
 

Response to Referees' Comments 
 
 
Joël Thanwerdas1, Antoine Berchet2, Lionel Constantin1, Aki Tsuruta3, Michael Steiner1, Friedemann Reum4, Stephan 
Henne1, and Dominik Brunner1 

 

1Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland. 
2Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQ, IPSL, Gif-sur-Yvette, France. 
 3Finnish Meteorological Institute (FMI), Helsinki, Finland  
4 Deutsches Zentrum für Luft- und Raumfahrt e.V., Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany 

 
We thank the two referees for their invaluable insights, which have greatly enhanced the quality of the paper. 
We provide here a comprehensive response to the comments received. Referee#1 (Arne Babenhauserheide)'s 
comments are in red and Referee#2's comments are in blue. For each comment, an answer is provided in 
normal text and the modifications from the new version of the manuscript are provided in bold and small text. 
 
Attached to this response, we also provide the new version of the manuscript and a track-changes document. 
 
 

Specific comments 

Abstract 

- L 5: "more efficient implementation": Table D1 shows a benchmark of the new code. Is there a benchmark of 
the old code to support this description? 

 

Unfortunately no, there is no benchmark of the old code. For real-data inversions, a horizontal resolution of 26 
km over Europe is commonly used (21,344 cells). With this resolution, ICON-ART could not be used with a 
reasonable number of samples (i.e. > 50) with the old code due to a bad management of memory. 

We slightly changed this sentence in the abstract to make it more accurate. 

 
In this paper, we present and evaluate a new implementation of the ensemble mode, building upon the initial 
developments.  

 

- L 15: what does ICON-ART bring as advantage? Why does this use ICON-ART? It is in the title, so it should be 
in the abstract. 

While the ICON-ART model is highlighted in the manuscript title, it is not mentioned in the abstract or intro-
duction. It might be helpful to include at least a brief mention of ICON-ART in these sections. 
 
As these questions are similar, we answer both of them here. These new developments started when the need 
to run the CIF with ICON-ART and WRF-CHEM became more pressing in the EU Horizon 2020 project CoCO2. 



 

As ICON-ART and WRF-CHEM are typically used with ensemble methods and adjoints are difficult to code and 
maintain, the ensemble mode in the CIF needed to be improved.  
ICON-ART is a very flexible and scalable non-hydrostatic atmospheric transport model, which can be run from 
global to local scales and which offers advanced features such as flexible (including two-way) nesting and 
perfect local mass conservation. For the purpose of this study, however, any other CTM could have been used, 
such as WRF-CHEM. 
Also, GMD is requesting authors to provide the name of the model in the title in a "development and technical 
paper". It is stated that: "If the main intention of an article is to make a general (i.e. model independent) statement 
about the usefulness of a new development, but the usefulness is shown with the help of one specific model, the 
model name and version number must be stated in the title". If this request was not clearly formulated, we would 
have chosen to remove it from the title.  
We added some details about ICON-ART in the abstract and the introduction. 
 
Abstract: Finally, we demonstrate the capabilities of the CIF-EnSRF system using a large number of synthetic ex-
periments over Europe with the flexible and scalable high-performance atmospheric transport model ICON-ART, 
exploring the system’s sensitivity to multiple parameters that can be tuned by users. 
 
Abstract:  This work complements previous efforts focused on other inversion methods within CIF. While ICON-
ART has been used for testing in this work, the integration of these new ensemble algorithms enables any chemical 
transport model (CTM) to perform inversions, fully leveraging CIF's robust capabilities. 
 

Introduction: This method therefore needed improvements, which were initiated when performing CO2 inversions 
with CIF using different models and inversion setups as part of the Horizon 2020 CoCO2 project (Berchet et al., 
2023). The model ICON-ART (Zängl et al., 2015; Rieger et al., 2015), described in Sect. 4.1.1, was one of these 
models. It is utilized here to showcase the capabilities of the new ensemble method in CIF. 
 
 

Introduction 

- L 39: very nice description! (nothing to change, just a note) 

Thanks a lot! 

 

- L 74: please add a short overview of numerical weather prediction (NWP), tracer models, ICON, and ART. The 
reports on ICON may be a good resource; either to cite relevant reports, or to add a link in a footnote:  
https://www.dwd.de/DE/leistungen/reports_on_icon/archiv/archiv_reports_on_icon.html. Maybe note that 
more details are provided in 4.1.1. 

