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Abstract. Geological records of past environmental change provide crucial information for assessing long-term climate vari-

ability, non-stationarity, and nonlinearities. However, reconstructing spatio-temporal fields from these records is statistically

challenging due to their sparse, indirect, and noisy nature. Here, we present PaleoSTeHM, a scalable and modern framework for

spatio-temporal hierarchical modeling of paleo-environmental data. This framework enables the implementation of flexible sta-

tistical models that rigorously quantify spatial and temporal variability from geological data with clear distinguishing between5

measurement and inferential uncertainty from process variability. We illustrate its application by reconstructing temporal and

spatio-temporal paleo sea-level changes across multiple locations. Using various modeling and analysis choices, PaleoSTeHM

demonstrates the impact of different methods on inference results and computational efficiency. Our results highlight the crit-

ical role of model selection in addressing specific paleo-environmental questions, showcasing the PaleoSTeHM framework’s

potential to enhance the robustness and transparency of paleo-environmental reconstructions.10

1 Introduction

As humans push the planet’s climate and biosphere increasingly far outside the range of our species’ experience, the geological

record provides critical out-of-sample data against which to test the models used to project future environmental change. Yet, as

an environmental record, the geological data is quite sparse and often noisy and indirect. Reconstructing paleo-environmental

fields is thus a critical and challenging statistical task (Tingley et al., 2012).15

From an analytical perspective, spatio-temporal hierarchical statistical models provide a natural, conceptually straightfor-

ward framework for reconstructing paleo-environment (Ashe et al., 2019; Cressie and Wikle, 2015; Tingley et al., 2012).

Hierarchical statistical models, often employed within a Bayesian framework, decompose the various sources of random vari-

ation contributing to individual observations into distinct levels, thereby providing a clearer articulation of the assumptions

underlying the statistical analysis. It has been increasingly used to model paleo-climate fields from geological proxies (e.g.,20

temperature and precipitation from tree rings and corals). These applications have proven crucial in assessing the robustness
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of scientific knowledge of past climate and placing changes in the modern, instrumentally observed period in the context of

longer-term variability. For example, they have shown an increasing influence of ice melt and thermal expansion on GMSL

since 1860 CE (Walker et al., 2021), that GMSL rise over the 20th century was faster than during any century in at least

3000 years (Kemp et al., 2018; Kopp et al., 2016), and that several early 21st century Arctic summers exhibited warmth un-25

precedented in at least 600 years (Tingley and Huybers, 2013). There is substantial community demand for the use of such

techniques. For example, in the past few years, numerous papers have used temporal or spatiotemporal hierarchical models

with Gaussian Process (GP) priors to interpret paleo sea-level proxies (Tan et al., 2023; Khan et al., 2022; Vacchi et al., 2021).

To meet the demand of the paleo-environment community, this paper describes PaleoSTeHM v1.0, which is designed to

support the flexible and high-performance implementation of spatiotemporal hierarchical modeling for paleo-environmental30

data. PaleoSTeHM is a framework built using modern machine learning architecture and in the spirit of open science (e.g.,

Pollack et al., 2024). It is designed so users can select not only various modeling choices, such as change-point for temporal

analysis or GP for spatiotemporal analysis, but also analysis choices, including fully Bayesian, empirical Bayesian, and vari-

ational Bayesian analysis (more details in section 2), to investigate different research questions asked, with different types of

data and spatiotemporal scales (e.g., local to global, years to millennia) considered.35

2 Hierarchical statistical modeling

This section briefly describes a basic theory about hierarchical modeling of the paleo-environment, using paleo sea level as

an illustrative example. For more systematic introductions on hierarchical statistical modeling of paleo sea-level and paleo-

climate, readers can refer to Ashe et al. (2019) and Tingley et al. (2012).

Based on Bayes’ theorem, the conditional probability (see definition in Table 1) of the observed data (y) can be inverted40

from the conditional probability of unknown parameter(s) or process(es) (θ):

p(θ|y) =
p(y|θ)p(θ)

p(y)
(1)

where p denotes ‘probability’ and | represents ‘given’. The likelihood function, p(y|θ) represents the probability of observing

the data y given the parameter(s) or process(es) θ of the model. The prior distribution, p(θ), captures a priori beliefs about

the unknown parameter(s) or process(es) before any data is observed. The term p(y), known as the marginal likelihood, is the45

probability of the observed data averaged over all possible parameters or processes.

Given the observations, the posterior distribution, p(θ|y), reflects the updated beliefs about the parameter(s) or process(es)

after considering the data. Since the marginal likelihood p(y) is often intractable and remains constant for static observations,

we use the simplified form of Bayes’ theorem: the posterior distribution is proportional to the product of the likelihood and the

prior:50

p(θ|y)∝ p(y|θ)p(θ) (2)
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Table 1. Definitions of relevant terms in this study. This paper employs terminology based on Ashe et al. (2019).

Term Meaning

analysis choices decisions in how to implement a specific model structure
conditional probability distribution of a random quantity, given another (unknown) random quantity
continuous core near-continuous records from a single core of sediment or a single coral reef
covariance function defines prior beliefs about the relationship or correlation between variables
data level model representations of the relationship between the phenomenon and observed data
errors-in-variable (EIV) a fully-Bayesian framework that accounts for measurement uncertainty in independent variables
error difference between a measurement and the true value
Gaussian Process (GP) a stochastic process that generalizes the multivariate Gaussian distribution to continuous time

and space, defined by mean and covariance functions
hierarchical model a statistical framework that partitions the multiple random effects that lead to individual obser-

vations into different levels
hyperparameter parameter of a prior distribution
isotropy a property of having identical statistical characteristics in all directions
likelihood a way to measure how well a statistical model explains observed data
Markov Chain Monte Carlo (MCMC) techniques used to generate random variables, perform complicated calculations, and simulate

complicated distributions through randomsampling in Bayesian models
parameter level model representations of prior beliefs about parameters used to control the behavior of a statis-

tical and/or physical model at different levels of the hierarchy
physical model a class of model based on physical principles to describe natural phenomena, typically using

mathematical representation of a system or process that uses numbers and equations to describe

physical conditions
process level model representations of the underlying processes responsible for the data generation
posterior distribution a type of conditional probability that results from updating the prior probability with observa-

tional information summarized by the likelihood
prior distribution the assumed probability distribution before any observational evidence is taken into account,

which can be subjective based on a priori knowledge, or uninformative
residuals the difference between an observed and a modeled or predicted value
smoothness the characteristic of a process that reflects how smoothly it changes over time or space, often

controlled by the kernel’s differentiability in Gaussian Process models
space-time separability a property of processes where the spatial and temporal components of the covariance function

are treated as independent, so the covariance is expressed as a product of purely spatial and

purely temporal functions
stationarity a property of processes or signals where their statistical properties, like mean and variance,

remain consistent over time or space
uncertainty model representation of how the model prediction might differ from the true value
white noise serially uncorrelated random variation (zero mean and finite variance)
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where ∝ indicates ‘is proportional to.’

A basic hierarchical statistical model for paleo sea level distinguishes the fundamental RSL change from both its inherent

variability and the observational noise. Hierarchical models achieve probabilistic uncertainty estimation for time series and/or

spatial fields by inverting conditional probabilities. Each level of the model quantifies uncertainties independently, necessitating55

careful evaluation of their respective sources. Generally, three levels are defined: the data level, the process level, and the

parameter level:

p(f,θs,θd | y)∝ p(y | f,θd)︸ ︷︷ ︸
data model

· p(f | θs)︸ ︷︷ ︸
process model

· p(θd,θs)︸ ︷︷ ︸
parameter model

(3)

The data level defines the relationship between the latent (unobserved) RSL process (f ) and the observed RSL data (instru-

mental and/or proxy), y, while accounting for measurement, inferential (e.g., uncertainties arising from converting a proxy’s60

elevation to a distribution of RSL), and dating uncertainties (often inherited from geochronology techniques). This level repre-

sents the probability distribution of observing a particular sea-level height at a given age, conditioned on the underlying latent

process and the associated measurement, inferential, and dating uncertainties, encapsulated by the data level parameters, θd.

