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Abstract. Greenland's peripheral glaciers are significant contributors to sea level rise and freshwater fluxes, yet their future 

evolution remains poorly constrained. This study projects the response of these glaciers to future climate change using the 15 

Open Global Glacier Model (OGGM) forced by CMIP6 climate data under four emission scenarios. By 2100, the glaciers 

are projected to lose 19-44 % of their area and 29-52 % of their volume, contributing 10-19 mm to sea level rise. Solid ice 

discharge is projected to decrease, while freshwater runoff will peak within the 21st century. The runoff composition is 

projected to change drastically, with shares of glacier ablation decreasing from 92 % in 2021-2030 to 72 % by 2091-2100 

and shares of rainfall and snowmelt increasing 8-fold and 15-fold, respectively, suggesting a shift in the hydrological regime. 20 

Timing of the maximum runoff varies across scenarios (2050 ± 21 for SSP126; 2082 ± 9 for SSP585) and subregions, with 

the projected maximum runoff reaching 214-293 Gt/yr, implying significantly increased future freshwater fluxes. These 

changes will impact fjord water characteristics and coastal hydrography, and potentially influence larger ocean circulation 

patterns. 

Keywords: Climate Change; Greenland’s Peripheral Glaciers; Freshwater; Ice Discharge; Sea Level Rise; OGGM; Peak 25 

Water 

1 Introduction 

The Arctic region has experienced a significant increase in air temperatures in recent decades, warming nearly four times 

faster than the global average (Rantanen et al., 2022). This rapid warming profoundly impacts Greenland's peripheral 

glaciers, which are either completely detached from the ice sheet or dynamically decoupled (Rastner et al., 2012). These 30 

glaciers exhibit accelerated responses to warming compared to the slower-responding ice sheet (Khan et al., 2022; Noel et 

al., 2017; Larsen et al., 2022; Bolch et al., 2013; Larocca et al., 2023), which are linked to increased surface ablation and 
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solid ice discharge, indicating a high sensitivity to atmospheric warming and oceanic forcing (Bjørk et al., 2017; Liu et al., 

2022a; Möller et al., 2024). Greenland's peripheral glaciers account for 8.5-11 % of the global glacier volume outside 

Antarctica and the Greenland Ice Sheet, and they are significant contributors to current and future sea level rise, presently 35 

delivering the second largest contribution (10-13 %) to sea level rise originating from the global glaciers outside the two ice 

sheets (Hugonnet et al., 2021; Bolch et al., 2013). The peripheral glaciers are equivalent to only ~5 % of the area and less 

than 1 % of the volume of the Greenland Ice Sheet, yet they contribute 11-20 % of Greenland’s total ice mass loss 

(Hugonnet et al., 2021; Khan et al., 2022; Bollen et al., 2023; Bolch et al., 2013). 

Despite their significance, the evolution of these glaciers under future climate scenarios remains insufficiently explored, 40 

particularly with respect to a partitioning of freshwater contributions to sea level rise, i.e., solid ice discharge and freshwater 

runoff. This distinction is critical for predicting changes in fjord water characteristics, sea level, and oceanic circulation 

(Hopwood et al., 2020; Sugiyama et al., 2021; Edwards et al., 2021; Mankoff et al., 2020; Nowicki et al., 2020). Both solid 

ice discharge and freshwater runoff (surface melting and rainfall) directly contribute to sea level rise when they enter the 

ocean (Edwards et al., 2021; Hopwood et al., 2020). However, they differ in timing and spatial distribution of their 45 

contributions. When marine-terminating glaciers (excluding floating tongues) calve icebergs into the fjords, these icebergs 

immediately contribute to sea level rise. As the icebergs drift away from the glacier and gradually melt, they release 

freshwater over a larger area and longer time scale (Bamber et al., 2018; Davison et al., 2020; Enderlin et al., 2021). Liquid 

freshwater also directly contributes to rising sea levels when the water enters the ocean. This freshwater input is more 

concentrated near the glacier terminus and has a more immediate effect on sediment transport, fjord characteristics, and local 50 

sea level (Beckmann et al., 2019; Slater et al., 2020). Understanding the dynamics and interplay of solid ice discharge and 

surface liquid freshwater from peripheral glaciers is crucial for accurately assessing Greenland's overall ice mass losses and 

their impacts under future climate change. 

Existing studies often overlook the impact of future climate change on the individual components of freshwater contributions 

from these peripheral glaciers and how these changes in magnitude and timing propagate to affect fjord water characteristics, 55 

ocean circulation, and sea level rise (Cowton et al., 2015; Hopwood et al., 2020). Solid ice discharge from peripheral 

glaciers, a significant mass loss process (Bollen et al., 2023; Malles et al., 2023), has received less attention when modeling 

future climate change scenarios. The composition of future liquid freshwater fluxes from Greenland's periphery, including 

the relative contributions of ice melt, snowmelt and rainfall, remains poorly quantified (Mernild et al., 2010; Mernild et al., 

2013; Mernild et al., 2018). The changes in magnitude and timing of freshwater composition in the surrounding ocean 60 

impact the ocean circulation and marine ecosystems (Perner et al., 2019; Bamber et al., 2018; Hopwood et al., 2020; 

Mankoff et al., 2020; Mathis and Mikolajewicz, 2020; Kanzow et al., 2024). Moreover, the timing of the maximum runoff 

(called peak water from here on), which has major implications for ocean circulation patterns, fjord ecosystems, and sea 

level, also requires dedicated projections of freshwater fluxes and timing focused on the peripheral glaciers rather than the 

whole ice sheet (Oliver et al., 2018; Aschwanden et al., 2019; Bliss et al., 2014). This distinction is important because 65 

peripheral glaciers and the Greenland Ice Sheet are likely to exhibit different peak water timing. While the massive ice sheet 
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may continue to increase its meltwater contribution well beyond this century, smaller and more climate-sensitive peripheral 

glaciers are expected to reach peak water earlier. Consequently, some fjords primarily fed by peripheral glaciers may 

experience peak water within the projection period of this study, while others dominated by ice sheet runoff may not. 

Previous research suggests that certain glaciers may have already transitioned towards a more cold-based regime (Carrivick 70 

et al., 2023), which implies a potential shift in the timing of meltwater release. By focusing on peripheral glaciers, we can 

better understand and anticipate localized changes in freshwater input to coastal areas, which is crucial for assessing impacts 

on fjord ecosystems, coastal dynamics, and potentially larger ocean circulation patterns. 

This study aims to address these research gaps by investigating how Greenland's peripheral glaciers will evolve under 

different future climate change scenarios, considering spatial and temporal variability. It employs the Open Global Glacier 75 

Model (OGGM) (Maussion et al., 2019), calibrated with recent geodetic mass balance (Hugonnet et al., 2021) and frontal 

ablation data (Kochtitzky et al., 2022), and is forced using an ensemble of climate projections from CMIP6 (Eyring et al., 

2016) under different emission scenarios until 2100. Our modeling results yield projections of future mass loss of 

Greenland's peripheral glaciers, including the ability to distinguish between mass loss occurring above and below sea level. 

