
Response to Reviewers’ Comments 

We thank the Editors very much for handling of our manuscript entitled “Inverse 

Differential Equation Modeling of ENSO Prediction Based on Memory Kernel 

Functions” (egusphere-2024-2181) by Wan et al. First and foremost, I would like to 

express my sincere gratitude for the thorough review and insightful comments provided 

on our manuscript. Those comments are all valuable and very helpful for revising and 

improving our paper, as well as the important guiding significance to our research. We 

have carefully considered each point raised and have made the following revisions to 

our manuscript. Please see our point-by-point response (in blue normal font) below.  

 

Reply to Reviewer#2: 

We thank the reviewer for recognizing the value of our work and providing helpful 

comments. In the following, the text with normal font are the reviewer’s original 

comments, and those with blue normal font are the authors’ response. 

 

General comments: 

This paper performs data-driven predictions of ENSO by learning a function of 

past values. Unfortunately, the paper as it stands has severe problems, and I cannot 

recommend publication. Namely, (a) the method is described very vaguely; (b) I am 

unclear about whether this method can actually be applied for forecasting or is just a 

regression from SST to the ENSO index; (c) I am unclear about what novelty this paper 

has over past ones from the same group; (d) there is no comparison to other methods in 

the literature; (e) the verification of the method is inadequate; and (f) the overall paper 

is quite unclear. 

Response: Thank you for your insightful comments and suggestions We have 

added a description of the method in Section 2.2. Several indices are used to monitor 

the tropical Pacific Ocean, all of which are based on the mean sea surface temperature 

(SST) anomaly for a given region. The Niño 3.4 index is the most common index used 

to define El Niño and La Niña events. The Niño 3.4 anomalies represent the average 

equatorial SSTs across the Pacific, from approximately the dateline to the South 



American coast. This index typically employs a 5-month running mean, and El Niño or 

La Niña events are defined when the Niño 3.4 SST anomalies exceed +/- 0.4°C for a 

period of 6 months or more. In our study of ENSO, we primarily use the Niño 3.4 index, 

calculated based on actual SSTs, to characterize ENSO variations. 

In our previous article, we focused on independently modeling local processes of 

complex systems for accurate simulation and prediction. In this paper, our work 

includes three main aspects: studying the period of SST time series using wavelet 

transform to obtain a time-frequency graph and extract specific periods, which lays the 

foundation for constructing the periodic memory kernel function (MKF); conducting 

inertial memory analysis of aperiodic components to establish the theoretical basis for 

the inertial MKF; and modeling the SST dynamic system with the MKF by 

presupposing its basic differential form and investigating whether the actual 

performance of the ODE-MKF aligns with the expected performance. 

Although ENSO forecasts are critical, current business forecasts typically do not 

extend beyond 6 months. Our results, however, can predict trends up to 26 months in 

advance. Despite this, there is still a need to improve forecasts for years with extremely 

high or low values. We have provided a detailed comparison with existing ENSO 

forecast results in the following reply. 

We also considered the influence of different initial values on the prediction effect 

and improved the overall description of the paper to enhance its clarity and coherence. 

 

Major comments: 

1. The authors state on lines 182 and 188 that their functions take as input 

*observed* SST from previous and current months. Unless this was misstated and the 

authors meant the *predicted* SST (or observed if the lead time is less than the lag of 

SST one wants to use), this means that the method cannot actually be applied as a 

forecast method without the use of future information, since it can only be applied up 

to a lead time of the minimum lag of observed SST taken as input (in this case it would 

only be able to predict for one step, since it needs the current observed SST). If this is 



true, then this is not a forecast method, but rather a regression model mapping from 

observed SST to the ENSO index.  

