(𝐷𝐸𝑃) + 𝑣𝑎𝑟(𝐵𝐶𝑠)

 
Eq. (3) 

3. Results and discussions 141 

3.1 General overview of O3 simulation studies in China 142 

In the last decade, there has been a significant increase in research focusing on O3 in China, as illustrated in 143 

Figure 2. The issuance of the Three-Year Action Plan to Win the Blue Sky Defense Battle in 2017 144 

(http://www.gov.cn/zhengce/content/2018-07/03/content_5303158.htm, accessed on April 15, 2024) led to a 145 

further surge in studies related to O3, with a noticeable decline in 2020 possibly attributed to the impact of the 146 

COVID-19 pandemic. In 2021, there were 48 studies dedicated to addressing O3-related issues using CTMs, 147 
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marking a six-fold increase compared to 2011. Similar to PM2.5, BTH (74 studies), YRD (59 studies), and PRD 148 

(58 studies) emerged as the top three most studied regions. Among the various CTMs employed, CMAQ stood 149 

out as the most commonly utilized model (90 studies), followed by WRF-Chem (84 studies). The application of 150 

CAMx (14 studies) and NAQPMS (8 studies) was relatively less frequent. In terms of MPE metrics, R had the 151 

highest frequency of occurrence at 19%, followed by NMB (18%), MB (16%), RMSE (13%), and NME (11%). 152 

Nearly half of the studies incorporated 2 or 3 metrics for evaluating O3, while less than 7% assessed at least five 153 

different metrics. The three most common types of O3 concentrations evaluated were hourly O3 concentration, the 154 

maximum daily 8-hour average O3 (8-hr max O3), and the daily maximum 1-hour O3 (1-hr max O3). Among all 155 

the articles examined, 77% focused on evaluating hourly O3, 16% on 8-hr max O3, and 7% on 1-hr max O3. 156 

 157 

Figure 1 CMAQ modeling domain with definitions of regions used in this study. The surrounding pie charts 158 

display the total number of studies for each region (excluding studies for the entire China) and the percentage of 159 

different CTMs used. Red stars represent the five cities selected in uncertainty analysis. 160 
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 161 

Figure 2 Number of O3 studies published during 2006–2021. Pie charts show the frequency of different MPE 162 

metrics (left) and the number of metrics used in one study (right). 163 

3.2 Quantile distributions of O3 MPE results 164 

Figure 3 shows the quantile distributions of various evaluation metrics collected in this study. The results are 165 

presented for different types of O3 concentrations: hourly O3, 1-hr max O3, and 8-hr max O3, whenever data is 166 

available. Previous studies have shown that using maximum O3 values (i.e. 1-hr max and 8-hr max) instead of 167 

hourly O3 can lead to differing results within the same study (e.g., Ni et al., 2020; Li et al., 2016). Peak O3 168 

concentrations typically occur between 12:00 and 18:00. For example in Ni et al. (2018), 8-hr max O3 showed an 169 

overestimation tendency compared to average  hourly O3, but in another study (Yang et al., 2021b), there was an 170 

opposite trend. Underestimation of peak O3 concentrations might be offset by overestimation during non-peak 171 

hours and vice versa. Therefore, achieving satisfactory performance in daily averaged O3 levels does not 172 

necessarily indicate the model’s ability to accurately capture high O3 concentrations.  173 

Hourly O3 exhibited equivalent overestimation and underestimation in terms of MB and NMB, with MB ranging 174 

from as low as -40 µg/m3 to nearly 50 µg/m3 and NMB ranging from less than -50% to more than 70%. However, 175 

fractional bias (FB) indicated more underestimated than overestimated hourly O3 concentrations. For all three 176 

bias metrics, 8-hr max O3 exhibited more overestimation than underestimation, suggesting a tendency for models 177 

to overestimate off-peak hours. For 1-hr max O3, both NMB and FB displayed equivalent overestimation and 178 

underestimation, with NM showing a wider range than FB, likely due to fewer data points. For error metrics, 8-hr 179 

max and 1-hr max O3 generally performed better than hourly O3. For instance, the median values of NME were 180 

