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Abstract. The Community Inversion Framework (CIF) brings together methods for estimating greenhouse gas fluxes from

atmospheric observations. While the analytical and variational optimization methods implemented in CIF are operational and

have proved to be accurate and efficient, the initial ensemble method was found to be incomplete and could hardly be compared

to other ensemble methods employed in the inversion community, mainly owing to strong performance limitations and absence

of localization methods. In this paper, we present and evaluate a new implementation of the ensemble mode, building upon the5

initial developments. As a first step, we chose to implement the serial and batch versions of the Ensemble Square Root Filter

(EnSRF) algorithm because it is widely employed in the inversion community. We provide a comprehensive description of the

technical implementation in CIF and the useful features it can provide to users. Finally, we demonstrate the capabilities of the

CIF-EnSRF system using a large number of synthetic experiments over Europe with the flexible and scalable high-performance

atmospheric transport model ICON-ART, exploring the system’s sensitivity to multiple parameters that can be tuned by users.10

As expected, the results are sensitive to the ensemble size and localization parameters. Other tested parameters, such as the

number of lags, the propagation factors, or the localization function can also have a substantial influence on the results. We also

introduce and provide a way of interpreting a set of metrics that are automatically computed by CIF and that can help assessing

the success of inversions and comparing them. This work complements previous efforts focused on other inversion methods

within CIF. While ICON-ART has been used for testing in this work, the integration of these new ensemble algorithms enables15

any atmospheric transport model to perform inversions, fully leveraging CIF’s robust capabilities.

1 Introduction

Global warming is caused by the accumulation of greenhouse gases (GHGs) in the atmosphere such as carbon dioxide (CO2),

methane (CH4), nitrous oxide (N2O), or synthetic gases. The atmospheric concentrations of these GHGs have been drastically

increasing since the pre-industrial era (in 2019 compared to 1750, CO2: +47 %; CH4: +156 %; N2O: +23 %; Gulev et al.,20

2021), due to the intensification of human activities worldwide. As the international community recognized the existence of
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the link between human activities and global warming, the urge to gain a comprehensive understanding of the varied sources

of GHGs, both natural and anthropogenic, across diverse sectors and geographical regions, has been intensifying.

In response to this imperative, concerted efforts have been made to continuously develop observational networks across

the globe (e.g., Schuldt et al., 2023; Ramonet et al., 2020; Prinn et al., 2000; Dlugokencky et al., 1994). In tandem with the25

ground-based networks, advancements in remote sensing technologies have considerably expanded geographical coverage and

enabled frequent observations over remote areas (e.g., Taylor et al., 2023; Lauvaux et al., 2022; Suto et al., 2021; Parker et al.,

2020; Hu et al., 2018; Frankenberg et al., 2006). These ever-growing datasets generated by monitoring networks and satellite

observations provide an unprecedented wealth of information on greenhouse gases and call for innovative techniques, such as

data assimilation methods, capable of extracting pertinent information from these data.30

Data assimilation methods have been originally designed for Numerical Weather Prediction (NWP) to deal with the chaotic

behavior of the atmosphere (Ghil and Malanotte-Rizzoli, 1991). Data assimilation allows to integrate observational information

into complex NWP models and continuously refine and update their predictions, therefore providing better analysis and forecast

of the atmospheric state. Given the established efficacy of data assimilation techniques in weather forecasting, they found a

natural extension into the realm of GHG flux estimation in the late 1980s and early 1990s (Enting and Newsam, 1990a;35

Newsam and Enting, 1988). For these applications, the term “inversion” is preferred to “data assimilation”. The explanation

is simple: a chemical transport model (CTM), serves as an operator linking input data (e.g., fluxes) and observable quantities

(e.g., atmospheric concentrations). The input data are only boundary conditions for the prognostic equations solved by the

model to obtain a numerical estimate of the observable quantities. When observations of these quantities are utilized to refine

model input, the process is said to be inverted.40

Over time, multiple inversion methods have been designed by the scientific community to provide optimized estimates of

fluxes. Despite important differences between these algorithms, they share a common theoretical foundation, which is Bayes’

theorem, and aim to minimize a specific cost function. These algorithms can be broadly classified into four distinct groups:

analytical (e.g., Wittig et al., 2023; Wang et al., 2018; Bousquet et al., 2011; Stohl et al., 2009; Kopacz et al., 2009), variational

(e.g., Thanwerdas et al., 2024; Fortems-Cheiney et al., 2021; Chevallier et al., 2010, 2005), ensemble (e.g., Steiner et al., 2024;45

Tsuruta et al., 2017; van der Laan-Luijkx et al., 2015; Bruhwiler et al., 2014; Kim et al., 2014a, b; Peters et al., 2007, 2005),

and Monte Carlo Markov Chain (MCMC) methods (e.g., Zammit-Mangion et al., 2016; Miller et al., 2014; Ganesan et al.,

2014; Mukherjee et al., 2011), each presenting a particular set of strengths and weaknesses. Within the inversion community,

individual research groups commonly designed and employed distinct combinations of inversion systems and CTMs with

varying transparency of specific implementations and their continuous development, applying them to a range of trace gases and50

various types of observations depending on the application. This variety of combinations, coupled with the lack of transparency

regarding the advancements, poses a challenge to the inversion community in terms of leveraging previous developments and

avoiding redundant feature development.

The Community Inversion Framework (CIF, Berchet et al., 2021, or hereinafter BA21) has been designed to bring together

the different inversion methods and CTMs used in the community. It is built as an open source, thoroughly documented, highly55

modular and multi-model inversion framework written in Python, that facilitates the comparison of 1) inversion methods and
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2) CTMs. Additionally, CIF is being constantly updated and enhanced, based on user feedback. Consequently, it serves as a

robust foundation upon which the community can build and continue to produce accurate estimates of GHG (and other species)

�uxes in a reasonable computational time. It is important to note that other similar inversion systems exist and are used in the

inversion community. One prominent example is the Carbon Tracker Data Assimilation Shell (CTDAS, van der Laan-Luijkx60

et al., 2017; Peters et al., 2005), a well-established system widely employed for deriving optimized estimates of GHG �uxes,

mainly with ensemble methods (Steiner et al., 2024; Tsuruta et al., 2023; He et al., 2018).

The analytical and variational methods implemented in CIF are operational and have proved to be accurate and computation-

ally performant (Fortems-Cheiney et al., 2023; Wittig et al., 2023; Savas et al., 2023; Remaud et al., 2022; Thanwerdas et al.,

2024, 2022a, b). However, analytical methods become excessively expensive for large inversion problems and CTMs without65

adjoint cannot use the variational methods. The increasing need for running CIF inversions with these CTMs has therefore

made the imperative to employ ef�cient ensemble methods more pressing. However, the initial ensemble method presented in

BA21 was found to be incomplete and could hardly be compared to other published ensemble methods, mainly owing to strong

performance limitations, absence of localization methods, but also to errors in the generation of ensembles and the propagation

of information from one cycle to the other. This method therefore needed improvements, which were initiated when perform-70

ing CO2 inversions with CIF using different models and inversion setups as part of the Horizon 2020 CoCO2 project (Berchet

et al., 2023). The model ICON-ART (Zängl et al., 2015; Rieger et al., 2015), described in Sect. 4.1.1, was one of these models.

It is utilized here to showcase the capabilities of the new ensemble method in CIF.

This work therefore presents the recent developments to the ensemble method in CIF, Section 2 introduces the conceptual

framework governing ensemble methods, with a speci�c focus on the method implemented in CIF. Section 3 describes the75

technical implementation of this method and highlights the main bene�ts for the inversion community. Section 4 demonstrates

the potential of this new method using a large set of experiments with synthetic data over Europe using ICON-ART. Section 5

provides a summary of the key �ndings and explores envisioned future developments.

2 Theoretical formulation

Here, we provide an overview of the general theoretical framework designed for atmospheric inversions (Enting, 2002; Enting80

et al., 1995, 1993; Enting and Newsam, 1990b; Tarantola, 1987; Cunnold et al., 1983; Gelb, 1974), with a speci�c focus on

ensemble methods.