This distinction allows for more accurate estimations of their contributions to sea level rise, as well as detailed projections of 80 

both solid and liquid freshwater contributions. Furthermore, we project the timing and magnitude of peak runoff for these 

glaciers. Thus, our study also gives insights into the changing composition of projected liquid freshwater runoff, including 

the relative contributions of different sources such as ice melt, snowmelt, and rainfall, which contributes to enhance our 

understanding of the evolving hydrological dynamics and their implications in the region. 

2 Materials and Methods 85 

2.1 Greenland's Peripheral Glaciers 

This study focuses on Greenland's peripheral glaciers that have been classified into three different connectivity levels (CL) 

by Rastner et al. (2012): completely detached from the ice sheet (CL0), dynamically decoupled (CL1), and dynamically 

connected to the ice sheet (CL2). In our study, we only consider glaciers of categories CL0 and CL1 (Fig. 1a), as glaciers in 

category CL2 are usually considered to be part of the ice sheet (Hock et al., 2019; Marzeion et al., 2020). Glacier outlines are 90 

taken from the Randolph Glacier Inventory (RGI) version 6.0 (Pfeffer et al., 2014). Deviating from this inventory, we 

adopted an enhanced subdivision comprising individual drainage basins for the Flade Isblink Ice Cap (RGI ID: RGI60-

05.10315) in Northeast Greenland. The new subdivision of Flade Isblink Ice Cap (Fig. 1b) encompasses several marine-

terminating basins; however, based on velocity observations, only six of them are active calving basins (Recinos et al., 2021; 

Möller et al., 2022). This study groups the peripheral glaciers into seven regions: North-East, Central-East, South-East, 95 

South-West, Central-West, North-West, and North (Fig. 1). 
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Figure 1: Greenland's Peripheral Glaciers. (a) spatial distribution of considered peripheral glaciers (CL0 & CL1) across the 

different subregions, excluding peripheral glaciers of CL2, and location of marine-terminating glaciers, (b) new subdivision of 

Flade Isblink Ice Cap (FIIC) and active marine-terminating glaciers, (c) percentage of glaciers in different subregions, and (d) 100 
percentage of glacier area in different subregions of Greenland. 

2.2 Data 

2.2.1 Historical and Future Climate Data 

ERA5 climate data (monthly air temperature and precipitation) (Hersbach et al., 2020) were used as boundary conditions to 

calibrate the mass balance model. A precipitation correction (with no vertical gradient, but with a multiplicative correction 105 

factor; see details in subsection 2.3.1) was applied to the original ERA5 time series. This correction can be seen as 

accounting for processes like orographic precipitation, avalanches, and wind-blown snow, which are not resolved by the 

ERA5 data (Maussion et al., 2019). 

CMIP6 data for ten GCMs (Table 1) and four Shared Socioeconomic Pathways (SSPs: SSP126, SSP245, SSP370, and 

SSP585) are used to force the model from 2020 until 2100. Among the selected SSPs, SSP126 represents sustainability (low 110 

emissions), SSP245 middle-of-the-road development, SSP370 regional rivalry, and SSP585 fossil-fueled growth (high 
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emissions), each offering distinct scenarios for future global socioeconomic development and associated climate challenges 

(Riahi et al., 2017). The selected GCMs have been employed in several previous studies for similar glacier projections 

(Edwards et al., 2021; Malles et al., 2023; Rounce et al., 2023; Zekollari et al., 2024), chosen based on their performance in 

simulating key climatic variables relevant to glacier dynamics and their ability to represent a broad range of potential future 115 

climates. Such a standardized selection of GCMs provides consistency and continuity and facilitates the comparison and 

contrast of results (Hock et al., 2019; Marzeion et al., 2020). This approach ensures a robust and representative sample of 

climate projections while maintaining comparability with earlier studies. Furthermore, the sample size is large enough to 

encompass a wide range of potential climatic futures, thus yielding a robust set of scenarios and increasing confidence in the 

projections. Although CMIP6 models generally do not include dynamic ice sheet components (Eyring et al., 2016; Nowicki 120 

et al., 2016), our glacier model OGGM explicitly accounts for ice dynamics. The climate data from these GCMs serves as 

input for OGGM, rather than directly modeling glacier evolution. 

Table 1. Selected GCMs from CMIP6 for future climate change data until 2100. 

GCM Variant Spatial resolution (°) Temporal coverage Reference 

BCC-CSM2-MR r1i1p1f1 1.12 1850-2100 (Xin et al., 2018) 

CAMS-CSM1-0 r1i1p1f1 1.12 1850-2100 (Rong, 2019) 

FGOALS-f3-L r1i1p1f1 1.00 1850-2100 (Yu, 2019) 

CESM2-WACCM r1i1p1f1 1.25 1850-2100 (Danabasoglu, 2019) 

GFDL-ESM4 r1i1p1f1 1.25 1850-2100 (Horowitz et al., 2018) 

INM-CM4-8 r1i1p1f1 2.00 1850-2100 (Volodin et al., 2019a) 
INM-CM5-0 r1i1p1f1 2.00 1850-2100 (Volodin et al., 2019b) 

MPI-ESM1-2-HR r1i1p1f1 0.94 1850-2100 (Von Storch et al., 2017) 

MRI-ESM2-0 r1i1p1f1 1.12 1850-2100 (Yukimoto et al., 2019) 

NorESM2-MM r1i1p1f1 1.25 1850-2100 (Seland et al., 2020) 

 

The GCM data are bias-corrected using the delta method (Maraun, 2016), which involves employing the relatively high-125 

resolution gridded observations of the ERA5 dataset (Hersbach et al., 2020) as reference climatology and applying only 

anomalies between the GCMs and the pre-determined reference period (in our case, 1981-2020). 

2.2.2 Mass Balance and Frontal Ablation Observations 

This study utilizes the mass change estimates for each glacier in the RGI 6.0 during 2000-2020, provided by Hugonnet et al. 

(2021). However, these mass changes are based on differences in surface elevations derived from digital elevation models 130 

(DEMs) between different points in time and do not include any changes occurring below sea level. Thus, when estimating 

total mass changes and calibrating models of marine-terminating glaciers, it is essential to correct for the mass budget 

disregarded by not considering changes below sea level. 

To obtain frontal ablation estimates, including the mass changes below sea level, which are needed to prevent an erroneous 

calibration of the surface mass balance model in OGGM, we use the satellite-derived dataset from Kochtitzky et al. (2022). 135 

These frontal ablation estimates are used to correct the mass budget for marine-terminating glaciers, ensuring accurate 
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calibration of the surface mass balance model. For a detailed description of how this data is incorporated into the calibration 

process, see Section 2.4. 

2.3 Open Global Glacier Model (OGGM) 

OGGM is a numerical model framework designed to simulate the evolution of glaciers on a basin to global scale. It is based 140 

on a combination of physical and empirical equations that relate glacier mass balance, ice flow, and geometry to 

environmental variables, such as temperature, precipitation, and topography (Maussion et al., 2019). The basic flowchart of 

OGGM setup, calibration, and run as used in this study is presented in Fig. 2. 