34.8%, 26.6%, and 29% for hourly O3, 8-hr max, and 1-hr max O3, respectively. R and IOA indicate how well the 181 

model captures observed variations, either temporally or spatially. The use of IOA was significantly less than R 182 

and no studies reported IOA values for 1-hr max O3. For the other two O3 types, IOA values (median value of 0.8 183 

for O3 and 0.77 for 8-hr max O3) were generally higher than R (median value of 0.69 for O3 and 0.66 for 8-hr 184 

max O3). Six studies reported both R and IOA values, of which four (Liu and Wang, 2020; Wang et al., 2019; Liu 185 

et al., 2019b; Gao et al., 2017) reported higher IOA values than R. 186 
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Figure 3 Quantile distribution of common O3 performance indicators 187 

Regional and seasonal differences  188 

Like our previous studies (Huang et al. 2021; Zhai et al. 2024), we discuss the influences of various key factors 189 

on model performance in simulating O3 concentrations. We first considered whether there were discernible 190 

regional or seasonal differences. Figure 4 presents the distribution of R and NMB values grouped by three key 191 

regions in China: BTH, YRD, and PRD. These regions are the most densely populated and economically 192 

developed urban clusters in China. In terms of hourly O3, the R values across the three regions display similarity, 193 

with median values around 0.7. For 8-hr max O3, however, PRD stands out with notably lower R values 194 

compared to BTH and YRD. Regarding NMB values, BTH tends to have more underestimation, while the YRD 195 

and PRD lean towards overestimation. Over the past decade, BTH has consistently recorded the highest O3 levels 196 

and number of O3 pollution days among the three regions (Wang et al., 2024). The variations in NMB values 197 

among regions suggest a trend of current models underestimating O3 levels in areas with more severe O3 198 

pollution. 199 

In terms of the seasonal variations (Figure 5), the NMB values of hourly O3 concentrations exhibit similar 200 

patterns across different seasons, showing equivalent overestimation and underestimations. However, when 201 

assessed over the entire year, hourly O3 concentrations tend to be largely underestimated. The seasonal patterns 202 

of NMB distributions are similar for 8-hr and 1-hr max O3, with summer O3 concentrations being more frequently 203 

underestimated compared to other seasons. For instance, in the case of 1-hr max O3, peak O3 concentrations are 204 
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predominantly underestimated (with a median NMB of -23%) while they are overestimated in winter (with a 205 

median NMB of 31.5%).  206 

  

  

Figure 4 Quantile distribution of R and NMB of O3 in BTH, YRD, and PRD 207 

 
  

  
 

Figure 5 Quantile distribution of O3 NMB values in different seasons 208 
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Impact of grid spacing 209 

The selection of grid spacing for a CTM application depends on several factors, such as the objective of the study, 210 

the geographical scope of the study area, the availability of input data, etc. Generally, a coarse grid spacing (> 50 211 

km) is utilized for global simulations (i.e. GEOS-Chem), while a finer grid spacing (< 4km) with nested grids is 212 

preferred for regional or city-scale modelling. Coarser grid spacing may result in multiple monitoring stations 213 

falling within a single grid cell, potentially smoothing out extreme values observed at specific locations. Among 214 

the 216 studies reviewed, 29 different grid resolutions (based on the resolution of the innermost domain) were 215 

identified, ranging from 1 km to 200 km. The resolutions were classified into five groups in this study: < 5 km, 5-216 

10 km, 10-25 km, 25-50 km, and 50-100 km (resolutions over 100 km were excluded from the analysis due to 217 

limited data points). Figure 6 shows the distribution of eight statistical indicators by different resolutions. Overall, 218 

no clear trend was evident to indicate better model performances as grid spacing decreases. For example, the 219 

median R value is 0.73 for < 5 km group, surpassing the 5-10 km and 25-50 km groups but falling below the 10-220 

25 km and 50-100 km groups. Studies conducted with a grid spacing of 10-25 km exhibit the best model 221 

performance in terms of NME and FE distributions compared to other groups. While most studies assess models 222 

within a single domain (usually the innermost domain with the finest resolution), a few studies have conducted 223 

multi-domain analyses, where finer spatial resolutions generally have superior results compared to coarse 224 

resolutions. Liu et al. (2020b) used WRF-CMAQ to analyze O3 prediction and health exposure at different spatial 225 

resolutions (1, 4, 12, and 36 km). The results showed more than 20% difference in premature mortality due to 226 

different model resolutions being used. Nevertheless, reducing grid spacing does not necessarily lead to improved 227 

model performance if the input data resolution (i.e., spatial resolution of the emissions) is not correspondingly 228 

high or well-matched. 229 

  230 
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Figure 6 Quantile distribution of O3 with respect to commonly used assessment indicators at different spatial 231 

resolutions 232 

Choice of gas-phase chemical mechanism 233 

Gas-phase chemical mechanisms play a crucial role in the accurate prediction of atmospheric composition using 234 

