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Abstract. The ENSO system is a complex climate pattern that is crucial in global climate 10 

systems and plays a key role in climate prediction. Both statistical methods and numerical 

models have been dedicated to achieving accurate predictions of ENSO variations; however, 

there is still a considerable gap in practical applications. Therefore, we proposed a memory 

kernel function-based approach to solve the inverse problem of ENSO time-varying systems. 

We attempted to establish differential equations by constructing memory vectors composed of 15 

multiple initial values to describe the evolutionary characteristics of this complex system. 

Unlike traditional inverse problem-solving methods, our research scheme delved into the 

inherent properties exhibited by ENSO, such as memory and periodicity, and embedded these 

properties as specific targets in differential equations. By leveraging the flexibility of 

evolutionary algorithms to solve mathematical problems, we achieved targeted modeling of the 20 

ENSO system. The results demonstrate that this scheme overcomes the limitations of traditional 

differential equations with a single initial value and extends these equations to memory vector 

equations based on multiple initial values. This not only enhances our ability to describe the 

evolutionary laws of complex systems but also improves the timeliness and reliability of ENSO 

predictions, achieving encouraging results. 25 

1 Introduction 

The urgency to predict short-term climate change with precision is critical given the 

increasing frequency and intensity of extreme weather events. Accurate climate predictions 

play a vital role in formulating disaster-prevention and mitigation policies (Hwang et al., 2021; 

Usman, 2017). As one of the countries most severely affected by meteorological disasters, 30 

China experiences approximately 55% of the deaths and 87% of the direct economic losses 

caused by natural hazards worldwide. Furthermore, if weather-related secondary geological 
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disasters occur, these figures will increase to 81% and 89%, respectively (Wu et al., 2014). 

Therefore, improving the accuracy of short-term climate predictions has considerable 

socioeconomic and scientific importance (Guan et al., 2015). 35 

Climate models have become sophisticated and prevalent tools for simulating the 

interactions between the atmosphere, oceans, land surface, and ice (Eyring et al., 2019; Masson 

and Knutti, 2011). Based on physical principles, dynamic models use equations that describe 

atmospheric and oceanic processes (Palmer, 2001). These models require substantial 

computational resources and detailed initial conditions, making them powerful for long-term 40 

projections but often less effective for short-term predictions involving rapid changes and 

smaller scales (Alizadeh, 2022). Additionally, statistical models rely on historical data, are 

generally less computationally intensive, and can be useful for short-term forecasts (Sunyer et 

al., 2012). However, they are typically restricted to historical data and have a limited ability to 

predict unprecedented or highly variable events (Kjellström et al., 2010). Therefore, combining 45 

the strengths of dynamic and statistical approaches has emerged as a promising strategy for 

enhancing short-term climate prediction (Mittal et al., 2015; Feng et al., 2020). These 

advancements have substantially improved short-term rainfall and temperature predictions in 

eastern China (Wei, 2011; Tian et al., 2015; Zhang et al., 2018). 

When utilizing current modeling capabilities and statistical theories, making substantial 50 

improvements in prediction accuracy through external optimization alone and addressing the 

biases in climate predictions at small spatial scales remain challenging in the short term. 

Numerical climate predictions inevitably have considerable biases that are challenging to 

address (Eyring et al., 2019). Thus, relying solely on numerical model outputs to address local 

climate prediction issues in different regions remains unsatisfactory. Statistical methods have 55 

been used for more than half a century (Sedki et al., 2009; Feng et al., 2019). These methods 

rely on the assumption that time series are stationary, making them less suitable for dealing 

with nonstationary nonlinear problems (Mirikitani and Nikolaev, 2010; He et al., 2012). 

However, climatic evolution processes often exhibit nonlinear and nonstationary characteristics. 

Ma et al. (2023) emphasized that the differential prediction method based on time series is 60 

nonlinear, combining the advantages of numerical models and the convenience of traditional 

statistical methods. This method has the functionality of continuous multi-step iterative 

prediction, like numerical models, and it can handle complex relationships between variables. 

