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Abstract. Surface meltwater runoff is a majorhas been the primary factor affecting the trends and interannual variations in the 

mass balance of the Greenland Iice Ssheet. During the melting season, large amounts of surface meltwater accumulates in low-10 

lying areas, forming supraglacial lakes (SGLs). Quantitatively characterizing the spatial and temporal changes in the volume 

of SGLs can provide further insights into the surface mass balance changes of the ice sheet during the melt season. In this 

paper, we propose a method for estimating the volume of SGLs by combining optical imagery (Sentinel-2) and satellite 

altimetry data (ICESat-2). First, the area of SGLs is extracted using a Rrandom Fforest (RF) model based on spectral features 

from Sentinel-2 imagery, achieving an Iintersection over Uunion (IoU) of 90.20% compared to manually delineated lake 15 

extents. Second, the depth of SGLs along the ICESat-2 profile is detected using the kernel density analysis method. Finally, a 

multi-layer perceptron (MLP) model constructs the nonlinear relationship between the reflectance ratio from Sentinel-2 

imagery and the depth of SGLs detected by ICESat-2 data. The accuracy of depth inversion based on the MLP model surpasses 

traditional empirical formula methods, achieving a mean absolute error of 0.42 m. The trained MLP model is then used to 

estimate the depth over the entire lake areas. The proposed volume estimation method for SGLs is applied to southwestern 20 

Greenland, capturing the volumetric evolution of SGLs throughout the entire melt season of 2022. The results reveal significant 

variations in the distribution, area, depth, and volume of SGLs throughout the melt season. Initially, SGLs form along the 

coastlines and later spread inland, expanding in both area and depth. The maximum total volume of SGLs is reachesd on 

August 1st, amounting to 9.30 × 108 m³. Afterward, SGLs above 1200 m continue to increase in volume, while SGLs below 

1200 m begin to decrease. In late August, as the melt season draws to a close, SGLs diminish and retreat to coastal regions, 25 

with a notable reduction in volume. Additionally, according to the evolution characteristics of SGLs at different elevations, 

SGLs above 800 m exhibit a similar evolution pattern. A temporal discrepancy is observed in the attainment of maximum 

values for both mean area and mean depth, impliesying a differential rates of  SGL development of SGLs in the horizontal and 

vertical dimensions. The elevation range of 1200 m to 1600 m is the most favorable for the evolution of SGLs. 



 

2 
 

1 Introduction 30 

The Greenland Iice Ssheet, the second largest ice sheet in the world, exerts a significant influence on global sea levels 

(Shepherd et al., 2020). Since the 1990s, remote sensing observations have revealed a pronounced acceleration in the melting 

of the Greenland Iice Ssheet (Mouginot et al., 2019; Slater et al., 2020). Research indicateds that surface meltwater runoff 

washas been the primary factor affecting the trends and interannual variations in the mass balance of the Greenland Ice Sheet 

between 2000 and 2019 (Box et al., 2022). Throughout the melt season, a substantial volume of surface meltwater accumulates 35 

in depressions, forming supraglacial lakes (SGLs). These SGLs, integral to the surface hydrological system of the Greenland 

Iice Ssheet, eventually discharge into the ocean or infiltrate beneath the ice through various pathways, such as surface runoff, 

crevasses, or moulins (Meierbachtol et al., 2013; Poinar and Andrews, 2021; Smith et al., 2015), thus significantly influencing 

the mass-energy balance of the ice sheet (Arthur et al., 2020; Pope et al., 2016). Quantitatively characterizing the spatial and 

temporal changes in the volume of SGLs can provide further insights into the surface mass balance changes of the ice sheet 40 

during the melt season (Banwell et al., 2012). 

The area and depth of SGLs are crucial parameters for estimating their volume. The Nnormalized Ddifference Wwater Iindex 

for ice (NDWIice) proposed by Yang and Smith (2013), calculated using red and blue bands, is an effective index for identifying 

water features in ice and snow conditions. By applying a predetermined threshold, supraglacial water bodies can be effectively 

highlighted. Moreover, a variety of machine learning and deep learning methods, such as Rrandom Fforest (RF) algorithm, 45 

Ssupport Vvector Mmachines (SVMs), U-net, and Cconvolutional Nneural Nnetworks (CNNs), have also been were used to 

extractemployed in the area extraction of SGLs area (Chouksey et al., 2021; Hu et al., 2022; Jiang et al., 2022; Lutz et al., 

2023; Yuan et al., 2020). These methods have demonstrated high accuracy and produced favorable outcomes in SGLthe area 

extraction of SGLs. 

In contrast, compared to the SGL area extraction of SGLs, the calculationobservation of lake depth faces greater challenges, 50 

which is also a crucial factorreason leading to inaccurate volume estimation, unreliable seasonal meltwater accumulation 

estimation, and difficulty in analyzing the formation and drainage events (Melling et al., 2024). To date, the primary methods 

for obtaining the depth of SGLs include field measurements and remote sensing inversion. Although field depth measurement 

is the most accurate method, the harsh environment in Greenland makes such measurements labor-intensive and limited in 

scope, resulting in sparse data coverage which is insufficient for large-scale scientific research. The primary remote sensing 55 

data sources for extracting the depth of SGLs in Greenland include optical remote sensing imagery and satellite altimetry data. 

Optical remote sensing imagery can comprehensively cover entire lakes and has high revisit rates, offering a relatively 

complete time series for observing lake changes. To estimate the depth of SGLs using optical remote sensing imagery, the 

radiative transfer equation proposed by Philpot (19879) iwas usually adopted (Pope et al., 2016; Williamson et al., 2018), 

which establisheds a relationship between water depth and band reflectance based on the physical properties of light attenuation. 60 

On the other hand, there wereare also methods for lake depth retrieval through parameter fitting, which combined in-situ 

measurement data with optical imagery single band reflectance to fit parameters in an empirical formula, establishing a 
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nonlinear relationship between lake depth and band reflectance (Box and Ski, 2007). Moreover, Legleiter et al. (2009, 2014) 

proposed the optimal band ratio analysis (OBRA) algorithm, identifying a linear relationship between the logarithmic value of 

the ratio of reflectance values in the green and red bands and lake depth. Although these methods can achieve large-scale lake 65 

depth extraction, it is necessary to parameterize all of the aforementioned variables. Furthermore, assuming a predetermined 

relationship between lake depth and spectral observations carries significant uncertainty when applied across different regions, 

sensors, and attenuation rates caused by variations in lake water composition (Melling et al., 2024). 