CTMs. Some of the commonly used mechanis 235 

ms include the Carbon Bond mechanism (CB) (Yarwood et al. 1997; Luecken et al., 2019; Appel et al., 2021; 236 

Yarwood and Tuite, 2024), the Statewide Air Pollution Researcher Center (SAPRC) mechanism (Carter, 1996; 237 

Chang et al., 1999; Carter, 2000; Carter, 2010), and the Regional Atmospheric ChemistryMechanism (RACM) 238 

(Stockwell et al., 1997; Goliff et al., 2013). These mechanisms have undergone rigorous evaluations against 239 

experimental data, showcasing reliable predictive capabilities for O3 in diverse atmospheric environments. The 240 

CB mechanism is a condensed mechanism in which the carbon bond is treated as a reaction unit, and the carbon 241 

bonds with the same bonding state are treated as a group (Cao et al., 2021). The latest version, CB7, contains 91 242 

gaseous species and 230 reactions (https://www.tceq.texas.gov/downloads/air-243 

quality/research/reports/photochemical, accessed on 2024-06-18). In contrast, the SAPRC mechanism categorizes 244 

species based on their reactivity with OH (Carter et al., 2010). The most recent SAPRC22 mechanism includes 245 

162 species and 738 reactions. RACM was developed based on Regional Acid Deposition Model (RADM), 246 

which is an inductive mechanism for treating hydrocarbons with fixed parameterization method and is carried out 247 

according to the reaction rate and activity of different pollutants with ·OH. Compared to the other two 248 

mechanisms, RACM and RACM2 contain detailed chemical processes of radicals, biogenic VOC and less-249 

reactive VOC able to survive during long distance transport. 119 reactive species and 363 reactions were 250 
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included in RACM2 describing the oxidation reactions of 21 types of primary VOC in the system (Liu et al., 251 

2023a). 252 

Among the 216 studies compiled, nearly half of them used CB mechanism for simulations, approximately a 253 

quarter employed RACM/RADM, and only 15 studies utilized SAPRC. Figure 7 compares the distribution of R 254 

and NMB grouped by different gas-phase mechanism. In terms of R values, CB tends to perform slightly better 255 

than RACM/RADM, with SARPC showing the highest R median value (0.93) for hourly O3 but the lowest for 8-256 

hr max O3 among the three mechanisms. Regarding NMB, SAPRC tends to overestimate peak O3 values 257 

compared to the other mechanisms, particularly for 1-hr max O3, a trend observed in previous studies (Qiao et al., 258 

2019).  259 

 260 

Figure 7 Quantile distributions of R and NMB by gas-phase chemical mechanism 261 

3.3 Recommended benchmarks for O3 MPE 262 

Figure 8 illustrates the ranked distributions of various statistical indicators, including R, IOA, NMB, NME, FB, 263 

and FE for hourly O3, 1-hr max O3, and 8-hr max O3. The absolute values of NMB and FB are presented to 264 

indicate deviations from zero. In terms of R and IOA, the ranked distributions for hourly O3 and 8-hr max O3 are 265 

quite similar, with R values ranging from around 0.72 at the 33rd percentile to 0.60 at the 67th percentile. The 266 

corresponding IOA values are slightly higher, ranging from ~0.83 at the 33rd percentile to ~0.73 at the 67th 267 

percentile. For 1-hr max O3, the limited number of data points (less than 20) resulted in an R value of 0.80 at the 268 

33rd percentile and 0.60 at the 67th percentile, while the IOA distribution was not available due to missing data. 269 

For NMB and NME, the results for 8-hr max O3 show the lowest values, indicating that models perform better in 270 

capturing the 8-hr max O3 concentrations. The 33rd percentile of absolute NMB for 8-hr max O3 is less than 10%, 271 

and the 67th percentile is below 20%. In terms of FB and FE, the ranked distributions for 1-hr max O3 are flatter 272 

compared to the other two O3 types, likely due to the smaller number of available data points. For both metrics, 273 

the 8-hr max O3 exhibits lower values than O3. At the 33rd percentile, the absolute FB (FE) is less than 10% (25%) 274 

for 8-hr max O3 and less than 20% (50%) for O3. At the 67th percentile, the absolute FB (FE) is 25% (38%) for 8-275 

hr max O3 and 34% (65%) for O3. In addition, we provide a more detailed ranked distribution in Table S6. 276 
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Figure 8 Rank-ordered distributions of R, IOA, NMB, NME, FB, and FE for O3, 1-hr max O3 and 8-hr max O3 277 

speciated components. The number of data points and the 33rd, 50th, and 67th percentile values are also listed. 278 