 

Following the previous comment about including ICON-ART in the introduction, we added a short sentence 
about ICON-ART in this introduction, addressing the previous comment about mentioning the model in this 
part. As the referee stated, we note that more details are provided in Sect. 4.1.1. Our focus is on our novel 
developments in CIF, not least because - as mentioned above – our method can be used with many transport 
models. Therefore, while understanding NWP and tracer models is important for our field, we believe the brief 
overview about data assimilation methods in the introduction is sufficient for the purpose of our paper. Also, 



 

we feel that the ICON reports the referee has suggested to cite are highly technical and not suitable for a 
general overview about NWP and tracer models. We prefer mentioning the main references of ICON and ART 
which also introduce very well the concepts of NWP and tracer models. 

 

Introduction: This method therefore needed improvements, which were initiated when performing CO2 inversions 
with CIF using different models and inversion setups as part of the Horizon 2020 CoCO2 project (Berchet et al., 
2023). The model ICON-ART (Zängl et al., 2015; Rieger et al., 2015), described in Sect. 4.1.1, was one of these 
models. It is uti-lized here to showcase the capabilities of the new ensemble method in CIF. 

Section 2.2 

- L 178: what happens in case of nonlinear effects like OH-destruction of CH4? This is not a problem, but should 
be noted. 

If OH concentrations are not optimized (i.e., included in the control vector) the observation operator H is still 
linear and the same Kalman Filter (KF) equations can be applied. If OH concentrations are optimized, then the 
observation operator H is nonlinear. In this case, KF equations cannot be applied the way it is described in the 
paper. One needs to use an extended Kalman filter as mentioned in line 121, in section 2.1. With this filter, the 
observation operator needs to be linearized around the background control vector.  

We added these considerations in Sect. 2.1, where the extended Kalman Filter is introduced, rather than in Sect 
2.2. Additionally, we removed the mention of H being linear in Sect. 2.3.2, as it is implicitly assumed that H is 
linear when applying these equations. 

 

Sect. 2.1: For inversion applications, this filter consists simply in linearizing H around the background control vector 
to be able to apply the KF equations. For example, consider a scenario in which CH4 is transported by the CTM, and 
its reaction with OH, the primary CH4 sink, is included in the model. If both CH4 emissions and OH concentrations 
are treated as optimized variables (i.e., included in the control vector), the observation operator becomes nonlinear. 
In this case, the observation operator must be linearized before applying the KF equations. However, if OH con-
centrations are not included in the optimization process, the observation operator remains linear, allowing the 
implementation of the KF.    

 

Section 2.3.2 

 

- L 218: “R matrix is diagonal”: for which observations is this true? What’s the scale of weather patterns? 

We are aware that the scale of synoptic weather patterns can be thousands of kilometers. Consequently, ob-
servation errors cannot be reasonably assumed to be uncorrelated over regions like Europe. However, this 
assumption is regularly used in GHG inversion studies, to simplify the inversion of the R matrix and because 
deriving the correlations between observation errors using statistical methods is challenging. If observation 
errors are correlated, several approaches can be employed to remove or mitigate the error correlations: (1) use 
another space of variables where the error covariance matrix R becomes diagonal, (2) average (temporally or 
spatially) the observations as often done for satellite observations, or (3) apply error inflation, as described in 
Chevallier et al. (2007). Additionally, observations with correlated errors can be processed using the batch 
EnSRF as an alternative. Based on this response, we added some information to the text.  
 



 

Section 2.3.2: If observation errors are correlated, several approaches can be employed to remove or mitigate the 
error correlations: (1) use another space of variables where the error covariance matrix R becomes diagonal, (2) 
average (temporally or spatially) the observations as often done for satellite observations, or (3) apply error infla-
tion, as described in Chevallier et al. (2007). Additionally, observations with correlated errors can be processed 
using the batch EnSRF as an alternative. 

  

- P6, L160: The dimensions [n×N] should follow Z, not B, as B has dimensions [n×n]. 

Yes, indeed, it's a mistake. The square brackets should be near Z and not at the end of the sentence. Thanks a 
lot for spotting this! It has been corrected. 

Section 3.1.1 

 

- L 293: nlag 2: please note below this the reason for using nlag 2. Also maybe reference the results from Table 
3. Maybe also the benchmark in Table D1. 