Response: Thanks for the reviewer’s insightful comments. Several indices are 

used to monitor the tropical Pacific Ocean, all based on the mean SST anomaly for a 

given region. The Niño 3.4 index is the most common index used to define El Niño and 

La Niña events. The Niño 3.4 anomaly represents the mean equatorial SST in the Pacific 

Ocean from the approximate date line to the coast of South America. The index 

typically uses a 5-month operating average to define an El Niño or La Niña event when 

a Niño 3.4 SST anomaly exceeds +/- 0.4°C and persists for 6 months or more. In our 

ENSO study, we mainly use Niño 3.4 index based on actual SST calculation to 

characterize ENSO changes. The index is calculated based on key SST regions, so 

similar results can be calculated using observed SST data. Moreover, Ham et al. (2019) 

achieve an effective 18-month advance prediction of the Niño 3.4 SST index. In our 

results, we were able to predict ENSO trends about 26 months in advance. Such longer-

lead forecasts could be of high value, because decision-making and management in a 

number of key socio-economic sectors could be greatly improved 

 

2. The description of the genetic algorithm is very unclear. The authors say that a 

genetic algorithm was used to pick the functions comprising the model and their 

parameters. First of all, the actual set of functions that can possibly be selected, as well 

as what the parameters represent, is not stated anywhere. The authors say that "a subset 

of the parameter vectors was selected based on their fitness for crossover and mutation", 

but the selection criteria for this subset is not stated. The authors then state that "parts 

of the two parameter vectors were combined through crossover operations, and genes 

were randomly altered through mutation operations to generate new parameter vectors", 

but don’t state how the crossover nor mutation operations work. 

Response: Your valuable feedback is greatly appreciated. Genetic algorithm is an 

optimization algorithm that simulates the principles of natural selection and genetics. 

We use genetic algorithms to minimize the error function 𝐸(𝑚, 𝑓, 𝑝, 𝑞), Where p and 

q are unknown, their values are estimated by evolutionary algorithm. It should be noted 



that m and f are not fixed functions, but mathematical functions containing self-

memorizing information (MKF or basis function), which are also dynamically 

determined by evolutionary algorithms. Specific steps of genetic algorithm are as 

follows:  

a) Initialize: Generate an initial population containing multiple parameter vectors 

p, q, and function gene expressions m, f. 

b) Fitness evaluation: for each parameter vector pj,qj,mj,fj in the population, the 

corresponding simulated state vector 𝑥  is computed by numerical integration to 

simulate (t), and the error function 𝐸(𝑚𝑖, 𝑓𝑖, 𝑝𝑖, 𝑞𝑖) is computed. The fitness of each 

parameter vector is evaluated according to the values of 𝐸(𝑚𝑖, 𝑓𝑖, 𝑝𝑖, 𝑞𝑖).  

c) Selection: Select some parameter vectors for crossover and mutation according 

to their fitness. 

d) Crossover and Mutation: Combine some genes of two parameter vectors 

through crossover operations and randomly change the values of some genes through 

mutation operations to generate new parameter vectors. The crossover and mutation 

steps in the evolutionary modeling process are detailed as follows:  

For crossover, after completing an evolutionary algorithm iteration, randomly 

select a certain proportion of individuals from the total population M to form a new 

population. From this new population, select the best individuals to be part of the next 

generation population. Form another subgroup by randomly selecting a corresponding 

proportion of M individuals and again choose the best individual to include in the next 

generation. Repeat this process until half of the population size (M/2) individuals are 

selected. For the Mutation, randomly select an individual from the new population 

obtained through the evolutionary operations. Designate target F as the next generation 

individual. Repeat the mutation operation until the combined number of individuals 

obtained through mutation and replication operations reaches the preset population size. 

e) Iteration: repeat the process until the stop criteria are met. 

f) Result output: outputs the parameter vector with the highest fitness as the 

estimation result.  



Please refer in the revised version. As follows the section of 2.2 Inverse differential 

equation modeling of MKFs. 

 

3. What is the novelty of this paper over a similar paper from the same group, Ma 

et al. (2023)? That paper seems to use the same method and applies it to ENSO 

prediction. Similarly, that paper is quite vague about the algorithm. 

Response: We sincerely appreciate the reviewer’s constructive feedback. In our 

previous article, we focused on independently modeling local processes in complex 

systems for accurate simulation and prediction. However, random disturbances or 

stochastic processes inherent in complex systems are challenging to predict and can 

obscure primary periodic characteristics, interfering with accurate forecasting. This 

paper addresses these challenges by using wavelet transform to study the period of SST 

time series, creating a time-frequency graph to extract specific periods and laying the 

foundation for constructing a periodic MKF. Additionally, we analyze the inertial 

memory of aperiodic components to establish the theoretical basis for the inertial MKF. 