Following Emery et al. (2017) and Huang et al. (2021), we propose recommended statistical indicators and 279 

corresponding benchmarks for evaluating O3, as detailed in Table 1. The goal values, corresponding to the 280 

threshold at the 33rd percentile, represent the optimal model performance anticipated from current models. The 281 

criteria values, reflecting the threshold at the 67th percentile, represent the performance levels achieved by the 282 

majority of studies. Due to limited data availability, the derivation of benchmarks for certain metrics concerning 283 

1-hr max O3 remains uncertain. In such cases, benchmarks for IOA and R for hourly O3 were directly adopted 284 

due to minimal variations among different O3 types. Similarly, benchmarks proposed for 8-hr max O3 were 285 

applied to 1-hr max O3 for FB and FE, given their closer distributions. Our findings indicate that benchmarks 286 

tend to be more stringent for 8-hr max O3 compared to the other two types, with the exception of IOA where they 287 

remain the same. Based on our results, a value of R greater than 0.70 and 0.55 would meet the goal and criteria 288 

benchmark for 8-hr max O3. Correspondingly, the goal and criteria values for NMB are 10% and 20%.   289 

In contrast to Emery et al. (2017), we provide separate benchmarks for O3, 8-hr max O3, and 1-hr max O3. Emery 290 

et al. (2017) found rather similar results between hourly and 8-hr max O3 in the U.S and so recommended a single 291 

set of benchmarks for ozone. Out of the 216 studies analyzed, 15 studies evaluated at least two O3 types. The use 292 

of cutoff for evaluating O3 is extremely limited in China (only 5 studies applied cutoffs), thereby precluding any 293 

specific recommendation on cutoff values. In addition to the benchmarks for NMB, NME, and R provided by 294 

Emery et al. (2017), we have introduced benchmarks for IOA, FB, and FE, backed by a sufficient number of data 295 

points. The few values marked with an asterisk in Table 1 indicate that our benchmarks are more stringent than 296 

the corresponding values in Emery et al. (2017), implying that achieving our recommended 33rd (or 67th) 297 

percentiles may pose greater challenges. 298 
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Overall, however, our proposed benchmarks are more lenient than those of Emery et al. (2017), particularly in the 299 

context of hourly O3. For NME, our suggested goal and criteria for O3 stand at 30% and 45%, respectively, nearly 300 

double the figures reported by Emery et al. (2017), which recommend 15% for the goal and 25% for  the criteria. 301 

The criteria value for R is an exception where our proposed value (0.55 for 8-hr max O3 and 0.60 for O3) is 302 

higher than 0.50 in Emery et al. (2017).  303 

Table 1 Recommended benchmarks for evaluating simulated O3 by CTM applications in China 304 

Metrics Benchmark level O3 8-hr max O3 1-hr max O3
 

Emery et al. (2017) 

1-hr max O3 and  

8-hr max O3 

R Goal > 0.70 > 0.70 > 0.80* > 0.75 

 Criteria > 0.60* > 0.55* > 0.60* > 0.50 

NMB Goal < ±15% < ±10% NA < ±5% 

 Criteria < ±30% < ±20% NA < ±15% 

NME Goal < 30% < 20% < ±20% < ±15% 

 Criteria < 45% < 35% < ±35% < ±25% 

IOA Goal > 0.80 > 0.80 < 25% NA 

 Criteria > 0.70 > 0.70 < 35% NA 

FB Goal < ±20% < ±10% < ±5% NA 

 Criteria < ±35% < ±30% < ±10% NA 

FE Goal < 50% < 25% < 25% NA 

 Criteria < 65% < 40% < 30% NA 

Note. (1) See descriptions in the main text for bold values. (2) Values with an asterisk indicate that our 305 

benchmarks are stricter than the corresponding values in Emery et al. (2017). 306 

