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Abstract. Atmospheric blocking exerts a major influence on mid-latitude atmospheric circulation and is known to be associated

with extreme weather events. Previous work has highlighted the importance of the origin of air parcels that define the blocking

region, especially with respect to non-adiabatic processes such as latent heating. So far, an objective method of clustering the

individual Lagrangian trajectories passing through a blocking into larger and, more importantly, spatially coherent air streams

has not been established. This is the focus of our study.5

To this end, we determine coherent sets of trajectories, which are regions in the phase space of dynamical systems that keep

their geometric integrity in time, and can be characterized by robustness under small random perturbations. We approximate

a dynamic diffusion operator on the available Lagrangian data and use it to cluster the trajectories into coherent sets. Our

implementation adapts the existing methodology to the non-Euclidean geometry of Earth’s atmosphere and its challenging

scaling properties. The framework also allows statements about the spatial behavior of the trajectories as a whole. We discuss10

two case studies differing with respect to season and geographic location.

The results confirm the existence of spatially coherent feeder air streams differing with respect to their dynamical properties

and, more specifically, their latent heating contribution. Air streams experiencing a considerable amount of latent heating

:::::
(warm

::::::::
conveyor

:::::
belts)

:
occur mainly during the maturing phase of the blocking and contribute to its stability. In our example

cases, trajectories also exhibit an altered evolution of general coherence when passing through the blocking region, which is in15

line with the common understanding of blocking as a region of low dispersion.

1 Introduction

Atmospheric blocking represents a critical phenomenon in the dynamics of Earth’s atmosphere, characterized by the temporary

obstruction of prevailing westerlies in the mid-latitudes, potentially influencing weather on a planetary scale (Lupo, 2021).

These events are notable for their role in causing extreme weather conditions, such as heatwaves, cold spells, and sustained20

periods of precipitation, impacting both human activities and natural ecosystems (Kautz et al., 2022; Pfahl and Wernli, 2012).

The mechanisms leading to atmospheric blocking are complex, involving interactions between the atmosphere, cryosphere

(Tyrlis et al., 2019; Woollings et al., 2014), ocean (Drijfhout et al., 2013; Häkkinen et al., 2011), and land (He et al., 2014;

Kurgansky, 2020; Tilly et al., 2008), and are a subject of ongoing research. Despite their significance, predicting atmospheric
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Figure 1. Schematic depicting
:::::::
showing a WCB air stream stabilizing a high pressure blocking, which is depicted as an upper-level negative

::::::
potential

:::::::
vorticity

:
(PV

:
) anomaly.

:::
The

:
2
:::::::

potential
:::::::
vorticity

::::
units

::::
(pvu)

:::
line

:::::::
indicates

:::
the

:::::::::
tropopause. Reproduced from Steinfeld (2019) with

permission.

blocking events and their impacts remains a challenge, due to the inherent variability and the multifaceted processes that25

govern their formation, maintenance, and dissipation. Weather and climate models’ inability to correctly represent blocking

(Matsueda, 2009) also causes considerable uncertainties in its predicted response to climate change (Woollings et al., 2018).

Though traditionally conceived as an adiabatic phenomenon, recent studies have pointed to the role of diabatic pro-

cesses in blockings (Croci-Maspoli and Davies, 2009; Hauser et al., 2023; Pfahl et al., 2015; Tilly et al., 2008).

More specifically, a line of study has been concerned with moist processes, arguing that a considerable fraction30

of the air masses constituting the blocking originate from warm sectors of neighboring surface cyclones and travel

into the blocking via warm conveyor belts (WCBs) (Pfahl et al., 2015; Steinfeld and Pfahl, 2019; Yamamoto et al., 2021)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Pfahl et al., 2015; Steinfeld and Pfahl, 2019; Yamamoto et al., 2021; Zschenderlein et al., 2020). WCBs are moist, rapidly as-

cending air streams and are subject to research in their own right (e.g., Joos et al., 2023; Madonna et al., 2014) i.a. due to

their contribution to forecast uncertainty (Madonna et al., 2015; Pickl et al., 2023; Wandel et al., 2021). According to Steinfeld35

and Pfahl (2019), the air parcels conveyed by such WCBs considerably influence the blocking by stabilizing and potentially

intensifying the negative potential vorticity (PV) anomaly characteristic for the blocking especially in the onset and mainte-

nance stages of its lifecycle
:::::::
(negative

:::
PV

:::::::::
anomalies

:::
are

::::::::
associated

:::::
with

::::::::::
anticyclonal

:::::::::
circulation

:::
and

::::
thus

::::
high

::::::::
pressure). This

happens, firstly, through a material change in PV of the respective air masses via latent heating induced, cross-isentropic ver-

tical motion and, secondly, through the divergent outflow of the guiding air streams in the upper troposphere. Evidence that40

moist processes might become more important in a warmer and moister climate underlines the need for further investigation

(Steinfeld et al., 2022). A schematic depicting the procedural connections is reproduced from Steinfeld (2019) in Fig. 1.

The notion of a WCB suggests a geometrically coherent flow of the air masses involved, but such a coherent behavior has not

been explicitly addressed in the studies above. The backward trajectories attributed to such air streams are typically identified

using thresholds for ascent (change in pressure) or diabatic heating (change in potential temperature) such that a common45
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pathway is not guaranteed. In addition, the methodology employed does not allow for statements about the size, location,

time of existence or even the number of WCBs implicated in the process. Another drawback of the identification method is

its subjective nature implied by selecting an arbitrary threshold for the decrease in pressure (Madonna et al. (2014) use 600

hPa in 48 h) or increase in potential temperature the air parcels have experienced (usually a threshold of ∆θ > 2 K is used).

To the best of our knowledge, an objective identification method for coherent medium-to-large scale air streams that allows50

addressing these drawbacks has not been presented in the context of atmospheric sciences.

In this study, we want to tackle these issues focusing on the exact spatio-temporal nature of trajectories passing through a

blocking and how individual trajectories align with each other. By grouping the set of trajectories into subsets (clusters) based

on only their geometric coherence, we identify synoptic scale air streams and analyze their individual dynamical properties and

interrelation with the large scale flow configuration. The perspective introduced also allows for statements about the overall55

spatial configuration and coherence of the air parcels traced, especially with respect to the blockings’ lifecycles. A blocking’s

stabilizing and dispersion-suppressing nature affects individual air parcels, which can be identified through our Lagrangian

lens
:::::::::::::::::
(Ehstand et al., 2021).

To accomplish the above, we make use of the mathematical concept of coherent sets. A coherent set is a time-evolving region

in the state space of a dynamical system that keeps its geometric integrity to a large degree. This is particularly interesting60

when the underlying system is such that individual trajectories diverge and any set eventually becomes highly filamented under

evolution through the dynamics. We characterize coherent sets based on their stability under small perturbations. Coherent sets

hence resist dispersion, persist longer in complicated flows and have thus an outstanding effect on the transport of physically

relevant quantities. The fundamental idea is that in a coherent set the individual trajectories stay relatively close together as a

whole, such that particles remain within the coherent set when they are subjected to small random perturbations. In contrast,65

if a time-evolving set is filamented, particles are likely to leave the set under the influence of random noise – and hence mix

with its exterior. To formalize this heuristics and numerically compute coherent sets, we follow the work of Banisch and Koltai

(2017) (based on theory developed in Froyland (2013, 2015)), which characterizes the robustness of coherent sets under small

perturbations using a data-analysis framework called diffusion maps. Their method yields a single time-averaged operator

whose spectral properties contain the necessary information to extract coherent sets.70

The visual idea of coherence (i.e., “trajectories staying together”) can be cast into diverse objectives, which then can be

used to partition available trajectory data into such sets. For a sample of the ideas that have been implemented please con-

sult Froyland and Padberg-Gehle (2015); Allshouse and Peacock (2015); Hadjighasem et al. (2016); Schlueter-Kuck and Dabiri

(2017); Padberg-Gehle and Schneide (2017); Koltai and Renger (2018). A related notion is that of Lagrangian coherent struc-

tures (Haller and Beron-Vera, 2013; Haller, 2015), aiming to describe barriers of transport. For their computation from finite75

trajectory data, see for instance Mowlavi et al. (2022).

The main foci of this study are the adaptation of the methodological framework of Banisch and Koltai (2017) to real world

trajectory data of air parcels in the atmosphere and its deployment for case studies of atmospheric blockings. This is motivated

by the question of spatial coherence in WCBs in the context of blocking. As such, the presented work does not endeavour

to give a one-size-fits-all solution to the problem of finding coherent air streams regardless of scale, geographic location and80
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synoptic condition, but should rather be understood as a proof of concept. We think atmospheric blocking is a phenomenon well

suited for the application of the the developed methodology, since it is large enough to feature a handful of distinct, coherent air

streams (given the resolution of our data), but small enough to be well resolved by the number of trajectories computationally

feasible. We have thoroughly analyzed two cases of atmospheric blocking differing with respect to both geographical location

and time of year and show that differences between the two examples at similar points in their lifecycles are notably smaller85

than differences within the same example between different points in the lifecycles. This goes for the occurrence of WCBs, the

overall trajectory density and the traced air masses’ filamentation.