 

We acknowledge that this information was missing. To address it, we added further details about using multiple 
lags at the beginning of Section 3.1 and included references to Table 3 and Table D1. We chose not to modify 
Section 3.1.1, as the values presented there serve only as an illustrative example. Although these values are 
identical to those used later in the experiments, we believe it is more appropriate to provide their justification 
in Section 4.2.1, where the synthetic experiments are introduced. 

 
Beginning of section 3.1: A larger number of lags 1) increases the computational cost but 2) may enhance the 
accuracy if emissions in the present window do not only affect the observations in the present but also in subse-
quent windows. These two statements are confirmed later by the synthetic experiments (see Table D1 and Table 3, 
respectively). One of the challenges in this inversion process is effectively managing the trade-off between the 
window length, the number of lags, and the computational cost. 

 

Section 4.2.1: Over Europe, most of the air is flushed out of the domain within approximately 10–20 days. As a 
result, propagating information from local sources beyond 20 days into the future is unnecessary when performing 
inversions over Europe. However, observations at the beginning of a window are also sensitive to the emissions in 
the previous window, hence it is important to select at least two lags. We therefore select a window length of 10 
days, providing three optimized values per month, and set a nlag value of 2 to balance computational efficiency 
and accuracy. 

 

- L 311: “eigenvalues and eigenvectors are already computed”: how well does this scale? Is there a practical 
limit to the model resolution due to this inversion? Also maybe reference Table D1 (it shows that CIF perfor-
mance is not the bottleneck). 

We added a paragraph introducing the complexity of the eigenvalues computation and the generation of 
random vectors and how well they are scaling. As mentioned by the referee and as shown in Table D1, these 
steps are generally not the primary bottleneck in computational time, with CTM simulations being significantly 
more time-consuming. We have not reached a limit to the model resolution yet with our new code. However, 



 

as generating the ensemble has a complexity of O(n2), doubling the resolution might become overwhelming 
in the future and we will maybe have to think about parallelizing further these specific operations.  

 

Section 3.1.1: The computation of eigenvalues is performed using the linalg.eigh function from the NumPy Python 
package, which has a computational complexity of O(n3). However, performing the decomposition of B via Kron-
ecker products reduces this complexity to approximately O(s3), where s represents the number of variables to op-
timize within a single window. In contrast, the generation of random vectors has a complexity of O(n2) and can be 
computationally demanding at the start of the inversion, particularly for inversions spanning long periods. For 
typical real-data cases, such as a one-year inversion with a spatial resolution of approximately 0.25° over a domain 
like Europe, these two steps may take one to two hours to complete. However, as shown in Table D1, these steps 
are generally not the primary bottleneck in computational time, with model simulations being significantly more 
time-consuming. 

 

- L 338: it is not clear whether the ensemble in the runs in the publication is generated from the B matrix. Please 
note explicitly whether it is or why it is not. 

 

We agree and we slightly modified the text to make it clearer. 

 

Section 3.1.1: In CIF, we employ the second method since the eigenvalues and eigenvectors of the B matrix are 
automatically computed when the YAML configuration file is read. Therefore, we first generate an ensemble of 
random vectors zi that each follow a multivariate Gaussian distribution N(0, In) and then apply the formula 
QΛ1/2QTzi +xb for each vector using Kronecker products to obtain random vectors that follow the distribution N(xb, 
B). 

 

Section 3.1.2 

 

- L 356 to 358: this part is hard to understand. Suggestion: “for window 2 of the full period, this is the second 
time it is optimized from the observations.” 

Thanks for the suggestion, we applied it with slight modifications. 
Scaling factors corresponding to the second cycle are optimized using the observations in the third window. Note 
that the scaling factors of the second window are optimized for the second time, after having already been opti-
mized in the first cycle using the observations from the second window. 

 

- Figure 1 is beautiful and clear! 

Thanks a lot! 

 

- L 361: why “nlag + 1”? The diagram only seems to show nlag. 

Note that the posterior forward simulation must also be taken into account, leading to nlag + 1 simulations. 
For instance, for window 2, there is the prior 1, prior 2 and posterior 2, so three forward simulations spanning 
the window 2 in total. We modified the text. 



 

 
Each window is simulated nlag+1 times (nlag priors and one posterior). 

 

- L 362 to 363: this note may be better placed at the examples, 3.1.1 at line 294. 

We agree and put this information rather at the beginning of Sect. 3.1.  