4. Uncertainty analysis of O3 simulation using CMAQ 307 

In order to further investigate the uncertainties in simulated O3 concentrations simulated by CTMs, a base model 308 

simulation was conducted using CMAQ (the most frequently used CTM in China) for June 2021, a typical month 309 

with elevated O3 in northern and eastern China. The uncertainties due to six model inputs were quantified for this 310 

case: VOC and NOx emissions in China, differentiation between anthropogenic and biogenic sources, O3 dry 311 

deposition velocities, and boundary conditions (BCs). The evaluation of the base model results indicates 312 

generally acceptable simulated MDA8 O3 concentrations when compared to the observations. The results showed 313 

an overall MB of 6.1 µg/m3 and NMB of 5.2% (Figure 9). O3 underestimation is observed over the BTH region, 314 

while overestimation occurs over the Sichuan Basin. The values of NMB, NME and R meet the goal benchmark 315 

we proposed above.  316 

As displayed in Figure 10, the first-order sensitivity of MDA8 O3 to the six model inputs exhibits substantial 317 

variations in spatial distributions and magnitudes. Higher sensitivity occurs in larger urban areas and is relatively 318 

low in rural areas. The sensitivity to VOC emissions is always positive (i.e., higher VOC leads to higher O3), 319 

whereas the sensitivity to NOx emissions could be both positive and negative. High O3 sensitivity to AVOC 320 

emissions is observed for BTH, northern YRD, PRD, and major metropolitan areas (e.g., Chengdu in Sichuan 321 
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province, Xi’an in Shaanxi province), due to NOx-rich and VOC-limited urban conditions. Conversely, 322 

anthropogenic NOx emissions resulted in negative O3 sensitivity in the aforementioned regions and positive 323 

sensitivity in others where rural conditions are more VOC-rich and NOx-limited. The sensitivity to biogenic 324 

precursor emissions (BVOC and SNOx) was much lower compared to their anthropogenic counterparts. The 325 

sensitivity to O3 BCs predominantly extends towards the northwest (up to 50 µg/m3), where O3 precursor 326 

emissions are low. The sensitivity to O3 dry deposition velocity exhibits a uniformly negative distribution (higher 327 

deposition rates lead to lower ozone), with higher values in more vegetated areas and an average of -13.7 µg/m3.  328 

329 
Figure 9 Spatial distributions of (a) MDA8 O3 concentrations (ug/m3), (b) total uncertainties in μg/m3, and (c) 330 

total uncertainty in percentage (%). Results are averaged for June 2021. 331 

When the individual first-order sensitivity coefficient multiplies by the corresponding 1σ uncertainty (Table S5), 332 

the contributions to the uncertainty in O3 predictions can be obtained (Figure 10). Summing up all these 333 

uncertainties yields the total uncertainty (Figure 9b). Large ozone uncertainties (> 20 μg/m3) were observed over 334 

BTH, central YRD region, and major metropolitan areas (e.g. PRD, Chengdu in Sichuan province). Regions with 335 

high uncertainties in O3 predictions generally align with regions with poorer model performance. In BTH, YRD, 336 

and PRD, the total ozone uncertainty due to the six model inputs ranges 11.7~31.8, 7.0~34.6 and 5.0~19.0µg/m3, 337 

respectively, corresponding to a relative percentage of O3 concentration by 9.2~18.1%, 7.9~25.8%, and 338 

7.6~14.6%. It should be noted that our uncertainty estimates represent conservative estimates because the effects 339 

of uncertainties in the meteorological inputs and the uncertainties associated with the O3 chemistry are not 340 

included, the latter of which has been shown to have a comparable contribution to the total contributions from 341 

emissions, dry deposition, and O3 BC in the Dallas-Fort Worth region in the U.S. (Dunker et al. 2020).  342 

Among the six model inputs, AVOC emissions make the largest contributions (exceeding 15 μg/m3) to the total 343 

uncertainty in regions displaying high O3 sensitivity, such as BTH, northern YRD, PRD, and several metropolitan 344 

areas. The large uncertainties, stemming from both the high first-order sensitivities (Figure S1) and a relatively 345 

high uncertainty factor (1.68), suggest that in these regions, uncertainties associated with AVOC emission 346 

estimates would in more significant biases in simulated O3 concentrations compared to other areas. O3 347 

uncertainties due to BVOC emissions, ranging 0.1~10.4 μg/m3, are mainly located in southern China, where 348 

BVOC emissions are high. A similar spatial pattern is observed for uncertainties in ANOx emissions, although its 349 

contribution is larger (0.5~11.9 μg/m3). While the first-order O3 sensitivity to SNOx emissions is minimal (Figure 350 