OGGM requires information about the location, area, terminus type, and elevation of each glacier at some point in time 

(usually the date of data acquisition) within the modeled time interval. These data were taken from RGI 6.0 (Pfeffer et al., 145 

2014). For topographic data, we used the ArcticDEM dataset (Porter et al., 2018) for most of our study's glaciers and the 

GIMP DEM (Howat et al., 2014) to fill in the gaps. The topographic data is interpolated and resampled to a resolution 

suitable for the glacier size (Maussion et al., 2019), then smoothed using a Gaussian filter, and finally reprojected centered 

on the individual glacier using Transverse Mercator map projection. 

OGGM uses a flowline model based on shallow Ice Approximation (SIA) to simulate the ice dynamics (Maussion et al., 150 

2019). This flowline considers the width of the glacier, allowing the model to match the observed area-elevation distribution 

of real glaciers and to parametrize changes in glacier width with thickness changes. This study uses the binned elevation-

band flowlines method (Werder et al., 2019). The mean of the slopes within a quantile range is used to calculate the glacier's 

slope, removing outliers and accurately representing the glacier's main tongue and true length. The downstream lines and bed 

shape are also calculated to allow the glacier to grow. The dynamical simulations commence from the date of the glacier’s 155 

data acquisition in the RGI. The starting date of the simulations may thus vary over a few years between glaciers. The initial 

geometry comprises the surface area specified by the RGI and the outcome of the ice thickness inversion. 
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Figure 2: Workflow chart of Open Global Glacier Model (OGGM). 

2.3.1 Mass Balance Model 160 

The climate data is interpolated to the glacier location to compute the glacier's monthly surface mass balance. The air 

temperature data is corrected using a lapse rate calculated based on the gridded climate dataset. This calculation is performed 

at each grid point along the flowline of the glacier. The solid precipitation is calculated using a threshold air temperature. 

Specifically, all precipitation is considered solid when the air temperature is below 0°C. All precipitation is considered liquid 

when the air temperature is above 2°C. For temperatures between 0°C and 2°C, a linear interpolation between solid and 165 

liquid precipitation is applied. The monthly surface mass balance of a glacier, pertaining to the grid point i located at 

elevation zi, is computed for every grid point along the flowline. 

𝑚𝑖(𝑧) = 𝑓𝑃𝑃𝑖
𝑠𝑜𝑙𝑖𝑑(𝑧) − 𝜇𝑚𝑎𝑥(𝑇𝑖

𝑚(𝑧), 0),        (1) 

where 𝑚𝑖(𝑧) is monthly surface mass balance for grid point 𝑖 (in mm w.e.); 𝑓𝑃  is precipitation factor; 𝑃𝑖
𝑠𝑜𝑙𝑖𝑑(𝑧) is solid 

precipitation (in mm w.e.); 𝜇 is air temperature sensitivity (in mm w.e. K-1); 𝑇𝑖
𝑚(𝑧) is the air temperature above the threshold 170 
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for ice melt at the glacier surface (in K). We applied a global 𝑓𝑃 = 1.6, consistent with the default-OGGM v1.4 setup (Oggm-

Documentation, 2024). The parameter 𝜇 is a calibrated individually for every glacier, as detailed in section 2.4.  

2.3.2 Enhanced Modeling of Marine-Terminating Glaciers 

Accurately modeling marine-terminating glaciers is crucial for understanding their dynamics and predicting their response to 

climate change. In this study, we apply an enhanced approach by incorporating a module that accounts for hydrostatic 175 

pressure balance, enabling the shallow ice approximation for marine-terminating glaciers with terminal cliffs (Malles et al., 

2023). In the enhanced parametrization, the sliding velocity calculation was also updated to take the water depth of the 

glacier's bed into account. The sliding velocity calculation considers the height above buoyancy, calculated as the difference 

between ice thickness and the ratio of ice and ocean water densities multiplied by water depth. OGGM was updated for 

consistency in the dynamical model core and ice thickness inversion, incorporating height above buoyancy and frontal 180 

ablation parameterization. The same frontal ablation parameterization is applied in the dynamical model, ensuring a 

consistent ice thickness inversion solution for all glaciers. The parameterized frontal ablation flux is subtracted from the flux 

through the grounding line in every time step. When the accumulated difference is sufficiently positive/negative, the glacier 

can advance/retreat into the next grid cell. If the thickness of one or more grid cells falls below flotation in a specific time 

step, the part of this volume that is contained in grid cells beyond the one adjacent to the last grid cell above flotation is 185 

removed and added to the frontal ablation output variable (i.e., the formation of ice shelves is suppressed). 

Frontal ablation (𝑄
𝑓

) in marine-terminating glaciers is determined by employing the calculation method proposed by 

Oerlemans and Nick (2005): 

𝑄𝑓 = 𝑘𝑑ℎ𝑤,            (2) 

Where 𝑘, 𝑑, ℎ, and 𝑤 are water-depth sensitivity parameter (in yr−1), water depth (in m), ice thickness (in m), and width at 190 

the glacier front (in m), respectively. An iterative procedure is employed to find a value for the water-depth sensitivity 

parameter that produces a frontal ablation estimate within the uncertainty bounds of the data used. This value is used in ice 

thickness inversion and a subsequent historical dynamical run. The mass loss through frontal ablation is considered as solid 

ice discharge. For a more detailed description of this process, including its implementation in OGGM, readers are referred to 

Malles et al. (2023). 195 

2.3.3 Freshwater Runoff and Peak Water 

All the runoff generated through surface melt processes and direct rain is considered as liquid freshwater runoff. The total 

annual freshwater runoff from the glacier was calculated by summing the components of off-glacier snowmelt, on-glacier 

melt, on-glacier liquid precipitation, and off-glacier liquid precipitation. 

𝑇𝑅 = ∑𝐺𝑅𝑖,𝑠,𝑟 + 𝑆𝑅 + 𝑅𝑅,          (3) 200 
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Where TR is total liquid freshwater runoff, GRi,s,r denotes the sum of runoff from glacier ice (GRi), snow (GRs), and rain 

(GRr), SR is snowmelt off-glacier, and RR is rain runoff off-glacier. SR and RR are the freshwater runoff components from 

the deglaciated areas within the RGI boundaries, where the glacier has retreated or disappeared over time. Although the 

glaciers have retreated from these areas, they still contribute to the total freshwater runoff due to initial boundary constraints 

and are therefore included in the calculation. 205 

"Peak water" is defined as the moment in time when the amount of annual freshwater released from a glacier reaches its 

highest level and begins to decrease.  As a glacier shrinks, more annual meltwater is released until a maximum is reached. 

Peak water is determined after applying an 11-year rolling mean to the total liquid freshwater runoff time series to reduce 

short-term variability and highlight long-term trends. 