We then implement the MKF to model the SST dynamic system, presetting its basic 

differential form and investigating whether the actual performance of ODE-MKF aligns 

with the expected performance. 

 

4. The validation of this method is insufficient. The authors only evaluate it on two 

different initialization dates. More initial dates should be considered, and the skill 

measures averaged over these. Moreover, the authors do not look at how the skill decays 

with lead time, which is crucial. 

Response: Thanks for the reviewer’s insightful comments. To reduce prediction 

uncertainties and skill decay, ensemble methods are commonly employed to improve 

prediction skill. In our previous research the ensemble Scheme-C prediction of 27 

models with a backtracking scale of m=24, 14 etc. The ensemble prediction became 

smoother, with reduced random fluctuations. Although the ability to predict subtle 

changes in ENSO was reduced, the ability to capture trends improved. The transition 

from La Niña to El Niño events also accurately predicted. Furthermore, Scheme-C 



generated many prediction members by using the initial perturbation method within the 

same mode. Thus, in this research we selected the most suitable and stable initial dates. 

Besides, Figure 4 (Figure 3 of previous versions) also deposes our model avoiding rapid 

skill decays. We have added necessary explanations in lines 267-269: The high-

frequency component primarily comprised retrospective initial values that included 

certain nonlinear terms, which also avoids rapid skill decays. 

Ma Q, Sun Y, Wan S, et al. An ENSO Prediction Model Based on Backtracking Multiple 

Initial Values: Ordinary Differential Equations–Memory Kernel Function[J]. 

Remote Sensing, 2023, 15(15): 3767. 

 

5. I did not understand the point of the whole section on transfer entropy, or 

actually how it was applied. Later the authors use the autocorrelation to determine 

relevant timescales, which seems to be sufficient. 

Response: Thank you for your comprehensive review and helpful comments. The 

purpose of discussing transfer entropy and the correlation coefficient here is to analyze 

the system’s memory characteristics. This discussion aims to simplify calculations 

using the MKF and evolutionary algorithm and to build a prediction model that 

incorporates memory effects. 

The mathematical essence of transfer entropy is to determine the relationship 

between three variables using conditional probability. Entropy, as a state function, 

originally emerged from thermodynamics and statistical mechanics, describing the 

disorder of a material system. For closed systems, entropy generally increases, meaning 

the system tends toward maximum disorder. Transfer entropy’s physical meaning 

involves energy exchange between systems, seeking maximum information exchange 

to achieve equilibrium. In contrast, the correlation coefficient is a descriptive statistic 

indicating the degree to which one variable’s change corresponds to another. However, 

it only reflects synchronous changes between two variables without indicating causal 

relationships. To discuss the system’s memory, we use both transfer entropy and the 

correlation coefficient. This dual approach simplifies the time required for modeling 

calculations and ensures a rational understanding of entropy transfer. 



Given the observation sequence X, Y, and Z, the transfer entropy is defined as: 

𝑇𝑌→𝑋 = ∑ 𝑝(𝑥𝑖 , 𝑦𝑖, 𝑧𝑖) log
𝑝(𝑥𝑖|𝑦𝑖 , 𝑧𝑖))

𝑝(𝑥𝑖|, 𝑧𝑖)𝑖      (1), 

equation (1) represents the transfer of joint entropy to X by Y based on Z. Unlike mutual 

information or conditional entropy, X, Y, Z is asymmetric and non-static, that is, the 

information transfer between X, Y, and Z is unidirectional, irreversible, and non-shared. 