2.1 Kalman Filter

An atmospheric inversion seeks to optimize the variables included in thecontrol vector(also called state or target vector),

denoted byx [of dimensionn], based on theobservation vectory o [p]. An observation operatorH(:) [n 7! p] links the85

control space and the observation space, where the control and observation vectors are respectively de�ned. In the Bayesian

approach, aprior (or background)control vectorx b is updated such that the resultingposterior(or analysis)control vectorx a
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maximizes the conditional probability densityp(x jy o). Bayes' theorem states that,

p(x jy o) / p(y ojx ) � p(x ) (1)

Errors in the observations and the prior control vector in atmospheric inversions are typically assumed to be unbiased,90

although it is dif�cult to accurately characterize potential biases. Gaussian distributions, denoted byN (:), are frequently as-

sumed to represent errors for two main reasons. 1) Errors can be thought of as the sum of several small, independent effects (i.e.

random variables). According to the central limit theorem, this sum tends to follow a Gaussian distribution. Consequently, as-

suming such a distribution is reasonable in the absence of better information. 2) Algorithms that assume Gaussian distributions

are generally simpler to understand and implement because this assumption simpli�es the mathematics involved. Consequently,95

the probability density functions associated to the errors are de�ned by,

p(x ) = N (x b;B ) ) p(x � x b) = p(� b) = N (0;B ) (2)

p(y ojx ) = N (H(x );R ) ) p(y o � H (x )jx ) = p(� ojx ) = N (0;R ) (3)

� b = x � x b and � o = y o � H (x ) are thebackgroundand observation errors, respectively.B = E[(� b)( � b)T] and R =

E[(� o)( � o)T] are thebackground-errorandobservation-error covariance matrices, respectively, withE[:] the expectation op-100

erator. When the probability distributionsp(x ) andp(y ojx ) are Gaussian, the left hand side of Bayes' theorem in Eq.( 1) also

follows a Gaussian distribution,

p(x jy o) = N (x a;P a) ) p(x � x ajy o) = p(� ajy o) = N (0;P a) (4)

� a = x � x a andP a = E[(� a)( � a)T] de�ne theanalysis error and analysis-error covariance matrix, respectively. It follows

thatx a is the vector minimizing the quadratic cost functionJ (:) de�ned by,105

J (x ) =
1
2

(x � x b)TB � 1(x � x b) +
1
2

(H(x ) � y o)T R � 1(H (x ) � y o) (5)

= J b(x ) + J o(x ) (6)

J o(x ) andJ b(x ) are the contributions of the observations and the background to the total cost function, respectively. Mini-

mizing J means �nding the optimal balance between �tting the atmospheric measurements and remaining close to the prior

estimate. The error covariance matrices determine the relative weight assigned to each of these objectives. If it is additionally110

assumed thatH is linear,H (x ) = H x , whereH is the Jacobian matrix ofH , the analytical solution forx a is given by

x a = x b + K (y o � H x b) (7)

with

K = BH T(HBH T + R ) � 1 (8)

K [n � p] is calledthe gain matrix.115

4



Utilizing the Sherman–Morrison–Woodbury identity, it can also be expressed as,

K = ( B � 1 + H TR � 1H ) � 1H TR � 1 (9)

Using Eq. (7) and (8), it is also possible to derive an analytical formulation for the analysis-error covariance matrix,

P a = ( I n � KH )B (10)

whereI n is the identity matrix of sizen.120

This analytical solution in Eq. (8) is the update phase of the so-called Kalman �lter (KF; Kalman, 1960) which was specif-

ically designed to optimize a prior estimate of a state vector using a set of observations. Other teams have extended this

framework to non-Gaussian distributions (e.g., truncated Gaussian densities, semiexponential, log-normal distributions, etc.;

Lunt et al., 2016; Miller et al., 2014; Ganesan et al., 2014; Bergamaschi et al., 2010; Michalak and Kitanidis, 2005), albeit

this complicates the derivation of the solution. Additionally, an alternative version of the KF, known as the Extended Kalman125

Filter (EKF, Evensen, 1993, 1992; Brunner et al., 2012), can be employed whenH is nonlinear. For inversion applications, this

�lter consists simply in linearizingH around the background control vector to be able to apply the KF equations. For example,

consider a scenario in which CH4 is transported by the CTM, and its reaction with OH, the primary CH4 sink, is included in the

model. If both CH4 emissions and OH concentrations are treated as optimized variables (i.e., included in the control vector),

the observation operator becomes nonlinear. In this case, the observation operator must be linearized before applying the KF130

equations. However, if OH concentrations are not included in the optimization process, the observation operator remains linear,

allowing the implementation of the KF.

There are subtle differences in the utilization of KF equations between NWP and inversion applications. In the context of

NWP, optimization of the control vector occurs at different timesteps (analysis steps), incorporating both the prior control

vector and the observations available at that timestep. After the analysis at timestept, a forecast operator, denoted byF , uses135

the newly optimized state to advance the prediction and generates the background control vector for the following assimilation

timestept + 1 ,

x b
t +1 = F (x a

t ): (11)

Equation (11) describes the evolution of meteorological �elds due to complex nonlinear dynamical processes linking two

different timesteps. In the context of atmospheric inversion, in contrast, the forecast model links the optimized �uxes at one140

assimilation timestep to the background �uxes at the next assimilation timestep. Since no established relationship exists, persis-

tence of �uxes is often assumed for simplicity (Brunner et al., 2012; Peters et al., 2005). Additionally, deriving the observation

operatorH in matrix format is more challenging in the context of inversion than in NWP. This is because de�ning the rela-

tionship between the control space (e.g., �uxes) and the observation space (e.g., atmospheric concentrations) requires a CTM,

whereas in NWP, control variables are often observed.145

The analytical inversion method directly applies the KF equations presented above to derive the optimal solution. However,

the explicit derivation ofH and its transposeH T requiresn forward runs of the CTM, or min(n, p) forward runs in case the
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CTM is Lagrangian or if an adjoint version of the model is available. BuildingH can therefore be excessively expensive,

especially when both optimizing numerous variables and assimilating a large number of observations.

The other two methods, variational and ensemble, offer different solutions to cope with this limitation. In this study, we150

focus on ensemble methods.

2.2 Ensemble Kalman Filter and square root �lters

The ensemble methods utilized in atmospheric inversions drew inspiration from the original Ensemble Kalman Filter (EnKF)

introduced by Evensen (1994) for NWP. EnKF, rooted in Monte Carlo methods, was initially designed to surpass the results

of the EKF, avoid the linearization of a nonlinear forecast model and enhance the derivation of forecast-error statistics after155

each analysis. The principle is that an ensemble of vectors is used to represent the probability distribution of the control vector.

Each member of the ensemble produces a different forecast, and the ensembles of control vectors and forecasts are used to

compute the posterior control vectorx a using Eq. 7. This algorithm has undergone improvements through subsequent studies

(Houtekamer and Mitchell, 1998; Burgers et al., 1998). In particular, these studies account for measurement noise by creating

a perturbed observation vector for each member of the ensemble. This enhanced algorithm is now recognized as the stochastic160

EnKF.

A few years later, deterministic versions of the EnKF were developed: Ensemble Transform Kalman Filter (ETKF; Bishop

et al., 2001), Ensemble Adjustment Kalman �lter (EAKF; Anderson, 2001), Ensemble Square Root Filter (EnSRF; Whitaker

and Hamill, 2002) and Local Ensemble Transform Kalman Filter (LETKF; Hunt et al., 2007), to circumvent sampling issues

associated with the use of perturbed observations. Deterministic methods have been shown to be more accurate than their165

stochastic counterparts (e.g., Tippett et al., 2003). It should be emphasized that despite the name chosen for the EnSRF, all the

aforementioned deterministic versions of EnKF belong to the family of square root �lters (Livings et al., 2008; Tippett et al.,

2003).

In a square root �lter, the background-error covariance matrix is decomposed asB = ZZ T whereZ [n � N ] is a square root

matrix ofB . In an ensemble representation,N denotes the number of samples in the ensemble and we further de�neX andX 0170

such that,

Z =
1

p
N � 1

(X � x 1) =
1

p
N � 1

X 0 (12)

where1 = (1 ; :::;1) is the unit matrix of dimension [1 � N ], X = ( x 1 ; :::;x N ) [n � N ] represents an ensemble ofN control

vectors andX 0= ( x 0
1 ; :::;x 0

N ) [n � N ] represents the deviations around the meanx = 1
N

P N
i =1 x i [n � 1].