 

Beginning of section 3.1: A larger number of lags 1) increases the computational cost but 2) may enhance the 
accuracy if emissions in the present window do not only affect the observations in the present but also in subse-
quent windows. These two statements are confirmed later by the synthetic experiments (see Table D1 and Table 3, 
respectively). One of the challenges in this inversion process is effectively managing the trade-off between the 
window length, the number of lags, and the computational cost. 

 

Section 3.2 

 

- L 405: “a wealth of” this is marketing language. Please give a short abstract of the features instead. 

 

We agree and have decided to remove it. However, we prefer not to include an abstract here, as the features 
are described immediately afterward, making an abstract somewhat redundant. 

 

Section 3.2.1 

 

- L 417: is it possible to quantify how much was possible before and how big simulations could be used before 
and how big they can be now? Maybe rough, like “Factor X”? 

We agree this is important and we added some rough estimation. 

 
CIF is now capable of easily performing complex operations for more than 500 samples in a few minutes, compared 
to roughly 50 samples before. 

 

Section 3.3.3 

- eq 39 (line 479): if J(xa) is 0, this is 1. Are higher values better? 

 

Yes, higher values means that the cost function have been better reduced. However, J(xa) cannot be equal to 
0. There is necessarily a cost. We added some details. 

 
The optimal solution derived by the EnSRF minimizes the cost function defined in Eq. (5). To quantify this, we define 
the cost function reduction (CFR), 



 

CFR = 1 − J(xa)/ J(xb)  

A larger CFR indicates a greater reduction in the cost function. 

 

Section 4 

In Section 4, a series of synthetic experiments for CO2 flux inversion were conducted to demonstrate the per-
formance of the CIF-EnSRF method. In Appendix B, the authors conduct a further comparison with CTDAS, but 
this time they selected the synthetic inversion of CH4. There are some notable differences between CH4 and 
CO2 flux inversions; for example, the assimilation module for CH4 flux inversion involves generating separate 
perturbations for natural and anthropogenic emission categories from the B matrix, which is not the case for 
CO2. Could you clarify why CO2 flux inversion experiments were used earlier, but in Appendix B, CH4 flux 
inversion experiments were chosen for comparison instead of continuing with CO2 flux inversion? 

 

We agree that this was unclear. Work on the present study began in the context of the EU Horizon 2020 project 
CoCO2, a project dedicated to inverse modeling of CO2. Before this work, ICON-ART inversions were conducted 
exclusively with CTDAS (Steiner et al. 2024), but those inversions were performed for CH4. For practical reasons, 
we decided to perform the comparison for the same setup (with CH4) as used in the study of Steiner et al. 
(2024). 

 

These explanations have been incorporated into the paper. 

 

Introduction: This method therefore needed improvements, which were initiated when performing CO2 inversions 
with CIF using different models and inversion setups as part of the Horizon 2020 CoCO2 project (Berchet et al., 
2023).  

 

Beginning of section 4: Furthermore, we intend to identify elements that could have improved the initial real-data 
CIF-EnSRF inversions presented in Berchet et al. (2023), which were performed as part of the EU Horizon 2020 
CoCO2 project. For this purpose, we maintain consistency by performing CO2 inversions and using the same input 
data. 

 

Appendix B: Before this work, ICON-ART inversions were conducted exclusively with CTDAS (Steiner et al., 2024), 
but those inversions were performed only for CH4. As mentioned in Sect. 3.2.2, it is straightforward to switch from 
one species to another in CIF. We therefore selected the reference synthetic inversion (case 1) of CH4 fluxes over 
Europe performed by Steiner et al. (2024) with CTDAS-ICON-ART and aimed to replicate it precisely with CIF-ICON-
ART. The complete setup of the CTDAS-ICON-ART inversion is detailed in Steiner et al. (2024), hence we only outline 
the main components of the configuration here: 

… 

We applied the exact same setup for the CIF inversions. Additionally, the same ensemble (i.e., same ensemble size 
and same sample values) was employed in both inversions to eliminate the influence of randomness. We also en-
deavored to replicate the post-processing of ICON outputs (i.e., time, horizontal and vertical interpolations) as 
closely as possible in CIF. 

 



 

Section 4.1.1 

 

- line 569: are higher resolution possible with this implementation? For example 6.5km? This might significantly 
improve the possible gains from high frequency column measurements. Are there boundary conditions for the 
Europe area? 