Where 𝑝(𝑥𝑖|𝑦𝑖 , 𝑧𝑖)  represents conditional probability, 𝑝(𝑥𝑖|𝑦𝑖, 𝑧𝑖) = 𝑝(𝑥𝑖 , 𝑦𝑖, 𝑧𝑖)/

𝑝(𝑦𝑖, 𝑧𝑖). Three scale control parameters are used in the calculation, 𝜀𝑥, 𝜀𝑦, 𝜀𝑧, namely, 

𝑝(𝑥𝑖, 𝑦𝑖 , 𝑧𝑖) = 𝑝(𝜀𝑥, 𝜀𝑦, 𝜀𝑧)  and 𝑝(𝑦𝑖, 𝑧𝑖) = 𝑝(𝜀𝑦, 𝜀𝑧) . Since the effect on X is 

calculated, the other two parameters are determined in a fixed way. The method is to 

look at 𝑝(𝑥𝑖|𝑦𝑖) as a function of 𝜀𝑦, and take the value of m at its maximum: 

𝜀𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥 ∙ 𝑝(𝑥𝑖|𝑦𝑖)    (2), 

similarly, we can determine the value of 𝜀𝑧. 

Studies have shown that 𝑇∗→𝑋 is generally not affected by noise, has strong anti-

interference ability, is suitable for analyzing observational sequences, and is not limited 

by sample data length, and can analyze shorter sequences, which is much smaller than 

the required sample size for computing association and correlation. 

Please refer in the revised version. As follows in section 2.3 Inertial MKF. 

 

6. There is no comparison of skill to other methods, either dynamical or 

statistical/machine learning, to see if this one is competitive. For a recent benchmark, 

see Ham et al (2019). 

Response: Thank you for the detailed and thoughtful feedback We add a 

comparison with the existing conclusions. Please refer to: 

Lines 406-419: ENSO forecasts are critical, yet most operational forecasts 

typically do not extend beyond 6 months. Our results capture the system’s nonlinear 

characteristics and reflect its trend changes. From January 1951 to July 2022, we 

successfully identified the SST change trend and forecasted ENSO trend changes up to 

26 months in advance. For comparison, Petrova et al. (2024) employed a statistical 

unobserved dynamic components model to predict ENSO events 11 to 17 months in 



advance. Additionally, the extended nonlinear recharge oscillator model demonstrates 

proficient ENSO forecasts with lead times of up to 16–18 months (Zhao et al., 2024). 

Ham et al. (2019) used a CNN model to achieve an effective 18-month advance 

prediction. Hu et al. (2021) enhanced model performance and stability by incorporating 

dropout technology and residual connection modules, leading to the development of the 

Res-CNN model, which refines prediction capability up to 20 months in advance. 

Overall, our results demonstrate a superior capability to capture ENSO trend changes, 

allowing us to predict ENSO trends up to 26 months in advance. However, the 

prediction accuracy for some anomalously high and low SST values needs 

improvement, which we aim to address in future work.  

 

7. I don’t understand what "inertial memory" means, or what Figure 6 is showing. 

Response: Your thorough review and valuable suggestions are much appreciated. 

Complex systems have their own memory, expressed in two ways: periodic 

"reciprocating motion," known as "periodic memory," and inertial motion, called 

"inertial memory." Specifically, inertial memory, which reflects the current state of the 

system, contains information from previous states. We first analyzed the periodicity of 

the SST time series and constructed periodic MKF, with the related results shown in 

Figure 3 (Figure 2 in previous versions). Second, we performed inertial memory 

analysis on the aperiodic component to establish the theoretical basis for constructing 

the inertial MKF, as shown in Figure 7 (Figure 6 in previous versions). 

According to the results of correlation coefficient and transfer entropy, we find 

that the memory cycle of ENSO is 6 months, so the upper limit of the number of initial 

values considered when constructing MKF is 7 (including the current initial value). 

Therefore, compared with the original method of randomly selecting the past 24 initial 

values, this initial value scale can greatly reduce the range of numerical solutions 

searched by evolutionary modeling, and is expected to significantly improve the 

modeling efficiency. Similar to Figure 3 (in previous versions of Figure 2), we set the 

parameters (The training dataset consisted of 180 months (sample range: 650–838, from 



April 2005 to December 2018), while the testing dataset comprised 26 months (830–

856, from January 2019 to July 2022)).  