2.4 Model Calibration 210 

In previous versions of OGGM, spatial interpolation was used in the calibration process of the surface mass balance model 

due to the lack of observational data. However, we are now able to calibrate on a glacier-by-glacier basis using geodetic 

mass balance (Hugonnet et al., 2021) and frontal ablation data, including volume changes below sea level (Kochtitzky et al., 

2022). We use the following equation after Malles et al. (2023) for calibration: 

𝜇 = (𝑓𝑝𝑃𝑠𝑜𝑙𝑖𝑑 −
∆𝑀𝑎𝑤𝑙+𝐶+𝑓𝑏𝑤𝑙∆𝑀𝑓

𝐴𝑟𝑔𝑖
)

1

𝑇𝑚
,         (4) 215 

Where ∆𝑀𝑎𝑤𝑙  is observed annual volume change above sea level of a glacier (Gt/yr) as given by Hugonnet et al. (2021), 𝐶 is 

observed annual frontal ablation rate of a glacier as given by Kochtitzky et al. (2022) (Gt/yr), ∆𝑀𝑓  is observed annual 

volume retreat due to area changes in the terminus region of a glacier (Gt/yr), as given by Kochtitzky et al. (2022), 𝑓𝑏𝑤𝑙 is an 

assumed fraction of ∆𝑀𝑓occurring below the waterline, 𝐴𝑅𝐺𝐼 is glacier surface area of a glacier as given by the RGI 6.0 

(km2), 𝑇𝑚 is annually accumulated air temperature above the threshold for ice melt (-1 °C) at the glacier surface (K). For a 220 

comprehensive description of the calibration process, readers are referred to Malles et al. (2023). 

2.5 Future Projections and Analysis 

Finally, future glacier area, volume, mass loss, sea level rise, solid ice, freshwater runoff contributions, and peak water were 

projected from 2020 to 2100 for all peripheral glaciers in Greenland. We employed several tests to analyze the data and 

assess the statistical significance of our findings. One-way Analysis of Variance (ANOVA) was used to compare means 225 

across multiple groups (e.g., emission scenarios) for normally distributed data (Fisher, 1992). Two-way ANOVA examined 

the effects of two independent variables (e.g., region and emission scenario) on a dependent variable, as well as their 

potential interaction. The F-statistic in ANOVA, representing the ratio of between-group variability (variation between 

sample means) to within-group variability (variation between sample means), was used to quantify the significance of 

differences. For non-normally distributed data, we used the Kruskal-Wallis test, a non-parametric alternative to one-way 230 

ANOVA (Kruskal and Wallis, 1952). Following significant results, Tukey's Honestly Significant Difference (HSD) test was 
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applied for post-hoc pairwise comparisons (Tukey, 1949). These methods assessed differences in glacier area retreat, volume 

loss, sea level rise contributions, freshwater runoff, and peak water timing across emission scenarios and regions. The choice 

of test depended on data characteristics and comparison specifics. 

3 Results 235 

3.1 Projected Glacier Area Retreat, Volume Loss, and Sea Level Rise Contributions 

Our projections suggest notable declines in area and volume of glaciers along the periphery of Greenland by the year 2100 

across all evaluated emission scenarios (see Figs. 3 and 4). A one-way ANOVA test revealed significant differences in area 

retreat among SSP scenarios (F (3,36) = 19.65, p<0.001), indicating the varied impacts of emission levels on the spatial 

changes of Greenland's peripheral glaciers. 240 

Under the low-emission scenario (SSP126), glacier area shows a relatively steady annual decrease of 0.18 ± 0.03 % yr−1 

(mean ± 1 SD), in contrast to the high-emission scenario (SSP585), which exhibits a more pronounced annual decline of 0.43 

± 0.08 % yr-1 (Fig. 3b). Additionally, a trend towards increasing standard deviation over time across all scenarios (one-way 

ANOVA, p < 0.001) indicates growing variability in the projections of the remaining glacier area, reflecting increased 

uncertainty as the century progresses. Projections suggest a decrease in total glacier area by 19 ± 6 % under SSP126 and 44 ± 245 

15 % under SSP585. 
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Figure 3: (a) Spatial distribution of projected remaining glacier area in 2100 compared to 2020 under different emission scenarios 

(mean of 10 GCMs). (b) Projected remaining glacier area from 2020 to 2100 (mean ± 1SD). The solid lines and shaded areas (mean 

± 1SD) are plotted using the locally estimated scatterplot smoothing (LOESS) regression method. The box plots represent the 250 
statistics of the remaining area in 2100 compared to 2020 under 4 SSPs (10 GCMs). 

Similarly, glacier volume is expected to decrease by 29 ± 6 % under SSP126 and 52 ± 14 % under SSP585, with a significant 

regional variability (Fig. 4). For instance, the Central-West subregion is projected to experience the most severe volume loss, 
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which is statistically higher than other regions (p < 0.05, Tukey's Honestly Significant Difference (HSD) Test). Conversely, 

the North-East region shows the lowest projected loss (Fig. 4b). A two-way ANOVA confirms that both the subregion (F 255 

(6,72) = 62.34, p < 0.001) and SSP scenario (F (3,72) = 118.79, p < 0.001) have a significant impact on the projected glacier 

volume loss, independent of each other. However, no interaction effect was observed between region and SSP (p = 0.085), 

indicating that the impact of SSP on projected total volume loss does not significantly differ across regions and vice versa. 

 
Figure 4: (a) Spatial distribution of projected remaining glacier volume in 2100 compared to 2020 under different emission 260 
scenarios (mean of 10 GCMs). (b) Projected remaining glacier volume from 2020 to 2100 (mean ± 1SD). The solid lines and shaded 
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areas (mean ± 1SD) are plotted using the locally estimated scatterplot smoothing (LOESS) regression method. The box plots 

represent the statistics of the remaining area in 2100 compared to 2020 under 4 SSPs (10 GCMs). 

The losses in glacier volume translate to a contribution to sea level rise of 10 ± 2 mm under SSP126 and 19 ± 5 mm under 

SSP585, with substantial regional variability (Fig. 5a). For all SSPs, sea level rise (SLR) shows significant positive trends 265 

over 2021 to 2100: SSP126 (0.10 ± 0.01 mm/yr), SSP245 (0.13 ± 0.02 mm/yr), SSP370 (0.16 ± 0.03 mm/yr), and SSP585 

(0.19 ± 0.04 mm/yr) (Fig. 5a). The North-East subregion is found to exhibit the strongest increase in SLR contribution 

(0.092 ± 0.027 mm/yr2) and the highest mean SLR contribution by 2100 across all SSPs. Under SSP585, it is projected to 

contribute 37 % of the total SLR, see Fig. 5b). In contrast, the Central-West subregion is suggested to have the weakest 

increase (0.0082 ± 0.0015 mm/yr2) and the lowest projected SLR contribution (3 %) under SSP585.   270 

A one-way ANOVA highlighted significant differences in mean SLR contributions between subregions for each SSP 

(p<0.001). Additionally, two-way ANOVA analysis underscored the significant interaction between subregions and emission 

scenarios on end-of-century area, volume losses, and SLR contributions (p<0.001), demonstrating the compound influence 

of local environmental factors and global emission trajectories on the dynamics of glacier evolution. These findings indicate 

that SLR from Greenland's peripheral glaciers is set to substantially increase through the 21st century under all SSPs.  275 

 
Figure 5: (a) Solid lines represent the projected cumulative mass change in mm Sea Level Equivalent (mm SLE) in different 

subregions from 2020 to 2100 (mean ± 1SD; 10 GCMs). The dotted lines represent sea level rise (mm SLE), considering mass 

change below sea level. The solid lines and shaded areas (mean ± 1SD for total mass loss) and dotted lines (sea level rise) are 

plotted using the locally estimated scatterplot smoothing (LOESS) regression method. The interquartile ranges (boxplots) 280 
represent the statistics for the cumulative sea level rise contributions from different subregions for the year 2100. (b) Percent 

contributions in sea level rise from each subregion by 2100 under SSP585 (mean of 10 GCMs). 

https://doi.org/10.5194/egusphere-2024-2184
Preprint. Discussion started: 15 August 2024
c© Author(s) 2024. CC BY 4.0 License.