This de�nition of the square root ofB offers an intuitive approach to solving the inversion problem: we create an ensemble of175

perturbed control vectorsx i that samples the prior distributionN (x b;B ), and then we employ the KF equations to incorporate

observational knowledge and approximate the posterior distributionN (x a;P a). In the limit of N �! 1 , the covariance matrix

calculated fromX 0 is equal toB . However, in a practical scenario whereN is relatively small compared ton and the dimension
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of B , we can only achieve an approximation ofB , denoted byB N ,

B N =
1

N � 1
X 0X 0T ����!

N !1
B (13)180

The primary bene�t of the ensemble method is the ability to approximate themodel-observation covarianceBH T and the

observation-observation covarianceHBH T in Eq. (8) without the necessity of explicitly computingH ,

BH T � B N H T =
1

N � 1
X 0Y 0T (14)

HBH T � HB N H T =
1

N � 1
Y 0Y 0T (15)

whereY 0= HX 0= ( H x 0
1 ; :::;H x 0

N ) = ( y 0
1 ; :::;y 0

N ).185

Consequently, the columns ofY 0 [p � N ] are obtained by transportingN + 1 sample tracers with the CTM: one tracer

associated with the ensemble meanx andN tracers associated with the deviationsx i
0. The perturbed control vectorsx i can

also be transported instead of the deviations becauseH x 0
i = H x i � H x . In CIF, this option is preferred.

The Kalman gain matrixK can be explicitly computed and the ensemble mean is updated using Eq. (7),

x a = x +
1

N � 1
X 0Y 0TD � 1d (16)190

whered = y o � H (x ) is theinnovation vectorandD = 1
N � 1 Y 0Y 0T + R is theinnovation covariance matrix.

The analysis ensemble is then given by,

X a = x a1 + X 0a (17)

where the updated deviationsX 0a cannot be simply calculated using an equivalent of Eq. (16). In a deterministic EnKF algo-

rithm, the analysis-error covariance matrix is formed using the square root formulation,195

P a =
1

N � 1
(X 0a)(X 0a)T (18)

It must approximate its Kalman �lter counterpart,

P a = ( I n � KH )B N (19)

=
1

N � 1
(I n � KH )X 0X 0T (20)

=
1

N � 1
X 0(I N � Y 0TD � 1Y 0)X 0T (21)200

It follows that,

X 0a = X 0T (22)

whereT [N � N ] is called thetransform matrixand satis�es,

TT T = I N � Y 0TD � 1Y 0 (23)

The solution of this equation is not unique because if we de�neL = TU whereU is any orthogonal transformUU T = U TU =205

I N , thenL is also a solution. Hence, the de�nition ofT is a key difference between the deterministic algorithms. In the next

section, we will focus on the algorithm we chose to implement in CIF.
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2.3 Ensemble Square Root Filter

The EnSRF was already employed with the models TM5 (Krol et al., 2005), WRF-Chem (Skamarock et al., 2021; Grell et al.,

2005), STILT (Lin et al., 2003) and ICON-ART (Schröter et al., 2018; Zängl et al., 2015) to perform inversions for different210

species and at different scales (Steiner et al., 2024; Mannisenaho et al., 2023; Tsuruta et al., 2023; He et al., 2018; Tsuruta

et al., 2017). Hence, to foster interest from other inverse modelling groups and to allow them to directly compare with their

existing tools, BA21 implemented a preliminary version of the EnSRF in CIF as a �rst step. We elaborate on this method in

detail in this section.

2.3.1 Batch EnSRF215

In Whitaker and Hamill (2002), the authors investigated a formulation in which

X 0a = ( I n � K̂H )X 0 (24)

whereK̂ is sought such that Eq. (10) is satis�ed. The solution is

K̂ = B N H TD � 1
2 (D

1
2 + R

1
2 ) � 1 =

1
N � 1

X 0Y 0TD � 1
2 (D

1
2 + R

1
2 ) � 1 (25)

As the derivation is not trivial and can be found in Whitaker and Hamill (2002) and references therein, we refrain from220

presenting it here. It follows that,

X 0a = ( I n � K̂H )X 0= X 0(I N �
1

N � 1
Y 0TVY 0) (26)

whereV = D � 1
2 (D

1
2 + R

1
2 ) � 1 Note that this formulation also de�nes the transformation matrixT = I N � 1

N � 1 Y 0TVY 0 for

the EnSRF. Since this version of the EnSRF assimilates the observations simultaneously, it is referred to as the batch EnSRF.

2.3.2 Serial EnSRF225

Whitaker and Hamill (2002) also introduced an alternative approach, called the serial EnSRF. In the serial EnSRF algorithm, the

observations are processed serially (one at a time), in order to reduce the substantial computational cost that can be associated

with matrix inversion. This is feasible only when observation errors are uncorrelated, namely when theR matrix is diagonal.

In this case, batch EnSRF and serial EnSRF are mathematically equivalent (Kotsuki et al., 2017; Nerger, 2015; Whitaker and

Hamill, 2002) and thus provide identical results. If observation errors are correlated, several approaches can be employed to230

remove or mitigate the error correlations: (1) use another space of observations where the error covariance matrixR becomes

diagonal, (2) average (temporally or spatially) the observations as often done for satellite observations, or (3) apply error

in�ation, as described in Chevallier (2007). Additionally, observations with correlated errors can be processed using the batch

EnSRF as an alternative. When the single observationj is assimilated,R , D andd become scalars, denoted byr j , D j anddj .

Additionally, Y 0 is reduced to anN -dimensional vector, denoted byy 0
j .235
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Consequently, Eq.( 16) and Eq.( 26) are revised as follows to update the mean and deviations of the ensemble based on

observationj :

x a = x + dj k j (27)

X 0a = X 0� � k j y 0
j

T (28)

wherek j = 1
D j

1
N � 1 X 0y 0

j and� = (1 +
q

r j

D j
) � 1. After each observation is assimilated, the analyzed state is used as the new240

background for the next observation, until all observations are processed. Consequently, the vectorY 0 must also be updated at

each step. It is calculated as,

y a = H x a = H x + dj l j (29)

Y 0a = Y 0� � l j y 0
j

T (30)

wherel j = 1
D j

1
N � 1 Y 0y 0

j245

All observations are processed until the �nal analyzed state is reached.

2.3.3 Ensemble Square Root Smoother

After the KF theory presented in Sect. 2.1 had been applied in several studies to estimate surface emissions of trace gases (e.g.,

Haas-Laursen et al., 1996; Hartley and Prinn, 1993), Bruhwiler et al. (2005) introduced the Fixed Lag Kalman Smoother to

reduce the computational cost associated with the processing of a large number of observations. The authors initially observed250

that due to atmospheric mixing, information from a speci�c source location does not propagate to atmospheric concentrations

very far into the future. As a result, only a subset of observations obtained after the emission, around the location of the source,

is necessary to effectively constrain past �uxes. The time period over which transport information is retained is called the

�xed-lag and depends on the scale of the application (e.g., several months for the global scale but less for the regional scale).

Peters et al. (2005) integrated this �xed-lag feature from Bruhwiler et al. (2005) with the serial EnSRF algorithm from255

Whitaker and Hamill (2002), which was later developed further into CTDAS (van der Laan-Luijkx et al., 2017). In this system,

the full assimilation period is split into windows of �nite length. For each window, �uxes within the window are optimized

using both the observations from the current window and those from a �xed number (lag) of subsequent windows. This version

of the EnSRF algorithm, which is the focus of this work, is described in detail in Sect. 3.1. It is worth noting that while Peters

et al. (2005) retained the name EnSRF, their method could also be referred to as the Ensemble Square Root Smoother (EnSRS).260

2.3.4 Covariance localization

Due to sampling errors, spurious long-range correlations tend to appear inB N , which can ultimately lead to a degraded ana-

lysis. The so-called covariance localization technique has been developed to mitigate this effect by �ltering out the correlations

between distant locations or between variables that have small correlations (Hamill et al., 2001; Houtekamer and Mitchell,

2001, 1998).265
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Localization is typically performed by applying a Schur product (element-wise multiplication, denoted by� ) between a

covariance matrix and a localization matrixL [n � p]. Each elementL i;j is de�ned using some decreasing function of the

distance between the locations of thei -th andj -th elements. Two types of localization exist: while theR -localization is

applied on the observation error covariance matrixR , theB -localization operates on the background-error covariance matrix

B (Hotta and Ota, 2021).270

TheB -localization can be further split into the model-space localization and the observation-space localization (Shlyaeva

et al., 2019). The model-spaceB -localization directly transformsB N = 1
N � 1 X 0X 0T and the gain matrixK . When applied to

the batch EnSRF equations, we have

K loc ;model = ( L � B N )H T(H (L � B N )H T + R ) � 1 (31)

The observation-spaceB -localization modi�es separately the model-observation covarianceB N H T = 1
N � 1 X 0Y 0T and the275

observation-observation covarianceHB N H T = 1
N � 1 Y 0Y 0T . Two different localization matricesL 1 [n � p] andL 2 [p � p]

are therefore necessary,

K loc ;obs = ( L 1 � (B N H T))( L 2 � (HB N H T) + R ) � 1 (32)

In the context of inversion performed with EnSRF, observation-spaceB -localization is preferred over model-spaceB -

localization becauseH is not explicitly computed. It is important to note that applying localization invalidates the mathematical280

equivalence between serial and batch EnSRF, as well as between serial EnSRF algorithms executed with different assimilation

orders (Kotsuki et al., 2017; Nerger, 2015).