Therefore, our research was based on the memory characteristics of the climate system 

and addressed the limitations of a single initial value in numerical model methods. Specifically, 65 
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differential equation modeling of multi-initial memory kernel functions (MIMKFs) has 

emerged as a novel approach with considerable potential for improving the accuracy of short-

term climate forecasts. The MIMKFs are a sophisticated class of differential equations that 

incorporate multiple initial conditions and memory effects into their framework (Ma et al., 

2023). These equations were designed to capture the dynamic behavior of climate systems, 70 

where the future state depends not only on the present conditions but also on a series of past 

states. Furthermore, MIMKFs are particularly suitable for modeling complex time-dependent 

systems (Wan et al., 2012). This multi-initial approach mitigates the limitations of traditional 

single-initial-condition models, which may overlook large variations, leading to less reliable 

predictions (Feng et al., 2001). Moreover, the self-memory aspect of these differential equations 75 

allows for the incorporation of past climatic events and trends, enhancing the ability of the 

models to predict future states. Targeted modeling can utilize limited resources and data more 

effectively to improve modeling and prediction (Olivetti and Messori, 2023). This is 

particularly crucial for short-term climate predictions, where recent weather patterns and 

anomalies greatly influence future conditions (Dong et al., 2004; Chen et al., 2009). Thus, by 80 

leveraging the strengths of MIMKFs and targeted modeling, predictive tools can provide timely 

and accurate forecasts, which are essential for disaster preparedness and mitigation efforts. 

For complex climate systems, the main challenge in prediction is the complexity of the 

constituent components of the system. The system evolution process typically includes not only 

major cycles but also various high-frequency disturbance components (Feng et al., 2020; Wang 85 

et al., 2021). For example, sea surface temperature (SST) is a complex composite signal formed 

by the superposition of multiple cycles. Chen et al. (2004) used a hybrid statistical–dynamic 

modeling system and SST data to discuss the relative role of atmospheric noise and the initial 

ocean state in determining the predictability of the El Niño–Southern Oscillation (ENSO) 

system. Lima et al. (2009) developed a two-stage statistical ENSO forecasting model to 90 

understand the possible sources of longer-range ENSO predictability. Statistical models, such 

as principal component analysis, have been widely used to capture the main modes of ENSO 

and to reduce the dimensionality of the predictors in forecasting (Drosdowsky, 2006; Lu et al., 

2017). However, most statistical models assume that the embedding space is a linear subspace 

of the original data.  95 

Therefore, in this study, we aimed to produce improved statistical forecasts of ENSO as 

represented by the Niño3.4 index via the nonlinear MIMKFs method. To this end, we first 

studied the periodicity of the SST time series, performed wavelet transforms to obtain two-
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dimensional time-frequency variation plots, extracted specific periods, and laid the groundwork 

for constructing periodic memory kernel functions (MKFs). Second, we conducted an inertial 100 

memory analysis of non-periodic components to seek theoretical bases for constructing inertial 

MKFs. Finally, based on the two memory principles, the basic differential forms of the MKFs 

were predefined in the modeling process, dynamic system target modeling of SST was 

conducted, and the actual performance of the MIMKFs’ predictability of ENSO was examined. 

2 Material and Methods 105 

2.1 Data 

We used the indices for ENSO, particularly the Niño3.4 index (Reynolds and Smith, 1994) 

provided by the National Oceanic and Atmospheric Administration. The data are available at: 

https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Nino34/. 

2.2 Inverse differential equation modeling of MKFs 110 

The classical approach to solving inverse problems, which relies on simplified differential 

equations with a single initial value, is inadequate for characterizing complex climate systems. 

Inverting complex climate systems requires the construction of sophisticated differential 

equations, thereby demanding advanced parameter estimation techniques. To capture the 

complex characteristics of ENSO, we proposed using MKFs based on multiple initial values 115 

and employed flexible evolutionary algorithms for parameter estimation. 