14 

 

3.2 Freshwater Contributions: Solid Ice Discharge vs Liquid Freshwater Runoff 

 Our projections reveal significant but contrasting trends in both solid ice discharge and liquid freshwater runoff from 

Greenland's peripheral glaciers over the 21st century, influenced by climate change and emission scenarios. 285 

Solid ice discharge shows an average of 3.0 ± 0.7 Gt/yr from 2020 to 2100 under the high-emission SSP585 scenario, with a 

notable decrease post-2050 attributed to the diminishing extent of marine-terminating glaciers (Fig. 6). Accordingly, the 

solid ice discharge exhibits a declining trend under all scenarios, with substantial interannual variability. For example, under 

SSP126, the solid ice discharge decreases at a rate of -0.011 Gt/yr², a statistically significant trend mirrored across other 

scenarios: SSP245 (-0.014 Gt/yr²), SSP370 (-0.017 Gt/yr²), and SSP585 (-0.018 Gt/yr²). These trends were supported by a 290 

two-way ANOVA, which highlighted a significant year-on-year reduction in solid ice discharge (p<0.001) across all 

scenarios. 

In terms of regional ice discharge, most areas exhibit declining trends, except for the North-East, which shows a marginal 

increase from 1.05-1.06 Gt/yr in 2021-2030 to 1.15-1.23 Gt/yr by 2091-2100 under low and high emission scenarios. Two-

way ANOVA tests confirm significant differences (p<0.001) in ice discharge between the period I (2021-2030) and period II 295 

(2091-2100) of projections. However, no significant differences are found among emission scenarios (p>0.05) or in the 

interaction between scenarios and selected decades (p>0.05). It is important to note that our model does not account for 

ocean temperature changes, which may affect solid ice discharge projections. 

 
Figure 6: Solid ice discharge in different subregions from 2020 to 2100. The first set of interquartile ranges (boxplots) represents 300 
the average solid ice discharge over 2021-2030, and the second set represents the average over 2091-2100 under different emission 

scenarios. 
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Conversely, projections for liquid freshwater runoff indicate a significant increase over the century, with annual averages 

ranging from 138 ± 12 Gt/yr under SSP126 to 184 ± 27 Gt/yr under SSP585 (Fig. 7a). Freshwater runoff increases under 

SSP585 from 145 ± 27 Gt/yr to 216 ± 46 Gt/yr, whereas it decreases under SSP126 from 145 ± 25 Gt/yr to 120 Gt/yr by 305 

2100 compared to 2020. The North-East subregion emerges as the dominant contributor, accounting for 35 % of the total 

runoff over 2020-2100 under SSP585. This contribution is contrasted sharply by the Central-West region, which contributes 

only 3 % of the total annual freshwater runoff (Fig. 7b). These regional differences in runoff contributions are influenced by 

variations in glacier number, area, and ice volume among subregions (Fig. 1c-d). 

The composition of freshwater runoff is also expected to shift markedly over the century. Under SSP585, the proportion of 310 

glacier meltwater in total runoff is projected to decrease from 92 % in 2021-2030 to 72 % by 2091-2100. Meanwhile, 

contributions from off-glacier rainfall and snowmelt are expected to increase from less than 1 % to 8 % (~ 8-fold) and from 1 

% to 15 % (~15-fold), respectively (Fig. 7c-d). The seasonal distribution of freshwater runoff components is also projected to 

change significantly (Fig. 7e-f). In 2021-2030, glacier melt dominates runoff from May to September, peaking in July. By 

2091-2100, while glacier melt still peaks in July, its contribution is notably reduced. Snowmelt shows a marked increase, 315 

especially in May-June, while rainfall contributions increase throughout the year especially during summer months. 
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Figure 7: (a) freshwater runoff (Gt/yr) from different subregions under four emission scenarios (10 GCMs) from 2020-2099. The 

box plots represent the statistics of average freshwater runoff from 2020-2099. (b) percent freshwater runoff contributions from 

different subregions under SSP585. (c-d) Average percent contributions of runoff components to total freshwater runoff during 320 
2021-2030 and 2091-2100 under SSP585. (e-f) Seasonal distribution of freshwater runoff components for the same periods under 

SSP585. 

3.3 Peak Water Timing and Magnitude 

The timing and magnitude of peak water runoff from Greenland's peripheral glaciers are significantly influenced by varying 

emission scenarios, demonstrating notable spatial and temporal variability (Fig. 8). 325 

For Greenland peripheral glaciers, peak water runoff is projected to occur around the year 2050 ± 21 under the low-emission 

SSP126 and around 2082 ± 9 under the high-emission SSP585 scenario (Fig. 8a). The shift of nearly 30 years is statistically 

significant (Kruskal-Wallis p < 0.05), indicating a strong influence of emission scenarios on the hydrological responses of 

the glaciers. The maximum runoff at these peak times is expected to be 214 ± 21 Gt/yr under SSP126 and 293 ± 61 Gt/yr 

under SSP585 (Fig. 8b), underscoring the increased runoff associated with higher emissions. 330 

Subregional analysis reveals that southern regions such as South-East and South-West are expected to experience earlier 

peak waters, with median timings around 2038 (± 17 years) and 2035 (± 10 years) under SSP126, respectively. Conversely, 

northern and central subregions show a delayed response; for instance, the North-East and North regions are projected to 

reach their peak around 2053 (± 22 years) and 2055 (± 25 years) under SSP126, shifting to 2080 (± 19 years) and 2086 (± 13 

years) under SSP585 (Fig. 8a). Despite these apparent differences in timing across subregions, statistical analysis using the 335 

Kruskal-Wallis test indicates that these variations are not statistically significant (p > 0.05), suggesting that while regional 

differences exist, they do not diverge significantly under different scenarios. 
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Figure 8: (a) Box plots representing statistics of peak water year under different emission scenarios in subregions. (b) Mean 

maximum freshwater runoff (Gt/yr) at peak water year (mean ± 1SD for 10 GCMs). 340 
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4 Discussion 

4.1 Increasing Glacier Mass Losses and Contribution to Sea Level Rise 

Our projections indicate substantial losses in both area and volume of Greenland's peripheral glaciers by 2100, highlighting 

their high sensitivity to climatic changes. Under the high-emission scenario (SSP585), glacier area and volume are expected 

to decline by up to 44 % and 52 %, respectively, by 2100 (Figs. 3 & 4). These losses align with existing models predicting 345 

accelerated glacier retreat and mass loss (up to 50 % by 2100) in response to warming air temperatures (Hock et al., 2019; 