3 Technical implementation of the CIF-EnSRF

Many improvements have been introduced since the initial implementation of EnSRF in CIF by BA21. Here, we describe the

new CIF-EnSRF work�ow comprehensively and highlight the various enhancements.285

3.1 Implementation details

The objective of an inversion performed with the EnSRF method is to optimize elements within a control vector, encompassing

�uxes, boundary conditions, atmospheric concentrations, and potentially more. In our demonstration, we speci�cally focus on

�uxes and optimize scaling factors applied to a prior estimate of these �uxes. The full assimilation time period is partitioned

into several windows of �nite length. For each window, a single scaling factor is associated to each variable to optimize (e.g.290

�ux emitted in a cell of the horizontal domain). Consequently, selecting a shorter window increases the temporal resolution of

the optimized variables. However, if the number of lags is unchanged, a shorter window also means that the in�uence of the

scaled �uxes only propagates to assimilated observations that are closer to the sources. A larger number of lags 1) increases

the computational cost but 2) may enhance the accuracy if emissions in the present window do not only affect the observations

in the present but also in subsequent windows. These two statements are con�rmed later by the synthetic experiments (see295
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Table D1 and Table 3, respectively). One of the challenges in this inversion process is effectively managing the trade-off

between the window length, the number of lags, and the computational cost.

3.1.1 Initialization and generation of samples

Through the YAML con�guration �le of CIF (http://yaml.org, last access: 12 December 2024), users can de�ne fundamental

settings for the inversion process:300

– datei: Start date of the inversion.

– datef: End date of the inversion.

– window_length: Length of a single window.

– nlag: Number of windows within each cycle. Consequently, it also represents the number of times the control variables

within a window are optimized by the system.305

As an illustrative example, we consider an inversion with the following settings:

– datei: 2018-01-01

– datef: 2018-03-02

– window_length: 10D (i.e., ten days)

– nlag: 2310

With these settings, the resulting inversion consists of six cycles, each spanning 20 days (two windows of 10 days). When an

inversion is started with CIF, the system �rst reads the con�guration �le and initializes all the relevant components, namely the

control vectorx , the observation vectory o, the background-error covariance matrixB and the observation-error covariance

matrixR .

Each part ofB corresponding to an optimized �ux category is initialized based on the parameters de�ned in the con�guration315

�le. Corresponding eigenvectors and eigenvalues are computed and stored for future usage. Every time the fullB matrix must

be accessed, Kronecker products are used to compute it (see BA21 for further details).

Each member of the ensemble of control vectors must be drawn from a multivariate Gaussian distributionN (x b;B ). We use

the following result to generate this ensemble: ifz is ann-dimensional vector that follows a multivariate Gaussian distribution

N (0; I n ), thenCz + � follows the distributionN (� ;CC T), where� is an-dimensional vector andC is a matrix of dimension320

n � n.

We describe here two simple methods that can be employed to generateC such thatB = CC T. The �rst method is the

Cholesky decomposition, which decomposesB as B = LL T whereL is a lower triangular matrix with positive diagonal

elements. The second method is a speci�c application of the so-called Singular Value Decomposition (SVD) method. In our
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case, it can simply be called eigendecomposition asB is a square real matrix. This method decomposesB asB = Q�Q T325

whereQ is an orthogonal matrix whose columns are the orthonormal eigenvectors ofB , and� is a diagonal matrix whose

entries are the eigenvalues ofB . As Q � 1 = QT, we haveC = Q�
1
2 QT.

In CIF, we employ the second method since the eigenvalues and eigenvectors of theB matrix are automatically computed

when the YAML con�guration �le is read. Therefore, we �rst generate an ensemble of random vectorsz i that each follow

a multivariate Gaussian distributionN (0; I n ) and then apply the formulaQ�
1
2 QTz i + x b for each vector using Kronecker330

products to obtain random vectors that follow the distributionN (x b;B ).

The computation of eigenvalues is performed using the linalg.eigh function from the NumPy Python package, which has

a computational complexity ofO(n3). However, performing the decomposition ofB via Kronecker products reduces this

complexity to approximatelyO(s3), wheres represents the number of variables to optimize within a single window. The

generation of random vectors, on the other hand, has a complexity ofO(n2) and can be computationally demanding at the335

start of the inversion, particularly for inversions spanning long periods. For typical real-data cases, such as a one-year inversion

with a spatial resolution of approximately 0.25° over a domain like Europe, these two steps may take one to two hours to

complete. However, as shown in Table D1, these steps are generally not the primary bottleneck in computational time, with

model simulations being signi�cantly more time-consuming.

The size of the ensembleN is de�ned by the user in the con�guration �le. However, the total number of samples that the340

CTM needs to transport isN + 3 because three “system-bound” samples are inserted at the beginning of the ensemble:

1. The �rst additional sample is �lled with ones only. During the pre-processing of inputs, the CIF routines convert the scal-

ing factors to perturbed �uxes. This conversion is necessary to ensure that complex operations (e.g., isotope operations

on �uxes) can be performed. The default behavior of CIF is to erase scaling factors after conversion. However, certain

models, such as ICON-ART, require scaling factors instead of perturbed �uxes. The additional sample allows to retrieve345

the former from the latter.

Subsequently, CIF erases the variables containing the scaling factors to limit memory allocation because most CTMs

only need the ensemble of physical �uxes. However, certain models (e.g., ICON-ART) currently require inputting scaling

factors rather than physical �uxes. Therefore, the prior �uxes should always remain accessible to recreate the scaling

factors, which is not CIF's default behavior. This is an easy, albeit performant, �x that might be improved in the future.350

2. The second additional sample contains the prior values of the scaling factors, which are not necessarily ones.

3. The third additional sample contains the ensemble mean, i.e., the optimized scaling factors. This sample is updated after

each optimization. For the cycle being optimized, it is equal to the background control vector before the optimization

and equal to the posterior control vector after the optimization. Note that, before starting the inversion, the second and

third additional samples are equal.355

We also added multiple optional settings that might be useful in some cases:
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– Random seed. Using the same random seed for two different inversions, all the other parameters being equal, will always

generate the same random vectors. If no random seed is selected, a different seed is adopted each time.

– Adjustment of the mean and variance. Due to sampling errors, the means and variances of the ensemble may not

necessarily align with the means and variances of the corresponding distribution. To rectify this discrepancy, users have360

the option to enable a setting that adjusts the means and variances, respectively applying an offset and a scaling operation,

after the step that generates the random samples.

– Setting equal prior deviations for all windows. This technique involves generating the same deviations for all windows

at the beginning of the inversion. Consequently, the scaling factors are fully correlated in time. To reproduce the same

behavior, users can also choose to utilize a core feature of CIF and prescribe maximal temporal error correlations between365

different windows directly in theB matrix and generate the ensemble based on this matrix.

3.1.2 Run

The inversion process, as depicted in Fig. 1, involves several steps. We present them here using the example of settings intro-

duced in Sect. 3.1.1.

1. A prior forward simulation of 20 days (10 days window length� 2 nlag) is run with the selected model over the initial370

cycle (�rst and second window). A simulation transports one tracer per member of the ensemble plus the three system-

bound tracers. Each CTM integrated into CIF possesses its own unique approach to handling these tracers. Notably,

users can choose, using a parameter in the con�guration �le, to transport the full ensemble of tracers within the same

simulation or to split this ensemble into multiple simulations if the model cannot accommodate a large number of tracers

simultaneously. Simulated values sampled at the locations and times of assimilated observations are provided for each375

tracer at the end of the simulation.