We have already successfully tested a resolution of 13 km and we will test a resolution of 6.5 km with the new 
GPU code of ICON-ART in a few months. We can think of four potential major bottlenecks if the size of the 
control vector is too high: 1) the eigenvalues and eigenvectors will take too much time to be calculated, 2) the 
ensemble will take too much time to be generated if there are any spatial correlations to consider, 3) the 
memory of the compute node will be overwhelmed before the number of samples in the ensemble is high 
enough or/and 4) the post-processing of model output data will take too much time. However, we believe 
none of these bottlenecks will appear at a resolution of 6.5 km, especially on supercomputers with large 
memory and powerful computed nodes such as the new Alps system at the Swiss supercomputing center CSCS. 
Furthermore, it is also still possible to reduce n by optimizing emissions for batches of cells, rather than for 
individual cells.  

Boundary conditions for Europe are usually provided by the CAMS products for CO2, CH4 and N2O, which are 
derived from global inversions at coarse resolutions (see Sect. 4.1.2). The boundary conditions could also be 
derived directly from the measurements. 

 

We added some information in the text. 

 

Section 4.1.1: Although a coarse resolution is used here to demonstrate the new system and conduct numerous 
sensitivity tests, finer horizontal resolutions, up to 13 km, have already been successfully tested with ICON-ART. 

Section 4.1.3 

P24, Figures 3a and 3b show the map of the true and posterior scaling factors. However, I have a question: why 
not include a comparison of the maps for the prior, posterior, and true fluxes, as flux maps could provide a 
more direct view of their spatial distribution? Additionally, are the values of the prior scaling factors equal to 
1? 
  

We chose to present the scaling factors in the paper because they are much easier to compare than the fluxes. 
Below, we provide the prior, posterior, and true fluxes so the referee can form his/her own opinion. With scaling 
factors, we can more easily see the modification patterns and the spatial correlations (batches of colors). 

Additionally, presenting the fluxes would require five subplots instead of four, which we believe would make 
the figure less clear and more cluttered. This choice prioritizes clarity and practicality in the presentation. We 
have decided to include the figure below as supplementary figure (Figure D2) in the new version so readers 
can also access the fluxes themselves. 

And yes, the values of the prior scaling factors are all equal to 1 here. But prior values can be selected by users 
in CIF. We have slightly modified the text in Section 4.1.3 to make it clearer. 

 



 

Perturbed fluxes representing the truth are then obtained by applying these scaling factors to the respiration 
fluxes, while keeping other fluxes unperturbed (i.e. scaling factors are equal to 1). 

 

 
 

Section 4.2.1 

 

- Figure 3: please note that this is the best result from the LEVEL 1 comparison. 

No, the best result is not necessarily N200L600 for all countries. N300L600 can show better MER, as shown in 
Figure 4 and new Table D3. As explained in Sect. 4.2.2, an ensemble size of 200 is typically employed for running 
inversions with ICON-ART, in order to balance computational cost and inversion quality (Steiner et al., 2024). 
As the best LEVEL1 results with this ensemble size are obtained with a localization length of 600 km, N200L600 



 

is adopted as the control experiment for all families. We slightly modified the caption of Figure 3 to explain 
why N200L600 is shown here. 

 

Figure 3: Computation of error reduction for N200L600, which is adopted as the control experiment for all families 
in LEVEL2 experiments.  

 

- Figure 3: please add more explanation to these results. Why are the neighboring cells so different in the error 
reduction (c)? Also please provide a table with the values of d (the clearest result) so readers can quantitatively 
compare the error reduction per country. 

 

We agree that the analysis of Figure 3 needed improvement. To address this, we added a detailed paragraph 
in Section 4.3 focusing on Figure 3 and explaining the reasons behind the significant differences between 
neighboring cells. Additionally, as requested, we included Table D3, which provides the MER for all EU27 coun-
tries, as well as Switzerland, the UK, and Norway. 

 

Section 4.3: Figure 3 illustrates the process of calculating the ER and MER for each country in Europe, based on the 
true and posterior scaling factors, and the prior fluxes. The ER can exhibit strong spatial heterogeneity for two 
main reasons. First, the spatial distribution of posterior scaling factors is generally smoother than that of the true 
scaling factors because the constraints provided by surface observations are insufficient to fully capture the spatial 
variability of the true scaling factors. Second, when fluxes within a region are spatially non-uniform, the system 
has difficulty distinguishing low-flux cells from high-flux cells. This limitation can result in large relative errors for 
cells with low fluxes. The MER reduces the influence of errors associated with low fluxes, providing a reliable esti-
mate of how accurately the cells within a country can be evaluated by the system. 