Marzeion et al., 2020; Rounce et al., 2023). Discrepancies across these studies can be attributed to the use of different 

climate forcings, initial conditions, and the representation of ice flow dynamics in different glacier models (Zekollari et al., 

2022; Marzeion et al., 2020). The variability in our projections across different emission scenarios underscores the potential 

impact of climate mitigation efforts on the fate of these glaciers (Fox-Kemper et al., 2023).  350 

The projected glacier losses from Greenland's peripheral glaciers translate into a SLR contribution of ~19 ± 5 mm by the end 

of the 21st century under SSP585 (Fig. 5). The projected SLR is consistent with recent projections for Greenland's peripheral 

glaciers (Edwards et al., 2021; Marzeion et al., 2020). This contribution is significant when considering Greenland's total 

SLR contribution (Aschwanden et al., 2021; Grinsted et al., 2022). Goelzer et al. (2020) estimated a mean SLR contribution 

of 90 ± 50 mm from the Greenland Ice Sheet alone under RCP8.5, suggesting that peripheral glaciers represent a substantial 355 

additional contribution to Greenland's total ice loss. 

The regional variability in projected glacier losses (Figs. 3 & 4) reflects the complex interplay between localized climatic 

conditions, topography, and glacier dynamics (King et al., 2020; Wood et al., 2021). For instance, the resilience of North-

East glaciers is attributed to high snowfall rates and resistant glacier geometry (Bevis et al., 2019), while Central-West 

glaciers are prone to surface melt and dynamic destabilization (Vijay et al., 2019; Cowton et al., 2018). This is also evident 360 

in decreasing ice discharge rates over recent years that oppose increasing ocean thermal forcing (Möller et al., 2024). This 

regional heterogeneity in glacier response aligns with observations of historical glacier changes across Greenland (Khan et 

al., 2022; Mouginot et al., 2019) and underscores the importance of considering local factors in future projections. 

Furthermore, the projected glacier losses (Figs. 3 & 4) markedly affect other interconnected processes beyond direct SLR, 

including freshwater contributions, primarily through alterations in surface meltwater (Fig. 7) and solid ice discharge (Fig. 365 

6). As land-terminating glaciers retreat, a decrease in glacier coverage will shift the relative contribution of rainfall, 

snowmelt, and ice melt (Fig. 7c-d) and alter freshwater fluxes to coastal hydrography, removing critical buffers against 

extreme summer discharge (Huber et al., 2020; Khan et al., 2022; Straneo et al., 2022; Bliss et al., 2014). Similarly, the 

reduction in the number of calving fronts of marine-terminating glaciers (Malles et al., 2023) will lead to reduced solid ice 

flux into fjords. 370 
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4.2 Changing Dynamics of Freshwater Contributions 

The divergent trends in solid ice discharge (Fig. 6) and liquid freshwater runoff (Fig. 7) from Greenland's peripheral glaciers 

elucidate the shifting dynamics of these glaciers in response to climatic changes. The projected decrease in solid ice 

discharge across all emission scenarios (-0.011 to -0.018 Gt/yr²), which occurs sharply after 2050, is consistent with other 

projections (Malles et al., 2023) and historical trends (Kochtitzky and Copland, 2022), suggesting a gradual transition from 375 

calving-dominated to surface melt-dominated systems as marine-terminating glaciers retreat inland. The statistically 

significant negative trends of solid ice discharge under all scenarios, with no substantial differences among SSPs (Fig. 6), 

reflect the dominant role of climatic changes relative to variations in emissions scenarios for this century (Oerlemans et al., 

2022; Slater et al., 2019). Our projections of consistent solid ice discharge trends across emission scenarios should be 

interpreted cautiously, as they do not account for oceanic forcing. Several previous findings show that Greenland's marine-380 

terminating peripheral glacier response is more sensitive to warming compared to land-terminating glaciers (Hill et al., 2017; 

Liu et al., 2022b).  

The contrasting slight increase in solid ice discharge projected for the North-East subregion (Fig. 6) can be attributed to its 

more extensive coverage of marine-terminating glaciers (Kochtitzky and Copland, 2022) and probably to a delayed response 

to recent climate and ocean forcing, as decreasing ice discharge has been observed over the first two decades of the 21 st 385 

century in this subregion (Möller et al., 2024). The larger number and area of marine-terminating glaciers in this subregion 

provide a greater source for calving fluxes, even when considering the projected overall glacier retreat and thinning in this 

region (Morlighem et al., 2019). 

The significant increase in liquid freshwater runoff (61 Gt/yr under SSP5858 from 2020 to 2100, see Fig. 7a), driven by 

enhanced surface melting under higher air temperature regimes, is consistent with findings of accelerated mass loss from 390 

Greenland's periphery (Marzeion et al., 2020; Rounce et al., 2023). The projected 46 ± 27 Gt/yr higher freshwater runoff 

from Greenland peripheral glaciers by 2100 under SSP585 compared to SSP126 (Fig. 7a) indicates severe impacts of warmer 

climate under high emissions. 

The strong regional variations observed in the freshwater runoff projections, with 35 % of liquid runoff originating from the 

North-East glaciers by 2100 (Fig. 7b), align with the heterogeneous influence of localized climatic, glacier-characteristic 395 

(numbers, sizes, and types) and topographic factors (Bevis et al., 2019; Khazendar et al., 2019; Wood et al., 2021). Localized 

climatic factors, such as variations in air temperature and precipitation patterns, can significantly impact glacier mass 

balance and runoff (Noël et al., 2018). Additionally, topographic factors, including elevation, slope, and aspect, influence the 

exposure of glaciers to solar radiation and the distribution of snow accumulation, which in turn affect glacier ablation and 

runoff (Huss et al., 2017). 400 

Our results indicate significant changes in the composition of freshwater runoff over the century, with a decreasing 

proportion of glacier meltwater and increasing contributions from rainfall (8-fold) and snowmelt (15-fold) in total runoff 

(Fig. 7c-d). The seasonal analysis (Fig. 7e-f) further illustrates this shift, showing a reduced glacier melt season and 
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increased contributions from snowmelt earlier and rainfall throughout the year by 2091-2100. This shift in runoff 

composition is consistent with projected trends across the Arctic region (Bintanja and Andry, 2017; Bintanja and Selten, 405 

2014; Bliss et al., 2014; Vihma et al., 2016) and reflects the combined effects of glacier retreat and broader Arctic 

amplification (Smith et al., 2019; Nowicki et al., 2016; Jones et al., 2016; Box et al., 2019), including rising temperatures 

and changes in precipitation patterns. 