2. Scaling factors corresponding to the �rst cycle (�rst and second windows) are optimized using the outputs of the prior

forward simulation and the batch or serial algorithm presented in Sect. 2.3.

3. A posterior forward simulation is run over the �rst window using the optimized �uxes. This so-called advance step

integrates the �uxes of this window to the background concentrations, serving as the starting point for the next cycle.380

4. The process moves to the next cycle (second and third window), running again a forward simulation of 20 days with the

optimized scaling factors obtained in step 2. All the samples in this simulation are initialized using the �nal concentra-

tions obtained with the ensemble-mean tracer of the posterior forward simulation performed in step 3.

5. Scaling factors corresponding to the second cycle are optimized using the observations in the third window. Note that

the scaling factors of the second window are optimized for the second time, after having already been optimized in the385

�rst cycle using the observations from the second window.
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Figure 1. Example of the optimization process in CIF with two lags. The full assimilation period is split into M windows and L cycles. In

this example, each cycle consists of two windows. The process starts at the lower-left corner with a prior simulation (red box) spanning the

�rst two windows. After the assimilation of observations (red stripes), the posterior simulation (green box) is run until the starting point of

the second cycle. The �nal concentrations of the ensemble-mean tracer obtained with the posterior simulation are used to initialize the next

prior simulation (purple arrow). The grey area in the center of the �gure and the green and red boxes represent all the windows and cycles

that are run between the cycle 3 and the cycle L-2.
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6. A posterior forward simulation is run over the second window with the optimized scaling factors. This simulation starts

from the �nal concentrations of the posterior forward simulation performed in step 3.

The iterative process continues until the last cycle is completed. Each window is simulated nlag+1 times (nlag priors and one

posterior). It is also important to highlight that the last window is optimized using observations of only one window, regardless390

of nlag.

3.1.3 Localization

Here, we describe how the localization works in CIF. For each window, two distance matricesL 1 and L 2 of dimensions

n � p andp� p are calculated and applied to the model-observation covariance matrixX 0Y 0T and the observation-observation

covariance matrixY 0Y 0T, respectively, as described in Sect. 2.3.4. Each element of the �rst matrix stores the great-circle395

distance (haversine formula) between the center of the cell or region represented by this element, and the observation`s location.

Each element of the second matrix stores the great-circle distance between each pair of observation locations. The localization

matrices are then calculated using the decay function and length de�ned by the user in the con�guration �le. The same decay

length is used for both matrices. Four localization functions commonly employed in the ensemble inversion community (Steiner

et al., 2024; Peng et al., 2015; Peters et al., 2005; Whitaker and Hamill, 2002) are available in CIF: the Gaussian function, the400

exponential function, the Heaviside function and the function given by Eq. (4.10) in Gaspari and Cohn (1999), hereafter referred

to as the GC99 function. Analytical de�nitions for these functions are provided in Appendix C.

For the serial EnSRF method, the �rst localization matrixL 1 is applied to the gain matrix when updating the mean control

vector (x ) and the deviations (X 0) (see Eq. 27 and Eq. 28). The second matrixL 2 is not applied at this step becauseY 0Y 0T is a

scalar. However, it is applied when updating the projection of the mean (H x ) and deviations (Y 0) in the observation space (see405

Eq. 29 and Eq. 30) to keep consistency between bothX 0 andY 0 updates. Although we believe this second step is important, it

is not described in other EnSRF papers (e.g. CTDAS). Consequently, if both the �rst and second steps are performed, we call

it full localization, as opposed to a partial localization where only the �rst step is conducted. One of our experiments in Sect. 4

investigates the difference between full and partial localizations.

3.1.4 Forecast operator410

As described in Section 2.1, the forecast operator is considered either nonexistent or simple in ensemble carbon �ux inversions.

Initially, Peters et al. (2005) chose to utilize the identity operator when laying the foundation for CTDAS, thereby assuming

a maximal correlation between the prior estimate of the control vector for a speci�c window (x b
w ) and the posterior estimate

for the preceding window (x a
w � 1 ), wherew denotes the window index. However, in subsequent papers employing the EnSRF

algorithm in CTDAS (Steiner et al., 2024; van der Laan-Luijkx et al., 2017; Kim et al., 2014b), the forecast operator was415

adjusted to a simple weighting function between the posterior estimates of the preceding windows and the original prior
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estimate of the current window,

x b, updated
w =

w� 1X

i =1

� w� i x a
w � i + (1 �

w� 1X

i =1

� w� i )x b
w (33)

� w� i are propagation factors ranging between 0 and 1, whose sum is smaller than or equal to 1. The windows in the �rst

cycle are not modi�ed, hencew � nlag. This formula is empirical and relies on the assumption that the optimized scaling420

factors should not vary much from one window to another when the window is reasonably short (e.g., less than a month).

Therefore, the information used to update the �ux in a window should be partially propagated to the next window. It also

mitigates the likelihood of signi�cant discontinuities between �uxes in different windows, especially if the assimilated data is

sparser in one window compared to the next one. Also, if the sum of the propagation factors is chosen to be smaller than1 and

the amount of assimilated data drastically drops, then the optimized �uxes will slowly return to prior estimates. In Steiner et al.425

(2024), a single propagation factor� w� 1 is used and set to23 . In Kim et al. (2014b) and van der Laan-Luijkx et al. (2017), two

propagation factors� w� 1 and� w� 2 are used and both set to13 .

This formula has been implemented in CIF-EnSRF. In practice, whenever a new window is about to be optimized for the �rst

time, the associated ensemble mean is updated using Eq. (33) and the samples are shifted based on the difference between the

previous and updated ensemble means. Note that the deviations are not modi�ed, hence the prior uncertainties remain identical.430

3.2 Advantages of the new EnSRF mode

The new EnSRF mode in CIF introduces practical features for the inversion community. This value arises not only from recent

developments but also from the synergy between the established general features of CIF and the enhanced EnSRF method.

3.2.1 Comparison to previous version

Signi�cant enhancements have been made since the original implementation presented in BA21. The initial version featured435

only a basic structure of the EnSRF method, without the batch optimization method and localization. It also lacked the ca-

pability for new cycles to properly restart from previous posterior simulations, preventing a reasonable division of the full

assimilation period into multiple windows. Additionally, the pre- and post-processing routines could not handle a large num-

ber of samples in a reasonable amount of time (i.e. > 50) and the assimilation process was not optimized computationally,

drastically impacting the overall performance of the EnSRF.440

To address these limitations, we implemented several key features, including the batch optimization method and localization,

bringing the EnSRF method to the level of existing ensemble frameworks. Additionally, we signi�cantly improved the speed

of the pre- and post-processing routines within CIF, removing constraints on ensemble size. CIF is now capable of performing

complex operations for more than 500 samples in a few minutes, compared to roughly 50 samples before. For each CTM,

respective modeling communities can further enhance overall speed by re�ning routines dedicated to input writing and output445

processing, e.g. using parallelization. This optimization effort has been done with ICON-ART for this work and Table D1

provides a breakdown of the time and CPU hours required by both CIF and the ICON-ART model to run the experiments

presented in this work.
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Lastly, a metrics class has been introduced for EnSRF. This object calculates and stores different types of metrics that are

commonly computed in the inversion community and have proven useful in assessing the quality of results. Section 3.3 provides450

a description of these metrics.

3.2.2 Important CIF features

In addition to the new EnSRF features, CIF itself provides a handful of useful core features that were �rst introduced in BA21

and that work conveniently with the EnSRF mode:

– If the prescribed data is not de�ned on the same (horizontal or vertical) grid as the selected CTM, then CIF automatically455

performs the interpolation operations. It can also handle unstructured grids such as the ICON icosahedral grid.

– Multiple categories of emissions for the same species can easily be prescribed and optimized independently.

– The B matrix is automatically computed based on the con�guration �le (e.g., �ux categories to include, spatial or

temporal correlations to calculate, regions to optimize)

– After a potential crash, inversions can resume from any point without any loss of data or time. The only exception is460

when the CTM fails during one of the forward simulations and is unable to restart directly from the problematic point.

– Any element of the inversion (e.g., prior and posterior �uxes, ensemble of scaling factors, simulated values), for each

window and each cycle, is easily accessible.