The process level distinguishes the underlying phenomenon of interest and its inherent variability, from the noisy observa-

tion captured at the data level. This model integrates scientific understanding and associated uncertainties into the estimation65

of the true RSL process using conditional parameters, θs. These parameters may represent unobserved physical model param-

eters (e.g., Earth’s rheology in a glacial isostatic adjustment model; Table 1), statistical model parameters (such as the linear

rate in a linear sea-level model), or hyperparameters (parameters of a prior distribution, such as length scale and variance in a

model with a Gaussian Process prior). At the foundational level, the parameter model specifies the prior distribution for all un-

known parameters, effectively capturing the essential characteristics of both the data and process levels through the unobserved70

parameters.

In addition to constructing models at the data, process, and parameter levels, often referred to as modeling choices (Ashe

et al., 2019), it is essential to choose an appropriate analysis choice for a specific model (Table 1). This involves decisions re-

garding the implementation of a model structure, such as deterministic methods including least-squares analysis and likelihood

maximization (Wilks, 1938; Aitken, 1936), or probabilistic methods like Bayesian analysis (Hastings, 1970). Analysis choices75

are also integral to addressing how measurement uncertainties, particularly those arising from geochronological techniques,

are incorporated and managed within the model. This ensures that the uncertainty is properly quantified and reflected in the

final analysis outputs (Ashe et al., 2019). Several factors, including the complexity of the problem, the size and resolution of

the data available, the computational resources at hand, and the extent of prior knowledge applicable to the modeling effort,

should guide the selection of modeling and analytical choices.80
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3 Model description

This section provides a comprehensive overview of PaleoSTeHM, detailing its foundational model implementation (section

3.1), the basic architecture for a typical PaleoSTeHM experiment (section 3.2) and the development of PaleoSTeHM modules

(sections 3.3, 3.4 and 3.5).

3.1 Model implementation85

PaleoSTeHM is designed to be a functionally extensible and high-performing toolkit for modeling paleo data. It is fully open-

source and developed under a four-layer structure to maintain a flexible and generic design that is agile to future development

(Figure 1). The core toolkit and development reside in L3, comprising modules that integrate existing capabilities from L2,

enabling PaleoSTeHM to function across various computing platforms defined in L1. L2 employs Python as the user interface

language and utilizes a high-performance machine learning platform as the execution back-end. Atop L3 is the PaleoSTeHM90

User layer (L4), facilitating interaction with external packages and tools, thereby supporting practical applications and the

resolution of scientific inquiries.

PaleoSTeHM modules were built upon Pyro (Bingham et al., 2019), a universal probabilistic programming language sup-

ported by PyTorch (Paszke et al., 2017), a popular machine learning library for artificial intelligence applications. Therefore,

PaleoSTeHM not only supports probabilistic programming but also leverages an ecosystem of existing machine learning ca-95

pabilities, including auto-differentiation, GPU acceleration, and modern optimization algorithms. By utilizing such advanced

machine learning platforms, we have developed three core PaleoSTeHM modules in the L2 layer: (1) the Modeling Choices

module, which incorporates multiple options for data, process, and parameter level modeling; (2) the Gaussian Process kernel

module, a sub-module of the Modeling Choices module that supports kernel construction of a process model using GP pri-

ors; and (3) the Analysis Choices module, which incorporates multiple methods to consider temporal uncertainty and perform100

Bayesian inference (Figure 1). These modules provide flexible and efficient options for spatio-temporal hierarchical modeling

of paleo-environmental applications.

We anticipate PaleoSTeHM interacting with external packages and/or tools for practical applications and addressing sci-

entific questions on the PaleoSTeHM User layer (L3, Figure 1). Here, ‘External Packages’ refer to external Python libraries,

which provide various pre-processing and post-processing data functions. For example, in PaleoSTeHM tutorials (see section105

4), we use Scipy (Virtanen et al., 2020) for interpolation and Matplotlib (Hunter, 2007) for visualization. ‘Tools’ represent

frameworks and services adapted by other developers to integrate PaleoSTeHM capabilities into their toolkits (e.g., Frame-

work for Assessing Changes To Sea level (FACTS); Kopp et al., 2023). Such plug-in implementations will make it easy for

users drawn from any of the PaleoSTeHM categories to use, extend, or contribute to core capabilities for various scientific

applications.110
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L2 Pyro
PyTorch

L3 Modelling Choices
GP Kernel

Analysis 
Choices

L4

PaleoSTeHM Modules

PaleoSTeHM Users
Applications/Scientific Questions

Machine Learning Platforms

Externel Packages Tools

Computing Platforms
Clouds Clusters HPCL1

Figure 1. Schematic illustration of the four-layer structure of PaleoSTeHM. L1 specifies various computing platform (clouds, clusters and

HPC), L2 comprises machine learning platforms (Pyro and PyTorch), L3 includes PaleoSTeHM modules (Modeling Choices, GP kernel,

and Analysis Choices, see Figure 2), and L4 consists of the user layer, facilitating interaction with external packages and tools for practical

applications and scientific inquiries.

3.2 PaleoSTeHM experiment architecture

Constructing and training a hierarchical model within PaleoSTeHM consists of five sequential selection steps. Each step cor-

responds to different modeling and analysis choices introduced in section 2. Typical PaleoSTeHM experiment steps include:

(1) selecting data-level models for paleo-environmental data; (2) choosing an appropriate process-level model to describe the

latent process; (3) defining prior distributions for each model parameter; (4) selecting a temporal uncertainty treatment method;115

and (5) choosing a Bayesian inference method (Figure 2). These five steps reflect core functionalities developed within three

PaleoSTeHM modules, shown in Figure 1. To support the effective selection of modeling and analytical choices provided

by PaleoSTeHM for various paleo-environmental applications. The fundamental theories and example applications for each

modeling option will be introduced in section 3.3.
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Process level 
models

Temporally 
linear model

Change-point
model

Gaussian Process
 model

Data level models Normal likelihoodUniform likelihood

Parameter level 
models Normal Uniform Dirichlet Gamma . . .StudentT

Temporal uncertainty Errors-in-variable framework Noisy-input framework

Bayesian inference 
methods

Fully Bayesian Variational Bayesian Empirical Bayesian

Physical
model

Figure 2. Schematic illustration of the PaleoSTeHM experiment architecture described in this paper. The large boxes represent five steps to

build a hierarchical model, and it should be noted that the data-level model is specified within each process-level model in PaleoSTeHM v1.0.

The smaller boxes indicate different modeling choices within each step. Grey boxes denote available choices that apply to other grey boxes

in different steps. Red and purple boxes represent a specific data level model and temporal uncertainty treatment method corresponding to a

specific process level model (temporally linear and Gaussian Process models), as indicated by colored arrows. The dashed grey box (physical

model) highlights that no specific physical model is implemented in PaleoSTeHM. Instead, PaleoSTeHM utilizes outputs from other physical

models (see section 3.3.2.)

3.3 Modeling Choices module120

As mentioned above, spatio-temporal hierarchical modeling experiments begin with selecting an appropriate modeling choice

for a specific problem. This module provides multiple commonly used temporal or spatio-temporal modeling choices used

in paleo-environmental studies (Figure 2). We will briefly introduce the fundamental theories for each modeling choice and

provide examples of paleo-environment studies that adopted such a model. While we do not include a specific section for

parameter-level modeling, leveraging the ecosystem of Pyro and Pytorch enables users to easily define prior probabilities for125

data and process-level model parameters using most of the commonly used probability distributions (Figure 2).