We assumed that the dynamic differential equation of the ENSO system was: 

𝑑𝑥

𝑑𝑡
=  𝐹 (𝑥, 𝑝, 𝑞, 𝑡) (1) 

Where 𝑥 ∈ 𝑅𝑛  represents the state vector of the system; 𝑝, 𝑞 ∈ 𝑅𝑛  denotes unknown 

parameter vectors; 𝑡  is time; and 𝐹  represents an unknown vector function. Using inverse 120 

differential equation modeling, the characteristics of ENSO and the related parameter 𝑝 can be 

expressed using observational data𝑦(𝑡𝑖) (where 𝑡𝑖  denotes the observation time points, 𝑖 =

1, 2, … , 𝑁 ). On assuming that 𝐹  possesses a specific structure or form that includes the 

undetermined parameter 𝑝, the function 𝐹𝑎 can be defined as follows: 

𝐹𝑎 (x, p, t) = m(x, p, t) + f(q, t) (2) 125 
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Where 𝑝 and 𝑞 are unknown parameters and their values are estimated using evolutionary 

algorithms. Notably, functions m  and 𝑓  contain self-memory information (MKFs or basis 

functions), and their specific forms are dynamically determined using evolutionary algorithms. 

To estimate the undetermined parameters 𝑝 and 𝑞 and the functions 𝑚 and 𝑓, an error 

function 𝐸(𝑚, 𝑓, 𝑝, 𝑞)  that measures the discrepancy between the assumed model and 130 

observation must be constructed. Then, the error function can be defined using the least-squares 

method as follows:  

𝐸(m, f, p, q) = ∑ ∥ 𝑥(𝑡𝑖) − 𝑦(𝑡𝑖) ∥2 (3) 

Where 𝑥(𝑡𝑖) is the simulated state vector obtained from the assumed model 𝐹𝑎 through 

numerical integration using the Runge–Kutta method. Subsequently, we employed a genetic 135 

algorithm to minimize the error function, thereby estimating the parameters 𝑝 and 𝑞 and the 

functions 𝑚 and 𝑓. We generated an initial population containing multiple parameter vectors 

for 𝑝  and 𝑞  and the gene expressions of functions 𝑚  and 𝑓 . For each parameter vector 

(𝑝𝑗 , 𝑞𝑗,𝑚𝑗,𝑓𝑗) in the population, we computed the corresponding simulated state vector 𝑥(𝑡𝑖) 

and calculated the error function. The fitness of each parameter vector was evaluated based on 140 

the values of E(𝑝𝑗 , 𝑞𝑗,𝑚𝑗,𝑓𝑗). Furthermore, a subset of the parameter vectors was selected based 

on their fitness for crossover and mutation. Parts of the two parameter vectors were combined 

through crossover operations, and genes were randomly altered through mutation operations to 

generate new parameter vectors. This process was repeated until the parameter vector with the 

highest fitness was produced. 145 

3 Results 

3.1 Analysis of SST memory patterns 

Analysis of SST memory patterns involve more than simply randomly distributing the 

initial value vector for evolutionary modeling. It is also necessary to study the memory patterns 

of the target system prior to modeling. Herein, the monthly-scale SST corresponding to 150 

Niño3.4was chosen as the research subject, with SST anomaly data available from January 1951 

to July 2022, spanning approximately 860 months. Typically, complex systems exhibit memory 

characteristics through two main approaches: periodic oscillations, referred to as "periodic 

memory" and inertial motion, termed "inertial memory". Initially, a periodic analysis was 

conducted on SST data to determine the characteristic parameters for constructing specific 155 
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MKFs. We employed wavelet analysis to obtain a time-frequency plot of monthly SST 

anomalies (Fig. 1). 

 

Figure 1: Time-frequency plot of wavelet transform for SST anomaly sequence. 

 160 

As shown in Fig. 1, the SST exhibits predominant cycles ranging from large to small scales, 

primarily at 140, 60, and 30 months. When converted to annual scales, these correspond to 

distinct cycles of approximately 11 years, noticeable cycles of approximately 5 years, and less-

apparent cycles of approximately 2.5 years. These cycles appear to be relatively stable after the 

210th month, corresponding to the period from 1969 to 2022. The remaining components 165 

represent less-apparent cycles characterized by high-frequency oscillations, which are 

considered to be inertial motions. 
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Figure 2: (a) Integral curve of the memory kernel function (MKF) (t, sst), (b) high-

frequency component, and (c) integral curve of the SST modeling based on MKFs. The 170 

black line represents observed values, the blue line indicates fitting, and other colors 

represent the testing interval. 