The launch of the Ice, Cloud, and Lland Elevation Satellite-2 (ICESat-2) in 2018 has provided a new data source for the 

inversion of SGL depths. The laser beams of ICESat-2 have penetrative capability, enabling the acquisition of photons reflected 70 

from both the surface and bottom of SGLs along the laser beam's path (Jasinski et al., 2021). The depth of SGLs can be 

calculated byBy measuring the height difference between the surface and bottom photons, the depth of SGLs can be calculated. 

Fair et al. (2020) proposed the Llake Ssurface–Bbed Sseparation (LSBS) algorithm based on ICESat-2 data, which separateds 

the surface and bottom photons of SGLs by a predefined depth range, successfully extracting the depth of SGLs. However, the 

LSBS algorithm is not automated due to differences in predefined depth between lakes. Based on the multi-layer photon 75 

reflection characteristics in ICESat-2 data, fully automated algorithms, such as the Watta algorithm (Datta and Wouters, 2021) 

and the automated location and depth retrieval (ALD) algorithm (Xiao et al., 2023), used kernel density estimation methods to 

estimate the surface and the bottom, thus avoiding parameter selection for each lake. These data-driven depth inversion 

methods based on ICESat-2 data can provided high-precision elevation data for estimating the depth of SGLs (Fricker et al., 

2021; Lutz et al., 2024; Melling et al., 2024). Nevertheless, the limited distribution of the ICESat-2 tracks results in limited 80 

coverage of the inversed depth of SGLs. 

Recently, there has been research on the inversion of SGL depths by combining altimetry data and optical imagery to 

compensate for the limitations of individual data sources. Ma et al. (2020) refined ICESat-2 data by using the Ddensity-Bbased 

Sspatial Cclustering of Aapplications with Nnoise (DBSCAN) algorithm, then trained the empirical model by fitting 

parameters in linear band models and band ratio models separately, and applied the resulting models to Sentinel-2 imagery for 85 

shallow water depth retrieval. Thomas et al. (2021) usedutilized ICESat-2 bathymetric photons and Sentinel-2 imagery to 

generate bathymetric maps for nearshore coastal areas. Machine learning methods have also been increasingly applied in water 

depth inversion. Lai et al. (2022) proposed a multilayer perceptron (MLP) model that useds lake depths extracted by ICESat-

2 data as a reference, combined with the spectral information from Landsat -8, to invert the depth of several shallow water 

regions in mid-to-low latitudes. For high-latitude SGL depth extraction, the amount of available data is significantly reduced 90 

compared to low- and mid-latitudes, making direct application of the low- and mid-latitude depth extraction model less 

effective (Lv et al., 2024). Lv et al. (2024) combined ICESat-2 and Sentinel-2 data, utilizing a backpropagation (BP) neural 

network to extract the depth of SGLs in southwestern Greenland. They conducted depth extraction and method validation in a 

small area and compared the changes in SGLs during the same period from 2019 to 2023. The use of machine learning to 

combined optical images and altimetry data to obtain the depth of SGLs has been tentatively attempted on a small scale at high 95 

latitudes, and the application on a large scale needs to be further analyzed. Moreover, existing studies predominantly examine 
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the interannual variations of SGLs, while the intra-seasonal changes during a single melt season have not been adequately 

addressed. 

In this paper, we propose a method for inverting the SGL depths of SGLs on the Greenland Iice Ssheet by combining optical 

imagery (Sentinel-2) and satellite altimetry data (ICESat-2), leveragingintending to combine the accuracy of altimetry data 100 

with the comprehensive coverage of optical images. First, the area of SGLs is extracted from the Sentinel-2 imagery using the 

RF algorithm, allowing for rapid localization of lake areas along ICESat-2 tracks. Within these areas, lake depths along ICESat-

2 tracks are detected based on kernel density analysis algorithm. Subsequently, an MLP model is employed to establish 

relationships between lake depths and various spectral features of SGLs, specifically the ratio between different bands’ spectral 

reflectance. This allows for the inversion of lake depths outside of the ICESat-2 tracks. The proposed method is applied in the 105 

southwestern region of Greenland, capturing the spatiotemporal changes in SGLlake areas, depths, and volumes over multiple 

periods within the 2022 melt season. By analyzing the variations in area, depth, and volume of SGLs, the substantial 

fluctuations that occur within a single melt season areis highlighted. Furthermore, the characteristics of SGLs at different 

elevations is are compared, which offering valuable support for ongoing research on surface melting processes in Greenland. 

This detailed examination of SGL dynamics contributes to a better understanding of the impacts of climate change on polar 110 

regions, emphasizing the necessity for continuous monitoring and analysis in these sensitive and vast areas. 

2 Study Aarea and Ddata 

2.1 Study Aarea  

The study area is located on the southwest coast of Greenland as shown in Fig. 1, which has shown a significant melting trend 

over the past few decades (Van Den Broeke et al., 2016). It is bounded by the southwest drainage subsystem No. 6.2 (Zwally 115 

et al., 2012), covering a total area of 136,902 km². During the melt season, typically between June and August, this region has 

an active supraglacial hydrological system (Hu et al., 2022). The excess runoff originates from low-lying (< 2000 m a.s.l.) 

parts of the ice sheet (Gledhill and Williamson, 2018), where SGLs normally occur. The total area of SGLs in the southwest 

region is the largest among all other regions (Hu et al., 2022), and the formation and drainage of SGLs in this region have a 

great impact on the surface mass balance of the southwest region of Greenland (Zhang et al., 2023). 120 
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Figure 1. Study area. Contour lines calculated from ArcticDEM mosaic version 4.1 (Porter et al., 2023) are visible as grey lines at 

400 m intervals. Yellow points indicate the locations of the lakes in the study area, as shown in Fig. 5 and Fig. 13. The study period 
is from June to August 2022. 125 
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2.2 Sentinel-2 Iimagery  

Sentinel-2 consists of two polar-orbiting satellites (Sentinel-2A and Sentinel-2B), whichand the dual-satellite operation allows 

Sentinel-2 image data to provides a revisit cycle of about 5 days. The MultiSpectral Instrument (MSI), a push-broom optical 

sensor on board Sentinel-2, can collect data in 13 spectral bands. Using the significant attenuation characteristics of light in 130 

water, four bands with a spatial resolution of 10 m are used in this study, specifically the three visible light bands (Bblue band 

with a center wavelength of 0.49 μm; Ggreen band with a center wavelength of 0.56 μm; and Rred band with a center 

wavelength of 0.665 μm) and one near-infrared (NIR) band with a center wavelength of 0.842 μm. Considering that SGLs 

occur only form below the equilibrium line altitude, only images covering areas below 2000 m within the basin are selected. 