The paper is organized as follows. Sect. 2 introduces the mathematical foundation relevant to the methods employed. Sect. 3

covers details about the implementation of our algorithm as well as the data used. We show results from the application of the

algorithm to test cases in Sect. 4 to both elucidate the concepts and methods introduced before and investigate the problems90

and questions posed above. Finally, Sect. 5 summarizes the findings.

2 Theory

To extract coherent sets from Lagrangian trajectory data, we employ the method proposed by Banisch and Koltai (2017). It

uses local distances between data points to construct a diffusion operator that is used to estimate coherent sets by performing

spectral clustering. In the following, we give a brief introduction into coherent sets and diffusion maps. Our aim is to provide a95

good intuitive understanding. For a formal and mathematically rigorous introduction of coherent sets using a transfer-operator

based framework, we refer to Banisch and Koltai (2017) and Froyland (2013). For a formal introduction to diffusion maps, we

refer to Coifman and Lafon (2006).

2.1 Coherent sets

Informally put, coherent sets are time-dependent regions in space that remain largely intact as the system evolves. They exhibit100

a “natural” separation from their surrounding in the sense that flow across the boundary is small and geometric integrity is kept

to a large degree. We characterize the geometric integrity of coherent sets by their robustness with respect to the addition of

small noise. We first introduce the heuristics of coherent sets in an abstract setting before proceeding to the computation of

coherent sets from trajectory data.

Consider the evolution of points over a finite number of time steps in a non-autonomous dynamical system. Let Xt ⊂ Rn be105

bounded sets which denote the domain of the dynamical system at each point in time. Here, t ranges over the integers from

0 to T . A non-autonomous dynamical system in discrete time over these time-evolving domains is given by a sequence of

bijective maps Φt+1,t : Xt → Xt+1, where 0≤ t≤ T −1. Before characterizing coherent sets of the dynamical system over the

entire time frame from 0 to T , we study sets that are coherent under a single step.

Consider a bijective map Φ : X→ Y, with bounded domains X,Y⊂ Rn. We say that a set A⊂ X is coherent under Φ if the110

relation (Φ−1◦Φ)(A) = A is robust under the addition of small noise both at initial and final time. As a consequence, we require

that the sets A and Φ(A) are not too filamented, i.e. that they possess high geometric integrity. Let Dϵ be a diffusion operator
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that applies an ϵ-small random perturbation to any given point. The domain which Dϵ acts on will be clear from the context,

i.e. Dϵ : X→ X or Dϵ : Y→ Y. A coherent set A⊂ X of the map Φ has to satisfy DϵA≈ A as well as (Φ−1 ◦Dϵ ◦Φ)(A)≈ A.

This heuristics is formulated more precisely in the language of transfer operators in Banisch and Koltai (2017).115

The above heuristics describe coherent sets of a single map Φ. We return to the setting of a non-autonomous system over

T time steps given by the maps Φt+1,t. A coherent set is a family of sets (At)0≤t≤T , where At ⊂ Xt and Φt+1,t(At) =

At+1. Define the maps Φt,0 =Φt,t−1 ◦ . . . ◦Φ1,0. For t= 0, the map Φ0,0 is simply the identity. A coherent set is completely

characterized by A0, in the sense that At =Φt,0(A0). We say that the family (At)0≤t≤T is coherent if

(Φ−1
t,0 ◦Dϵ ◦Φt,0)(A0)≈ A0, (1)120

for all t from 0 to T . We remark that this concept can be generalized to continuous time systems, e.g. Matthes et al. (2016).

Note that we assumed that Dϵ maps from Xt into Xt, i.e. the random perturbation cannot map points outside of the do-

main Xt. This corresponds to e.g. reflecting boundary conditions. For the purposes of our application, reflecting boundary

conditions are physically not justifiable, since there are no physical boundaries for particles to be reflected at. Instead, we

assume that Dϵ can transport points outside of Xt. Since we assume no information about the dynamics outside of Xt, we con-125

sider points that are mapped outside of Xt as lost and hence unable of contributing to coherence. This corresponds to absorbing

boundary conditions. We discuss how absorbing boundary conditions are implemented in the next subsection.

2.2 Diffusion maps

In the following, we give a brief introduction to diffusion maps. A mathematically rigorous derivation can be found in Coifman

and Lafon (2006) and Ghojogh et al. (2022).130

Assume the data of m trajectories of a non-autonomous dynamics is provided in the form of data-points xi
t ∈ Rn, where

1≤ i≤m and t ranges over the integers from 0 to T . We assume that in each time frame the point cloud Xt = {xi
t |1≤ i≤m}

approximates a bounded manifold Xt ⊂ Rn and that the data-points are sample trajectories of a – potentially unknown – non-

autonomous dynamics Φt+1,t : Xt → Xt+1, i.e. Φt,s(x
i
s) = xi

t for all s≤ t. Our goal is to characterize coherent sets of this

dynamics, in particular to formalize the heuristics Eq. (1) in the setting of discrete trajectory data. A coherent set consists of a135

certain subset of the point cloud, i.e. At := {xi
t | i ∈ I} ⊂Xt, where I ⊂ {1, . . . ,m} be a set of indices. In order to formalize

the heuristic in Eq. (1), we introduce a discretization of the operator Dϵ : Xt → Xt acting on the point cloud Xt.

Since Xt is a finite set of size m, we construct a transition probability matrix P̂t,ϵ ∈ Rm×m that simulates diffusion on Xt

of strength ϵ. The rest of this section is devoted to constructing the matrix P̂t,ϵ for each 0≤ t≤ T , as well as discussing the

implementation of boundary conditions. We remark that we do not need to approximate the dynamics Φt+1,t to use Eq. (1),140

since we assume to have the data already in the form of trajectories.

Let kϵ be a symmetric diffusion kernel with scale parameter ϵ. This kernel encodes the proximity of two data-points,

i.e. kϵ(xi,xj) is large if xi and xj are close and small if the points are far apart. In the following, we use the Gaussian

5



kernel for an arbitrary metric dist(·, ·) on Rn,

kϵ(x
i,xj) = exp

(
−dist(xi,xj)2

ϵ

)
. (2)145

In general, it is natural to use the Euclidean distance dist(xi,xj) = ∥xi −xj∥. However, for the application to atmospheric

data, which is a non-isotropic setting, we are going to use an alternative distance aiming to establish isotropy with respect to

turbulent diffusion, cf. Sect. 3.4. For each time step 0≤ t≤ T , we construct the similarity matrix Kt,ϵ ∈ Rm×m,

Kt,ϵ(i, j) = kϵ(x
i
t,x

j
t ). (3)

Note that Kt,ϵ is symmetric, all diagonal entries are 1, while all off-diagonal entries are between 0 and 1. In practice, a cutoff150

radius is used to increase the sparsity of the matrix by setting entries Kt,ϵ(i, j) that are below a specified threshold to 0. Since

the value Kt,ϵ(i, j) decays monotonically in the distance between xi
t and xj

t , we may equivalently choose a cutoff radius r and

set Kt,ϵ(i, j) to 0 if dist(xi
t,x

j
t )> r. Here, we choose r = 3

√
ϵ which is an appropriate scaling for a Gaussian kernel kϵ.

To account for differences in the density of the point cloud, we pre-normalize the similarity matrix:

ut,ϵ(i) :=

m∑
j=1

Kt,ϵ(i, j), K̂t,ϵ(i, j) :=
Kt,ϵ(i, j)

ut,ϵ(i)ut,ϵ(j)
. (4)155

Finally, the diffusion matrix P̂ϵ is obtained by row-normalization

vt,ϵ(i) :=

m∑
j=1

K̂t,ϵ(i, j), P̂t,ϵ(i, j) :=
K̂t,ϵ(i, j)

vt,ϵ(i)
. (5)

The matrix P̂t,ϵ is non-negative and normalized such that it is row-stochastic (often called left stochastic), i.e. the entries of

each row sum to 1. Hence, P̂t,ϵ can be understood as transition probabilities on the point cloud {xi
t | 1≤ i≤m} that simulate

a discretized diffusion on the point cloud Xt. In the data-rich limit, P̂t,ϵ is a self-adjoint operator, i.e. a symmetric matrix.160

Lastly, we address the implementation of boundary conditions. Since P̂t,ϵ, as constructed above, is a stochastic matrix, all

points in Xt remain in Xt, i.e. there are reflecting boundary conditions. However, in the context of atmospheric flow of air

masses, where Xt is a bounded, time-dependent region of the atmosphere, it is unnatural to assume turbulent diffusion would

not act across the boundaries of Xt. Since we assume no information about the dynamics outside of Xt, we assume absorbing

boundary conditions, i.e. all points on the boundary of Xt are removed. Hence, we need to determine a set of boundary165

points ∂Xt ⊂Xt. Determining these point algorithmically is the content of Sect. 2.6. Given a set of boundary points ∂Xt, we

integrate absorbing boundary conditions into the transition matrix P̂t,ϵ by removing the rows and columns corresponding to

the boundary points. In order to keep the dimensions of the matrices compatible across different time steps, we implement this

by setting the respective rows and columns to 0 instead of removing them:

Pt,ϵ(i, j) :=

0, xi
t ∈ ∂Xt, or xj

t ∈ ∂Xt,

P̂t,ϵ(i, j), else.
(6)170
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By construction, Pt,ϵ is a substochastic matrix. In summary, P̂t,ϵ corresponds to a discretized diffusion matrix with reflecting

boundary conditions while Pt,ϵ corresponds to a discretized diffusion matrix with absorbing boundary conditions. For the

purposes of our application, we will go forward using the substochastic matrix Pt,ϵ.