 

Based on the time-frequency plot of the wavelet analysis, the earlier periods of SST exhibit 

relatively complex periodic patterns. Therefore, it was chosen to model the later observational 175 

SST data. The training dataset consisted of 180 months (sample range: 650–838, from April 

2005 to December 2018), while the testing dataset comprised 26 months (830–856, from 

January 2019 to July 2022). The specific expression for the 𝑀𝐾𝐹(sin 𝑡 , 𝑋) obtained from 

evolutionary modeling is as follows: 

𝑀𝐾𝐹(𝑡, 𝑠𝑠𝑡) = 24.118 𝑠𝑖𝑛 (
2𝜋𝑡

60
+

2945.3

𝑠𝑠𝑡[−3]
) (4) 180 
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where t represents time, X vector corresponds to the retrospective initial points of the SST, 

and sst[-3] denotes the observed value at the third previous time step of the current initial point 

sst[0]. It can be observed that the kernel function describes a memory signal with a period of 

60 months and includes memory information from the SST of the third previous month (Fig. 

2a). The high-frequency component f(t,X) is expressed as follows:  185 

𝑓(𝑠𝑠𝑡) =
40.2

𝑠𝑠𝑡[−5] + 𝑠𝑠𝑡[−6] − 𝑠𝑠𝑡[0] + 135.45
− 1.156 (5) 

Figure 2b shows that the higher-frequency component is described using information from 

SST observations of the fifth and sixth previous months. According to Fig. 2a and 2b, the kernel 

function and high-frequency component illustrate the characteristics and evolving trends of the 

SST periodic memory, respectively. Combining the periodicity of the former and the trend 190 

characteristics of the latter, the organically integrated training fitting and testing results are 

shown in Fig. 2c. Memory changes in SST have been described systemically. The ODE-MKF 

model achieved a correlation coefficient of 0.71 and a mean squared error of 0.63 for the 

training fitting, while for the testing part, the correlation was 0.68 with a mean squared error of 

0.59. From the mathematical expression of the model, the ODE-MKF is relatively simple to 195 

calculate by embedding targeted kernel functions, yet it achieves a high accuracy in fitting SST 

data. Experiments conducted outside the sample have also indicated that the ODE-MKF can 

describe periodic changes in SST through periodic kernel functions, while the non-periodic 

component was described using a high-frequency component.  

 200 

Figure 3: Integral curve of ODE-MKF for the long sequence. 

 

Furthermore, by increasing the size of the training and testing samples, the difficulty of 

fitting can be enhanced. The inversion results for the setting [Model Parameter 2]: 260 months 
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of training samples (sample range: 500–760, from October 1992 to June 2014) and 95 months 205 

for testing the model (761–856, from July 2014 to July 2022) are shown in Fig. 3. Extending 

the model training interval increases the difficulty of fitting and describing the memory with 

kernel functions. As shown in Fig. 3, the blue line indicates a fitting correlation coefficient of 

0.611 and mean squared error of 0.686. For the validation interval represented by the red part, 

the corresponding parameters were 0.63 and 0.693. The ODE-MKF performed well during the 210 

validation period and accurately predicted the main SST fluctuations. The reconstructed MKF 

involved two cycle ranges (140 and 30 months), indicating longer memory descriptions. The 

high-frequency component primarily comprised retrospective initial values that included 

certain nonlinear terms. 

3.2 Inertial MKF 215 

Random disturbances or processes in complex systems are not only difficult to predict but 

also tend to obscure the main periodic variations, thereby interfering with predictions. The 

transfer entropy method was employed as a diagnostic tool for assessing the inertial memory 

scales. In the following analysis, fluctuations in SST at the seasonal scale were examined to 

establish a theoretical basis for constructing the MKF. Using SST as an example, the inertial 220 

memory was analyzed using two methods. 

 

Figure 4: (a) Lagged transfer entropy of SST, (b) (△t =1, sample length=100), and (c) 

lagged transfer entropy of SST with sampling interval: △t=1–20. 

 225 
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The SST sequence was partitioned into lagged subsequences (with a sample size of 100), 

each consisting of three sequences (X, Y, and Z) corresponding to sampling time points t1, t2, 

and t3. For the third sequence group, the sampling interval was △t=t3-t2=t2-t1=1–20. 