To minimize the effect of cloud cover, we limit the cloud cover when selecting the images. During the whole melt season, 135 

when the SGLs of Greenland undergo the most pronounced changes, a total of 810 Sentinel-2 level-1C images (ortho- and 

geometrically corrected Ttop-of-Aatmosphere (TOA) reflectance products) divided into 7 periods, with a period of 

approximately ten days between observations, are included in this study, covering the study area from June 7 to August 28, 

2022. It should be noted that no single day’s imagery could cover the entire study area during the second and third study 

periods (i.e. June 15–20 and June 30–July 4)the single-day image, sometimes, may not cover the entire study area, such as the 140 

period between June 15 and June 20, and the period between June 30 and July 4. Therefore, we use multiple-day images from 

different days to achieve complete coverage of the study areacompose these two periods, denoted by June 17 and July 2 to 

represent these two periods in the following text. For overlapping regions from different dates, each individual image is 

processed separately, and the final result is obtained by averaging the processed outcomes. 

2.3 ICESat-2 145 

ICESat-2 was launched by the National Aeronautics and Space Administration (NASA) in September 2018 with polar 

exploration as its primary objective. In achieving this objective, itIt can provide elevations of sea ice, land ice, andforest 

canopies, water height amongst other data , urban areas, etc.(Neumann et al., 2021). Equipped with the topographic laser 

altimetry system Aadvanced Ttopographic Llaser Aaltimeter Ssystem (ATLAS), it is capable of transmitting laser pulses with 

a wavelength of 532 nm at a repetition frequency of 10 kHz. ATLAS employs three pairs of laser pulses, with each pair 150 

separated by approximately 3 km in the cross-track direction. The satellite acquires overlapping light spots with an interval of 

approximately 0.7 m and a diameter of approximately 17 m along its orbit with a 91-day revisiting cycle (Neumann et al., 

2021). 

In this study, strong beams in each pair of laser pulses are selected. The ATLAS version 3 (ATL03) product provides photon 

data of surface elevation with latitude and longitude coordinates using the WGS84 ellipsoid as the reference ellipsoid with a 155 

spatial resolution of 0.1 m and 0.7 m in horizontal and vertical directions, respectively, which is mainly used to extract the 

depth of the SGLs. The ATLAS version 6 (ATL06) surface elevation product provides accurate land ice surface elevation 

information with geolocation at a coarser spatial resolution of 20 m, which is used during the preprocessing step to exclude 
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significant height noise. Both ATL03 and ATL06 products are downloaded through the National Snow and Ice Data Center 

website (https://nsidc.org/data/icesat-2). Considering the changes in SGLs, it is important to minimize the temporal difference 160 

between ICESat-2 data and Sentinel-2 images. Therefore, the ATL03 product, and the corresponding ATL06 product acquired 

from the orbit of the Rreference Gground Ttrack (RGT) No. 338 on July 14, 2022, are utilized used in this study, since it' is 

the only day during the entire melt season of 2022 when both ICESat-2 data and Sentinel-2 images are available. Then, both 

ICESat-2 data and Sentinel-2 images are converted to the UTM zone 22N (EPSG:32622) for further analysis. 

  165 

3 Methods 

The proposed framework for the inversion of SGLs, as shown in Fig. 2, consists of three modules: extraction of SGLs using 

Sentinel-2 imagery, detection of SGLs’ depths on the ICESat-2 RGT, and inversion of the entire lake depths using an MLP 

model.  

  170 

https://nsidc.org/data/icesat-2
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Figure 2. Framework of the proposed SGLs’ depth inversion method. 

3.1 Extraction of SGLs using Sentinel-2 imagery 

Firstly, the cloud and shadow pixels on the Sentinel-2 image are removed based on the quality tag of the QA60 band to 

eliminate their impact on the extraction of SGLs. Then, tThe RF model, an ensemble learning method composed of multiple 175 

independently trained decision trees, is utilized to extract the lakes based on the spectral features. The advantage of the RF 

model is its ability to reduce the risk of overfitting by constructing decision trees using randomly selected samples and features 

(Breiman, 2001). The final prediction result of an RF is based on the majority vote from all decision trees since each decision 

tree is independent and complements each other. For feature selection, in addition to the reflection values of the red, green, 

blue, and NIR bands, NDWIice and the Normalized Difference Snow Index (NDWSI) (Hall et al., 1995) are also included, 180 

considering the unique icy and snowy environment of SGLs. The calculations for NDWIice and NDWSI isare shown in equations 

(1) and (2), where Rr, Rg, Rb, and RNIR represent the reflection values of the red, green, blue, and near-infrared bands, 

respectively. 

  

                                                                                   𝑁𝐷𝑊𝐼!"# =
$!%$"
$!&$"

                                                                                   (1) 185 

                                                                                   𝑁𝐷𝑊𝑆𝐼 = $#%$$%&
$#&$$%&

                                                                                      (2) 

The RF model is trained using the training samples, and the trained model is then applied to Sentinel-2 images of seven periods 

in the study area to extract SGLs. All these Sentinel-2 image processing tasks are conducted on the Google Earth Engine (GEE) 

platform. 
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3.2 Detection of SGLs’ profile depths along the ICESat-2 RGT 190 

The regions of interest in the ICESat-2 data are identified based on the extraction results of SGLs from the Sentinel-2 image. 