3.3.1 Data level modeling

The data level of a hierarchical statistical model characterizes the relationship between true (unobserved) target signals and

uncertain observations due to multiple error sources. For example, in reconstructing past sea-level changes, the data level

addresses uncertainties arising from elevation measurements, indicative range, and leveling errors (Khan et al., 2017). Ad-130
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ditionally, proxy data are often subject to inherent temporal uncertainties stemming from various geochronological methods

(e.g., radiocarbon Reimer et al., 2020; Heaton et al., 2020). This hierarchical structure can be formally expressed as:

yi = f(xi, ti) + ϵy
i (4)

ti = t̂i + ϵt
i (5)135

where xi is the noise-free spatial location of i-th observation, ti is its true age, t̂i is the mean observational age, and ϵt
i and ϵy

i

are uncertainties in the age measurement and target signal reconstruction. For paleo-environmental studies, a commonly made

assumption is that both ϵt
i and ϵy

i are multivariate normally distributed with zero mean and heteroscedastic covariance, so ϵy

can be expressed as:

ϵy ∼N (0,Σy) (6)140

Σy =




var(y1) cov(y1,y2) · · · cov(y1,yn)

cov(y2,y1) var(y2) · · · cov(y2,yn)
...

...
. . .

...

cov(yn,y1) cov(yn,y2) · · · var(yn)




(7)

where n indicates the number of observations available, var(·) represents the variance of specific data, and cov(·, ·) stands for

covariance between two data points, which is often assumed to be 0 when all data are assumed to be independently distributed.

Whereas strong covariance could potentially exist for some paleo-environmental data, such as sedimentary records collected145

from the same core or dated using age-depth modeling technique (Cahill et al., 2015; Blaauw, 2010).

In PaleoSTeHM v1.0, the data-level model is specified within each process-level model, which is assumed to be normally

and independently distributed (Figure 2). For illustrative purposes, PaleoSTeHM v1.0 also includes an implementation of

uniform likelihood together with a temporally linear model (see Figure 2 and section 4.1). For specific problems requiring

different likelihood structures, users can replace the likelihood sampling code within each process-level model with most of150

the standard probability distributions supported by Pyro.

3.3.2 Process level modeling

The process level is a hierarchical layer where the variability of the paleo-environment is modeled and, in certain cases,

decomposed. The process level reflects a scientific understanding of environmental change processes. PaleoSTeHM v1.0 offers

multiple process-level models for temporal or spatio-temporal data analysis.155
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3.3.3 Temporally linear models

Starting with temporal data analysis, probably the most straightforward method for estimating linear trends and the average

rate of paleo-environmental change is to fit a linear model to the observed data over time. For example, Engelhart et al. (2009)

and Lin et al. (2021) applied linear regression to discrete paleo sea-level data to estimate the average rate of RSL change during

the Common Era and Meltwater Pulse 1A. Over that period, the observations were qualitatively assessed to be well represented160

by a linear trend. A temporally linear model can be expressed as:

f(t) = α + βt (8)

where f(t) is the modeled true RSL, β is the constant rate of change in RSL, and α is the intercept.

3.3.4 Change-point models

Change-point models describe a single time series by partitioning it into distinct, contiguous segments, each characterized by165

a linear trend over time. These models are widely used to identify the timing of abrupt changes in past climate conditions.

For instance, Caesar et al. (2021) and Kemp et al. (2015) employed a change-point model to determine the onset of reduced

strength in the Atlantic Meridional Overturning Circulation and the commencement of modern sea-level rise in Connecticut.

With m change points, it can be written as:

f(t) =





α1 + β1(t− γ1), when t < γ1

αj−1 + βj(t− γj−1), when γj−1 < t < γj

αm + βm−1(t− γm), when γm ≤ t

(9)170

where γk represents the change point, αk denotes the expected value of RSL at that change point, and βj indicates the rate

of RSL change for each of the m + 1 segments. This model incorporates a continuity constraint ensuring that αk equals αk−1

plus the product of βk−1 and the difference between γk and γk−1. In PaleoSTeHM, the change-point model is implemented to

allow users to specify any number of change points (i.e., m in equation 9) in the model.

3.3.5 Gaussian Process models175

Gaussian Process (GP) modeling is a nonparametric and Bayesian approach that has been frequently used to infer temporal (or

spatio-temporal) variation of paleo-environmental change, including magnitude and rate (Ashe et al., 2019). In models with GP

priors, the relationships among any set of points (e.g., over time or across both space and time) are described by a multivariate

normal distribution, fully characterized by a mean function and a covariance function (or kernel). Unlike parametric models

such as linear or change-point models used for spatio-temporal analysis, GP models offer greater flexibility because the shape180

of the curve is determined by the covariance matrix, which is inferred based on the data rather than being constrained by a

predefined functional form.
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The GP model has gained considerable traction in paleo-environmental science, largely owing to its proficiency in extracting

meaningful insights from relatively small datasets. It utilizes a nonparametric framework to interpret intricate data patterns

effectively. For example, Kay et al. (2021) utilized a GP model to assess herbivore richness for different latitudes in Argentina.185

Apart from that, Walker et al. (2021) estimated the trend and rate of RSL change across the US Atlantic coast with a GP model.

A spatio-temporal GP model, which is defined by its mean function, µ(t) and covariance function (i.e., kernel) K(X,X ′), can

be expressed as:

f(X)∼GP (µ(X),K(X,X ′)) (10)

here X indicates spatio-temporal information of a specific date, for which spatial information is frequently represented by190

latitude and longitude values with no uncertainty. A popular choice for many paleo-environmental studies is using the zero-

mean function, indicating µ(X) = 0 everywhere. In this case, the predictions are only determined by covariance function

K(X,X ′), which defines prior expectations about how information is shared between points in different time and space, which

typically decays as the time and space differences increase (Rasmussen and Williams, 2006).

Constructing the covariance function is a pivotal and challenging step in a GP model, as it significantly influences the195

outcome of the inference results. Yet, its justification can sometimes be complex (Stein, 2012). PaleoSTeHM addresses this by

incorporating a ‘GP kernel’ module under the Modeling Choices module, designed to offer more flexibility and customization

extendability. This module provides a user-friendly platform for creating and managing GP kernels, streamlining the process of

model construction and enhancing the adaptability of the analysis to diverse problems. For paleo-environmental applications,

multiple choices of building kernels have been adopted in various studies (e.g., Walker et al., 2021; Hay et al., 2015; Kopp200

et al., 2016, 2014, 2009), and some examples will be in section 4.2.

3.3.6 Physical models

A physics-based model simulates real-world changes with predictive capabilities anchored in the causal mechanisms delineated

by the laws of physics (see Table 1). Comparatively, statistical models mostly depend on data-driven correlations, often over-

looking foundational physical principles (e.g., mass or energy conservation). Examples in paleo-environment research include205

using global circulation models to understand the response of the climate system to different climate forcings (Kageyama et al.,

2018) and employing ice sheet dynamic models to quantify past ice sheet response to climate change (DeConto and Pollard,

2016; Tarasov et al., 2012). In the realm of paleo sea-level change modeling, the glacial isostatic adjustment (GIA) model

is a widely adopted tool to characterize sea-level changes driven by the gravitational, rotational, and deformational (GRD)

effects resulting from the redistribution of ice and water mass (e.g., Lin et al., 2023a; Whitehouse, 2018). The predictive power210

of such a model is contingent upon underlying formulation and core physical parameters (Kendall et al., 2005), such as the

history of ice sheet fluctuations and the rheological properties of the Earth’s interior for a GIA model. Validating the physical

model against observational data will allow a more accurate representation of spatial teleconnections of sea-level change, in-

cluding those linked to sea-level fingerprints (Lin et al., 2021), in stark contrast to statistical models that might merely presume

correlation diminishes with distance (Walker et al., 2021).215
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Although PaleoSTeHM does not include a specific type of physics-based model (Figure 2), it offers multiple options to incor-

porate physical model outputs into final estimates (see examples in section 4.2). Users can use PaleoSTeHM to probabilistically

calibrate physical model ensembles conditioned upon observational data. PaleoSTeHM also supports using a physical model as

a mean function in a GP model. In this context, the GP covariance function essentially models the residuals—those processes

not captured by the physical model—between observations and the predicted mean function. Additionally, PaleoSTeHM facil-220

itates the construction of sampling covariance functions derived from a physical model ensemble, further enhancing its utility

in model integration and assessment (Hay et al., 2015).