According to definition of transfer entropy, the transfer entropy T(t1/t2→t3) and T(t2/t1→t3) 

values can be obtained. Based on Fig. S1, the two transfer entropy values for each sample group 230 

were obtained (see Fig. 4a and 4b), and their areas were represented as two numerical values, 

yielding a transfer entropy area sequence for △t=1–20 as shown in Fig. 4c. 

When ignoring the absolute values of the transfer entropy, an interesting phenomenon was 

observed between the two transfer entropy values. The time interval between t2 and t3 was 

always smaller than that between t1 and t3, i.e., t3-t2=t2-t1=1–20, and t3-t1 was twice that of 235 

the former. Before △t<7, the contribution of sampling points t2 to t3 gradually decreased under 

condition t1, whereas the contribution of sampling points t1 to t3 gradually increased under 

condition t2. Both converged to a constant value at △t=6. It is clear that the blue line initially 

starts above the red line, as the time distance between t2 and t3 is always less than that between 

the latter, indicating that the contribution of t2 to t3 (or the percentage of t3) is higher than that 240 

of the former. After △t>6, the contribution of t2 to t3 decreases to a basic constant value. 

Corresponding to t3-t1=△t=2, 4, 6, 8, 10, 12, the contribution of t1 to t3 gradually increases 

and maintains the same state as the blue line. As the time span from t1 to t3 increases, the 

contribution of t1, which is further away from t3, increases. According to the definition of the 

transfer entropy calculation formula, this phenomenon occurs because the influence of t2 as a 245 

precondition decreases as the time span increases, resulting in a reduced impact on t3. However, 

although the influence of t1 as the driving component also decreases, its rate of decrease is 

slower than that of t2. This relationship resembles the combination of numerator and 

denominator relationships in conditional probability. Therefore, the contribution of t1 to t3, as 

indicated by the value of the transfer entropy based on t2, inevitably increases. 250 

From the perspective of constructing the MKF, the two transfer entropies as mutual 

conditions indicate that the scale of memory changes occurs within 6–12 months. After 12 

months, the memory remains almost unchanged. The changing state also indicates the existence 

of memory relationships between the sampling points. Based on this, the 6-month retrospective 

time scale can be used as the memory scale to construct the MKF, indicating that SST has 255 

relatively reliable inertial memory within 6 months. 

3.3 Correlation coefficient 
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The correlation coefficient is a descriptive statistic measuring the degree to which changes 

in one variable correspond to those in another. According to its definition, the correlation 

coefficient only reflects synchronous changes between two variables and does not indicate 260 

causality between them. This does not affect its use in analyzing the problem of relationship 

memory. Following the lagged calculation scheme described above, the sliding correlation 

coefficient between the time series of the two sampling points was calculated with a 

subsequence length of 100. Figure 5 illustrates the variation in the average value of the lagged 

total sliding correlation coefficient. 265 

 

Figure 5: Lagged correlation coefficients. 

 

As shown in Fig. 5, as the time between sampling points increases, the correlation 

coefficient gradually decreases and becomes negative after a gap of approximately 10 months. 270 

If the confidence level for the correlation coefficient is set at 0.01, the corresponding correlation 

coefficient is approximately 0.39, with a lagged time span of approximately 6 months. With a 

further increase in the time span, the correlation is lost near 9.5 months, and thereafter, the 

correlation fluctuates randomly. It is evident that this inertial memory length aligns closely with 

the transfer entropy results. Therefore, when constructing the MKF, the maximum number of 275 

initial values considered was set to seven (including the current initial value). Consequently, 

compared to the previous method of randomly selecting the past 24 initial values, this initial 

value scale can substantially narrow the range of numerical solutions searched in evolutionary 

modeling, thereby potentially improving the modeling efficiency. 
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 280 

Figure 6: (a) Integral curve of inertial MKF, (b) integral curve of high-frequency 

disturbance component, and (c) integral curve of ODE-MKF based on inertial memory 

kernel function. 