To ensure that the altimetry data further processed includes both data inside and outside the lake, we establish a 100-meter 

buffer zone around each SGL is established. Windows based on ATL06 surface elevation data establish the vertical extent of 

the ATL03 photon data used, while buffer zones determine the range of data along the track direction. Then, the kernel density 

analysis method is employed to discern the surface and bottom of the lake from the multiple reflections of ATL03 photons on 195 

the various surfaces of the SGL. Subsequently, the precise boundary of the SGL is determined according to the breakpoints of 

the surface slope change. Considering that the surface of the ice sheet has a more pronounced topographic undulation, while 

the SGL is water surface and therefore horizontal, the extent of the SGL is determined by detecting the slope change of the 

surface. Within this precise boundary of the SGL, a refraction correction (Parrish et al., 2019) is applied to determine the actual 

depth of each SGL. The most reliable method to assess the uncertainty of depth oriented from ICESat-2 data is by comparing 200 

inversion results with in-situ measurement. However, due to the harsh environment in Greenland and the rapid changes of 

SGLs during the melting season, obtaining in-situ data near the ICESat-2 transit time is challenging. In this study, the quality 

of depth data derived from ICESat-2 is ensured through visual inspection,. Aand the profile depth extracted from ICESat-2 

ATL03 data is considered as the reference for the Sentinel-2 depth estimation.  

3.3 Inversion of the entire lake depths using the MLP model 205 

Considering the discrepancy in spatial resolution between the depth estimates obtained by ICESat-2 data and the Sentinel-2 

imagery, we create a dataset by computing the average depth value from the output of ICESat-2 ATL03 data within a Sentinel-

2 pixel. Inspired by Lai et al. (2022) on optical shallow water depth inversion in mid and low-latitude regions, we construct an 

MLP architecture consisting of three hidden layers (Fig. 3): the first with 128 nodes, the second with 32 nodes, and the third 

with 16 nodes. The three hidden layers are connected using the rectified linear unit (ReLU) activation function. A linear 210 

activation function is applied to the output layer, which provides depth estimates corresponding to each pixel. The depth of the 

SGL exhibits a non-linear relationship with the ratio of reflectance between blue and red bands (Legleiter et al., 2014). 

Motivated by this insight, we opted for a more comprehensive approach by considering multiple band ratios, specifically the 

top-of-atmosphere (TOA) reflectance ratios between the red, green, blue, and near-infrared bands, derived from Sentinel-2 

imagery, as input features for the MLP. Both the depth of SGLs from two pairs of ICESat-2 RGT No. 338 and the 215 

corresponding band ratios within SGL areas from Sentinel-2 images are used to train the MLP model, and the data in the 

remaining pair of ICESat-2 RGT No. 338 are used to test the performance of the MLP model. Then, the trained MLP model 

is applied to invert the depth of SGLs within seven time periods acrossin the whole study area. 
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 220 

Figure 3. Structure of the MLP model. 

4 Results  

4.1 Evaluation of area extraction and depth inversion 

For each time period, we randomly sampled 50 pixels from both SGL areas and 50 pixels from other areas in the mosaiced 

Sentinel-2 image as training data, then employed an RF algorithm with 30 decision trees to classify the image into lake and 225 

non-lake. Overall, the RF method has demonstratesd significant effectiveness in extracting SGLs, reducing some of the 

interference from surface runoff and meltwater. To quantitatively evaluate the performance of the classification algorithm, the 

Iintersection over Uunion (IoU) metric is used, which is the proportion of the overlap between the two results relative to their 

combined area. Specifically, we manually selected five SGLs on each image, compared them with the RF extraction results, 

as shown in Fig. 4, and calculated the IoU value for each image. The results are shown in Table 1. The difference between the 230 

manually selected continuous boundaries and the jagged edges on raster images significantly affects the accuracy of image 
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IoU. This effect is particularly noticeable during the early melting stages (i.e., June 7) of the SGLs since the area of the SGLs 

is relatively small. As the melting intensifies and the SGL area of SGLs increases, the impact of this difference on IoU 

evaluation decreases in subsequent results, with all IoU values remaining around 90%. Overall, the average IoU value for the 

SGLs across seven periods is 90.20%, providing reliable SGL extents for subsequent experiments.  235 
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Figure 4. The first to the seventh rows show the comparison between the extracted extents and manually delineated contours forof 

five different SGLs randomly selected from each studyseven different periods between June 7 and August 28, usingwith the 
background image being the corresponding Sentinel-2 images as background for from each respective period. Each row represents 240 

a different time period. 

 

Date June 7 June 17 July 2 July 14 Aug. 1 Aug. 13 Aug. 28 Overall 

IoU (%) 75.55 89.44 87.39 94.77 93.30 94.74 96.24 90.20 
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Table 1. Accuracy assessment of extraction results of SGLs showing the intersection over union (IoU) of each time 

period’s SGLs. 

 245 

The detection results of the lake surface and bottom are shown in Fig. 5;. Tthe difference between the two represents the lake’s 

depth. The detected lake depth based on ICESat-2 data is considered the reference in this paper since the reliability of this 

method has been verified (Lutz et al., 2024; Melling et al., 2024). In the study area, there are a total of 1991 pixels over 28 

SGLs in Sentinel-2 imagery, which coincideing with three laser beams (gt1l, gt2l, gt3l) of ICESat-2 RGT No. 338. Among 

them, 994 pixels are usedutilized as training samples for the MLP training, while the remaining are used for evaluating the 250 

accuracy of MLP inversion results for lake depth.  

 

 
Figure 5. Three examples of lake surface and bottom detection results based on ICESat-2 ATL03 data. The locations of lakes (a), 

(b), and (c) are shown in Fig. 1. 255 

Additionally, the effectiveness of the empirical formula method (Box and Ski, 2007) in predicting depth, which established an 

empirical relationship between SGL reflectance and depth as shown in equation (3), is evaluated using the same training and 

testing data, allowing for a comparison of the performance between MLP and the empirical formula method.  

𝐷 = ''
$&'(

+ 𝛼(	                                                                                       (3)	

Where D represents the estimated depth of the SGL. R denotes the reflectance in the green or red band, and parameters 𝛼), α*, 260 

and α( are empirical coefficients fitted by using training data. 

The mean absolute error (MAE) is adopted to assess the depth inversion accuracy of both the MLP model and the empirical 

formula method. The calculation method for MAE rmean is as equation (4). 
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1
	                                                                                    (4) 

Wwhere dref represents the lake depth obtained by ICESat-2, dpred represents the predicted lake depth value using the MLP 265 

model or empirical formula method, and N is the number of pixels. 