The projected timing of peak water runoff from Greenland's peripheral glaciers (Fig. 8) varies significantly across emission 

scenarios, providing insights into the future evolution of Greenland's peripheral glaciers. The earlier peak water timing 410 

(2050s) under low-emission scenarios compared to high-emission scenarios (2080s) highlights the potential opportunity for 

adaptation. The nearly 30-year difference (Fig. 8a) in projected peak water timing between scenarios emphasizes the 

capacity of glaciers to potentially regain a new equilibrium, smooth their freshwater runoff, and preserve their buffering 

capacities under lower emission scenarios, thus delaying the impacts of climate change. However, under high emission 

scenarios, glaciers continue to contribute higher meltwater until exhausted and eventually lose all mass and become unable 415 

to support freshwater runoff. These findings are consistent with the patterns observed by Bliss et al. (2014) for Greenland's 

peripheral glaciers. They noted significant increases in annual runoff during the 21st century, which aligns with our 

projection of higher runoff and delayed peak water timing under high-emission scenarios. 

The subregional differences in timing of peak water (Fig. 8b), although not statistically significant, suggest that local factors 

such as glacier size, elevation, climate, and oceanic feedback may influence the peripheral glaciers’ response to warming 420 

(Solomon et al., 2021). This aligns with the findings of Bliss et al. (2014) that runoff trends can vary significantly based on 

glacier size and elevation, even within the same region. Their study found that in the Greenland periphery, smaller glaciers 

tended to have more positive runoff trends, while larger glaciers showed both positive and negative trends depending on 

their elevation. This aspect is consistent with our projections of continued high meltwater contribution under high emission 

scenarios until glaciers approach exhaustion. 425 

4.3 Implications for Fjords, Ecosystems, and Ocean Dynamics 

The projected changes in freshwater contributions from Greenland's peripheral glaciers have significant implications across 

multiple spatial scales, from local fjord systems to global ocean circulation patterns. 

On the local scale, the alterations in the timing, magnitude, and composition of freshwater input are likely to impact fjord 

circulation and ecosystems. The decreased solid ice discharge (Fig. 6) and increased liquid runoff (Fig. 7a), coupled with 430 

changes in runoff composition (Fig. 7c-d), will modify the seasonality and stratification patterns of fjord waters (Arp et al., 

2020; Bliss et al., 2014; Bacon et al., 2015; Le Bras et al., 2018). For instance, in Godthåbsfjord, Southwest Greenland, 

Mortensen et al. (2013) observed that increased freshwater input enhanced estuarine circulation and altered water properties, 

subsequently affecting ecosystem productivity. Similarly, in Young Sound, Northeast Greenland, Sejr et al. (2017) found 

that changes in freshwater runoff led to stronger stratification and altered nutrient availability, impacting the fjord's 435 

ecosystem dynamics. 
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The composition and seasonality of freshwater runoff are projected to shift markedly over the century (Fig. 7c-f). This 

seasonal shift in runoff sources could lead to earlier and potentially more variable freshwater inputs to coastal waters 

(Rennermalm et al., 2013; Van As et al., 2017). The projected increase in spring snowmelt could result in earlier 

stratification of fjord waters, while the more distributed summer rainfall could lead to more frequent pulses of freshwater 440 

input throughout the season. This change in the temporal distribution of freshwater input could have significant implications 

for fjord stratification, nutrient cycling, and ecosystem dynamics (Hopwood et al., 2020; Holding et al., 2019; Sejr et al., 

2022). For instance, changes in the timing of peak freshwater input could affect the marine organisms adopted to stable 

conditions, including spring phytoplankton bloom, with cascading effects through the marine food web  (Oksman et al., 

2022; Juul-Pedersen et al., 2015). 445 

Moreover, the expected decrease in solid ice discharge may reduce the influx of terrestrial nutrients typically associated with 

glacial flour, potentially altering the nutrient dynamics in fjord ecosystems (Meire et al., 2016; Meire et al., 2023; Meire et 

al., 2017). The projected changes in freshwater contributions, both in terms of volume and composition, will likely have 

cascading effects on fisheries and other industries that rely on freshwater resources (Holding et al., 2019; Boberg et al., 

2018; Hopwood et al., 2020). Our projections of future freshwater contributions and peak water timing provide critical data 450 

for understanding and anticipating the impacts of climate change on Greenland's fjord ecosystems and coastal dynamics at 

the local scale. 

On a regional scale, the cumulative effect of increased freshwater input from peripheral glaciers could significantly impact 

coastal and shelf seas around Greenland. Our projections of maximum runoff (214-293 Gt/yr at peak water, Fig. 8) represent 

a substantial increase in freshwater flux to the ocean. This additional freshwater could enhance stratification in shelf seas, 455 

potentially affecting deep water formation processes. Böning et al. (2016) demonstrated that enhanced freshwater flux from 

Greenland could lead to reduced convection in the Labrador Sea, a key region for deep water formation in the North 

Atlantic. 

The spatial variability in freshwater contributions, with the North-East region projected to account for 35 % of total runoff 

by 2100 under SSP585 (Fig. 7b), suggests that regional impacts may be unevenly distributed. This could lead to localized 460 

changes in coastal currents and potentially influence larger circulation patterns in the North Atlantic. For example, Luo et al. 

(2016) showed that meltwater from southern Greenland can be rapidly transported along the coast, potentially impacting the 

East Greenland Current and, subsequently, the North Atlantic subpolar gyre. 

On a global scale, the altered freshwater input from Greenland's peripheral glaciers, combined with changes from the 

Greenland Ice Sheet, could have far-reaching consequences for ocean circulation patterns. Of particular concern is the 465 

potential impact on the Atlantic Meridional Overturning Circulation (AMOC). While our study focuses on peripheral 

glaciers, the projected freshwater contributions should be considered in the context of total freshwater flux from Greenland 

(Bamber et al., 2018). Several researchers suggested that increased freshwater input from Greenland could lead to potentially 

disrupt the AMOC, with potential implications for global climate (Böning et al., 2016; Oliver et al., 2018; Yang et al., 2016; 
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Bakker et al., 2016; Carmack et al., 2016). Our findings provide understanding and can help quantify the impacts of the 470 

future evolution of Greenland's Peripheral Glaciers and their role in the broader climate system. 

4.4 Uncertainties, Limitations, and Future Research Priorities 

This study provides important insights into the potential future changes in Greenland's peripheral glaciers, yet it is crucial to 

acknowledge some key uncertainties and limitations. The uncertainties in the projected results, represented as standard 

deviations, primarily arise from uncertainties in future climatic forcing based on the GCMs. These uncertainties are greater 475 

for high-emission scenarios, particularly in projections of glacier losses (±6 % for SSP126 versus ±15 % for SSP585, Fig. 3-

4), sea level rise (±2 mm versus ±5 mm, Fig. 5), and freshwater contributions (±12 Gt/yr versus ±27 Gt/yr, Fig. 7), but are 

lower for peak water timing (±21 years versus ±9 years, Fig. 8). Additionally, these uncertainties vary across different 

regions. Scenario uncertainty, which reflects different future socio-economic pathways, becomes increasingly significant in 

the latter half of the 21st century, consistent with the findings of Marzeion et al. (2020). 480 

Although CMIP6 models generally do not include dynamic ice sheet components, our glacier model OGGM explicitly 

accounts for glacier ice dynamics. Incorporating glacier ice dynamics is crucial as it allows us to capture important 

feedbacks and interactions that static ice sheet models cannot. However, uncertainties in CMIP6 climate projections 

propagate through OGGM, including the effect that neglecting a dynamically evolving ice sheet might have on the regional 

climate, affecting our glacier evolution simulations. The projected glacier area retreat significantly impacts freshwater runoff 485 

components and solid ice discharge, with CMIP uncertainties in temperature and precipitation directly influencing these 

projections. This glacier area loss largely drives the shift from glacier melt-dominant runoff to increased rainfall and 

snowmelt contributions, but the magnitude and timing of this shift are subject to CMIP-derived uncertainties. Glacier losses 

are further amplified by changes in surface properties like albedo, creating a positive feedback loop (Clark et al., 1999), 

which can either amplify or mitigate CMIP uncertainties. These dynamic processes are particularly important for Greenland's 490 

peripheral glaciers, where changes in ice extent can significantly alter local and regional climate patterns, affecting 

precipitation and temperature regimes (Beghin et al., 2015). While OGGM's ability to simulate these dynamics provides a 

more comprehensive picture of potential future scenarios, it is important to note that the model's outputs inherit and 

potentially compound the uncertainties in the CMIP6 climate projections. 