2.3 Spectral clustering

Having constructed the diffusion matrices Pt,ϵ, we describe how to compute coherent sets using a spectral clustering method.175

A coherent set At, where 0≤ t≤ T , is given by At = {xi
t | i ∈ I}, where I ⊂ {1, . . . ,m} be a set of indices. In particular, we

find Φt,0A0 =At. Hence, the heuristic in Eq. (1), using the diffusion matrix Pt,ϵ introduced in the previous section, requires

that indices i ∈ I have a high transition probability to I, i.e.

Pt,ϵ(i,I) :=
∑
j∈I

Pt,ϵ(i, j)≈ 1,

for all i ∈ I. This approximation should be as accurate as possible for all 0≤ t≤ T . We construct the averaged diffusion180

operator

Qϵ :=
1

T +1

T∑
t=0

Pt,ϵ. (7)

This averaged diffusion operator was introduced in Froyland (2015) and it was shown that coherent sets can be extracted from

the dominant eigenvectors of Qϵ. Equation (7) should be understood as a quantitative version of averaging the left-hand side

of Eq. (1). Thus, eigenvectors of Qϵ for eigenvalues close to 1 represent functional representations of sets that satisfy Eq. (1)185

on average for 0≤ t≤ T .

To better understand how coherent sets are related to the eigenvectors of Qϵ, assume that there are K idealized coherent sets

Ak
t , for 1≤ k ≤K, corresponding to the sets of indices Ik. These sets are idealized coherent sets in the sense that Qϵ(i,Ik) = 1

for all i ∈ Ik. Since Qϵ is substochastic, this implies that Qϵ has a block-diagonal structure with blocks indicated by the sets Ik.

In particular, for each 1≤ k ≤K, the matrix Qϵ has an eigenvector with eigenvalue 1 that is supported only on the set Ik.190

Hence, the K coherent sets Ik can be extracted from eigenvectors to the K largest eigenvalues. Additionally, there is an

(K +1)-st set, which is the complement of the union of the Ik which we call the boundary set
:::::::
residual

:::
set. The temporal

evolution of Xt and, equivalently Xt, implies that ∂Xt is time-dependent as well such that this boundary
:::
the

:::::::
residual

:
set is

not necessarily equal to ∂Xt. The boundary
:::::::
residual set, together with the coherent sets Ik form a partition of the set of all

points {1, . . . ,m}.195

Returning to the general setting, we compute the eigenvalues of the matrix Qϵ. In the data-rich limit, the matrix Qϵ is

symmetric and, thus, only has real eigenvalues. If complex eigenvalues occur numerically, we discard the imaginary part and

only consider their real part. We order the eigenvalues from large to small. Since Qϵ is substochastic, all eigenvalues lie between

0 and 1. We say that there is a spectral gap after the K-th eigenvalue, if the (K+1)-st eigenvalue is significantly smaller that the

first K eigenvalues. We call these first K eigenvalues the dominant spectrum and the corresponding eigenvectors the dominant200

eigenvectors. After identifying a spectral gap, we perform a k-means
::::::::
k-means clustering of the set of points {1, . . . ,m} using
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the information of the dominant eigenvectors. Assuming that the dominant spectrum consists of K eigenvalues, each point

in {1, . . . ,m} has K characteristic values, namely the entries of the K dominant eigenvectors. Using the k-means
:::::::::
k-means

algorithm, we group the m points into K +1 clusters Ik, for 1≤ k ≤K +1. Like motivated by the idealized setting, K of

these sets correspond to coherent sets, while there is an additional (K+1)-st boundary
:::::::
residual set. See Fig. 5 for an example205

of the spectrum of Qϵ as well as the spectral clustering of the point cloud. The boundary
:::::::
residual set is colored in gray.

2.4
::::::::::

Quantifying
:::::::::
coherence

::
To

:::::::
evaluate

:::
and

::::::::
interpret

:::
the

::::::::::
computation

::
of

::::::::
coherent

:::
sets

::
in

::::::::::
application,

:
it
::
is
::::::
crucial

::
to

::::::::
introduce

::
a

:::::::::::
quantification

::
of

:::::::::
coherence

::
of

::::
each

::
of

:::
the

::::::
clusters

:::
Ik.

::::::
Given

:
a
:::
set

::
of

::::::
indices

::::::::::::::
Ik ⊂ {1, . . . ,m},

:::
we

::::::
restrict

::
the

::::::::
averaged

::::::::
diffusion

:::::
matrix

:::
Qϵ::

to
:::
the

::::::
indices

:::
Ik

:::
and

:::::::
compute

:::
the

::::
sum

::
of

:::
its

::::::
entries,

::::::
divided

:::
by

:::
the

:::
size

:::
of

:::
Ik.

:::::::::::
Heuristically,

:::
this

::::::::::
corresponds

:::
to

::
the

::::::::::
probability

:::
that

::
a

::::
point

::::
that210

:
is
::::::::
randomly

::::::
chosen

:::::
from

::
Ik::

is
:::::::
mapped

::
to

::::::
another

:::::
point

::
in

:::
Ik.

:::
As

:
a
::::::
notion

::
of

::::::::
coherence

:::
we

:::
use

:::
the

:::::::::::::
complementary

::::::::::
probability,

::::::
namely

Pexit(Ik) = 1− 1

|Ik|
∑

i,j∈Ik

Qϵ(i, j).

::::::::::::::::::::::::::::

(8)

::::
Note

:::
that

:::::
since

:::
Qϵ::

is
:::::::::::
substochastic,

::::::::
Pexit(Ik)::

is
:::::::
between

:
0
::::
and

::
1.

:
A
:::::
value

:::::
close

::
to

:
0
::::::::::
corresponds

::
to
::::
high

:::::::::
coherence

:::::::
because

:::
the

:::::::::
trajectories

:::
are

::::::
tightly

:::::::
bundled

::::
with

::::::
respect

::
to

:::
the

::::::::
averaged

::::::::
diffusion

::::::
matrix

:::
Qϵ.:::

By
:::::::::::
construction,

:::
the

::::
exit

:::::
whose

::::::::::
probability215

:
is
:::::::::

quantified
:::
can

:::
be

::
to

:::::::
another

::::::::
coherent

:::
set,

:::
the

:::::::
residual

:::
set

::
or

::::
out

::
of

:::
the

:::
set

::
of

:::
all

::::::::::
trajectories

:::
(cf.

:::::::::
discussion

::
of
:::::::::

boundary

::::::::
conditions

::
in
:::::
Sect.

::::
2.2).

::
In

:::
the

::::::::
idealized

::::::
setting

:::::
where

:::::::::::::::::

∑
j∈Ik

Qϵ(i, j) = 1
:::
for

::
all

:::::::
i ∈ Ik,

:::
the

:::::::::
restriction

:::::::::
Qϵ(Ik,Ik)::

is
::
a
::::::::
stochastic

::::::
matrix

::::
and

:::
we

:::
find

::::::::::::
Pexit(Ik) = 0.

:::
For

:::
the

:::::::
spectral

:::::::::
clustering

::::::
method

:::::::::
described

::
in

:::
the

:::::::
previous

::::::::::
subsection,

:::
we

::::::
expect

::
to

:::::
obtain

:::
K

::::
sets

::::
with

:::::::
relatively

:::::
high

::::::::
coherence

::::
and

::::
one

:::::::
residual

::
set

:::::
with

:
a
:::::
lower

::::::::::
coherence.

:::
We

:::::
verify

::::
this

:::
for

::::
two

::::
case

::::::
studies

::
in

:::::::
Section

:::::
4.For220

::::::::::
comparison,

:::
for

::::
each

::::::::
coherent

::
or

:::::::
residual

:::
set

::::::
found,

:::
we

::::
also

::::::::
calculate

::::
Pexit :::

for
::::
100

:::
test

::::
sets

:::
and

:::::
show

::::
their

::::::::::
distribution

:::
as

:::::::::::
box-whiskers

:::::
plots.