 

Section 3.3.1: Figure 3 illustrates an example of MER computation over Europe based on a set of prior, posterior 
and true scaling factors. 

 

Section 4.2.2 

 

- L 641: reference the results of this experiment in 3.1.1 to motivate why nlag 2 is used in the example. 

- Table 2: why is the maximum lag 3? Would lag 5 be possible? Which lags are used in current CTDAS runs? 
Reference Table D1. 

The experiment in Sect. 3.1.1 is intended solely as an illustrative example. While we could have used nlag=5, it 
was simpler to set nlag=2 for the purpose of creating Figure 1. In response to one of the referee’s earlier 
comments, we already updated Sect. 4.2.1 to explain the rationale for using two lags and why using more than 
three lags would be useless if the window length is set to 10 days. The number of lags in CTDAS (and CIF) really 
depends on the application. For global CO2 inversions, the number of lags can be 12 (Peters et al., 2005). For 
regional applications, the number of lags and the window length should be selected so the total length of a 
cycle does not exceed the typical residence time of air inside the domain.  



 

Note that Table D1 provides the amount of CPU hours used to perform LEVEL1 experiments and therefore has 
no relevance for Table 2, which describes LEVEL2 experiments. However, it has relevance for Table 1, which 
describes LEVEL1 experiments. We therefore included it in the caption of Table 1. 

 

Section 4.2.1: In particular, we use a window length of 10 days, with two lags, resulting in five cycles of 20 days 
each. Over Europe, most of the air is flushed out of the domain within approximately 20–30 days. As a result, 
propagating information from local sources beyond 30 days into the future is unnecessary when performing inver-
sions over Europe, but it is important to allow these sources to influence observations for at least 20 days. To 
achieve this, we select a window length of 10 days, providing three optimized values per month, and set a nlag 
value of 2 to balance computational efficiency and accuracy. The sensitivity to the number of lags is tested in 
LEVEL2 experiments. 

 

Table 1: Table D1 provides the amount of CPU hours used to perform these experiments. 

 

Section 4.2.2 and Table 2: In LEVEL2 experiment (F), the authors investigated the impact of adjusting the mean 
and variance of the ensemble on the inversion results. Please provide the values for the mean and variance of 
the ensemble in both the adjusted and unadjusted experiments, i.e., what were the mean and variance values 
used in Table 2 for EXP_F_f1* and EXP_F_t1*? Only by providing the specific data parameters and comparing 
the extent of their changes can the importance of this parameter be better demonstrated. 
 
We added the values to Table 2.  
 
Members of the ensemble (samples) are stored in a 2-dimensional array of dimension (N, n).  The first dimen-
sion of the array is the index of the sample (size N) and the second dimension is the index of the scaling 
factor/optimized variable (size n). In other words, there is one value per sample and per optimized variable. 
Adjusting the mean and the variance means that each scaling factor should have a mean of 1 and a variance 
of 1 over the N samples after the adjustment.  
 
In Table 2, we show the mean ± std of the two distributions represented by 1) the 1-d dimensional array (of 
dimension n) filled with the means calculated across the N samples and 2) the 1-d dimensional array (of di-
mension n) filled with the variances calculated across the N samples, respectively. 
 
We added these explanations to the caption of Table 2 and included the values in Table 2. We also removed 
the star symbols that we forgot to remove before submitting the manuscript. 
 
Table 2. Description of LEVEL2 experiments. Apart from the parameters described in this table, the LEVEL2 experi-
ments all share the same configuration. 1 For each of the n optimized variables, an average across the N samples is 
calculated. A distribution of ensemble averages is therefore created. The values presented here represent the mean 
and standard deviation computed over this distribution. 2 Same as before but the distribution is made with the 
variance over the N samples, for each optimized variables. 
 
EXP_F_f1  50  600  Adjusting the mean and variance of the ensemble = False 

1Means = 1.00 ± 0.15 / 2Variances = 0.98 ± 0.20 
 



 

EXP_F_t1  50  600  Adjusting the mean and variance of the ensemble = True 
1Means = 1.00 ± 0.00 / 2Variances = 1.00 ± 0.00 
 

EXP_F_f2  200  600  Adjusting the mean and variance of the ensemble = False 
1Means = 1.00 ± 0.07 / 2Variances = 1.00 ± 0.10 
 

EXP_F_t2  200  600  Adjusting the mean and variance of the ensemble = True 
1Means = 1.00 ± 0.00 / 2Variances = 1.00 ± 0.00 

 
 

 

 

Section 4.3 

 

- Figure 5, d: why does this show France, when the maps in Figure 4 show little change in MUR in France? It 
could be good to split out MUR from Figure 5 and add a set of plots for MUR in different countries. And give 
possible explanations of the differences. Portugal has no direct observations, but changes. MUR in UK also 
seems to change much more than in France. There are also countries in eastern Europe with bigger changes. 
Are these effects from being at the border of the simulated area? 