– Changing the simulated species (e.g., switching from CH4 to CO2) is straightforward, as the variable names and the

species attributes are not hard-coded. It only requires a modi�cation of the prescribed data (e.g., surface �uxes, observa-465

tions, or background concentrations) to ensure consistent results.

– Inversion routines are not model-speci�c, hence two inversions conducted with two different models undergo identical

optimization operations. This core feature helps eliminate many potential discrepancies between elements of an inversion

work�ow (e.g., pre-processing of prescribed data, CTM run or optimization algorithm). The CIF-EnSRF method has

been tested recently with ICON-ART, CHIMERE, and WRF-Chem. Preliminary results from the inversions performed470

with the three different CTMs appear to be very comparable and, therefore, promising (Berchet et al., 2023).

– CIF can automatically execute complex operations involving different optimized elements, if requested. For example,

isotope operations between� 13C(CO2) source signatures and CO2 can be performed in order to simulate12CO2 and
13CO2, while optimizing CO2 at the end of the simulation.

3.3 Metrics475

To quantify the success of an inversion, we use different metrics. Most of them are automatically computed by CIF during

the inversion. It is important to note that some descriptions are not exhaustive, and for a more comprehensive understanding,

references are provided for further exploration.
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3.3.1 Mean error reduction (MER)

The error reduction (ER) quanti�es the agreement between the optimized �uxes and the true �uxes. It is the only metric that is480

not automatically computed by CIF because it depends on the true scaling factors. It is de�ned by,

ER(k; t ) = 1 �
ea(k; t )
eb(k; t )

(34)

= 1 �
jxa(k; t ) � F (k; t ) � x t(k; t ) � F (k; t )j
jxb(k; t ) � F (k; t ) � x t(k; t ) � F (k; t )j

(35)

xb(:), xa(:) andx t(:) are the prior, posterior and true control data (i.e. scaling factors) included in the corresponding vectors

x b, x a andx t, respectively. In this work,F (:) is the respiration �ux.eb(:) andea(:) are the prior and posterior absolute �ux485

errors, respectively.k andt represent the cells of the model's horizontal grid and the time dimension, respectively. This formula

gives a quantity that is time-dependent and spatially-distributed. We further de�ne the mean error reduction (MER) using an

area-weighted spatial average of the �ux errors,

MER(t) = 1 �
ea(k; t )

eb(k; t )
(36)

= 1 �

P
k2S a(k) � ea(k; t )

P
k2S a(k) � eb(k; t )

(37)490

Here,S represents the CTM's spatial domain or a subpart of this domain (e.g., a country) anda(:) denote the cell's area. A

positive MER indicates that the optimized �uxes better agree with the truth than the prior data, whereas a negative MER shows

the opposite. Figure 3 illustrates an example of MER computation over Europe based on a set of prior, posterior and true scaling

factors.

3.3.2 Root-mean square deviation (RMSD)495

The Root-Mean Square Deviation (RMSD) is commonly employed to quantify the agreement between the observed and sim-

ulated atmospheric mole fractions. It is de�ned by,

RMSD=

vu
u
t 1

p

pX

i =1

(yi � yo
i )2 (38)

p represents the number of observations, whileyi andyo
i denote the (prior or posterior) simulated and observed value associated

to thei -th atmospheric observation, respectively. The RMSD can also be computed on a subset of observations, such as speci�c500

stations or windows. CIF automatically computes this metric for the full assimilation period and the full set of observations,

but also for all assimilated stations, across all the cycles and windows, prior and posterior to the inversion. It should be noted

that a lower posterior RMSD does not necessarily mean better performance, since a close agreement with observations can

easily be obtained by over-�tting. It is therefore important to combine this metric with others, such as those described below.
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3.3.3 Cost function reduction (CFR)505

The optimal solution derived by the EnSRF minimizes the cost function de�ned in Eq. (5). To quantify this, we de�ne the cost

function reduction (CFR),

CFR= 1 �
J (x a)
J (x b)

(39)

A larger CFR indicates a greater reduction in the cost function.

3.3.4 Mean uncertainty reduction (MUR)510

The EnSRF provides an easy way to calculate the posterior uncertainties using the posterior deviationsX 0a, (see Eq. 18). For

each cell, we de�ne the uncertainty reduction (UR) as the reduction of the ratio of posterior to prior uncertainties,

UR(x) = 1 �
� a(k)
� b(k)

(40)

� b(:) and� a(:) denote the prior and posterior standard deviation associated to the cellk. We further de�ne the mean uncertainty

reduction (MUR) as the average of UR over a domain (e.g. the full domain or a speci�c country),515

MUR = UR(k) (41)

Note that it is not the posterior uncertainty of the average but the average of the posterior uncertainty.

3.3.5 Reduced chi-squared statistic (� 2
r )

If the error covariances are properly speci�ed and accurately re�ect the true errors in the control variables and the observations,

it can be demonstrated thatJ (x a) has an expected value ofp
2 (Desroziers and Ivanov, 2001; Talagrand, 1999; Tarantola, 1987).520

Additionally, if errors are normally distributed, thenJ (x a) follows a � 2 distribution withp degrees of freedom and has a

standard deviation equal to
p p

2 (Desroziers and Ivanov, 2001; Talagrand, 1999; Tarantola, 1987). Intuitively, the number of

degrees of freedom isp = n + p� n because the number of data points isn + p (prior estimates and observations) and the

number of �tted parameters isn.

We de�ne the reduced chi-squared statistic� 2
r ,525

� 2
r (x ) =

2
p

J (x ) (42)

Assuming the previously mentioned assumptions hold, the statistical mean of� 2
r over a large number of similar experiments

with different perturbations should be equal to 1 and its spread (standard deviation) should be equal to
q

2
p . Consequently, a

single experiment should have a� 2
r close to 1 when the number of observations is large (p > 100). Testing that the� 2

r is close

to 1 after the inversion therefore provides a simple and low-cost diagnosis for ensuring that the error covariance matrices are530

properly speci�ed and the ensemble properly approximates the background-error matrix.
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3.3.6 Degrees of freedom of the ensemble (DOFE)

The DOF (degrees of freedom) of a system refers to the number of independent components within it. In other terms, it

represents the number of elements that need to be estimated to obtain a comprehensive understanding of the system. Here, we

employ the formula derived by Fraedrich et al. (1995) and Bretherton et al. (1999), and subsequently employed by Peters et al.535

(2005) to obtain a statistical estimate of the DOF using the corresponding covariance matrix,

DOF=
(

nP

i =1
� i )2

nP

i =1
� 2

i

(43)

� i represents thei -th eigenvalue of the covariance matrix de�ning the system. In our inversion problem, the system of unknown

variables is represented by theB matrix, hence the DOF is obtained by applying this formula to its eigenvalues. The DOF in

the �nite ensemble (i.e., obtained by applying the formula to theB N matrix) is necessarily smaller than the DOF in our540

inversion problem (i.e., obtained by applying the formula to theB N matrix). Hereinafter, the metric representing the DOF in

the ensemble is denoted by DOFE, whereas the DOF in the inversion problem (i.e., the optimal value of the DOFE) is denoted

by DOFEopt. For a speci�c cycle, the closer the DOFE is to the DOFEopt, the closer the EnSRF solution is to the optimal KF

solution. Furthermore, one cycle may include multiple windows, hence if the scaling factors representing the different windows

are not correlated in time with each other, the DOF for the cycle is equal to the DOF for a single window multiplied by the545

number of lags. Conversely, if the scaling factors are fully correlated in time, the DOF for the cycle should be equal to the DOF

for a single window.

3.3.7 Degrees of freedom for signal (DOFS)

The degrees of freedom for signal (DOFS) quanti�es the amount of independent information that can be extracted from the

observations to constrain the variables being optimized (Rodgers, 2000). Consequently, higher DOFS leads to more robust550

estimates. In a general inversion framework, the DOFS is necessarily smaller than min(n, p). Additionally, with ensemble

methods, it cannot exceed the ensemble size without using localization (Hotta and Ota, 2021).