::::
Each

::
of

:::::
these

:::
test

::::
sets

:
is
:::::::::
generated

::
by

:::::::
picking

:
a
:::::::
random

::::::::
trajectory

:::
and

::::::::
selecting

:::
the

::
m

::::::
closest

:::::
points

:::::
(with

::::::
respect

::
to

:::
the

::::::
custom

::::::
metric

::
to

::
be

:::::::::
introduced

:::
in

::::
Sect.

::::
3.4)

::
in

:::
the

:::::
initial

::::::::::
distribution

:::::::
(t= 0),

:::::
where

::::::::
m= |Ik|::

is
:::
the

::::::
number

:::
of

:::::
points

::
in

:::
the

:::
set

::
to

::::::::
compare.

:::::::::
Therefore,

::
at
:::::
t= 0

:::
the

::::
test

:::
sets

::::::::
resemble

::::
sets

::::
with

:::::::
minimal

:::::::
surfaces

:::
for

::
a
:::::
given

::::::
volume

::::::
(more

:::::::::
specifically,

:::::::::::
intersections

::
of

:::::
balls

::::
with

:::
the

:::::
initial

:::::::::::
distribution),

:::::
which

:::
we

:::::::
consider

:
a
:::::::
suitable

:::::
basis

::
for

:::::::::::
comparison.225

:::::::
Another

::::::
option

::
to

:::::::
quantify

:::::::::
coherence

:::
is

::
to

::::::::
compute

:::
the

::::::
largest

::::::::::
eigenvalue

::
of

:::
the

:::::::::
restricted

::::::
matrix

::::::::::
Qϵ(Ik,Ik),::::::

which

:::::::::
determines

:::
the

::::::::::
complement

::
of

:::
the

::::
exit

:::::::::
probability

:::::::
defined

:::::
above

:::::
under

:::
the

::::::::
stationary

::::::::::
distribution

::
of

:::
the

:::::::::
respective

:::
set

::::::
instead

::
of

:
a
:::::::
uniform

::::::::::
distribution.

:::::
Since

:::
Qϵ::

is
::::::::::::
substochastic,

::
the

::::::
largest

:::::::::
eigenvalue

::
of
:::
the

::::::::
restricted

::::::
matrix

:::
lies

:::::::
between

::
0
:::
and

::
1,
::::::
where

:
a
:::::
larger

:::::
value

::::::::::
corresponds

::
to

::::::
higher

:::::::::
coherence.

:::
We

::::::
provide

::::
this

:::::::
measure

::
in

:::
the

::::::::::::
supplementary

::::::::
material.

2.5 Choosing ϵ230

Recall the definition of the similarity matrix Kt,ϵ ∈ Rm×m in Eq. (3) with the diffusion kernel introduced in Eq. (2), where

dist(·, ·) is a metric on Rn. Under the assumption that the points xi
t are distributed uniformly with respect to dist(·, ·), it is
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argued in Appendix A.2 of Koltai and Weiss (2020) and following Berry and Harlim (2016); Coifman et al. (2008) that ϵ > 0

should be chosen, if possible, such that the following approximation is valid:

St(ϵ) :=
∑
i,j

Kt,ϵ(i, j)≈
m∑
i=1

C

∫
Rd(t)

exp

(
−∥xi

t − y∥2

ϵ

)
dy = mC(ϵπ)d(t)/2, (9)235

where C > 0 is a constant that depends on how densely the points in Xt populate Xt and d(t) is the dimension of the man-

ifold Xt. To better understand the constants C and d(t), assume that Xt is a large d–dimensional grid of gridlength ℓ and

consider the Euclidean distance dist(x,y) = ∥x−y∥. Then, the sum St(ϵ) corresponds to a Riemannian integral approximation

and the approximation in Eq. (9) is valid with C being the average number of points per unit of volume, which is given by

C ≈ ℓ−d, respectively ℓ= C−1/d.240

Taking the logarithm on both sides of Eq. (9) reveals an affine linear connection between log(St(ϵ)) and log(ϵ):

log(St(ϵ))≈
d(t)

2
log(ϵ)+ log(C)+ log(m)+

d(t)

2
log(π). (10)

Hence, in order to determine a range of suitable values for ϵ, we plot the function St(ϵ) versus ϵ in a log-log plot for each time

t and look for a range of ϵ in which the graph is linear. See Fig. 3 for an example. Additionally, we can read off the dimension

d(t), as well as a measure of density ℓ(t) = C−1/d(t) of the point cloud Xt.245

d(t) := 2 ·max
ϵ>0

∂ log(St(ϵ))

∂ log(ϵ)
(11)

ℓ(t) := C−1/d(t) =

(
Stϵ

∗

m

)1/d(t)

(ϵ∗π)1/2, (12)

where ϵ∗ > 0 is the value that maximizes the slope ∂ log(St(ϵ))/∂ log(ϵ). We note that the derivations of d(t) and ℓ(t) are not

mathematically rigorous and are used heuristically. In particular, the dimension d(t) does not have to be an integer and ℓ(t)

is just an approximate measure of (inverse) density when the point cloud Xt is not a perfect grid. We stress that, since ℓ(t)250

approximates a grid length, higher values correspond to lower point densities. In addition, we note that d(t) is invariant under

isotropic contraction/expansion of Xt (it is scale-invariant), but ℓ(t) is not.

2.6 Boundary handling with α-shapes

The estimation of coherent sets requires proper handling of boundary points ∂Xt ⊂Xt. Hence, a method is needed to determine

which points lie on the boundary of a given point cloud Xt. This problem reduces to the well-researched problem of surface255

reconstruction from point cloud data. The simplest approach is to use the uniquely defined convex hull of Xt. This method is

too coarse for our purpose, since the point cloud Xt is in general not a convex object. Once concavity is permitted, detection

of a bounding surface of a set of points is ambiguous and several algorithmic approaches exist (Berger et al., 2017). We have

decided on using the established alpha shape algorithm first introduced by Edelsbrunner et al. (1983) (cf. Edelsbrunner

(2012) for an overview), since it does not require surface normals and can be conveniently tuned by only one parameter α≥ 0.260
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Large values of α correspond to a structured surface while small values of α result in a smooth surface. For a thorough

derivation and details on algorithmic implementation, consult Edelsbrunner and Mücke (1994).

Let Xt ⊂ Rn be a finite set of points, 0≤ α <∞ a real number. We denote open balls in Rn of radius α by bα. An α-ball

bα is said to be empty, if it does not contain any points from Xt. The α-hull Hα is then defined as the complement of the union

of all empty α-balls:265

Hα := Rn \
⋃

bα∩Xt=∅

bα. (13)

We define the boundary of Xt to consist of those points that lie in the boundary of Hα, i.e.

∂Xt := {x ∈Xt | x ∈ ∂Hα}.

An equivalent definition of the boundary is that x ∈Xt lies in ∂Xt if and only if there is an empty open α-ball bα such that

x ∈ ∂bα. As α→∞ the set Hα recovers the convex hull, whereas α= 0 results in Hα =Xt. Hence, the set ∂Xt grows as270

α→ 0, and for α small enough, we find ∂Xt =Xt.

This sparks the question of choosing α appropriately such that ∂Xt defines a boundary of the point-cloud Xt of the desired

coarseness. As discussed in Sect. 2.5,
√
ϵ∗ provides a measure of the typical distance between points in the point cloud.

Therefore, it is natural to choose α in the same magnitude as
√
ϵ∗.

The alpha shape algorithm assumes the points live in Euclidean space. However, in Sect. 4 we apply our methods to275

atmospheric data. The atmosphere, being approximated by a spherical shell, is non-isotropic and globally non-Euclidean. Thus,

constructing a hull in a Cartesian coordinate system, e.g. centered in Earth’s core, is destined to fail as the large difference in

scales between vertical and horizontal coordinates leads to points being sampled from a nearly two-dimensional region in

space. In such a perspective, virtually all points would be boundary points. We have therefore decided to apply a stereographic

projection centered at the North Pole with an undistorted latitude of 50◦ N to the horizontal coordinates and applied a linear280

vertical scaling in accordance with the custom distance metric introduced in Sect. 3.4 before applying the alpha shape

algorithm. A stereographic projection seems apt since the air parcels of our examples stay on the Northern Hemisphere and are

gathered around the mid-latitudes for most of the time. Other suitable coordinate transformations alter the selected boundary

points only to a small degree and do not change the resulting coherent sets detected significantly (not shown).