The comparison of the depth inversion accuracy for both the empirical formula method and the MLP model over different 

depths is presented in Table 2, where the results in bold indicate the highest accuracy in the depth inversion. Although the 

results based on the empirical formula method demonstrate superiority in predicting depths within the ranges of 1-2 m and 4-

6 m, the MLP model exhibits an overall MAE of 0.42 m across all depth ranges, significantly outperforming the empirical 270 

formula method. The advantage of the MLP model lies in its ability to leverage multiple inputs for feature selection, which 

integrates more band information and can fully utilize the information of different bands in the image compared to the single-

band inversion of the empirical formula method, thus achieving higher accuracy results. 

 

Depth range (m) 
Empirical formula method 

based on Ggreen band (m) 

Empirical formula method 

based on Rred band (m) 
MLP model (m) 

0-1 0.52 0.52 0.37 

1-2 0.52 0.30 0.43 

2-3 0.73 0.74 0.43 

3-4 0.59 0.76 0.57 

4-5 0.18 0.22 0.19 

5-6 0.19 0.32 0.56 

Overall 0.56 0.51 0.42 

Table 2. MAE of lake depth inversed by the empirical formula method and the MLP model at different depths, where the results 275 
in bold indicate the highest accuracy for each depth range. 

To analyze the distribution of the depth inversion errors, we plotted the depth inversion bias maps and assigned different colors 

based on the point density (Fig. 6). The depth inversion bias distribution of the MLP method is closer to the horizontal axis 

compared to that of the empirical formula method, while the depth inversion results obtained by the empirical formula method 

almost always have a certain linear bias. Within the 1-2 m range, the intersection of precisely where theis linear bias predicted 280 

by the red band withintersects with the horizontal axis,  partly to some extent explains why the empirical formula method 

achieves the highest accuracy in thise depth interval of 1-2 m for the red band. 

Unlike a physically based depth inversion method, the MLP model learns the relationship between lake depth and input features 

through training data. Therefore, issues such as the data quality of the dataset and the uneven distribution of the number of 

data samples at each depth will greatly affect the inversion results of the MLP. As can be seen from Fig. 6the depth inversion 285 

bias plot, the number of sample points at depths above 3 m is significantly less than the number of sample points at depths 

below 3 m, with the lowest number of points at the 5-6 m depth interval. The combination of the above reasons leads to the 

inversion results of the MLP model at 5-6 m being inferior to the inversion results of the empirical formula method. 
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 290 
Figure 6. The depth inversion bias maps obtained by the empirical formula method based on the Ggreen (a) or Rred (b) band, and 

the MLP model (c). Each point in each of the plots corresponds to an SGL pixel. 
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4.2 The spatiotemporal variation characteristics of SGLs’ parameters during the 2022 Mmelt Sseason  

The results of the SGLs’ area extraction and depth inversion over our studiedseven time periods are depicted in Fig. 7. The 295 

spatial and temporal distribution of SGLs extracted at different periods shows significant variation. During the entire melt 

season, SGLs appear at different elevation ranges at different stages, with varying areas and depths. On June 7 and June 17, 

the SGLs are primarily distributed in the coastal areas around and below an elevation of 800 m (Fig. 7(a)). However, the SGLs 

on June 7 are smaller in area and shallower in depth, with no significant large lakes. By June 17, the area and depth of the 

SGLs have increased, and notable lakes appear near the 800 m contour line (Fig. 7(b), Fig. 8(a)). In contrast, the SGLs on July 300 

2 show significant differences from the previous two periods, primarily occupying the 800 m to 1200 m region, with noticeable 

increases in area and depth (Fig. 7(c), Figs. 8(a)(b)). SGLs larger than 3×106 m2 begin to appear (red outlines in Fig. 7(c)). On 

July 14, the SGLs further advanced to higher elevations, extensively distributed between 800 m and 1600 m (Fig. 7(d)). The 

area and depth of the SGLs continue to grow, with several large lakes around the 1200 m contour line (Fig. 8(b)). The number 

of lakes larger than 3×106 m2 increases from one to three (red outlines in Fig. 7(d)). On August 1, the trend of SGLssupraglacial 305 

advancing to higher elevations slows, with most SGLs distributed between 1200 m and 1600 m (Fig. 7(e)). The overall area 

and volume slightly increase, with the number of lakes larger than 3×106 m2 reaching nine (red outlines in Fig. 7(e)). By August 

13, the SGLs do not continue to expand to higher elevations, mainly occupying the 1200 m to 1600 m range (Fig. 7(f)). As the 

melt season approaches its end, some SGLs are covered by snow and ice, reducing their numbers. However, large and deep 

SGLs are still around the 1600 m contour line (Fig. 8(c)). On August 28, the number of SGLs significantly decreases, showing 310 

some variation in spatial distribution (Fig. 7(g)). A few deep and large lakes remain above 1200 m, while more shallow and 

small SGLs appear in coastal areas below 800 m. 
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Figure 7. SGLs’ area extraction and depth inversion results on June 7 (a), June 17 (b), July 2 (c), July 14 (d), August 1 (e), August 315 
13 (f), and August 28 (g).  The background map is Sentinel-2 images from each respective period. Contour lines from ArcticDEM 

mosaic version 4.1 (Porter et al., 2023) are also shown in grey at 400 m intervals. 
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Figure 8. Zoomed-in view ofn the evolution of SGLs’ area and depth at elevations of around 800 m (a), 1200 m (b), and 1600 m (c). 

The background map is Sentinel-2 images from each respective period. Contour lines from ArcticDEM mosaic version 4.1 (Porter 

et al., 2023) are also shown in grey at 400 m intervals. 