 

Through the characterization of memory using the tanh function of the inertial switch, the 285 

individual integral curve of the kernel function, as shown in Fig. 6a, describes relatively regular 

cyclical characteristics. Meanwhile, the high-frequency component ff, composed of 

retrospective value vectors and trigonometric functions, also exhibits certain nonlinear 

characteristics, as reflected in its individual integral curve in Fig. 6b, indicating a certain trend 

change. The ODE-MKF combines the advantages of both, further enhancing the understanding 290 

of oscillations in SST evolution details, with specific fitting parameters, including correlation 

coefficients and mean square errors. The test interval parameters are specified. Compared to 

the aforementioned cyclical memory, the ODE-MKF still exhibits considerable differences, 
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with the former showing more frequent small random fluctuations and the latter reflecting 

smoother cyclical patterns, as shown in Fig. 6c. Both demonstrated good predictive capabilities 295 

for trends. 

4 Discussion and Conclusion 

We used wavelet analysis to detect both periodic and non-periodic features in SST data 

and constructed periodic MKFs and inertial MKFs to record the two types of motion in the 

system. The results provide important novel insights into the temporal dynamics of complex 300 

systems. Researchers have estimated and evaluated the link between observable variables and 

model parameters using evolutionary algorithms, transfer entropy and correlation coefficients, 

which aids in the selection and improvement of models. Moreover, focused modeling with the 

backtracking of multiple initial values provides a strong foundation for improving the accuracy 

and dependability of differential equation models and overcomes the inverse problem of 305 

complex and nonlinear systems more efficiently. Using these methods to construct and solve 

the periodic and inertial MKFs for ENSO, we obtained better ENSO predictions. 

Using multiple initial values to extends the single initial value inverse problem to 

backtracking multiple initial values and utilizing more historical information from the time 

series. By incorporating evolutionary algorithms into the model with improved equations, the 310 

model parameters and initial conditions were estimated. Improving the operation of equations 

and using evolutionary algorithms, researchers can quickly explore the solution space and find 

the configurations that best fit the observed data. The model parameters can be improved 

through this iterative optimization process such that they match the underlying dynamics of the 

system more closely, additionally, improves the precision and dependability of differential 315 

equation models (Chen et al., 2022). 

From these findings, the temporal dynamics of complex systems can be better understood 

by examining the short space–time memory patterns. Two separate techniques for modeling 

temporal dependencies: inertial memory, which is characterized by the persistence of prior 

states for a specific length. This tool can use to quantification the ENSO interannual Extended 320 

cyclo-stationarity quasi-cycles and consider the possible ENSO memory (Gaucherel, 2010). 

Periodic memory, which is reflected by repeated cycles in the states of the system (Lustig et al., 

2017). The variability of the Niño 1-2 and Niño 3 has large component of long-memory 

behavior associated with the quasi-biennial and the semi-annual frequency. This is particularly 

true when analyzing targeted modeling, which involves the retracing of several initial values. 325 
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Understanding the characteristics of periodic and inertial memory is essential for understanding 

the behavior of a system in the long run. The selection of suitable MKFs for modeling can be 

greatly aided by examining SST memory patterns. Prevalent cycles in SST data were identified 

using wavelet analysis, which directs the creation of MKFs specifically designed to capture the 

memory properties of a system (Brown and Garcia, 2021). Characteristic factors, such as 330 

inertial motion and periodic cycles, were identified to guide the creation of MKFS that 

efficiently capture temporal dependencies in the observed data. 

To represent the memory dynamics of the system over time, inertial MKFs are essential 

for capturing the system's inertial motion (Wang and Zhang, 2021). To develop the inertial 

MKFs, the magnitude of memory changes in the system was ascertained by examining the 335 

lagged transfer entropy. Researchers can increase the fidelity of differential equation models to 

capture the inertial memory properties of a system by including inertial MKFs in the modeling 

framework. As a gauge of the linear link between variables, the correlation coefficient sheds 

light on the synchronous changes that occur between two variables (Johnson and Smith, 2019). 

The correlation coefficient makes it easier to evaluate the link between the observed data and 340 

model parameters in the context of focused modeling. The choice of suitable model structures, 

inertial memory ranges and parameterizations is guided by the observed correlations between 

variables, which improves the precision of the differential equation models. 

This study highlights the advantage of using focused modeling with backtracked multiple 

initial values to understand the temporal dynamics of complex systems. Researchers can 345 

advance state-of-the-art modeling approaches and obtain deeper insights into the dynamics of 

complex systems by examining SST memory patterns, utilizing correlation coefficients, 

combining evolutionary algorithms, and applying inertial MKFS. 
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