3 Implementation285

All atmospheric fields used in the analysis are taken from the ERA5 reanalysis product provided by the European Centre

for Medium-Range Weather Forecasts (ECMWF) (Hersbach et al., 2020). It resolves the global atmosphere on a grid with a

roughly 31 km horizontal spacing and 137 hybrid vertical levels between the surface and 1 hPa on hourly timescale.
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3.1 Blocking identification

The atmospheric blocking regions are defined as in Pfahl and Wernli (2012), who utilized the algorithm introduced by Schwierz290

et al. (2004). More specifically, grid points are identified as blocked, if a vertically averaged (between 500 hPa and 150 hPa
:
;

::
the

::::::
upper

:::::::::
troposphere) negative PV anomaly (with respect to the monthly climatology) larger than 1.3 potential vorticity units

(10−6 K m2 kg-1 s-1) (pvu) for at least five days is observed for a potentially traveling connected region (individual grid points

need not experience this anomaly for five full days). Data are available in six-hourly time steps, and PV anomalies are required

to have a spatial overlap of at least 70% to be assigned to the same track.295

Though a host of different blocking identification mechanisms are available (Pinheiro et al., 2019), this PV-based algorithm

has been chosen since it encapsulates the most important dynamical features of atmospheric blocking (Schwierz et al., 2004;

Croci-Maspoli et al., 2007) and directly identifies two-dimensional regions. The identified regions will usually mark the areas

responsible dynamically for the blocking characteristics (i.e. the high-pressure ridge regions) rather than the areas marked by a

geopotential height reversal. The focus of this study lies in the demonstration of the methodological framework when applied300

to atmospheric blocking air streams rather than in arriving at definitive or quantative insights about blocking consistent across

different blocking definitions, which is why we abstain from comparing results between different blocking indices.

3.2 Initial points

The method for the identification of coherent air streams described in Sect. 2 is applied to two case studies. Given the two–

dimensional, global, boolean field of whether a grid point is blocked or not, for each case, an atmospheric blocking event is305

identified as a connected region of True values developing in time. For an individual time step, a respective region is “filled”

with trajectory initial points with a vertical distance of 7 hPa between 550 and 150 hPa (we choose 550 hPa instead of 500

hPa for a slightly broader scope; the same does not apply for the upper limit, since it would likely cross the tropopause) and

a horizontal distance given by the scale difference parameter κ times the vertical distance (cf. Sect. 3.4). In our case study,

for a scaling parameter of κ= 15 km hPa-1, a horizontal distance of 105 km was used. Such a point density has emerged as310

the highest possible point density that still allowed for an acceptable computational complexity. A zero-mean Gaussian noise

with standard deviation equal to a quarter of the distance in the respective direction is then added to each point individually to

prevent the regular structure of the initial point distribution to bias the coherent set clustering later on. Finally, all initial points

that lie above the dynamic tropopause – defined as the 2 pvu isosurface – are removed.

3.3 Trajectory calculation315

The initial points are then used to calculate three-day forward and backward trajectories from three-dimensional wind fields on

model levels using the LAGrangian
:::::::::::
LAGRangian ANalysis TOol (LAGRANTO) (Sprenger and Wernli, 2015), which employs

an iterative predictor-corrector procedure. We think of the resulting trajectories as solutions of the dynamical system describing

the motion of air parcels in the atmosphere (xi
t from Sect. 2). Various dynamical variables can be traced along the path of the
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air parcels’ trajectories including potential temperature θ, specific humidity q, temperature T and all coordinates and velocities.320

These will reveal the dynamical properties present in the clusters generated from purely geometric information.

3.4 Distance Calculation

Our methodology presented in Sect. 2 is based on point-wise distance calculation. Here, again, the issue of vastly different

length scales in the horizontal and vertical directions arises. Resorting to a map projection as with the alpha shapes

algorithm described in Sect. 2.6 does, however, not seem to be the best option since errors introduced during the stereographic325

projection can be avoided. This is because calculating distances between points does not necessarily require the points to live

in Euclidean space. In contrast to Banisch and Koltai (2017), who relied on the Euclidean norm as a measure of distance, we

therefore construct a non–Euclidean distance which connects the vertical and horizontal scales through a scale parameter κ:

κ=

√
u2 + v2

|ω|
=

∑m
i=1

∑T
t=0

√
(ui

t)
2 +(vit)

2∑m
i=1

∑T
t=0 |ωi

t|
, (14)

where u,v
::::
ui
t,v

i
t:

are the two horizontal and ω
::
ωi
t the vertical velocity component

::
of

:::
the

:::
i-th

:::
air

:::::
parcel

::
at

::::
time

:
t. For two points330

xi = (φi,λi,pi) and xj = (φj ,λj ,pj), given by their respective latitudes φ, longitudes λ, and pressure level p, we then define

dist(xi,xj) =
√

disth(xi,xj)2 +(κ(pj − pi))2,

disth(xi,xj) = 2rE arcsin

(√
sin2

(
φj −φi

2

)
+cosφi · cosφj · sin2

(
λj −λi

2

))
,

where rE stands for Earth’s radius. The distance is symmetric and positive. The horizontal distance disth is the Haversine

distance which approximates the great-circle distance of two points on Earth’s surface (assuming a spherical shape) well335

(Green, 1977).

For the scale parameter κ, a heuristic approach has been chosen that estimates the difference in scales by comparing average

horizontal and vertical velocities, where the average is taken over all trajectories and time steps. We think of distances to

be similar if air parcels take roughly the same amount of time to overcome them given some average velocity which is the

reasoning behind the construction of κ. In addition, atmospheric turbulence – the dominant source of diffusion at the scales340

investigated here – roughly scales with velocity. The developed notion of distance relies only on geometric information (if one

conceives velocities as geometric), which allows comparison of purely geometric coherence to similarity of dynamic properties.

For the construction of κ we have deliberately abstained from including measures of vertical stability or asymptotic methods

since the phenomena investigated feature relevant processes on synoptic as well as mesoscale which would further complicate

the choice of scale-connecting characteristic quantities (Klein, 2010). Note that, due to definition of κ in Eq. (14), the custom345

metric dist(·, ·) is formally measured in kilometers.

We remark that estimated values of κ varied only by roughly 20 % and results were rather insignificant to the exact value of

κ applied in both the algorithm and the initial point generation. For ease of computation and comparability between cases, we

have therefore decided to choose a constant κ= 15 km hPa-1 across all cases investigated. Note that requiring exact equality
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(a) 30 April (b) 02 May

40 ms-1

(c) 04 May

0.0 0.5 1.0 1.5 2.0 3.0 4.0 5.0 6.0 7.0 8.0 10.0

Potential vorticity [pvu]

Contour Lines

Blocking

Surface Cyclone

Tropopause

Figure 2. Synoptic conditions at three time instances (all at 00 UTC) during the 2016 Canada case. Upper-level PV (shaded), 2 pvu contour

(tropopause) in black, upper-level wind (blue vectors, only shown for wind speeds larger than 30 ms-1), surface cyclones (sea level pressure;

yellow contours from 980 hPa to 1000 hPa every 5 hPa), and blocking region (magenta contour; cf. Sect. 3.1 for definition). Upper-level

fields are vertically averaged between 500 and 150 hPa. Note that horizontal wind velocity is indicated by the quivers’ length. Denser quivers

towards the poles result from denser longitudes.

between the empirical κ and the κ used in the initial point generation would require extensive iteration, since the empirical κ350

depends on the trajectories, which, in turn, depend on the initial point locations.

4 Case studies

4.1 Canada 2016

As a first example, the strong Ω-blocking observed from late April to early May 2016 over Canada is investigated. It is

considered one of the main causes of the 2016 Fort McMurray wildfire, the costliest disaster in Canadian history up to that355

date (Statistics Canada, 2017). The blocking identification data set introduced in Sect. 3 identifies blocked grid points from 29

April 2016 06 UTC to 05 May 2016 00 UTC. Synoptic conditions along with the blocking region are shown for three time

steps representative of onset, maintenance and decay in Fig. 2. A video of synoptic conditions at all time steps is provided in

the supplement.

During the onset phase (a), the co-located surface cyclone and upper-tropospheric trough just east of the dateline induced a360

poleward transport of warm, low-PV air masses leading to the build-up of the strong blocking anticylcone. The pattern agreed

roughly with the positive phase of the Pacific-North American (PNA) pattern. Steinfeld (2019) showed that latent heat release

in air parcels transported by the surface cyclone’s WCB played a significant role in formation and maintenance of the blocking.

The onset was characterized by anticyclonic Rossby wave breaking to its western flank, amplifying the Eastern Pacific ridge,
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which is atypical according to Miller and Wang (2022), who identified cyclonic Rossby wave breaking as the prototypical onset365

mechanism for Pacific blocking (though they only investigated winter blocking).

Having acquired its large spatial extent over Western Canada (b), the blocking exhibited its prominent Ω-shape with two

high-PV regions to its southwesterly and southeasterly sides. The configuration severely disturbed the zonal circumpolar bands

of high wind speeds (jet stream) in its eponymous blocking behavior. The following days were characterized by a low eastward

propagation speed and quasi-stationary flow conditions. The blocking eventually dissolved (c) accompanied by an emergence370

of a surface cyclone on its western flank (not shown).