It can be shown that the DOFS is equal to the trace of the so-calledaveraging kernel matrixA (Brasseur and Jacob, 2017;

Rodgers, 2000), which is de�ned by,

A =
@x a

@x t =
@x a

@y o

@y o

@x t = KH (44)555

This matrix represents the sensitivity of the analysis control vector to the true control vector. In an ideal scenario with a perfect

observation network,A would be equal toI n . While the EnSRF algorithm helps avoid explicit computation of the observation

operatorH , it also prevents the derivation ofA . To circumvent this problem, we also introduce the so-calledin�uence matrix

So (Cardinali et al., 2004), which is de�ned by,

So =
@y a

@y o =
@y a

@x a

@x a

@y o = K TH T (45)560
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This matrix represents the sensitivity of the optimized simulated values to the observations. Large diagonal elements (i.e., close

to 1) indicate that each observation provided a strong constraint for the corresponding optimized simulated value, compared to

the background and the other observations. Using the properties of the trace operator Tr(:), we have

DOFS= Tr(A ) = Tr(KH ) = Tr(HK ) = Tr((HK )T) = Tr(K TH T) = Tr(So) (46)

We do not explicity computeH with the EnSRF, therefore we need another way to computeSo. Using Eq. (8), Eq. (9) and565

Eq. (10), we can show that,

P a = ( B � 1 + H TR � 1H ) � 1 (47)

Using this result, we obtain another formulation forSo,

So = K TH T (48)

= R � 1H (B � 1 + H TR � 1H ) � 1H T (49)570

= R � 1HP aH T (50)

It shows that the in�uence matrix is equal to the posterior error covariance matrix mapped onto the observation space and

normalized by the observation error covariance matrix. It follows that,

DOFS=
1

N � 1
Tr(R � 1H (X 0a)(X 0a)TH T) (51)

=
1

N � 1
Tr(R � 1(Y 0a)(Y 0a)T) (52)575

This formulation enables an easy computation of the DOFS with the EnSRF (Kim et al., 2014a) at the end of the inversion and

after each cycle.

4 Demonstration with synthetic experiments

To demonstrate the successful implementation of the new EnSRF method in CIF and the in�uence of the most important

parameters, we present inversion results obtained with different con�gurations. All examples are synthetic experiments, i.e.580

inversions assimilating only synthetic observations generated with the CTM and perturbed stochastically. These experiments

aim to provide useful guidelines for future inversions utilizing the EnSRF mode of CIF. Furthermore, we intend to identify

elements that could have improved the initial real-data CIF-EnSRF inversions presented in Berchet et al. (2023), which were

performed as part of the EU Horizon 2020 CoCO2 project. For this purpose, we maintain consistency by performing CO2

inversions and using the same input data. All experiments in this study cover a two-month period, from 1 June 2018 to 31 July585

2018. In addition to these experiments, we also provide in Appendix B a comparison between two inversions with identical

setups, one performed with CTDAS and the other with CIF, demonstrating the near-equivalence of the two frameworks.
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4.1 Con�guration of forward simulation

4.1.1 ICON-ART model

The Icosahedral Nonhydrostatic (ICON) Weather and Climate Model (Zängl et al., 2015) is a joint project between the590

Deutscher Wetterdienst (DWD), the Max-Planck-Institute for Meteorology (MPI-M), the Deutsches Klimarechenzentrum

(DKRZ) and the Karlsruhe Institute of Technology (KIT) for developing a uni�ed next-generation global NWP and climate

modeling system. The ICON modeling framework became operational in DWD's forecast system in January 2015. Addition-

ally, ICON is being deployed for numerical forecasting for the Swiss meteorological service, MeteoSwiss. ICON has been

released in February 2024 as open source to broaden the community of users and developers. The Aerosols and Reactive Trace595

gases module (ART), developed and maintained by KIT (Schröter et al., 2018; Rieger et al., 2015), supplements ICON to form

the ICON-ART model, by including emissions, transport, gas phase chemistry, and aerosol dynamics in the troposphere and

stratosphere.

ICON-ART is a non-hydrostatic Eulerian CTM. Its horizontal domain is described by an icosahedral grid and can cover

either the globe or a limited area, ranging from several degrees to a few kilometers. For this work, a horizontal resolution of 52600

km (� 0.7 °) is adopted for the geographical area covering Europe (15° W – 35° E ; 33° N – 73° N), resulting in a total number

of c = 5520 cells. In the vertical, the domain extends from the surface to an altitude of 23 km, with 60 levels described by a

height-based terrain-following vertical coordinate. A coarse resolution is used here to demonstrate the new system and conduct

numerous sensitivity tests. Finer horizontal resolutions, up to 13 km, have already been successfully tested with ICON-ART.

Meteorological �elds are computed online by the ICON model and, in our setup, several prognostic variables (wind speed,605

speci�c humidity, density, virtual potential temperature and Exner pressure) are weakly nudged towards the ERA5 reanalysis

data (Hersbach et al., 2023, 2017) provided by the ECMWF at a 3-hourly time resolution. This prevents the model from drifting

away from a realistic atmospheric state. The ERA5 data is also employed to initialize the model. For the limited-area mode,

boundary conditions can be prescribed at the borders of the domain using external data. Emission �elds for any transported

species are processed by the Online Emissions Module (OEM, Jähn et al., 2020), included in ART. Output �les of instantaneous610

concentrations are written at hourly resolution and are temporally, vertically and horizontally interpolated of�ine in order to

retrieve simulated equivalents of observations.

4.1.2 Input data

Anthropogenic �uxes

615

Anthropogenic CO2 �uxes are based on the spatial distribution of the EDGAR-v4.2 inventory and on national and annual

budgets from BP (British Petroleum) statistics. Hourly temporal pro�les are derived with the COFFEE approach (Steinbach

et al., 2011, available on the ICOS Carbon Portal). The data is provided at a horizontal resolution of 0.1°� 0.1° and at hourly

temporal resolution.

620
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Biogenic �uxes

Biogenic CO2 �uxes are derived from ORCHIDEE simulations using two sets of simulations: global simulations from the

TRENDY project and higher-resolution simulations from the VERIFY project over Europe. While the latter is used for the

region covering (25° W – 45° E; 35 – 73° N), the former allows to extend the domain and cover the full region of interest.625

More details can be found in Berchet et al. (2023).

Ocean �uxes

Ocean CO2 �uxes are derived from a hybrid product that combines the University of Bergen coastal ocean �ux estimate with630

the global ocean estimate from Rödenbeck et al. (2014). This data is available at a horizontal resolution of 0.125°� 0.125°

and a daily temporal resolution.

Background concentrations

635

Initial conditions and lateral boundary conditions for CO2 mole fractions are derived from the CAMS global inversion-

optimized CO2 concentrations product v20r2 (Chevallier et al., 2010). The data is provided at a horizontal resolution of 3.75°

� 1.9° and at a 3-hourly temporal resolution.

Observations640

We assimilate synthetic observations matching the observed CO2 atmospheric mixing ratios in Europe compiled in the ver-

sion V8 of the ICOS GlobalView Obspack (ICOS RI et al., 2023). This dataset comprises continuous measurements collected

from 58 stations across Europe, including both ICOS and non-ICOS facilities. For the period spanned by our experiments,

data from 45 stations are available, as depicted in Fig. 2, and speci�c information about each observation site is provided in645

Table D2. The number of synthetic observations to assimilate (p) is equal to 12,277.

4.1.3 Generation of synthetic data

To create synthetic observations, we �rst generate a set of scaling factors for each cell of the ICON domain (c = 5520 cells)

using the method described in Section 3.1.1. The background-error covariance matrix (of dimensionc� c) used for generating

the true scaling factors has diagonal elements (variance) equal to 1 (relative variance of 100 %), and the off-diagonal elements650

(covariance) are calculated based on an exponential decay with a correlation length of 200 km. The resulting scaling factors are

shown in Fig. 3a. Perturbed �uxes representing the truth are then obtained by applying these scaling factors to the respiration

�uxes, while keeping other �uxes unperturbed (i.e. scaling factors are equal to 1). It is important to note that, for the sake of
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Figure 2. Locations of stations assimilated in the synthetic experiments. The purple range shows the observational error prescribed for each

station. Background obtained from Natural Earth.

simplicity, the true scaling factors have no time component, and therefore we assume the perturbation to be constant over time.