3.4 Gaussian Process Kernel module

The GP Kernel module in PaleoSTeHM is a cornerstone for modeling spatial and temporal variations in paleo-environmental

data based on GP priors (Figure 1). It encompasses a variety of commonly used kernels in paleo-environmental studies, includ-225

ing the linear (or dot-product) kernel (Khan et al., 2017), radial basis function kernel (Cahill et al., 2015), rational quadratic

kernel (Turner et al., 2023; Hay et al., 2015), Matérn kernel (Walker et al., 2021; Kopp et al., 2016), and periodic kernel

(Meltzner et al., 2017). These kernels characterize features such as stationarity, isotropy, smoothness, and periodicity in Gaus-

sian processes (see definitions in Table 1; Ashe et al., 2019). Detailed kernel information is given in Table 2.

Each kernel possesses unique characteristics and necessitates specific parameters (Table 2). For instance, the linear kernel230

produces linear trends identical to a temporally linear model, suitable for modeling signals with long temporal length scales

(e.g., tectonic and GIA in Common Era and future sea level modeling; Kopp et al., 2016, 2014). The radial basis kernel and the

Matérn family of kernels are highly generalizable and allow specification of the degree of differentiability (Table 2), making

them suitable for representing physical processes with different levels of smoothness. For example, the GRD effects related to

GIA are spatio-temporally smooth, while sediment compaction-induced sea-level rise can be much more localized and rough235

(i.e., less differentiable).

In the GP Kernel module of PaleoSTeHM v1.0, all kernels are designed for process-level modeling, except for the tem-

poral and spatial white noise kernels, which add additional serially uncorrelated uncertainty at the data level. Apart from the

linear and white noise kernels, all included kernels are stationary and isotropic (see Table 1). To enhance kernel construction

flexibility, PaleoSTeHM supports combining different kernels, either additively, multiplicatively, or both. Designed for spatio-240

temporal data analysis, all GP kernels in PaleoSTeHM support temporal data (represented as a 1-dimensional vector), and most

of kernels support spatial data (represented as 2-dimensional matrix including latitude and longitude; see Table 2). The spatial

correlation is computed for spatial kernels based on the 1-dimensional geographical radial distance between data points. Users

can choose to build a temporal or spatial kernel by switching a parameter in each kernel function.

3.5 Analysis Choices module245

To accommodate diverse computational resources and varying requirements for the trade-off between modeling robustness and

computational demands, the Analysis Choices module offers multiple methods for Bayesian inference of model parameters as

defined in the Modeling Choices module (Figure 2). This flexibility ensures users can optimize their analyses based on avail-
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Kernel Name Supports

Spatial

Data∗

Differentiability Equation

Radial Basis

Function

Yes Infinitely

differentiable

k(X,X ′) = σ2 exp
(
− 1

2
|X−X′|2

ℓ2

)

Rational Quadratic Yes Infinitely

differentiable

k(X,X ′) = σ2
(
1+ |X−X′|2

2αℓ2

)−α

Periodic No Infinitely

differentiable

k(X,X ′) =

σ2 exp
(
−2 sin2(π(X−X′)/p)

ℓ2

)
2/1 Matérn Yes Non-differentiable k(X,X ′) = σ2 exp

(
− |X−X′|

ℓ

)
3/2 Matérn Yes Once differentiable k(X,X ′) =

σ2
(
1+

√
3 |X−X′|

ℓ

)
exp

(
−

√
3 |X−X′|

ℓ

)
5/2 Matérn Yes Twice differentiable k(X,X ′) = σ2

(
1+

√
5 |X−X′|

ℓ
+

5
3
|X−X′|2

ℓ2

)
exp

(
−
√

5 |X−X′|
ℓ

)
Linear (or dot

product)

No Once differentiable k(t, t′) = σ2(t− γ) · (t′− γ)

Sampling

covariance kernel

Yes Not applicable k(X,X ′) = Cov(m(X),m(X ′))#

Polynomial No d times differentiable k(t, t′) = σ2(γ + t · t′)d

Constant No Not applicable k(X,X ′) = σ2

Temporal white

noise

No Not applicable k(t, t′) = σ2δ(t, t′)

Spatial white noise Yes Not applicable k(x,x′) = σ2δ(x,x′)

Table 2. Summary of Gaussian Process kernels in PaleoSTeHM. Here, X represents spatio-temporal information, incorporating both the age

and coordinates of the data; t denotes the age of the data; and x indicates the spatial coordinates. *All GP kernels can calculate temporal

covariance, except spatial white noise kernel. #Cov(m(X),m(X ′)) indicates sampling covariance between different physical models. For

the polynomial kernel, d represents the degree of the polynomial, an integer determining the complexity of the model. Parameters: σ2 =

variance; ℓ = a positive characteristic length-scale parameter; α = a scale mixture parameter, when α→∞, rational quadratic kernel is

equivalent to radial basis function kernel; γ = offset or shift parameter, adjusting the baseline level of the kernel’s output. p = periodicity

parameter for the Periodic kernel, defining the cycle length of repeating patterns.

able technology and specific modeling needs. Unlike deterministic methods (e.g., least-squares), which have been extensively

implemented in other packages, PaleoSTeHM focuses on developing Bayesian probabilistic approaches that more effectively250

manage the inherent uncertainties associated with paleo data.
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3.5.1 Fully Bayesian analysis

A fully Bayesian analysis requires assigning prior probability distributions to all model parameters, allowing them to take

on a range of probable values. These priors can either incorporate informative prior knowledge or remain uninformative and

vague. Since the posterior distribution is shaped by both the priors and the likelihood of the observed data, it often becomes255

complex and analytically intractable. Markov Chain Monte Carlo (MCMC) methods are crucial in this case as they enable the

efficient exploration and approximation of the posterior distribution. PaleoSTeHM supports two advanced MCMC samplers:

Hamiltonian Monte Carlo (HMC; Neal et al., 2011) and the No-U-Turn sampler (NUTS; Hoffman et al., 2014), which provide

more efficient sampling performance than traditional Metropolis-Hastings MCMC (Hastings, 1970).

HMC significantly enhances the sampling efficiency over traditional Metropolis-Hastings MCMC by utilizing gradients of260

the probability distribution to inform the sampling process. This method reduces autocorrelation between successive samples,

increasing the effective sample size per iteration and enabling faster convergence. Based on HMC, NUTS further improves

upon this by automatically adjusting the path length and effectively managing the step size. NUTS eliminates the need for

manual tuning of these parameters, facilitating more efficient exploration of complex, high-dimensional distributions typical

in Bayesian analysis.265

Compared to other analysis choices such as empirical Bayesian models or variational Bayesian models (details provided

below), a fully Bayesian model offers a more comprehensive estimation of the relative uncertainties associated with model

parameters (Piecuch et al., 2017). It also offers a direct framework for sample age measurement uncertainty in an EIV manner

(Table 1). However, the nature of MCMC-based samplers means they are computationally more demanding. Particularly within

the EIV framework, where the number of sampling parameters increases linearly with data size, this leads to a polynomial270

increase in the computational power required (Belloni and Chernozhukov, 2009), which can be significant and unaffordable

when dealing with large datasets or complex models.

3.5.2 Empirical Bayesian analysis

Unlike Fully Bayesian analysis, which requires full probability distributions for prior and posterior, Empirical Bayesian analy-

sis offers a practical alternative. This approach approximates a fully Bayesian treatment where parameters at the highest level275

of the hierarchy are fixed at their most likely values rather than being integrated out. This optimization is typically achieved

using the maximum likelihood estimate, leading to a posterior distribution that is conditional on the data and these optimized

parameters:

p(f |y, θ̂s, θ̂d)∝ p(y|f, θ̂d)p(f |θ̂s) (11)

here, the posterior probability of the latent processes f is inferred, assuming that the hyperparameters at the data and process280

levels (θ̂d and θ̂s) are known and fixed. While the existing code base allows for explicit bounds to be set on hyperparameters for

the maximum likelihood estimate (e.g., Ashe et al., 2019; Kopp et al., 2016), it does not provide for an explicit prior distribu-

tion for the parameters. By leveraging Pyro’s variational inference capabilities (details below), PaleoSTeHM enables users not
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only to optimize hyperparameters using the maximum likelihood estimate but also to define prior distributions for each model

parameter explicitly. This allows optimization to be conducted in a maximum a posteriori probability estimation manner, as-285

suming the variational distribution is a Dirac delta function. In PaleoSTeHM, by default, the optimization is achieved using

Adam, a stochastic optimizer (Kingma and Ba, 2014). While empirical Bayesian analysis generally requires fewer computa-

tional resources than fully Bayesian methods, it is important to note that, assuming hyperparameters at the data and process

levels are known and fixed may lead to substantial underestimation in the inference uncertainty (Piecuch et al., 2017).