In agreement with a magnitude of the scale parameter of κ= 15 km hPa-1, a horizontal distance of 105 km is applied for the

initial point generation. After stratospheric point removal, the number of initial points varies from 648 to 13,661 according to

the size of the identified blocking region. The measured scale parameter varies between 12.60 and 18.51 km hPa-1, a departure

from the assumed value of 15 km hPa-1 that is deemed insignificant and unlikely to alter the results (cf. Fig. A1 in App. A). In375

fact, calculating κ individually for every set of trajectories has been tested and did not alter the results considerably. Apart from

the first few initialization dates, which feature only few trajectories, the temporal development of κ indicates larger horizontal

than vertical motion in trajectories passing through the blocking earlier, but qualitative interpretations are hard to formulate

given the complex spatio-temporal dependence of κ. Mean horizontal and vertical velocities over the six–day length of the

trajectories for sets of trajectories initialized at any of the dates are provided in the supplement as Fig. S1.380

4.1.1 Trajectory density

The atmosphere being a turbulent, chaotic system, we generally expect trajectories to disperse approximately symmetrically

forward and backward away from a initialization configuration (t= 0 h; t are the hours away from the initialization time).

Individual cases will, however, exhibit particularities and, more specifically, asymmetric evolution of d(t) and ℓ(t), which

measure the dimension and density of the point cloud and thus quantify the general coherence and dispersion of the air parcels385

(cf. Sect. 2.5).

Figure 3 gives an example where this is the case. At any point in time, the sum of diffusion similarities St(ϵ) varies from m

to m2. For low diffusion strengths ϵ, the diffusion similarity matrix Kt,ϵ is only populated on the main diagonal (approximates

the identity matrix), whereas for high values, the matrix has ones everywhere. The approximately polynomial (cf. Eq. (9))

intermediate regime appearing linear on a log-log plot, however, is described by two degrees of freedom, the slope d(t)/2 and390

offset ℓ(t), which were shown to be heuristically connected to the dimension and inverse density of the point cloud {xi
t}.

In the example presented here, the curve for the initialization time t= 0 h has the highest slope, which is because points

are placed
::::::::::::
approximately in a regular three-dimensional grid (cf. Sect. 3.2). With increasing |t| in both positive and nega-

tive direction, slopes reduce similarly, but curves for positive t saturate earlier. Therefore, the point cloud traced by forward

trajectories (t > 0 h) stays more densely packed than the same point cloud traced by backward trajectories (t < 0 h). Hence,395

while d(72h)≈ d(−72h), ℓ(72h)< ℓ(−72h) (recall that ℓ(t) approximates a grid length and is therefore inversely related to

density).
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Figure 3. Normalized sum of pointwise diffusion similarities St(ϵ)m
−2 plotted versus diffusion bandwidth ϵ on log-log scale for trajectories

initialized at 02 May 2016 00 UTC. Green horizontal axis ticks indicate evaluated values of ϵ. Inset: Trajectories in stereographic projection

with vertical coordinate (p) colorcoded. Parcel locations at t=−72h,0h,72h as black dots. Only every 50th trajectory is shown for clarity.

The inset illustrates, what is happening: Not only do the air parcels diffuse more rapidly horizontally before entering the

blocking region compared to after, they also tend to spread to a larger degree in the vertical. A larger spread is related to a

smaller density of the points in space and thus larger ℓ. The slope of individual curves is hard to determine from Fig. 3, which400

is why both d(t) and ℓ(t) are displayed for the whole life cycle of the blocking and the according three–day forward and

backward trajectories in Fig. 4. The data is ordered according to the initialization time along the vertical axis and according

to the trajectories’ time steps along the horizontal axis. Since trajectories are initialized every six hours and trajectory data is

hourly, white lines with a slope of 1/6 indicated
::::::
indicate

:
isochrones. Data belonging to the initialization date 29 April 2016 06

UTC has been omitted due to the low number of trajectories.405

The dimension heuristic d(t) is higher the closer the air parcels are in time to the initialization configuration (t= 0 h). Even

then, however, the theoretically achievable dimension of 3 is not reached, which is a boundary artifact, since for points near

the boundary, the Gaussian function in Eq. (9) is not fully resolved. This is also why a higher number of trajectories leads to

higher values of d(t). Furthermore, Fig. 4 (a) bears testimony of the fact that points tend to arrange more two-dimensionally

the further they get away from the initialization time, though two distinct regions may be identified, where this is not the case.410

Trajectories passing through the blocking during its late maintenance phase (≈ 03 May; lower center left region in the plot)

exhibit a higher dimensionality during their journey into the blocking (t < 0) and trajectories passing through the region during

its early maintenance phase (≈ 02 May; upper center right region in the plot) exhibit an increased dimensionality during their
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Figure 4. (a) d(t) and (b) ℓ(t) plotted as a function of initialization time (23 initializations, vertical axis) and time step (144 time steps from

−72 h to +72 h, horizontal axis) for the Canada 2016 case. Data corresponding to trajectories initialized at 29 April 2016 06 UTC has been

removed. White diagonals indicate isochrones (all 00 UTC). Vertical white line indicates initialization time.

journey out of the region (t > 0). The size of the blocking is of first order importance for this phenomenon, since high pressure

regions suppress both horizontal and vertical motion (at least in their centers;
::::::::::::::::::
Ehstand et al. (2021)). The larger the blocking,415

the larger the fraction of air parcels that are under its influence.

Inspection of the individual trajectories confirms that the quasi-stationary flow field reduces the amount of filamentation the

point cloud is subjected to. This is because both spatial and temporal small-scale variability will shear – and thus filament – a

spatially extended point cloud. In contrast, the air masses traced here, behave more like a rigid body being translated and rotated

by the lateral large scale jet and the flow inside the blocking. Recall that d(t) is scale-invariant and isotropic contraction/expan-420

sion will, therefore, not change d(t) (cf. Sect. 2.5).
:::::
These

::::::::::
assessments

:::::
agree

::::
with

:::::
those

:::::
made

:::
by

:::::::::::::::::
Ehstand et al. (2021)

:::::
using

::::::
similar

:::::::::::::
trajectory-based

::::::::
methods,

::::::
though

::
on

::
a

:::::
larger

::::
scale

::::
and

::::::::::
disregarding

:::
the

:::::::
vertical

:::::::::
dimension.

The level sets of d coinciding with the isochrones for 2.4> d > 2.2 at the bottom right of panel (a) indicate several traced air

masses that pass through the blocking from the 02 May onwards experience a considerable decrease in d roughly at the same

time ≈ 05 May 00 UTC. The associated straining motion is related to the disintegration of the blocking and its accompanying425

lateral wind bands followed by the reestablishment of the zonal jet. The reorganization of the large–scale flow field exposes

the air masses to considerable shear, effectively filamenting the individual point clouds and reducing d(t).
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The density measure ℓ(t) shown in Fig. 4 (b) sheds more light on the spatial nature of the investigated trajectories. Impor-

tantly, ℓ(t) does not measure the general density of the point clouds (cf. Fig. A2 in App. A for mean nearest neighbor point

distances), but rather the inverse density of the points Xt populating Xt, respecting its dimension. This explains, why ℓ(t) does430

not assume its lowest values uniformly at t≈ 0, where values equate to roughly 105 km in agreement with the initial point

generation.

The approximated grid length ℓ(t) tends to be lower for forward trajectories compared to backward trajectories. This is

especially true for trajectories initialized during the second half of the blocking’s life cycle. We find coincidence of level sets of

ℓ with isochrones between 01 and 02 May in the bottom left of the plot and around the 05 May on the botton right of the plot.435

In both cases, ℓ decreases with t, in the first instance with only a slight change in d and in the second instance with a concurrent

decrease in d. Hence, the first case hints at isotropic contraction of the point cloud, which is caused by the traced air parcels’

arrival in the blocking. For the second instance, the straining imposed on the point cloud of air parcels by the reorganizing flow

field makes Xt appear more two-dimensionally without (sufficient) concurrent isotropic expansion, such that ℓ(t) decreases.

All in all, evolution of the air parcel point clouds traced by the trajectories can be differentiated with respect to the blocking’s440

lifecycle: Parcels passing through the blocking during onset experience filamentation and straining in both directions in time

away from the initialization time (t= 0), but are a little more densely packed after leaving the blocking (t > 0), which is

partially due to a smaller vertical extent. Parcels passing through the blocking during its maintenance phase experience less

straining, especially once inside the blocking, but become more densely packed. And parcels passing through the blocking

during its decay experience strong and abrupt filamentation upon the blocking’s disintegration, which coincides with a decrease445

in both d and ℓ.