- Line 693: as above, see the maps in Figure 4. Other countries seem to show bigger changes than France. 

 

We address both comments in this response. 

 

It seems the referee may have confused the Mean Uncertainty Reduction (MUR) with the Mean Error Reduction 
(MER), which is the only metric shown in Figure 4. The MUR quantifies the reduction in posterior uncertainty 
relative to prior uncertainty, whereas the MER measures how closely the posterior emissions align with the true 
emissions. Importantly, the MUR is applicable to both synthetic and real-case experiments, while the MER 
applies only to synthetic experiments. Figure 4 presents the MER (both domain-total and country-totals), 
whereas Figure 5d displays the MUR. Therefore, we do not believe it would be relevant to split Figure 5d by 
country, as including the MUR for every country would not add meaningful insights. As described in Sect. 4.3, 
we highlight France in Figure 5d because, among the countries within the observation network, its metrics are 
most affected by changes in the number of samples and localization length. Specifically, the MUR over France 
clearly illustrates how the EnSRF tends to become increasingly overconfident in its solutions as the number of 
samples decreases. 

 

To provide additional clarity, we added Table D3, which presents the MER for most European countries and 
corresponds to the data shown in Figure 4. This table highlights that, among countries with an MER of at least 
20% in N200L600 (mainly those covered by or close to the observation network), France exhibits the largest 
change between N50Lnone and N200L600 (+68%). For example, the MER in the UK rises from 6% in N50Lnone 
to 63% in N200L600 (+57%). 

 



 

For countries poorly covered by the observation network, randomness can significantly influence results. When 
a low number of samples and no localization are used, the results are dominated by noise, which explains the 
very poor or occasionally high MER values in some European countries. As shown in our experiments, increas-
ing the number of samples reduces the effect of randomness, while localization further stabilizes results. How-
ever, localization can also exclude relevant information for countries located far from the observations, as dis-
cussed in Sect. 4.3. This is why countries at the domain's edge may show extreme differences, ranging from 
very low MER values (due to noise) to a MER=0, indicating no changes (here meaning no information retrieval) 
for these countries. 

 

We revised the text to enhance clarity and included additional details to explain why the MER varies for coun-
tries at the domain boundaries. 

 
Countries near observing sites, such as those in Western and Central Europe, benefit from a reduced localization 
length, regardless of the number of samples. However, when the number of samples is reasonable, decreasing the 
localization length below a certain threshold can start filtering out relevant information. This effect is evident in 
countries farther from observation sites, such as Portugal, Spain, and those in the Balkans or Eastern Europe. For 
these countries, the MER (whether initially positive or negative without localization) tends toward 0 % as the local-
ization length decreases. This indicates not only the loss of potential meaningful information but also the suppres-
sion of any problematic effects from random noise. 

… 

We highlight France here because, among the countries covered by the observation network, its metrics are the 
most affected by changes in the number of samples and localization length. 

 

- line 751: the note about the heaviside function seems to be evading a result. Maybe compare with the other 
functions at larger correlation length? 

We rather decided to remove the last two sentences of this paragraph, as there are already four sensitivity tests 
for this family. Doubling this number would place disproportionate emphasis on this topic, which is not of 
critical importance. 

 

- line 760: “to the best of our knowledge” sounds like this sentence should not be stated. Remove? 

Yes we agree. We removed this sentence. 

 

Section 4.5 

 

- line 777: “consistent with established literature”: please reference appendix B. 

We added a reference to appendix B in the corresponding sentence. 
The overarching aim of these experiments (including those presented in Appendix B) was to validate that the CIF-
EnSRF system produces results consistent with established literature. 



 

Appendix B 

P37, L844-L858: What are the differences between the CTDAS configuration and the CIF-EnSRF configuration 
here? It would be helpful to provide a comparison of their configurations and explain the similarities and dif-
ferences. 
 