When comparing our results to other global glacier studies, we find that our projections for Greenland's peripheral glaciers 495 

align well with the ranges reported in recent literature. For example, our projected glacier area losses (up to 44 %) and mass 

loss (up to 52 %) by 2100 are consistent with Marzeion et al. (2020) and Hock et al. (2019), who projected global glacier 

area and mass losses of up to ~43 % and ~50 %, respectively, under high-emission scenarios. Our estimates of sea level rise 

contribution (10-19 mm) also fall within the range of these studies. In a recent study, Zekollari et al. (2024) employed a 

different modeling approach, using a temperature-index model coupled with an ice dynamics model calibrated for glacier-500 

specific and regional mass balance observations, yet arrived at comparable projections (47 % to 52 % volume loss by 2100) 

for Greenland’s peripheral glaciers. This consistency across different modeling approaches and studies lends credibility to 
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our findings. While OGGM captures general trends effectively and its performance in the GlacierMIP ensemble is robust, 

the model is still subject to uncertainties related to its structure and the resolution of climate forcings. 

The current study relies on statistically downscaled GCM data, which may not fully capture important local-scale 505 

atmospheric processes over the complex topography of the Greenland periphery that can influence glacier mass balance 

(Noël et al., 2016; Lewis et al., 2019). Using higher-resolution regional climate models and observational data would 

potentially improve the accuracy of the projections. 

Additionally, this study only considers atmospheric forcing at the glacier surfaces and does not incorporate oceanic forcing. 

The latter has been demonstrated to be a key control on the behavior of Greenland's peripheral glaciers (Bjørk et al., 2017; 510 

Chudley et al., 2023; Möller et al., 2024) through enhanced terminus melt, undercutting, calving, and iceberg melting 

(Cowton et al., 2015; Davison et al., 2022; Davison et al., 2020; Morlighem et al., 2019; Malles et al., 2023). The projected 

changes in freshwater contributions from both liquid and solid components may have the potential to alter oceanic forcing on 

local to regional scales, subsequently also impacting ice discharge from Greenland's peripheral glaciers (Möller et al., 2024; 

Solomon et al., 2021; Lenaerts et al., 2015; Benn et al., 2017). Developing approaches to account for oceanic forcing in 515 

OGGM could thus provide important insights into glacier-ocean interactions and feedback and may improve projection 

reliability. First approaches to couple glacier models with ocean circulation models have already been presented (Slater et 

al., 2020; Gladstone et al., 2021; Cook et al., 2021), but substantial development is still required. 

At present, OGGM shows limitations regarding model structure and initialization. It simplifies critical processes and does, 

e.g., not explicitly account for refreezing processes, which are known to contribute substantially to future mass balance 520 

trajectories of Arctic glaciers (Möller and Schneider, 2015). Using more sophisticated energy balance-based ablation 

schemes (Gardner et al., 2023; Rounce et al., 2023; Zekollari et al., 2022) in OGGM could improve the representation of the 

surface mass balance, but comes at the costs of substantially increased demands on quantity and quality of atmospheric data. 

Better constraints on parameters like initial glacier size, which can vary between data sources (Citterio and Ahlstrøm, 2013; 

Rastner et al., 2012; Pedersen et al., 2013), could also reduce uncertainties. Furthermore, the lack of observations near 525 

glacier calving fronts limits constraints on frontal ablation, an important process for mass loss (Schaffer et al., 2020). 

Key priorities for future research should focus on addressing these limitations by using higher resolution atmospheric and 

oceanic forcing, initializing models with the best available data sets on glacier geometry and dynamics (Ultee and Bassis, 

2020; Kochtitzky and Copland, 2022; Recinos et al., 2023), incorporating more complete representations of surface and 

submarine melt processes, and coupling glacier models with ocean circulation (Zhao et al., 2021; Quiquet et al., 2021; 530 

Malles et al., 2024). Detailed observational data sets from satellite and field studies will be critical for validating and 

improving models (Gardner et al., 2019; Porter et al., 2018). As models continue to advance, improved partitioning of the 

processes driving peripheral glacier mass loss will support more robust projections of sea level rise and freshwater 

contributions to the oceans. 
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5 Conclusion 535 

This study provides a comprehensive assessment of the future evolution of Greenland's peripheral glaciers under different 

climate change scenarios. Our projections indicate substantial glacier area (44 ± 15 %) and volume losses (52 ± 14 %), 

contributing approximately 19 ± 5 mm to global sea level rise by 2100 under the high emission scenario (SSP585). These 

glacier losses cause a significant shift in freshwater contributions, with solid ice discharge decreasing and liquid freshwater 

runoff increasing (until peak water) during the 21st century. Importantly, runoff composition undergoes significant changes, 540 

with glacier melt contribution decreasing from 92% to 72%, while rainfall and snowmelt increase 8-fold and 15-fold, 

respectively, indicating a shift in the hydrological regime. Our projections reveal variable peak water timing across emission 

scenarios and regions, occurring between the 2050s (SSP126) and 2080s (SSP585) for all Greenland peripheral glaciers. This 

variable peak water timing leads to divergent glacier futures: lower emissions may allow glaciers to reach a new equilibrium, 

while high emissions could result in complete glacier loss and drive toward the end of glacier-fed runoff. 545 

These projected changes in freshwater contributions from Greenland's peripheral glaciers are likely to have far-reaching 

implications. On the local scale, we expect significant impacts on fjord circulation, ecosystem productivity, and coastal 

environments. Regionally, these changes may affect ocean stratification and coastal currents. On a global scale, the altered 

freshwater input could potentially contribute to changes in large-scale ocean circulation patterns, with potential implications 

for the ocean system and global climate. 550 

Our projections indicate a significant difference of up to 9 mm in sea level rise between low and high emission scenarios 

from Greenland peripheral glaciers alone, suggesting effective greenhouse gas emission controls are crucial for minimizing 

climate change impacts. 

A key limitation in the current projections is the lack of incorporation of oceanic forcing in OGGM, which might impact the 

behavior of marine-terminating glaciers. Future research might focus on reducing the resulting uncertainties by incorporating 555 

glacier-ocean interactions into a coupled modeling architecture. 
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