Different from MKF which is composed of time variables considering periodic 

memory, MKF of inertial memory is mainly composed of initial value vectors, and the 

mathematical form of kernel function is uncertain, which may have multiple 

expressions. So we use a tanh function similar to the sigmoid activation function, which 

compresses the output in the interval form (-1,1). tanh(x)  is the memory switch 

function, which can be expressed as: 

tanh(x) = T(x) =
ex−e−x

ex+e−x
    (3), 

The specific expression for the inertial MKF(t,x) obtained from evolutionary 

modeling is as follows: 

𝑀𝐾𝐹(𝑡, 𝑠𝑠𝑡) = (tanh(255.27 × sst[−3]) − (265.89 × sst[−1]))    (4), 

The high-frequency component f(t,X) is expressed as follows:  

f(sst) = 0.99 × sst[0] × sst[−1] × sst[−5] + (sst[−4] − 0.61) × 5.69 ×

sst[−3] × sst[0] − (13.41 − sst[−2] × sst[0] + sst[−1] × sst[−6]) − ((sst[−1] +

3.01) × sst[−2]) + sst[−5] × (sst[−1] + sst[−5] + sst[−6]) × sin(3.24 −

sst[−3]) + 8.755 × cos(esst[0] × cos(sst[−2] × (sst[−5] + 0.85)))    (5). 

As can be seen from the MKF expression, the kernel function is in a relatively 

simple form but captures the memory of the system. Moreover, the high-frequency 

component is composed of traceback value vector and trigonometric function, and also 

has some nonlinear characteristics. The strength of our approach is that it combines 

these two parts to build ODE-MKF. Compared with the aforementioned periodic 

memory, the ODE-MKF still has a big difference. The former has more small random 

fluctuations, while the latter reflects smooth periodicity. Both of them have better 

ability to predict the trend. 

 

Other issues: 

1. What numerical method is used to integrate the model? Presumably a time-step 

of 1 month is used? 



Response: The integration method we use is the Runge-Kutta method, and the 

time-step of the integration is 1 month based on the scale of the data used. 

 

2. Eq. 1 (and 2) is written as a regular ordinary differential equation, but if it a 

function of previous points in its own history then it should be written as a delay 

differential equation. 

Response: Your valuable feedback is greatly appreciated. In this paper, we 

propose the concept of constructing a system MKF based on multiple initial values 

(iterative output values) and utilizing a more flexible evolutionary algorithm for 

parameter estimation. In our approach, m (x, p, t) is dynamically defined by the 

evolutionary algorithm. It is not a fixed function but a mathematical function containing 

self-memorizing information. This means that the rate of change of the current state 

also depends on the state at a previous point in time, which can be expressed by m (x, 

p, t). 

 

3. The axes of Figure 1 are not labelled. 

Response: Thanks for the reviewer’s insightful comments. We have made a 

correction. Please refer in the revised version. As follows: 

Figure 2 (in previous versions of Figure 1)

 

Figure 2: Time-frequency plot of wavelet transform for SST anomaly sequence. 

The red lines in the figure indicate scales of 140, 60, and 30 months. 



 

4. why do Figure 2, 3 and 6 have the curve in the test period go from red to purple? 

Is there some significance to this? 

Response: We are thankful for the reviewer’s thoughtful critique and 

recommendations. The red curve in the Figure represents the model selection process, 

while the purple curve shows the predicted Niño 3.4 SSTA based on the optimal model. 

We have supplemented this section with a detailed description. Please refer in the 

revised version. As follows: 

Line 225: “...The red curve in the Figure represents the model selection process, 

while the purple curve shows the predicted Niño 3.4 SSTA based on the optimal model.” 

Line 256: “Figure 4: Same as Figure 3c, but for the integral curve of ODE-MKF 

for the long sequence.” 

Line 365: “Figure 7: Same as Figure 3, but for the (a) Integral curve of inertial 

MKF, (b) integral curve of high-frequency disturbance component, and (c) integral 

curve of ODE-MKF based on inertial MKF, with initial values considered when 

constructing MKF is 7 (including the current initial value).” 