For the inversions presented in Appendix B, the inversion setups are identical (see the list of setup elements in 
Appendix B). As noted, the minor differences observed are likely due to undetected discrepancies in the post-
processing of ICON outputs. We revised the text to clarify this point. 
 

Appendix B: To provide a robust comparison, we needed to perform two inversions (one with CTDAS and one with 
CIF) with identical setups, data processing, and assimilation methods (e.g., the same assimilation order). Before this 
work, ICON-ART inversions were conducted exclusively with CTDAS (Steiner et al., 2024), but those inversions were 
performed only for CH4. As mentioned in Sect. 3.2.2, it is straightforward to switch from one species to another in 
CIF. We therefore selected the reference synthetic inversion (case 1) of CH4 fluxes over Europe performed by Steiner 
et al. (2024) with CTDAS-ICON-ART and aimed to replicate it precisely with CIF-ICON-ART. The complete setup of 
the CTDAS-ICON-ART inversion is detailed in Steiner et al. (2024), hence we only outline the main components of 
the configuration here: 

 
… 
 
We applied the exact same setup for the CIF inversions. Additionally, the same ensemble (i.e., same ensemble size 
and same sample values) was employed in both inversions to eliminate the influence of randomness. We also en-
deavored to replicate the post-processing of ICON outputs (i.e., time, horizontal and vertical interpolations) as 
closely as possible in CIF. 

 

Appendix D 

 

- Table D1: please reference this table from table 2, page 26. Please give some additional information, how this 
benchmark data was gathered. 

 

Note that Table D1 provides the amount of CPU hours used to perform LEVEL1 experiments and therefore has 
no relevance for Table 2, which describes LEVEL2 experiments. However, it has relevance for Table 1, which 
describes LEVEL1 experiments. We therefore included it in the caption of Table 1. 

We also included details on how we separately retrieved the CPU hours consumed by CIF and ICON. 

 

Table 1: Table D1 provides the amount of CPU hours used to perform these experiments. 

 

Table D1: At the end of each job performed on the Piz Daint supercomputer, the logs provide the total CPU hours 
used. To execute the inversion, a parent job running CIF periodically initiates sub-jobs to perform ICON simulations. 
It allows us to track the CPU hours consumed separately by CIF and ICON. 

 



 

 

 

 

 

  



 

Technical comments 

 

- L 18: add a comma: (N2O), or 

Thanks for spotting this. It has been modified. 

 

- L 231: the note duplicates parts of line 218. Please disentangle the two sentences to avoid the duplication. 

 

We agree this is redundant. We changed this. 

 

Beginning of section 2.3.2: In this case, batch EnSRF and serial EnSRF are mathematically equivalent (Kotsuki et 
al., 2017; Nerger, 2015; Whitaker and Hamill, 2002) and thus provide identical results. 

 

- L 249: wrong hyphenation: anal-ysis — might need explicit hyphenation via \hyphenation{a-na-ly-sis} 

Thanks for the tip. We applied this. 

 

- L 283: which format is used? Where is it described? Citation, or a footnote with a link? 

We added this information. 
Through the YAML configuration file of CIF (http://yaml.org, last access: 12 December 2024), users can define 
fundamental settings for the inversion process: 

 

- L 314 to 122: a long discussion for a simple point. Suggestion: “the default behavior of CIF is to erase the 
scaling factors after conversion. But some models (including ICON-ART) need scaling factors as import, so they 
are preserved here.” Feel free to shorten further. 

We shortened it. 

 
The default behavior of CIF is to erase scaling factors after conversion. However, certain models, such as ICON-ART, 
require scaling factors instead of perturbed fluxes. The additional sample allows to retrieve the former from the 
latter. 

 

 

- L 333: “and a scaling” this seems to be missing the word “factor”. 

Correct. We added "operation" to avoid a confusion with the scaling factors of the ensemble. 

 

- line 635: please add a note that the results are discussed in section 4.3. 

We added a note at the end of Sect. 4.2.1 for LEVEL1 experiments and at the end of Sect 4.2.2 for LEVEL2 
experiments. 



 

Appendix B 

 

- Figure B1: please label the colorbars (scaling factor / unitless) 

This has been done. 

- Figure B2: please label the colorbars with the variable shown (uncertainty reduction / unitless) 

This has been done. 

 

Appendix C 

 

- Figure C1: please show the lines with different line styles to be recognizable in grayscale. 

This has been done. 
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