3.5.3 Variational Bayesian analysis290

Considering the computational expense required to perform MCMC in fully Bayesian analysis and the limitations of Empirical

Bayesian methods that fail to account for the uncertainty of hyperparameters, PaleoSTeHM also supports variational Bayesian

analysis, which emerges as an efficient intermediary. Rather than directly sampling from the posterior distribution through

MCMC, variational Bayesian methods aim to approximate the true probability distribution (p(f,θs,θd|y)) with a simpler,

parametric probability distribution (q(f |ϕ)). Thus, Bayesian inference is transformed from a sampling challenge into an op-295

timization problem—known as variational inference—requiring significantly fewer computational resources while facilitating

uncertainty estimation.

In PaleoSTeHM, variational Bayesian analysis is achieved by optimizing the variational parameters ϕ to minimize the

Kullback-Leibler (KL) divergence, a metric to effectively measure the difference between two distributions:

ϕ = argmin
ϕ

KL [q(f,θs,θd|ϕ)||p(f,θs,θd|y)] (12)300

Adam facilitates this minimization, and the variational distribution for PaleoSTeHM is a normal distribution by default. In

contrast to MCMC-based fully Bayesian analysis, which often requires computational power that increases polynomially with

the number of data points, the optimization-driven approach of variational Bayesian analysis generally scales linearly. Con-

sequently, variational methods can handle larger datasets more effectively, making them suitable for large-scale problems

prohibitively for full Bayesian analysis.305

3.5.4 Incorporation of temporal uncertainty

PaleoSTeHM provides two methods to incorporate temporal uncertainty into final estimations. The first method uses EIV

framework (Cahill et al., 2015), which directly incorporates temporal uncertainty through MCMC sampling of the distribution.

The second approach adopts the noisy-input framework (McHutchon and Rasmussen, 2011), which applies a first-order Taylor

series approximation—a linear expansion around each input point—to account for errors in the independent variable, time,310

thereby translating these into equivalent errors in the dependent variable:

f(xi, ti)≈ f(xi, t̂i) + ϵt
i

∂f(xi, t̂i)
∂t

(13)

here t̂i and ϵt
i are the same as in equation 5, standing for mean observational age and age uncertainty, respectively. The

integration of temporal uncertainty within PaleoSTeHM is executed alongside each process level model (Figure 2). All process-
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level models are implemented using an EIV framework, while for the GP models, both EIV and noisy-input frameworks are315

available (Figure 2).

4 Results

This section presents illustrative results using a tutorial format to enhance PaleoSTeHM’s usability. All codes and data are

accessible and actively managed on the PaleoSTeHM GitHub page (see code and data availability).

Firstly, we demonstrate various data levels, process levels, and analysis choice modeling techniques for time series analysis320

using coral reef data from the Great Barrier Reef and salt marsh data from New Jersey and North Carolina. Subsequently, we

provide examples of reconstructing spatio-temporal sea-level changes in the US Atlantic coast using different process-level

models. The prior and posterior distributions and analysis choice for each model are provided in Table A1. It should be noted

this section only briefly describes the modeling results; for a more systematic analysis of paleo-environmental modeling results

based on different statistical techniques, the user can refer to Ashe et al. (2019), PAGES2k Consortium (2019), and Tingley325

et al. (2012).

4.1 Time series analysis

4.1.1 Data level modeling

Although numerous paleo-environmental applications commonly assume that proxy reconstruction uncertainties are normally

distributed (Ashe et al., 2019; Khan et al., 2019; Tingley et al., 2012), certain types of proxies may exhibit different forms of330

uncertainty. A typical example is the coral reef sea-level indicator, where reconstruction uncertainty can also be represented by

a uniform distribution (Lin et al., 2021) according to species-specific living-habitat range (Hibbert et al., 2016).

To illustrate the impact of the data level model on inference results, we apply a temporally linear model within an EIV

framework to coral reef data from the Great Barrier Reef (Yokoyama et al., 2018). We use two alternative data-level models.

The first can be expressed as:335

ϵy
1 ∼ U(τl−ω1, τu + ω1) (14)

where U indicates a uniform distribution between lower and upper ranges defined by specific coral species (τl and τu) and an

additional white noise, defined by hyperparameter ω1, the second data level model can be represented as:

ϵy
2 ∼N(µ2,

√
σ2

2 + ω2
2) (15)

where N indicates a normal distribution with mean µ2 and a standard deviation σ2, both of which are determined by specific340

coral species, and ω2 is an additional white noise hyperparameter. The same prior distributions for each parameter are used for

both data-level models, which are represented as non-informative uniform distributions.

For both models, the posterior distribution is determined by 11,000 posterior samples drawn from a NUTS sampler, with

the first 1,000 samples discarded as burn-in steps. It can be seen in Figure 3 that, although the inference results from different
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Figure 3. Data level models impact on temporal sea-level change inference at the Great Barrier Reef. The upper panel displays the posterior

probability density functions of model parameters, assuming either a uniform likelihood (blue) or a normal likelihood (orange). The bottom

panel presents the inferred mean sea-level trends and rates along with a 90% credible interval, where sea-level data are represented by red

boxes with horizontal range representing ±2σ age uncertainty and vertical range indicating the reconstructed maximum and minimum sea-

level range determined by coral species. CI = credible interval, BP = before present.

data level models are overall similar, there are still some noticeable differences in the inferred sea-level change trend and rate.345

Uniform and normal likelihoods yield average sea-level rates of 5.91 mm/yr (4.45-7.38 mm/yr; 90% credible interval, CI) and

6.29 mm/yr (4.81-7.73 mm/yr), respectively. These likelihood assumptions also produce considerably different additional noise

parameter distributions.

4.1.2 Process level modeling

To demonstrate the impact of different process level models on inferring paleo sea-level time series, we will use the same data350

level model together with process level models introduced in section 3.3.2, employing non-informative priors (Table A1). The

sea-level data used here is a near-continuous record from single cores of salt-marsh sediment from Leeds Point (New Jersey)

covering the Common Era (Kemp et al., 2013). For this database, a normal likelihood data level model is adopted with sea-

level reconstruction uncertainties provided by the original study. Here we will test three process level models: (a) temporally

linear model; (b) change-point model (assuming 3 change points); (c) Gaussian Process model with an RBF kernel. Posterior355

distributions for model a and b were sampled through a variational Bayesian manner, while model c was sampled using an

empirical Bayesian approach.
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Figure 4. Process level models impact on temporal sea-level change inference at New Jersey. Common Era sea-level comparison of linear

model (row 1), change-point model (assuming 3 change points; row 2), and Gaussian Process model with an RBF kernel, where input data

are continuous cores. Output includes estimates of RSL (column 1) and rates of RSL change (column 2), which are each shown with mean

and 90% credible intervals. CE = Common Era.

Figure 4 shows estimated RSL trends and rates of RSL change for each process model. The results differ significantly due to

fundamentally different model formulations. The temporally linear model can only estimate an averaged trend and rate of sea-

level change and will never predict an accelerated RSL change. Comparatively, the change-point model presents a noticeable360

change in RSL rate from 1.49 mm/yr (1.26-1.70 mm/yr) between -500 CE and 1839 CE (1824-1852 CE) to 3.91 mm/yr

(3.72-4.10 mm/yr) after 1839 CE. Such an estimate is suitable for finding the time of emergence for various environmental
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change problems (e.g., Walker et al., 2022; Caesar et al., 2021; Lyu et al., 2014). As a non-parametric approach, the GP model

can produce continuous distributions of RSL change rates over time, allowing for the estimation of multiple inflection points

(Walker et al., 2022). However, using the RBF kernel, which is infinitely differentiable, can lead to overly smooth changes in365

RSL rate—an assumption inappropriate in many environmental statistics (Stein, 2012).