 

5. In Figure 2, what is the difference between panel a and c? 

Response: Panel (a) shows the integral curve of inertial MKF of equation 4, which 

includes the memory information of the past 3 months SST and the 60-month cycle of 

memory signals. Panel (a) more captures the disturbance and memorability of Niño 3.4 

SSTA, reflecting more random fluctuations as a whole, and mainly gives the 

characteristics of SST periodic memory. For the panel (c), it shows the organic 

combination of periodicity (a) and trend (b), which is ODE-MKF and shows better 

predictability for Niño 3.4 SSTA. 

 

6. Why do the "high-frequency" components in Figures 2 and 6 actually look low-

frequency? 

Response: From the higher frequency part f (t, X) differential, the higher 

frequency component is described by information from past SST observations for the 



5th and 6th months. The MKF derived from evolutionary modeling describes the 

memory signal of the period of 60 months, and includes the memory information of the 

past 3 months SST. The training results from the figure are not ideal for capturing Niño 

3.4 SSTA, but after combining the two into ODE-MKF, the effect is greatly improved. 

 

7. Through the characterization of memory using the tanh function: this was never 

described. Similarly, the authors say that "the high-frequency component primarily 

comprised retrospective initial values that included certain nonlinear terms" which is 

also not described. 

Response: When creating MKF of inertial memory, considering the uncertainty 

of kernel function mathematical form and the possibility of multiple expressions, we 

use tanh function similar to sigmoid activation function as memory switch function. 

The Tanh activation function compresses the output in the interval (-1,1), as follows: 

tanh(x) = T(x) =
ex−e−x

ex+e−x. 

f(X) is the differential of multiple initial values, representing the higher frequency 

component, and X is the initial value vector. The kernel function is embedded in the 

evolution model as gene code, and the evolution algorithm determines the specific 

differential expression by itself.  

𝑓(𝑠𝑠𝑡) =
40.2

𝑠𝑠𝑡[−5] + 𝑠𝑠𝑡[−6] − 𝑠𝑠𝑡[0] + 135.45
− 1.156,  

which can be seen that the higher frequency component is described by information 

from past observations of the 5th and 6th months of the SST. We have revised and 

supplemented this part of the description in the main paper. 

 

8. “These equations were designed to capture the dynamic behavior of climate 

systems, where the future state depends not only on the present conditions but also on 

a series of past states.” This is not true; in fact, the climate is a Markovian system. 

However, a partially observed Markovian system (e.g., just the ENSO index) will act 

in a non-Markovian way. This can be understood through the Mori–Zwanzig formalism 

or Takens’ embedding theorem; see, e.g., Levine & Stuart (2022). 



Response: Thanks for the reviewer’s insightful comments. Our focus is on 

capturing the memory of the system, not dynamic behavior. Your insights are very 

insightful and we have made changes. Please refer in the revised version. As follows: 

Lines 74-75: “These equations were designed to capture the memory of climate 

systems, where the future state depends not only on the present conditions but also on 

a series of past states.” 

 

9. In the introduction, "short-term forecasts" is used, as far as I can tell, to refer to 

forecasts on timescales shorter than those involved in climate projections (i.e., decadal 

and longer). This is not standard terminology. I would suggest to be more specific, e.g., 

refer to seasonal or interannual forecasts. 

Response: We appreciate the reviewer’s diligence and insightful feedback. In the 

introduction, we mentioned that “statistical models rely on historical data, are generally 

less computationally intensive, and can be useful for short-term forecasts”. This is an 

error in our expression, it should actually be an interannual forecast. Please refer in the 

revised version. As follows: 

Lines 45-47: “Additionally, statistical models rely on historical data, are generally 

less computationally intensive, and can be useful for interannual forecast.” 

 

10. The reference for "Predictability of El Niño over the past 148 years" has the 

wrong year: it should be 2004, not 2024. 

Response: We are grateful for the constructive suggestions provided. This was an 

error in our writing and has now been corrected in the references section. Please refer 

in the revised version. As follows: 

Line 484: “Chen, D., Cane, M. A., Kaplan, A., Zebiak, S. E., and Huang, D.: 

Predictability of El Niño over the past 148 years, Nature, 428, 733–736, 

https://doi.org/10.1038/nature02439, 2004.” 

 



11. "combining the strengths of dynamic and statistical approaches has emerged 

as a promising strategy": there is a great deal of work in this area. See for example Bach 

et al. (2024) and the references therein. 