The filamentation of Xt can also be understood from a more theoretical perspective. Under the influence of the disintegrating

blocking, the air masses exhibiting a rapid decrease of d and ℓ undergo material elongation due to the well-researched enstrophy

cascade present in turbulent systems with two-dimensional configuration, which is an approximation of the atmosphere due

to the scale difference between horizontal and vertical motion (Ditlevsen, 2010; ?)
:::::::::::::::::::::::::::::::::::
(Ditlevsen, 2010; Boffetta and Ecke, 2012)450

. Such an enstrophy cascade to smaller scales and an energy cascade to larger scales involves the elongation and eventual

scattering of vortical structures, which explains a decrease of dimension towards d= 2. The reconfiguration of the jet stream

from a wavy shape (energy at high wavenumber) to a more zonal one (energy at low wavenumber) supports this hypothesis.

The vortex scattering represents a break up of stability aggregated during the blocking onset and maintenance. The quasi-

stationarity of trajectories visible mainly in the maintenance phase of the blocking has to come to an end eventually, already455

from an entropy-perspective. In a structureless, random and turbulent fluid dynamical system, one would expect a more or

less symmetric distribution with respect to distance from t= 0 in d(t) (cf. Fig. 4 (a)). Thus, the stability attributed to blocking

mainly with respect to flow configuration seems to be applicable also to the material air parcels passing through the region.

4.1.2 Coherent Air Streams

In order to objectively identify WCB air streams stabilizing the blocking as hypothesized by Steinfeld and Pfahl (2019), we460

construct the averaged diffusion operator Qϵ using m= 11,774 backward trajectories initialized in the blocking region at 02

17



(a)

1 2 3 4 5 6 7 8 9 10

i

−8

−6

−4

−2

0

λ
i

×10−6

ε [km2]
1e6
1e5

5e5
5e4

2e5
2e4

(b)

200

300

400

500

600

700

800

900

1000

p
[h

P
a]

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

Figure 5. Coherent sets for backward trajectories initialized at 02 May 2016 00UTC. (a): 10 largest eigenvalues of Lϵ = (Qϵ − I)/ϵ for

various values of ϵ. (b): Clustered trajectories for ϵ= 5× 104 km2: colors and according numbers show the clustering, points are shown for

t= 0 h and t=−72 h, lines show average trajectories.
::::::
Residual

:::
set

::
in

::::
gray. Horizontal coordinates are in stereographic projection. Black

contour shows location of identified blocking at t= 0 h.

May 2016 00 UTC (−72 h ≤ t≤ 0 h) for a range of values of ϵ between 2× 104 km2 and 5× 105
::::::
1× 106

:
km2; the range for

which the curve of St(ϵ) over ϵ appears linear in a log-log plot (cf. Fig. 3). For boundary point detection, we apply a value of

α= 103 km, which is on the conservative (higher) side of
√
ϵ for the given range of values of ϵ and find that the edge lengths

of the resulting simplical complexes at any t stay between 102 km and 103 km (cf. Fig. A3 in App. A).465

The resulting spectrum of Lϵ = (Qϵ − I)/ϵ is shown in Fig. 5 (a). We show the spectrum of Lϵ instead of Qϵ because

ϵ controls how close Qϵ is to the identity matrix (cf. Fig. 3) and, hence, how close the eigenvalues are to one. The largest

eigenvalues are close but not equal to zero, which is caused by the application of boundary conditions to the normalized

(stochastic) matrices Pϵ,t :::::::
matrices

::::
P̂ϵ,t:

before averaging them to obtain Qϵ. We identify a moderate spectral gap after the

seventh
::::
sixth eigenvalue (disregarding spectral gaps at i= 2,3 in order to achieve sufficient detail) and perform k-means470

clustering of the data points into seven clusters in the coordinate space spanned by the first six eigenvectors using a value of

ϵ= 5× 104 km2. We found that the resulting clusters are remarkably robust to variation of ϵ and the number of clusters.

Figure 5 (b) depicts the resulting clusters differentiated by colors. Shown are locations of the air parcels at both the initial-

ization (t= 0 h) and the end point (t=−72 h) as well as each cluster’s average trajectory (calculated by all points’ average

location for each time step). The gray cluster represents the set of points for which all eigenvectors of Qϵ simultaneously show475

values close to zero. This implies that the points in the gray cluster are, most of the time, boundary points,
::::::
which

::
is

::::
why

:::
we

:::::
regard

:::
the

::::
gray

::::::
cluster

::
as

::
a
:::::::
residual

::::::
cluster. The remaining six clusters show remarkable coherence upon visual inspection of

the points at each t, though the coherence tends to be stronger the closer the parcels are to the initialization, which seems natural
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Figure 6.
:::
Exit

::::::::::
probabilities

:::::::
Pexit(Ik):::

for
:::
each

::
of
:::

the
::::::
clusters

:::::
shown

::
in
::::
Fig.

:
5
::::
(full

::::::
circles).

:::
For

::::
each

::
of

:::
the

::::::
clusters,

:::
the

:::::::::
distribution

::
of

:::
exit

:::::::::
probabilities

::
of

:::
100

::::::::
randomly

:::::::
generated

:::
test

:::
sets

:::
of

::
the

::::
same

::::
size

::
is

:::::::
presented

::
by

::
a
::::::::::
box-whiskers

::::
plot.

::::
These

:::::
show

::
the

::::::
median

:::::::::
(horizontal

::::
line),

:::
first

:::
and

::::
third

:::::::
quartiles

:::
(box

:::::
limits)

:::
and

:::
the

::::::
farthest

:::
data

:::::
point

::::
lying

:::::
within

:::
1.5

::::
times

:::
the

:::::::::
interquartile

::::
range

::::
from

:::
the

:::
box

:::::::::
(whiskers).

as the points more strongly resemble a three-dimensional continuum the further they have traveled towards their initialization

point in the blocking.480

Figure
::
We

::::
give

::::::::
estimates

:::
of

:::
the

::::::::
coherence

::
of

:::
the

::::::::
resulting

:::::::
clusters

::
by

:::::::
showing

:::::
their

:::
exit

:::::::::::
probabilities

::
as

::::::
defined

:::
in

:::
Eq.

:::
(8)

::::
along

:::::
with

:::
the

:::
exit

:::::::::::
probabilities

::
of

:::
100

:::::::
random

:::
test

::::
sets

::
as

::::::::
described

::
in

:::::
Sect.

:::
2.4.

::::
Fig.

::
6

:::::::
confirms

::::
that

:::
the

:::::::
coherent

::::
sets

:::::
found

::::
using

:::
the

:::::::::
presented

:::::::::::
methodology

:::
are

:::::::::::
considerably

::::
more

::::::::
coherent

::::
than

:::
the

::::::::
randomly

::::::
chosen

::::
test

::::
sets.

:::
The

:::::::
residual

:::
set

::::::
stands

:::
out

::::::
starkly,

:::::
which

:::::
gives

::
us

::::::
further

::::::::::
confidence

::
in

:::::::::
discarding

:
it
:::
for

:::
the

:::::::
ensuing

::::::::
analysis.

::::::::::
Remarkably,

:::
the

:::::::::
coherence

::
of

:::
the

::::
sets

::
as

::::::::
measured

::
by

:::
the

::::
exit

::::::::::
probabilities

:::::::::
correlates

::::::::
negatively

::::
with

:::
the

::::::::
clusters’

:::
size

:::
for

:::
the

:::
test

::::
sets,

:::
but

::::
does

::::
not

::
for

:::
the

::::::::
coherent485

:::
sets

::::::
found.

:::
The

::::::
largest

::::::::::
eigenvalues

::
of

:::
the

::::::::
restricted

:::::::
matrices

::::::::::
Qϵ(Ik,Ik)::::::::

displayed
::
in

:::
the

::::::::::::
supplementary

::::::
Figure

:::
S5

::
(a)

:::::::
present

::
the

:::::
same

:::::::
picture,

::::::
though

:::
the

:::::::::
differences

:::::::
between

:::::::
coherent

::::
and

:::
test

::::
sets

:::
are

::::::
smaller.

:

:::::
Figure

:
7 (a) provides insight into the dynamical properties of the individual clusters, though the gray boundary cluster

::::::
residual

:::
set

:
has been omitted. Importantly, we identify a considerable increase in potential temperature for the air parcels in

the red (0) and blue (1
:::::
purple

::
(2;

::::
note

::::
that

:::
the

:::::::
clusters’

:::::
labels

:::
are

::::::::
arbitrary,

::::
since

:::::::::
k-means

::::::::
clustering

::::
does

:::
not

:::::
imply

:
a
:::::::
ranking490

:::::::
between

:::::::
clusters)

:::
and

::::
pink

:::
(5) clusters. The red

:::::
purple cluster starts at the eastern flank of X−72 in the lower troposphere and

travels to the northern, lower flank of X0 undergoing significant upward motion. In absence of other strong diabatic effects,

the large positive change in potential temperature can only be caused by latent heating, which is confirmed by its change in

specific humidity (cf. supplementary Fig. S3). The change occurs mainly during the 24 hours leading up to the arrival in the

blocking, which is in contrast to the blue
:::
pink

:
cluster, which experiences latent heating earlier. The magnitude of the heating495

in the blue
::::
pink

:
cluster is also a little lower, since the cluster initially extents in the vertical to a larger degree. The cluster

undergoes vertical compression over the course of the three days and ends up in the lower southeasterly corner of the low-PV

anomaly region, adjacent to the red cluster.
:::::
purple

::::::
cluster.