Finally, we run a forward simulation over the two-month period with the perturbed �uxes.655

After this forward simulation, the simulated values matching the assimilated observations are stored. These simulated values

are then treated as the new observations to be assimilated in the experiments presented in the next section. However, to mimic

realistic uncertainty in these observations, we perturb them with random values drawn from a Gaussian distribution with a

mean of 0 and a standard deviation equal to the observation error calculated for each original observation (see Fig. 2). Note

that the resulting observation errors are therefore uncorrelated.660

4.2 Description of experiments

We categorize the experiments into two groups testing different parameters, LEVEL1 and LEVEL2.
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Figure 3.Computation of error reduction for N200L600, which is adopted as the control experiment for all families in LEVEL2 experiments.

a) True scaling factors used to generate the synthetic observations. b) Posterior scaling factors obtained with N200L600 averaged over the

full assimilation window. c) Error reduction for each cell. d) MER calculated for each country. This subplot is created by setting each cell's

value in a speci�c country to the MER calculated over the country. Prior, posterior and true �uxes are displayed in Fig. D2.
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4.2.1 LEVEL1 experiments

The LEVEL1 group exclusively assesses the impact of the number of samples and the localization length, recognizing these as

critical parameters. We conduct 20 inversions, denoted as NiLj , wherei={50, 100, 200, 300} represents the number of sam-665

ples, andj ={200,600,1000,1500,none} indicates the localization length in kilometers. For example, N200L600 corresponds to

an inversion executed with 200 samples and a localization length of 600 km. N100Lnone corresponds to an inversion executed

with 100 samples but without localization. For each inversion of the LEVEL1 group, the common con�guration is provided in

Table 1. Over Europe, most of the air is �ushed out of the domain within approximately 10–20 days. As a result, propagating

information from local sources beyond 20 days into the future is unnecessary when performing inversions over Europe. How-670

ever, observations at the beginning of a window are also sensitive to the emissions in the previous window. Selecting at least

two lags ensures this in�uence is considered. We therefore select a window length of 10 days, providing three optimized values

per month, and set a nlag value of 2 to balance computational ef�ciency and accuracy. The sensitivity to the number of lags is

tested in LEVEL2 experiments. Results of LEVEL1 experiments are presented and discussed in Sect. 4.3.

4.2.2 LEVEL2 experiments675

In the LEVEL2 group, we explore eight additional families of experiments, each denoted by a capital letter, where we test the

sensitivity of the EnSRF algorithm to other parameters:

A. We alter the seed used to generate the ensemble to study the impact of randomness on the results.

B. We vary the number of lags.

C. We adjust the propagation factor.680

D. We experiment with different localization functions, including exponential, Gaussian, Heaviside, or GC99. All exper-

iments in this family are performed with a localization length of 600 km except for the GC99 case. We observed that

the GC99 function is extremely similar to the Gaussian function when the localization length is multiplied by 1.78 (see

Figure C1). We therefore use a localization length of 600� 1.78 = 1068 km to investigate this similarity.

E. We apply either partial localization or full localization.685

F. We adjust the mean and variance of the ensemble or not.

G. We set the prior deviations for all windows equal or not.

H. We employ either the serial or the batch EnSRF algorithm.

The LEVEL2 experiments are labeled as EXP_p_v, wherep={A, B,..., G, H} is a capital letter representing the tested

parameter (i.e. the family), andv represents the value of this parameter. For each family, control experiments are already690

performed in the LEVEL1 group. Consequently, while the LEVEL2 group comprises 26 experiments, only 16 of them need to
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be run in addition to the LEVEL1 group. For running inversions with ICON-ART, an ensemble size of 200 is typically employed

to balance computational cost and inversion quality (Steiner et al., 2024). As the best LEVEL1 results with this ensemble size

are obtained with a localization length of 600 km, N200L600 is adopted as the control experiment for all families. Some

families also feature experiments with a smaller ensemble size when deemed relevant. A summary of all LEVEL2 experiments695

is presented in Table 2 and results are discussed in Sect. 4.4.

Table 1. Description of LEVEL1 experiments. The last column provides the common con�guration that all experiments of the LEVEL1

group share. Table D1 provides the amount of CPU hours used to perform these experiments.

Name Number of samples Localization length (km) Other parameters

NxLy x={50, 100, 200, 300}
y={200, 600, 1000, 1500, none}

`none' means no localization is applied.

� Window length = 10 days

� Number of lags = 2

� Single propagation factor =23
� Localization function = Gaussian function

� Horizontal correlation length in the B matrix = 200 km

� Random seed for generating samples = 1000

� Prior deviations set equal for all windows

� Mean and variance of the ensemble not adjusted

4.3 LEVEL1 results

We explore the impact of ensemble size and localization on our ability to accurately determine the true scaling factors. Since

these sensitivities have already been explored extensively in previous EnSRF studies (e.g., Peters et al., 2005), our objective is

to validate that our system can produce results consistent with existing literature.700

Figure 3 illustrates the process of calculating the ER and MER for each country in Europe, based on the true and posterior

scaling factors, and the prior �uxes. The ER can exhibit strong spatial heterogeneity for two main reasons. First, the spatial

distribution of posterior scaling factors is generally smoother than that of the true scaling factors because the constraints

provided by surface observations are insuf�cient to fully capture the spatial variability of the true scaling factors. Second,

when �uxes within a region are spatially non-uniform, the system has dif�culty distinguishing low-�ux cells from high-�ux705

cells. This limitation can result in large relative errors for cells with low �uxes. The MER reduces the in�uence of errors

associated with low �uxes, providing a reliable estimate of how accurately the cells within a country can be evaluated by the

system.

Figure 4 illustrates the MER calculated for each country for every LEVEL1 experiment. Across experiments with the same

localization length, those with larger ensemble sizes tend to yield scaling factors that align more closely with the true values.710

For instance, N300Lnone achieves a MER of 13.9 %, whereas N50Lnone exhibits a notably lower value of -21.9 %. Moreover,

within experiments sharing the same ensemble size, shorter localization lengths generally yield better results by neglecting

long-distance correlations. This localization effect is particularly pronounced in scenarios with smaller ensemble sizes, as
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Table 2.Description of LEVEL2 experiments. Apart from the parameters described in this table, the LEVEL2 experiments all share the same

con�guration. 1 For each of then optimized variables, an average across theN samples is calculated. A distribution of ensemble averages

is therefore created. The values presented here represent the mean and standard deviation computed over this distribution.2 Same as before

but the distribution is made with the variance over theN samples, for each optimized variables.

Name Number of samples Localization length (km) Sensitivity parameters

EXP_A_1 200 600 Random seed for generating samples = 1000

EXP_A_2 200 600 Random seed for generating samples = 2000

EXP_A_3 200 600 Random seed for generating samples = 3000

EXP_B_1 200 600 Number of lags = 1

EXP_B_2 200 600 Number of lags = 2

EXP_B_3 200 600 Number of lags = 3

EXP_C_0 200 600 Single propagation factor = 0

EXP_C_1 200 600 Single propagation factor =13
EXP_C_2 200 600 Single propagation factor =23
EXP_C_3 200 600 Single propagation factor = 1

EXP_D_e 200 600 Localization function = exponential

EXP_D_g 200 1068 Localization function = GC99

EXP_D_h 200 600 Localization function = Heaviside

EXP_D_n 200 600 Localization function = Gaussian

EXP_E_f 200 600 Full localization

EXP_E_p 200 600 Partial localization

EXP_F_f1 50 600
Adjusting the mean and variance of the ensemble = False

1Means = 1.00� 0.15 /2Variances = 0.98� 0.20

EXP_F_t1 50 600
Adjusting the mean and variance of the ensemble = True

1Means = 1.00� 0.00 /2Variances = 1.00� 0.00

EXP_F_f2 200 600
Adjusting the mean and variance of the ensemble = False

1Means = 1.00� 0.07 /2Variances = 1.00� 0.10

EXP_F_t2 200 600
Adjusting the mean and variance of the ensemble = True

1Means = 1.00� 0.00 /2Variances = 1.00� 0.00

EXP_G_f 200 600 Force same prior deviations = False

EXP_G_t 200 600 Force same prior deviations = True

EXP_H_b1 200 None Type of optimization = Batch

EXP_H_s1 200 None Type of optimization = Serial

EXP_H_b2 200 600 Type of optimization = Batch

EXP_H_s2 200 600 Type of optimization = Serial

evidenced by the improvement from -21.9 % to 23.3 % with 50 samples. Countries near observing sites, such as those in

Western and Central Europe, bene�t from a reduced localization length, regardless of the number of samples. However, when715

the number of samples is reasonable, decreasing the localization length below a certain threshold can start �ltering out relevant
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