4.1.3 Analysis choices

Using similar near-continuous sediment core data from Sand Point, North Carolina (Kemp et al., 2011), we illustrate the

effects of analysis choices on RSL inference. Here, we only use a subset of the original data to better demonstrate the difference

between various analysis choices. The adopted data and process level model employ a normal likelihood with a GP model using370

an RBF kernel (Table A1). The hyperparameters will be sampled using empirical, fully Bayesian, and variational Bayesian

methods. For the fully Bayesian method, the posterior distribution is determined by 2,200 posterior samples drawn from a

NUTS sampler, with the first 200 samples discarded as burn-in steps. For the empirical and variational Bayesian methods, the

hyperparameters were optimized using the Adam optimizer over 500 iterations (Kingma and Ba, 2014). The run times of each

implementation are reported on a 2023 MacBook Pro with an Apple M2 Pro chip.375

Figure 5 compares posterior distributions of RSL trend and rate of change and the computational time for each analysis

choice. The empirical Bayesian method requires the least computational power, only providing a point estimate of hyperpa-

rameters without accounting for underlying uncertainty. Although more computationally demanding, the fully Bayesian method

captures the hyperparameter uncertainties effectively. As an intermediary, variational Bayesian method requires slightly more

computational time compared to empirical method but can derive a variational posterior distribution that is largely similar to380

that obtained by the fully Bayesian method through MCMC sampling. In contrast, the point estimate by the empirical Bayesian

method lies at the third percentile of the posterior hyperparameter distributions by the fully Bayesian method, indicating a

strong bias.

Because of the near continuous sea-level data with smoothly rising sea-level trend in North Carolina, the inference results

from these three methods are similar. However, given that geological sea-level data is often sparsely distributed across both385

spatial and temporal domains and may subject to abrupt change in rate, neglecting the underlying uncertainty of hyperparame-

ters by empirical Bayesian method can result in a significant underestimation of the final inference uncertainty compared with

fully Bayesian method.

4.2 Spatio-temporal analysis

The spatio-temporal analysis is a common challenge in paleo-environmental studies, for example, how to reconstruct continu-390

ous spatiotemporal signals from sparse and noisy data. For this perspective, PaleoSTeHM offers a range of options from purely

statistical to purely physical approaches. Utilizing a sea-level database containing 1,043 proxy records spanning from 11 ka to

the present, compiled by Ashe et al. (2019) from previous studies (Kemp et al., 2017a, b, 2015, 2014, 2013; Khan et al., 2017;

Engelhart and Horton, 2012), here we attempt to recover the spatio-temporal RSL pattern along with its associated uncertainty.
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Figure 5. Analysis choices impact on temporal sea-level change inference at North Carolina. Row 1, GP model hyperparameters optimization

results along with the required computational time in second (based on a 2023 MacBook Pro with an Apple M2 Pro chip). Row 2, common

Era sea-level comparison between three analysis choices, the results indicate 90% credible interval of RSL change trend (left) and rate (right).

We demonstrate four process level models that have been used in previous studies: (i) a GP model with a zero mean function395

and multiple isotropic kernels (Ashe et al., 2019); (ii) a GP model with the mean function determined by a GIA model and

multiple isotropic kernels (Walker et al., 2021; Kopp et al., 2016); (iii) a GP model with a zero mean function and a sampling

covariance kernel determined by a GIA model ensemble (Kopp et al., 2009); and (iv) a purely GIA model ensembe (Lin et al.,

2023a). All models assume a data-level model with a normal likelihood determined by RSL reconstruction uncertainty and an

additional white noise term. For this analysis, we implement a noisy-input framework to address temporal uncertainty and use400

the empirical Bayesian method to optimize hyperparameters for models i, ii, and iii, while model iv is optimized through the

variational Bayesian method (Table A1).

For model i, we follow the kernel structure as in Ashe et al. (2019), which can be expressed as:

f(X)∼GP (0,K1(X,X ′)) (16)
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405

K1(X,X ′) = g(t) + r(x,t) + l(x,t) (17)

where g(t) represents a spatially-uniform covariance function, while r(x,t) and l(x,t) are regional and local varying isotropic

covariance functions, respectively. These are characterized by a 3/2 Matérn temporal kernel for g(t), and a product of a 3/2

Matérn temporal kernel and a 1/2 Matérn spatial kernel for r(x,t) and l(x,t), which are differentiated by prior distributions of

hyperparameters.410

Similarly, model ii can be written as:

f(X)∼GP (GIA(X),K2(X,X ′)) (18)

K2(X,X ′) = r(x,t) + l(x,t) (19)

here, the mean expectation is determined by RSL prediction from ICE_7G ice model with VM5a Earth model (Roy and Peltier,415

2018; Peltier et al., 2015), and r(x,t) and l(x,t) are the same as in equation 17. We do not include g(t) as we assume the mean

function already captures it.

Model iii can be denoted as:

f(X)∼GP (0,K3(X,X ′)) (20)

420

K3(X,X ′) = Cov(m(X),m(X ′)) · exp(−|t− t′|/τ2) (21)

here, Cov(·) here indicates a sampling covariance function through a physical model ensemble m, where m includes an

ensemble of forward GIA models: (a) ICE_7G ice model with VM5a Earth model; (b) PaleoMIST ice model (Gowan et al.,

2021) with 71 km lithosphere and 0.3 and 70 × 1021 Pa s upper and lower mantle viscosity; and (c) ANU ice model (Lambeck

et al., 2014) with 71 km lithosphere and 1 and 10 × 1021 Pa s upper and lower mantle viscosity. To expand the variability425

of physical model predictions, we create six synthetic GIA model outputs by enlarging or shrinking these three GIA model

outputs by 1.5. Therefore, this physical model ensemble consists of predictions from nine models. More details about the

physics-based GIA model used here can be found in Lin et al. (2023b). To stabilize the estimate and reduce variability related

to finite sample size, we applied a temporal Gaussian taper function to this kernel, controlled by a parameter τ . Following Hay

et al. (2015); Kopp et al. (2009), we set τ to 3000 years.430

And lastly, model iv can be written as a weighted mean of different physical models:

f(X) =
N∑

n=1

νiGIAi(X) (22)
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ν ∼ Dirichlet(αd) (23)

In this model, ν represents the relative weights associated with each GIA model. These probabilities follow a Dirichlet distri-435

bution (or multivariate beta distribution) characterized by a concentration parameter αd. A value greater than 1 for αd indicates

a preference for a more evenly distributed probability across all models. In contrast, a value less than 1 indicates a preference

for more concentrated probabilities on fewer models. For this experiment, we set αd according to each GIA model prediction

fit to RSL observation (using weighted root mean square as a metric, see Table A1).

A comparison of RSL inference results between different spatio-temporal process level models is provided in Figure 6.440

At the purely statistical end of the process model spectrum, model i correlates RSL from various locations and times based

solely on their spatio-temporal proximity, a property derived from the adopted isotropic kernels. According to model i, the

RSL change along the US Atlantic coast during the Holocene was dominated by a spatially uniform signal (produced by

the regional common kernel, g(t), in equation 17; Table A1), which contributed to more than 25 m of RSL rise. In contrast,

r(x,t) and l(x,t) only produce up to 5 m of spatially variable RSL signal, resulting in virtually no spatial pattern in the mean445

RSL prediction of this model. In the temporal domain, multiple studies have demonstrated that GP models like model i can

accurately recover multi-millennial sea-level variation trends at locations with abundant sea-level observations, such as Florida,

as shown in Figure 6a (Tang et al., 2023; Ashe et al., 2019; Cahill et al., 2015). However, spatial inferences based on isotropic

and stationary kernels are often considered overly simplistic (Stein, 2005a), partly due to the sparse nature of geological data

and the complexity of environmental change mechanisms. As see in Figure 6i, geological sea-level data are mostly collected450

across paleo-coastal areas. Therefore, RSL inferences from model i are only representative of coastal areas (as opposed to

terrestrial or marine areas) and cannot adequately reflect the physical knowledge of paleo sea-level change (e.g., the RSL

uncertainty caused by the existence of the Laurentide Ice Sheet).