To mitigate the impact of differences in the number of available images across different periods, the maximum and average 325 

values of area, depth, and volume of the SGLs are compared, as shown in Table 3. At the beginning of the development of the 

SGLs (June 7 – June 17), due to the relatively small amount of melting, there are a large number of small areaspieces of water 

on the edge of the ice sheet. At this time, the area, depth, and volume of the each individual SGL are relatively small, measuring 

less than 1´106 m2 and 1´106 m3, respectively, with a mean depth of less than 1 m. Afterward, the SGLs enter a period of rapid 

melting, whereile the maximum area of the individual lake increases from 0.38´106 m2 to 3.22´106 m2 with a growth rate of 330 

+7478% from June 17 to July 2, and the maximum volume of the SGL increases from 0.52´106 m3 to 10.60´106 m3 with a 

growth rate of +193821%. Similarly, the average area, depth, and volume increased rapidly with a growth rate of +340%, 

+84%, and +1215%, respectively, which wais significantly different from the previous period and impliesd that the SGL had 

begun to enter the peak of its development as the melt season progressed. 

After entering the peak period of development, the maximum and mean area of the SGLs show a sustained upward trend 335 

between July 2 and July 14, with a growth rate of +49% and +85%, respectively. However, the maximum and mean depth 

show a decreasing trends. Overall, the maximum and mean volume of the SGLs show an increasing trend, with rises of +28% 

and +44%, respectively. The growth rate of the area of the SGLs is higher than the growth rate of the volume, indicating that 

a large number of large and shallower-depth SGLs appeared during this period. Then, the mean area and volume of the SGLs 

reached the maximum on August 1, with the growth rate of +3% and +68%, respectively, indicating that the mean area of the 340 

SGLs has already stabilized at that time, while the mean volume is still in the stage of high-speed growth. On August 13, 

although the depth of SGLs continues to increase, the area shows a significant decreasing trend, resulting in the volume 

remaining comparable to that on August 1. Between August 13 and August 28, the maximum and mean values of areas, depth, 

and volume of SGLs show a decreasing trend, indicating that the lakes begin to recede as time progresses toward the end of 

the melt season. And the rate of decline of the mean values of the SGLs (-39%) exceedsed that of maximum values (-23%), 345 

indicating that most of the SGLs arewere frozen or drained overall, but there are a few lakes with large areas and volumes of 

water that still existed. 

 

Date 
Maximum Aarea 

(´106 m2) 

Mean Aarea 

(´104 m2) 

Maximum 

Ddepth (m) 

Mean 

Ddepth (m) 

Maximum Vvolume 

(´106 m3) 

Mean Vvolume 

(´104 m3) 

June 7 0.62 0.23 4.82 0.72 0.30 0.16 

June 17 
0.38 

(-39%) 

0.25 

(+9%) 

5.09 

(+6%) 

0.88 

(+22%) 

0.52 

(+735%) 

0.13 

(-19%) 

July 2 
3.22 

(+7478%) 

1.10 

(+340%) 

5.80 

(+14%) 

1.62 

(+84%) 

10.60 

(+193821%) 

1.71 

(+1215%) 
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July 14 
4.80 

(+49%) 

2.04 

(+85%) 

5.71 

(-2%) 

1.21 

(-25%) 

13.54 

(+28%) 

2.46 

(+44%) 

Aug. 1 
6.42 

(+34%) 

2.11 

(+3%) 

5.71 

(0%) 

1.96 

(+62%) 

20.93 

(+55%) 

4.14 

(+68%) 

Aug. 13 
5.90 

(-8%) 

1.65 

(-22%) 

5.85 

(+2%) 

2.46 

(+26%) 

21.75 

(+4%) 

4.06 

(-2%) 

Aug. 28 
4.53 

(-23%) 

1.01 

(-39%) 

5.04 

(-14%) 

1.61 

(-35%) 

15.02 

(-31%) 

1.63 

(-60%) 

Table 3. Statistics of the maximum and mean values of the SGLs area, depth, and volume for the seven study periods, with the 
growthchanging rate against the previous period given in parentheses. 350 

 

The depth distribution of SGLs in each period is plotted as a violin plot (Fig. 9), ignoring lakes above 4 m, which accounted 

for less than 2% of the total. To demonstrate the difference in distribution between the two adjacent periods, we differentiated 

the violin plots of the previous time (blue) and the later time (brown) by color, i.e., the distribution of the statistical plots on 

the remaining time except the first and last time is compared with its previous and subsequent periods, respectively. The major 355 

difference is between the June 17 and July 2 plots, where the peak position is clearly shiftsed upward and the distribution of 

depth data between the upper and lower quartiles is more concentrated, i.e., the depth of the SGL begins to develop more 

steadily on the existing base rather than melting randomly, corresponding to the transition from the early to the peak period of 

SGLs development. Subsequently, the distribution of maximum depths during the peak period of SGL development is 

relatively concentrated with obvious peaks, while the median is similar to the trend of average depths, also appearing to 360 

decrease and then increase, indicating that more shallow SGLs are formed during July 2 to 14. The median peak on August 1 

and shows the most concentrated distribution shape of all periods, suggesting that the development of SGLs has reached a 

relative peak and that the maximum depth has stabilized. The subsequent distribution on August 13 differs significantly from 

that of August 1. Although the median value still increases, there is no longer a prominent peak, and the upper and lower 

quartiles show obvious dispersion. The increase in the median value indicates that some deeper SGLs still exist, but the overall 365 

dispersion of the data still indicates that the development of SGLs has entered a period of decline, and the distribution of 

maximum depths on August 28 is more toward shallower water. 
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Figure 9. Violin plots of SGLs’ depth distribution over our seven studyat different periods. 370 

A density map of the distribution of the area of each SGL and its corresponding average depth over different time periods is 

created to further examine the distribution and changes in area and depth of SGLs over the melting seasons. For better display 

of figures, only the SGLs with an area less than 5×104 m2 and an average depth belowwithin 3 m, which covers more than 90% 

of the SGLs within each period, are shown in Fig. 10. Each data point on the density map represents a single SGL, and brighter 

colors indicate higher density, corresponding to a greater number of SGLs. 375 
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Figure 10. The Aarea-Ddepth distribution map of each individual SGLs on June 7 (a), June 17 (b), July 2 (c), July 14 (d), August 1 

(e), August 13 (f), and August 28 (g). 

 380 

It can be found that tThe distribution of SGLs across all periods exhibits a clear trend from scattered to concentrated and then 

back to scattered. During the initial development phase (as seen in Figs. 10(a)(b)), the brighter regions cluster near the origin, 

indicating a higher abundance of small and shallow SGLs. Beginning with July 2, a distinct peak appears, with SGL depths 
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gradually concentrating between 0.5 m and 1 m, as shown in Fig. 10(c). By July 14, the number of SGLs increases significantly. 