S1), the contribution to O3 uncertainty from SNOx emissions is noteworthy (0.5~9.7 μg/m3), given a large 351 

uncertainty factor of 2 (Table S5). Uncertainty in O3 BCs is relatively less important except in the northwest, 352 

where it represents the largest contributing factor. Dry deposition serves as an important O3 sink. Uncertainty 353 

contribution from O3 dry deposition velocities (0.3~10.4 μg/m3) is comparable to that of ANOx emissions, with a 354 

more evenly distributed spatial impact.  355 
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 356 

 357 

Figure 10 Contributions to uncertainty in MDA8 O3 simulation. Contribution of (a) AVOC, (b) BVOC, (c) 358 

ANOx, (d) SNOx, (e) O3 BCs, and (f) dry deposition in μg/m3. Results are averages over all days in June 2021 359 

and represent 1σ.  360 

Figure 11 compares the observed MDA8 O3 to the model results with their ± 1σ uncertainty range for five major 361 

cities: Beijing, Shanghai, Guangzhou, Chengdu, and Xi’an. In Shanghai, the majority of the observed O3 fall 362 

within the ± 1σ uncertainty range. However, in Beijing, Chengdu, and to a lesser extent in Guangzhou, the model 363 

tends to over-predict lower O3 observations. In Xi’an, the model fails to capture the exceptionally high O3 364 

concentrations (MDA8 O3 > 250 µg/m3) on June 6th and 7th. Expanding the uncertainty limits to a ± 2σ range may 365 

encompass some of the lower O3 observations but the current uncertainty estimates do not fully account for all 366 

the discrepancies between model results and observations. This discrepancy could be attributed to the coarse grid 367 

resolution (36 km) used in this study, which may not adequately resolve the impact of local emission sources. 368 

Furthermore, as mentioned earlier, uncertainties related to O3 chemistry and meteorological inputs were not 369 

accounted for and should be quantified in future work. 370 

The relative contributions to the total uncertainty are also shown in Figure 11. Across all five cities, uncertainties 371 

in the AVOC emissions contribute the most (43%~65%) while the relative importance of other model inputs 372 

differs by location. For example, O3 BCs represent the second largest uncertainty source in Beijing (accounting 373 

for 18%) but are negligible in Guangzhou and Chengdu. In Shanghai and Guangzhou, uncertainties in ANOx 374 

emissions (10%~17%) become the second largest contributor. Uncertainties associated with BVOC emissions are 375 

minimal in Beijing and Shanghai but noteworthy (7~8%) in Guangzhou and Chengdu. O3 deposition uncertainty 376 

contributes to 8~30% of the total uncertainty, with a higher contribution for cities located in the west.  377 
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 378 

Figure 11 Compared with the average observation results of five urban monitoring points in June 2021, the 379 

uncertainty limit of MDA8 O3 is ± 1 σ. The pie chart shows the contribution of each factor to the total uncertainty 380 

of the predicted average MDA8 O3 in June 2021. 381 

5. Conclusions 382 

Chemical transport models are increasingly being employed to tackle the severe ozone pollution issues in China. 383 

This study involved the compilation and analysis of 216 peer-reviewed studies focused on the use of CTMs to 384 

simulate O3 levels in China. Essential model configurations such as study region, simulation season, grid spacing, 385 

gas-phase mechanism, and quantitative model performance outcomes were systematically documented. The study 386 

presented quantile distributions of common statistical metrics found in the literature and discussed the influence 387 

of different model configurations on performance outcomes. Furthermore, we proposed benchmarks for six 388 

widely used MPE metrics (R, IOA, NMB, NME, FB, and FE) based on the concepts of "goals" and "standards" to 389 

offer guidance to modelers for a more consistent and contextual evaluation of models. Additionally, we utilized 390 

CMAQ-DDM to assess the uncertainties in predicted O3 concentrations resulting from uncertainties in six model 391 

inputs. The findings revealed significant variations in spatial distributions and magnitudes of ozone sensitivity to 392 

different model inputs, with the most substantial contributions to total uncertainty originating from AVOC 393 

emissions in regions with high ozone sensitivity. 394 

The proposed benchmarks for assessing simulated O3 concentrations, in conjunction with previous studies on 395 

PM2.5 (Huang et al. 2021) and other criteria air pollutants (Zhai et al. 2024), represent a comprehensive and 396 

systematic effort to establish a model performance framework for CTM applications in China. These outcomes 397 

not only offer valuable guidance to the growing modeling community in China but also support their endeavors 398 

in utilizing CTMs to address various research challenges and enhance air quality management. 399 
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