Model ii uses a deterministic GIA model (ICE_7G ice model with VM5a Earth model) as the GP mean function. By harness-

ing a physics-based model, model ii captures intricate spatial sea-level variation patterns due to the GIA-induced GRD effects455

(Figure 4). In this setup, the covariance functions describe residuals between the GIA model and RSL observations (mostly

captured by r(x,t) in equation 19). At -5500 CE, the GIA model underestimates∼10 m RSL at New Jersey (Figure A1), which

may reflect oversimplified physics (e.g., 3D rheology; Austermann et al., 2013), biased sampling of physical parameters (such

as poorly-constrained ice history), or missing physical processes in the GIA model (e.g., sediment isostatic adjustment; Lin

et al., 2023a). Because model ii assumes no uncertainty in GIA modeling, the uncertainty quantification here also relies solely460

on the radial distance from RSL data points (Figure 6j).

Model iii employs a kernel constructed by sampling covariance between different forward GIA models based upon alter-

native ice and Earth models. The incorporation of relevant physics in GP kernel construction enables model iii to capture

anisotropic behaviors, non-stationarities, heterogeneities and teleconnections (Table 1) inherent in the physical processes of

RSL change that cannot be easily described by normal classes of covariance function (Table 2). For example, the size of the465

Laurentide Ice Sheet is positively correlated with RSL around the northern Great Lakes while negatively correlated with RSL
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Figure 6. Process level models impact on spatio-temporal sea-level change inference along the US Atlantic coast. Each column represents

a different process level model. (a-d) Row 1 displays the mean and 90% credible or confidence interval for RSL predictions at Florida

(indicated by a red dot in Row 3). For Model ii, the GP mean function, determined by the ICE7G model, is depicted with a black line (b).

(e-h) Row 2 shows the mean RSL prediction for the year -5,500 CE. (i-l) Row 3 illustrates the standard deviation of the RSL prediction for

the year -5,500 CE, where white dots indicate locations where each sea-level data collected.

in peripheral bulge regions like New Jersey (Figure 6g). Whereas potential problems for this method include the computational

burden required for thoroughly sampling physical model parameters, and structural errors in the physical model, such as over-

simplifications or missing processes. Also, this method’s posterior mean and standard deviation are not directly interpretable

as model iv.470

Lastly, model iv represents the purely physical end of the process level spectrum. It is equivalent to a linear combination

of physical models according to data-model misfits (e.g., chi-square; Lin et al., 2021; Li et al., 2020; Lambeck et al., 2014).

The mean and uncertainty estimated by this method reflect the parametric uncertainty of a certain physical model, allowing for
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direct physical interpretation of prediction results, such as calculating posterior distributions of global ice history. However,

this method is susceptible to model structural errors, similar to model iii. For instance, the uncertainty here is underestimated475

due to the limited sample size of physical parameters (only nine models were used here). Additionally, due to the limited

direct constraints on ice history, the millennial-resolution ice models used in forward GIA modeling cannot capture centennial

sea-level variation as effectively as models i-iii (Figure 6).

5 Discussion

5.1 Generalization for paleo-environmental problems480

Although all functionality demonstrations in this paper focus on paleo-sea-level applications, the great flexibility of the hierar-

chical model any statistical model can be interpreted as a hierarchical model- enables the PaleoSTeHM modeling framework

to be readily applicable to most paleo-environmental problems. Employing a hierarchical model to address various paleo-

environmental problems enhances transparency by clearly distinguishing between modeling assumptions and analysis methods,

as well as between process variability and observational noise.485

Because of the commonality between paleo sea-level and many other paleo-environmental datasets that are characterized

by sparse and discrete, such as paleo temperature (PAGES2k Consortium, 2017), past ice sheet thickness (Small et al., 2019)

and sediment deposition depth (Wang et al., 2018), the data and process level models introduced this paper can be readily

generalized to those paleo-environmental fields. For example, Tingley et al. (2012) and Stein (2005b) suggested it is reasonable

to use a GP model to describe latent some space-time climate processes like annual mean surface temperature anomalies and490

daily wind speed; Lin et al. (2023a) applied a spatial GP model to recover the spatial pattern of Holocene coral reef depth

based on a Holocene coral reef deposition depth database across the Great Barrier Reef (Hinestrosa et al., 2022); and Caesar

et al. (2018) implemented a change-point model on multiple proxy datasets to detect significant reductions in the strength of

the Atlantic Meridional Overturning Circulation.

Beyond the process level models featured in PaleoSTeHM v1.0, various approaches have been employed for paleo-environmental495

analyses. Common techniques for addressing problems in this field include principal component analysis, equivalent to the

empirical orthogonal function method when temporal aspects are considered, autoregressive models, and generalized additive

models. For instance, Shakun and Carlson (2010) used an empirical orthogonal function approach to detect modes of deglacial

temperature variability, and Piecuch et al. (2017) adopted a degree-1 autoregressive model to reconstruct sea-level evolution

using tide gauge data, and Simpson (2018) developed a series of generalized additive models to model paleo-ecological time500

series. While the reimplementation of these models in PaleoSTeHM is beyond the scope of this paper, doing so would benefit

from the framework’s multiple analysis options and its capacity for smooth integration with flexible data and parameter-level

models.
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5.2 Future developments

From a scientific perspective, numerous promising directions exist for further development of PaleoSTeHM.505

Existing data-level models only support a common class of likelihood. However, in paleo-environmental studies, it is typical

for proxy data to be subject to complex likelihoods. For instance, organic matter that has been radiocarbon-dated undergoes

a calibration procedure to account for the time-evolving atmospheric carbon concentration, which can yield a data chronol-

ogy characterized by multi-modal distributions that significantly differ from each other. Similarly, it is common for paleo-

environmental studies to use multiple types of proxy data with different likelihoods to infer a common signal. Recently, new510

approaches have been developed to account for nonparametric proxy distributions within a hierarchical modeling framework

(e.g., Ashe et al., 2022), which could better characterize the underlying uncertainty but can be computationally expansive.

The current GP Kernel module incorporates commonly used kernel options that are stationary, isotropic, and space-time sep-

arable (definitions in Table 1). While these assumptions simplify calculations significantly, they may not be suitable for some

environmental applications. For example, temperature and dew point variations often exhibit strong non-stationary behavior515

influenced by diverse geographic and atmospheric conditions (Poppick and Stein, 2014). Furthermore, temperature anomalies

over the last two millennia (Mann et al., 2008) demonstrate strong space-time interactions, which cannot be captured by a

space-time separable kernel (Tingley et al., 2012). Developing a scientifically richer class of kernel structures could be an im-

portant future advancement for PaleoSTeHM. However, given the fundamental differences across various paleo-environmental

problems, generalizing sophisticated kernel structures to multiple fields remains challenging.520

Another outstanding issue for GP based process level models is scalability, the standard GP models included in PaleoSTeHM

v1.0 cannot scale well to large data sets (>10 thousands data points). Thus, implementing alternative classes of GP models

within PaleoSTeHM to model large data sets, especially when incorporating modern environmental observations, which often

consist of millions of data points, is an important next step for PaleoSTeHM to develop in the future. Some potentially efficient

methods include sparse GP (Quinonero-Candela and Rasmussen, 2005), stochastic variational GP (Hensman et al., 2013), and525

exact GP with black-box matrix-matrix inference (Wang et al., 2019).