A significant portion of these lakes haves an average depth distribution in the range of 0.2 m to 1 m, with a pronounced peak 385 

near 0.3 meters, as indicated in Fig. 10(d). In addition, there is a notable increase in the number of SGLs with areas greater 

than 2´104 m² and relatively shallow depths. This observation is consistent with the overall decrease in mean depth during the 

development of SGLs as shown in Table 3. On August 1, the distribution of SGLs becomes more concentrated. The brighter 

regions shift to deeper mean depths, reaching about 0.8 m, as presented in Fig. 10(e). Many SGLs now have mean depths of 

around 0.9 m. Compared to July 14, there is a significant increase in the number of SGLs with mean depths exceeding 2 m. 390 

By August 13, the distinct peak is diminishing, and the distribution of SGLs is no longer concentrated around a single point. 

Instead, it gradually spreads out, as shown in Fig. 10(f). The number of lakes with average depths greater than 2 m continues 

to increase. At this stage, SGLs show variability, i.e., some evolve into larger, deeper lakes, while others retreat into smaller, 

shallower lakes. This characteristic marks the transition to the late stage of development. Even within small regions, individual 

SGLs show significant variation. Within the same area, some lakes may grow larger, while others may freeze or drain (as 395 

shown in the fifth and sixth rows in Fig. 7(c)). During the late stage of SGL development, extensive drainage or freezing leads 

to reductions in area, depth, and the total number of lakes, as shown in Fig. 10(g). The brighter regions converge to smaller 

areas and shallower depths, and the number of SGLs with average depths greater than 2 m rapidly decreases. 

Finally, Fig. 11 illustrates the volume distributions and the total volume of SGLs at each of the seven periods. The boxplots 

encapsulate the interquartile range (IQR), with the median volumes denoted by red lines within the turquoise boxes, and the 400 

whiskers extending to 1.5 times the IQR. Outliers, which are defined as the first and the last 1% of the data, are indicated by 

grey points, while the red triangles connected by a dotted line represent the mean volumes. Throughout the observation period, 

the median volume of the SGLs exhibits minor fluctuations, the largest median volume is on July 14, which is around 10 m³. 

Conversely, the mean volumes show a discernible increasing trend from early June, peaking on August 1, before slightly 

declining towards the end of August. This divergence between the median and mean suggests that while the majority of lakes 405 

maintain stable volumes, a subset of lakes experiences significant volume increases, thus elevating the mean. The persistent 

presence of high-volume outliers across all dates further corroborates this observation, indicating the existence of lakes with 

substantially larger volumes compared to the majority. The consistency in the volume range and outliers underscores the 

dynamic nature of supraglacial lakes, likely influenced by varying melting rates, precipitation, and drainage patterns. This 

analysis highlights the complex behavior of supraglacial lake volumes over the summer months, with a few lakes significantly 410 

impacting the overall mean despite the general stability in median volumes. Meanwhile, the total volume of the SGLs during 

the seven study periods is also presented by the blue line in Fig. 11. Starting from July 2, the total volume of the SGLs shows 

a sharp increase, reaching its maximum value of  9.30´108 m3 on August 1. Afterward, the volume of the SGLs begins to 

decrease until the end of August. 
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 415 

 

Figure 11: Boxplots of each individual SGLs’ volume and the total volume during the seven study periodsat different time. 

4.3 The evolution characteristics of SGLs at Different elevations 

To further analyze the spatial distribution of SGL development in relation to elevation, we divided the elevation range from 0 

to 2000 m into five intervals of 400 m each and calculated the average area, depth, and volume of SGLs within each interval. 420 

Fig. 12 illustrates these statistics, with colors representing elevation from light to dark, greay dashed lines indicating the overall 

average, and red stars marking the maximum values for each line. 
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Figure 12. SGL average area (a), depth (b), and volume (c) at different elevation intervals. 425 

 

Generally, there is a significant difference between SGLs above and below 800 m. The average area, depth, and volume of 

SGLs below 800 m remain relatively stable with minimal fluctuations. In contrast, SGLs above 800 m exhibit more variability 

and dominate the overall trends of various statistics. The most drastic changes in area, depth, and volume occur between 1200 

m and 1600 m, indicating this elevation range is the most favorable for SGL formation. 430 

According to the average area at different elevations (shown in Fig. 12(a)), the overall peak area is reachesd around early 

August, specifically on August 1st, driven primarily by lakes in the 1200-1600 m range, with the highest value recorded at 

3.5×104 m2 on August 13. Each elevation band shows a similar trend with varying magnitudes, peaking mostly between late 

July and early August, suggesting mid-summer as the period of maximum lake expansion. After July 14, the area of SGLs 

between 1200 m and 1600 m continues to increase until peaking on August 13 and then decreases, while the average area of 435 

SGLs above 1600 m decreases and then stabilizes. 

Fig. 12(b) presents the average depth of SGLs across different elevations. Peaks in mean depths for the 0-400 m and 400-800 

m ranges occurred on July 2, with mean depths in the 400-800 m range significantly higher than those in the 0-400 m range. 

Before July 2, the overall mean depth change is dominated by SGLs between 400 m and 1200 m. After July 2, the mean depth 

change is dominated by SGLs above 800 m. Mean depths in all elevation segments decreased between July 2 and July 14, 440 

except for those between 1200 m and 1600 m. Between July 14 and August 1, the mean depths of SGLs above 800 m increased 

rapidly, creating a more pronounced difference with those below 800 m, with mean depths in the 800-1200 m range reaching 

a peak. From August 1 to August 13, the mean depth of SGLs above 1200 m continued to increase, albeit at a slower rate, 

reaching its maximum mean depth on August 13, while the mean depth of SGLs between 800 m and 1200 m begian to decrease. 