Response: Thanks for the reviewer’s insightful comments. This is a very 

thoughtful and constructive article. We have references therein. 

 

12. There has also been a great deal of work on time-series forecasting methods 

that make use of memory, such as recurrent neural networks and reservoir computers.  

Some of this previous work should be cited. See for example Pathak et al. (2018). 

Response: Thanks for the reviewer’s insightful comments. This is a very 

thoughtful and constructive article. We have references therein. Please refer in the 

revised version. As follows: 

Line 68-69: Many works on time-series forecasting methods utilize memory, such 

as recurrent neural networks and reservoir computers (Lindemann et al., 2021; Pathak 

et al., 2018). 

 

13. The authors claim that numerical models are "powerful for long-term 

projections but often less effective for short-term predictions involving rapid changes 

and smaller scales". I don’t understand this claim. In fact, numerical models have, until 

very recently, outperformed data-driven methods for medium-range weather 

forecasting (3 to 10 days lead time). Data-driven methods have generally been more 

competitive for subseasonal-to-seasonal prediction (two weeks to several months). 

Response: Thank you for your comprehensive review and helpful comments. We 

made a change in the introduction to correct our misunderstanding. Please refer in the 

revised version. As follows: 

Lines 40-45: “These models require substantial computational resources and 

detailed initial conditions. While they are powerful for medium- to long-term 

projections, they often face challenges in short-term predictions involving rapid 

changes and smaller scales (Alizadeh, 2022). It is important to note that numerical 

models have traditionally outperformed data-driven methods for medium-range 



weather forecasting (3 to 10 days lead time). In contrast, data-driven methods have 

shown more competitiveness in subseasonal-to-seasonal predictions (two weeks to 

several months).” 

 

14. Why in Eq. 1 do the authors use F and for Eq. 2 they use Fa? 

Response: Eq.1 stands for dynamic differential equation of the ENSO system. On 

assuming that 𝐹 possesses a specific structure or form that includes the undetermined 

parameter p, the function 𝐹𝑎 can be defined as follows:  

𝐹𝑎(𝑥, 𝑝, 𝑡) = 𝑚(𝑥, 𝑝, 𝑡) + 𝑓(𝑞, 𝑡).  

Notably, functions m and f are not fixed functions, but mathematical functions 

containing self-memorizing information (MKF or basis function), which are also 

dynamically determined by evolutionary algorithms. In general, 𝐹  and 𝐹𝑎  are 

different expressions of the same equation, the latter involving the memorability and 

random perturbations of the system. 

 

15. On line 178, the authors write MKF (sin t, X). I assume MKF (t, X) was meant? 

Response: Thanks for the reviewer’s insightful comments. We have made changes 

in the text, MKF (t, X) is correct. Please refer in the revised version. As follows: 

Line 229: “𝑀𝐾𝐹(𝑡, 𝑋)”. 

 

16. ENSO should be defined and explained in the introduction. 

Response: We have added the corresponding explanation and definition in the 

introduction, as well as the corresponding impact. And in the discussion, the profound 

significance related to ENSO is deeply discussed. Please refer in the revised version. 

As follows: 

Lines 90-100: For instance, the El Niño-Southern Oscillation (ENSO) is the most 

influential driver of global climate variabilities (Philander, 1983) and exhibits complex 

composite signals. El Niño events lead the central and eastern equatorial Pacific 

warming, which reduces the west-to-east zonal sea surface temperature (SST) gradient 

(Trenberth, 1997). The decreased SST gradient causes the western Pacific, the Inter-



Tropical Convergence Zone, and the South Pacific Convergence Zone migrate toward 

the eastern equatorial Pacific (Cai et al., 2014). As a result, atmospheric convection 

becomes established in patterns that signal the likelihood of extreme precipitation or 

droughts globally (Stephens et al., 2015). What’s worse, under transient greenhouse 

warming, ENSO variability is projected to increase pre-2100 (Geng et al., 2024). 

However, given the nonlinear relationship between ENSO and the magnitude and 

frequency of extreme events, enhancing ENSO prediction is critical. 
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