Building upon machine learning infrastructure, another promising direction for the future development of PaleoSTeHM

is integrating spatio-temporal hierarchical modeling with machine learning-based emulators as a process-level model. An

emulator indicates a statistical model that mimics the behavior of the physics-based simulator but is computationally cheap

to run (Reichstein et al., 2019), which is particularly useful for fast sensitivity analysis, model parameter calibration, and530

derivation of confidence intervals for the estimate. The use of statistical emulators trained by physical models will enable

hierarchical models to capture the non-stationary physical systems better and enable better interpretation of the modeling

results. For paleo-environment, Holden et al. (2019) presents a GP-based emulator for an atmosphere-ocean general circulation

model with intermediate-complexity, and (Lin et al., 2023b) developed a neural network-based emulator for GIA-induced

global sea-level change.535

More broadly, PaleoSTeHM has been developed by a small team specialized in modeling paleo sea-level changes over multi-

millennial time scales. Moving forward, a critical objective is to expand PaleoSTeHM into a larger-scale paleo-environmental
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community project, where modules are developed autonomously by diverse research teams. The design of PaleoSTeHM, which

allows modules to act as wrappers for independently developed code, is specifically intended to facilitate this collaborative

effort.540

6 Conclusion

Paleo-environmental records provide critical out-of-sample information essential for contextualizing current global changes

and testing models used to simulate future environmental scenarios. However, our understanding of past environmental changes

is often complicated by the sparse nature of geological records, geochronological uncertainties, and the indirect relationships

between proxies and ecological variables. Hierarchical modeling offers a conceptually straightforward framework to address545

these challenges, though the limited availability of user-friendly software often hinders it. PaleoSTeHM offers a flexible and

open-source platform that facilitates the rapid and easy implementation of hierarchical models for paleo-environmental ap-

plications. The inclusion of multiple process-level models in PaleoSTeHM allows it to be readily applicable across a broad

spectrum of paleo-environmental studies. In contrast, its flexibility allows for customization to meet the specific needs of di-

verse paleo-environmental problems, such as using different Gaussian Process kernels or substituting alternative process-level550

models.

Code and data availability. The development version of PaleoSTeHM is available under an MIT license in a Git version-controlled reposi-
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Appendix A: Additional model information

Table A1. Summary of Model Characteristics. The posterior is reported with a mean value with 90% credible interval. NJ = New Jersey, NC

= North Carolina, EIV = errors in variable, NI = noisy input.

Task
Analysis

Choice
Data Level Process Level Parameter Level Posterior

GBR coral Fully Uniform likelihood

with additional white

noise

Temporally linear

α∼ U(−30,30) m -6.3 (-28.3, 16.2)

time series Bayesian; β ∼ U(−10,10) mm/yr 5.9 (4.5, 7.4)

EIV ω ∼ U(0.0001,10) m 0.8 (0.1, 2.0)

GBR coral Fully Normal likelihood with

additional white noise
Temporally linear

α∼ U(−30,30) m -0.2 (-22.8, 21.9)

time series Bayesian; β ∼ U(−10,10) mm/yr 6.3 (4.8, 7.7)

EIV ω ∼ U(0.0001,10) m 1.4 (0.01, 1.97)

NJ salt Variational
Normal likelihood Temporally linear

α∼ U(−5,5) m -3.38 (-3.47, -3.30)

marsh time Bayesian; β ∼ U(−10,10) mm/yr 1.63 (1.57, 1.69)

series EIV

NJ salt Variational Normal likelihood
Change-point

model

α1 ∼ U(−15,0) m -4.92 (-5.01, -4.84)

marsh time Bayesian;

β1 ∼ U(−10,10) mm/yr 1.6 (1.5, 1.8)

series EIV

β2 ∼ U(−10,10) mm/yr 1.53 (1.46, 1.60)

β3 ∼ U(−10,10) mm/yr 1.31 (1.22, 1.39)

β4 ∼ U(−10,10) mm/yr 3.92 (3.73, 4.10)

γ2 ∼ U(−476,1020) CE -42.0 (-139.6, 58.2)

γ3 ∼ U(23,1518) CE 1004.3 (893.1, 1106.0)

γ4 ∼ U(521,2017) CE 1838.0 (1823.6, 1853.2)

NJ salt Empirical
Normal likelihood

Gaussian Process

with one RBF

kernel

ℓ∼ U(1,5000) yr 1038

marsh time Bayesian; σ ∼ U(1,22.4) m 20.79

series NI
NC salt Empirical

Normal likelihood

Gaussian Process

with one RBF

kernel

ℓ∼ U(1,10000) yr 2175

marsh time Bayesian; σ ∼ U(1,100) m 1.75

series NI
NC salt Fully

Normal likelihood

Gaussian Process

with one RBF

kernel

ℓ∼ U(1,10000) yr 6889 (2845, 9766)

marsh time Bayesian σ ∼ U(1,100) m 12.5 (3.4, 28.1)

series EIV
NC salt Variational

Normal likelihood

Gaussian Process

with one RBF

kernel

ℓ∼ U(1,10000) yr 7305 (3559, 9509)

marsh time Bayesian; σ ∼ U(1,100) m 10.4 (3.8, 18.4)

series NI

32

https://doi.org/10.5194/egusphere-2024-2183
Preprint. Discussion started: 16 October 2024
c© Author(s) 2024. CC BY 4.0 License.



Task
Analysis

Choice
Data Level Process Level Parameter Level Posterior

US Atlantic

Empirical Normal likelihood with

additional white noise

Gaussian Process

with a zero mean

function and

multiple isotropic

kernels

ω ∼ U(0.01,10) m 0.02

spatio-

Bayesian;

ℓg ∼ U(100,20000) yr 11567

temporal

NI

σg ∼ U(0.01,33.3) m 30.7

analysis

σr ∼ U(0.2,10) m 1.7

ℓr,x ∼ U(319,1593) km 345

ℓr,t ∼ U(500,5000) yr 3254

σl ∼ U(0.1,3.3) m 0.14

ℓl,x ∼ U(64,319) km 317.4

ℓl,t ∼ U(100,2000) yr 1978

US Atlantic

Empirical Normal likelihood with

additional white noise

Gaussian Process

with ICE7G as

mean function and

multiple isotropic

kernels

ω ∼ U(0.01,10) m 0.02

spatio-

Bayesian;

σr ∼ U(0.2,10) m 6.0

temporal

NI

ℓr,x ∼ U(319,1593) km 1586

analysis

ℓr,t ∼ U(500,5000) yr 4684

σl ∼ U(0.1,3.3) m 0.13

ℓl,x ∼ U(64,319) km 312

ℓl,t ∼ U(100,2000) yr 1990

US Atlantic

Empirical Normal likelihood with

additional white noise

Gaussian Process

with zero mean and

a sampling kernel

determined by a

GIA model

ensemble

spatio-

Bayesian;temporal

NIanalysis

ω ∼ U(0.01,10) m 0.3

US Atlantic

Variational Normal likelihood with

additional white noise

A GIA model

ensemble (consist

of 9 individual

models)

spatio-

Bayesian;

ω ∼ U(0.01,0.5) 0.498 (0.497, 0.498)

temporal

NI

ν1 ∼Beta(0.22,0.78) 0.04 (0.03, 0.05)

analysis

ν2 ∼Beta(0.02,0.98) 0. (0., 0.)

ν3 ∼Beta(0.02,0.98) 0. (0., 0.)

ν4 ∼Beta(0.09,0.91) 0. (0., 0.)

ν5 ∼Beta(0.01,0.99) 0. (0., 0.)

ν6 ∼Beta(0.02,0.98) 0. (0., 0.)

ν7 ∼Beta(0.16,0.84) 0.38 (0.35, 0.42)

ν8 ∼Beta(0.29,0.71) 0.36 (0.33, 0.38)

ν9 ∼Beta(0.17,0.83) 0.22 (0.20, 0.24)
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Figure A1. Model ii prediction on -5500 CE RSL at the US Atlantic coast. (a) Mean relative sea-level prediction, which is a combination of

mean function (b) and covariance function (c). (b) Relative sea-level prediction by Gaussian Process mean function (described by a glacial

isostatic adjustment model with ICE_7G ice model and VM5a Earth model). (c) Covariance function induced mean relative sea-level change.

(d) Covariance function induced relative sea-level standard deviation.
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