After August 13, the mean depth of SGLs decreasesd across all elevation bands as the ablation season approached its end.  445 



 

28 
 

The average volume of SGLs in different elevation zones generally follows a trend of increasing and then decreasing, with the 

exception of SGLs between 800 m and 1200 m, which showed a smaller decrease on July 2 and then increased again (as shown 

in Fig. 12(c)). The higher the elevation of the SGL, the later its average volume reaches its peak, reflecting the spatial 

distribution of SGLs. As the melt season advances, SGLs gradually push inland from the coast, reaching elevations of 1800 m 

or higher. The volume change of SGLs between 1200 m and 1600 m is particularly notable, with the peak average volume 450 

significantly larger than that of other elevation intervals. This is due to the cumulative advantage of depth and area, making 

the probability of large and deep lakes significantly higher in this elevation interval compared to others. 

In summary, the elevation range of 1200-1600 m is the most conducive for the development of SGLs, with significant changes 

in area, depth, and volume, especially during the mid-summer peak. This range sees the most substantial lake formation and 

expansion, with the highest occurrence of large and deep lakes. 455 

5 Discussion  

5.1 The uncertainty of the SGL depth inversion of SGL 

The presence of ice and snow cover on the surface of SGLs significantly influences the reliability of depth inversion. As shown 

in Fig. 13(a), a distinct SGL is partially covered with ice or snow. The ICESat-2 track passes over this lake and the covered 

areas. In the segment from P2 to P3, the Sentinel-2 image provides band reflection information from the ice surface. This 460 

situation presents a significant challenge for both the empirical formula method and the MLP method. As shown in Fig. 13(c), 

depth measurement methods relying on optical images face obstructions in this segment, leading to an abrupt change in depth 

and a significant underestimation of depth in ice/snow-covered areas. As for ICESat-2 data, the sparse bathymetric photons, 

influenced by ice or snow in this segment, as shown in Fig. 13(b), complicates the depth measurements. Although fitting a 

continuous bottom (red line in Fig. 13(b)) makes the depth results appear more reasonable, using interpolated depth as a 465 

reference does not provide an accurate evaluation of the empirical formula method and the MLP model. Therefore, we 

manually removed this type of segments to ensure the reliability of depth from ICESat-2 data. In the segment from P3 to P4, 

although the lake surface is covered by floating ice, the MLP-based depth inversion method can partially overcome thise 

impact of floating ice on the lake surface. This improves the underestimation of lake depth, providingresulting in depth 

estimation results closer to those obtained using ICESat-2 data. 470 
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Figure 13. An example of the uncertainty of depth inversion in ice/snow covered area. (a) Sentinel-2 image obtained on June 17 

overlaid with the ICSat-2 RGT 338. (b) The depth detection results by using kernel density estimation. (c) The depth inversion 

results by using the empirical formula and the MLP model. 475 

5.2 The development characteristics of SGLs in the horizontal and vertical directions 

By comparing the change characteristics of the SGLs’ average area, depth, and volume over time, we find that there is a 

difference in the trend of lateral area development and vertical depth development throughout the development of SGLs from 

their incipient stages to their peak during the melt season (Fig. 14). From the initial melt period of June 7 to July 2, the mean 

area and the mean depth develop together. However, from July 2 to July 14, the mean area continues to grow, while the mean 480 

depth decreases, implying that more new, shallow SGLs appear. This disparity is the causative factor for the observed trend of 

a decline in average depth before attaining its peak value. Before reaching the greatest mean depth, SGLs undergo lateral 

expansion in area, as evidenced by the fact that the rate of increase in mean area was faster than the growth in mean volume 

from July 2 to July 14. After this period, SGLs develop vertically in depth. From July 14 to August 1, the mean volume 

continues to grow, reaching its maximum on August 1. This result is similar to the findings of Pitcher and Smith (2019), who 485 

observed that supraglacial streams first incise, resulting in large changes in depth relative to width, and then ablation along 

channel walls results in lateral expansion, increasing width relative to depth. In addition to the variations in supraglacial lake 

development resulting from the topography of different regions, further investigation is required to better understand the rate 

of horizontal and vertical development during the ablation season. 
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 490 

 
Figure 14. The trend of lateral area development and vertical depth development throughout the melt season. 

6 Conclusions 

A method for inversing the volume of SGLs by integrating optical imagery (Sentinel-2) and satellite altimetry data (ICEsat-2) 

is proposed in this paper. It is indicated that the accuracy of SGLs’ area extraction by using an RF model based on Sentinel-2 495 

imagery is 90.20%. And the mean absolute error of depth inversion by using an MLP model based on the ratio of reflectance 

oriented from Sentinel-2 imagery and the depth of SGLs detected by ICESat-2 data is 0.42 m, surpassing that of traditional 

empirical formula methods. The proposed volume inversion method for SGLs is applied to southwestern Greenland, thereby 

obtaining the volumetric evolution of SGLs throughout the entire melt season of 2022. It reveals that SGLs vary significantly 

in distribution, area, depth, and volume throughout the melt season. The SGLs evolveute along coastlines and later spread 500 

inland, expanding in area and depth. The maximum totalof average volume of SGLs is reachesd on August 1st, amounting to 

9.30´108 m3. Afterwards, SGLs above 1200 m continue to increase in volume, while SGLs below 1200 m begin to decrease. 

In late August, as the melt season draew to a close, SGLs diminish and retreat to coastal regions, with a notable reduction in 

volume. Moreover, the evolution characteristics of SGLs at different elevations are also investigated. It is found that the mean 
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area, mean depth, and mean volume of SGLs below 800 m remains relatively stable throughout the entire melt season. SGLs 505 

above 800 m exhibit a similar evolution pattern,. Aand the elevation range of 1200 m to 1600 m is the most favorable for the 

evolution of SGLs. Moreover, our research indicates a temporal lag in the maximization of mean area and depth., aAt the onset 

of development, the area and depth evolve concurrently, then, before the instance when the total volume of meltwater reaches 

its maximum (Aug. 1), the mean area reaches its peak before the mean depth., This suggestsing that the SGLs exhibit velocities 

of morphological evolution along horizontal and vertical dimensions. The quantitative parameter inversion and analysis of 510 

SGLs in southwestern Greenland presented in this paper contribute to a better understanding of the mass balance of the 

Greenland Iice Ssheet. However, when the surface of an SGL is covered with ice/snow, the depth may be underestimated, 

which could further lead to an underestimation of its volume. It may be possible to improve the accuracy of volume estimation 

by incorporating the temporal changes of the SGL over the time series.  

 515 
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