:
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The diabatic lifting of both clusters is due to large scale ascent typically associated with warm fronts. The blue
::::
pink cluster

“overtakes” the red,
:::::
purple,

:::
red

:::
(0)

::::
and brown (4) and pink (5

:
4) clusters as it reaches the region of strong lower-tropospheric500

winds earlier and remains in the blocking region after its earlier arrival while slowly progressing under anticyclonal movement.

The behavior of both clusters strongly suggest the existence of a warm conveyor air stream caused by the strong adjacent

surface low (cf. Fig. 2 (a)), which supplies the blocking with anomalously low PV air masses at two distinct points in time.

:::
We

::::::
remark

:::
that

::::::::::::::
cross-isentropic

:::::
ascent

::::
may

::
in

::::::::
principle

::::
also

::
be

::::::
caused

:::
by

::::
small

:::::
scale

:::::::::
convection

:::::::::::::::::::::::
(Zschenderlein et al., 2020)

:
,
:::
but

::::
such

:::::
events

:::
are

:::
on

::::::
spatial

:::::
scales

:::::::::
unresolved

:::
by

:::
our

::::
data,

::::::
which

::::::
makes

:
it
:::::::
unlikely

:::::
these

::::::::
processes

:::
are

::::::::::
responsible

:::
for

:::
the505

:::::::
behavior

::::
seen

::
in

:::
the

:::::::
coherent

::::
sets

::::
here.

:

Forward trajectories for the same initialization time exhibit synchronized behavior similar to the example discussed next

and will thus not be discussed here. Changes in potential temperature are almost exclusively negative, hinting at radiative

cooling typical for air masses in the upper troposphere. The synchronization of movement is also indicated in Fig. 4 – the air

masses barely separate and are thus rather similar both geometrically and dynamically.510

To understand the occurrence of WCBs across the lifetime of the blocking, we automatically identify them for each set

of trajectories. To that end, we apply our algorithm with α= 103 km, ϵ= 5× 104 km2 to backward trajectories initialized at

each of the six hourly time steps. We identify the spectral gap we are interested in by finding the largest absolute difference

between two sequential eigenvalues, starting from the third eigenvalue. For the trajectory clusters identified, we select those,515

whose median potential temperature three days before arriving in the blocking (t=−72 h) is at least 5 K below the median

potential temperature when arriving in the blocking (t= 0 h). The results are shown in Fig. 7 (b). We note that this diagnostic

suffers from the ambiguity of the concept of the spectral gap and, hence, the number of clusters selected, which is why we

also show the clusters’ sizes (number of trajectories in a cluster; mi::
m).

The strongest large scale lifting and, thus, diabatic heating occurs during the onset of the blocking, governed by the strong520

surface cyclone west of it. This is in accordance with findings from Miller and Wang (2022) who highlighted diabatic heating

as a key mechanism for the onset of Pacific blockings (though, again, they only studied winter cases). We find coherent bundles

of trajectories with median changes in potential temperature of up to 20 K within a day, which does not seem to be atypical

(e.g. Madonna et al. (2014)). In that phase, the majority of trajectories are part of some cluster featuring considerable heating,

as indicated by the the gray bars in the background of Fig. 7 (b). The continuous decrease in the ratio of such trajectories inside525

WCBs to the total number of trajectories comes about due to four different reasons. The first reason is the general enlargement

of the blocking. The quasi-stationary nature of blockings implies that air parcels can get “trapped” inside it (see also the

following example), which means that even parcels that have experienced latent heating at some point will not be identified as

such as soon as this heating is more than three days past. The second reason is the decay of the neighboring surface cyclone,

which is the dynamic cause of the WCBs. The third and fourth reasons are inavailability of moisture as the blocking travels530

over land and large scale subsidence caused by the blocking itself. Higher occurrence of WCBs during onset is confirmed by

exiting research (Steinfeld and Pfahl, 2019; Hauser et al., 2023)
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Figure 7. (a): Median (line) and interquartile range (shading) of potential temperature distribution among individual clusters from Fig. 5.

Boundary point cluster (gray) not shown. (b): Median (line) of potential temperature distribution among clusters that exhibit a difference

between initial and end value larger than 5 K for different initialization times indicated by line color. Line thickness is according to number

of trajectories in cluster (mi). Gray bar chart in the background shows ratio between number of trajectories contained in WCB clusters to the

total number of trajectories for each arrival (initialization) time.

The plot also shows that WCB clusters identified in sets of trajectories initialized at different times tend to exhibit strong

latent heating at the same time. This is because WCBs are synoptic scale structures, extensive in both space and time. Their

intermittent occurrence is linked to presence and absence of surface cyclones and their corresponding warm fronts (Madonna535

et al., 2014; Catto et al., 2015). Note also that the general decrease in potential temperature is related to the blocking traveling

poleward.

In addition to identifying WCBs, we want to further understand the behavior of d(t) and ℓ(t) discussed in Sect. 4.1.1.

To that end, we apply our algorithm to m= 9,882 connected forward and backward trajectories (−72h≤ t≤ 72h) passing540

through the blocking at 04 May 2016 00 UTC, which is close to the end of its lifecycle, using the same range of values for

ϵ and the same value for α (cf. Fig. A3 in App. A for distribution of α-hull edge lengths). We identify a moderate spectral

gap after the fourth eigenvalue (cf. supplementary Fig. S4 (a)), and again apply k-means clustering using ϵ= 5× 104

km2, but looking for four
:::
five clusters this time. The resulting clusters are shown in Fig. 8

::
(a)

:
three days before and after

initialization (t=−72 h and t= 72 h) along with their mean trajectories and the blocking’s location at t= 0 h. We do not545

find a cluster consisting of boundary points mostly, which is probably due to the low number of clusters and considerable

mixing of points
:
A
:::::::

residual
::::::
cluster

::::
has

::::
been

:::::::
removed

:::::
from

::::
Fig.

:
8
::::
(a),

::
(c)

::::
and

:::
(d),

:::
but

::
is
::::::
shown

::
in

::::
(b).

:::::
Given

::
its

:::::::
average

::::
exit

:::::::::
probability

::
at

:::
the

:::::
upper

:::::::
extremal

::::
end

::
of

:::
the

::::::::::
distribution,

:::
we

:::
are

::::::::
confident

::
in

:::
its

:::::::::::
classification

::
as

:::::::
residual

::::::
despite

::
is

:::::
large

::::
size.

:
It
::::::::
contains

:::::::::
trajectories

::::
that

:::
are at the boundary . In our experience, boundary clusters were also far more likely to occur for

21



(a)

200

300

400

500

600

700

800

900

p
[h

P
a]

1

2

3

4

(b)

1500 2000 2500 3000

m [–]

0.3

0.4

0.5

P
e

xi
t

[–
]

0

1

2 3 4

Coherent Sets
Test Sets

(c)

−50 0 50

t [h]

−10

0

10

20

30

40

u
[m

s-1
]

1 2

3

4

(d)

−50 0 50

t [h]

−20

0

20

40

v
[m

s-1
]

1

2

3 4

Figure 8. (a): Same as Fig. 5 (b) but
::::::
Coherent

::::
sets for combined forward and backward trajectories initialized at 04 May 2016 00 UTC. Points

are shown for t=−72 h (right bulk) and t= 72 h (left bulk). Black contour shows location of identified blocking at t= 0 h.
::::::::
Horizontal

::::::::
coordinates

:::
are

::
in

::::::::::
stereographic

::::::::
projection. (b)&

:
:
:::
Exit

::::::::::
probabilities

::::::
Pexit(Ik):::

for
::::
each

::
of

::
the

::::::
clusters

:::::
shown

::
in (

:
a)
::::
plus

:
a
::::::
residual

:::::
cluster

::::
(full

::::::
circles).

:::
For

:::
each

::
of
:::

the
:::::::
clusters,

::
the

:::::::::
distribution

::
of

:::
exit

::::::::::
probabilities

::
of

:::
100

:::::::
randomly

::::::::
generated

:::
test

:::
sets

::
of

:::
the

::::
same

:::
size

::
is

:::::::
presented

::
by

::
a

::::::::::
box-whiskers

:::
plot.

:::::
These

::::
show

:::
the

::::::
median

::::::::
(horizontal

:::::
line),

:::
first

:::
and

::::
third

::::::
quartiles

::::
(box

:::::
limits)

::::
and

::
the

::::::
farthest

::::
data

::::
point

::::
lying

:::::
within

:::
1.5

::::
times

:::
the

:::::::::
interquartile

::::
range

::::
from

:::
the

:::
box

:::::::::
(whiskers).

:
(c)

:
&
:::
(d): Same as Fig. 7

::::::
Median (a

::
line) but for

:::
and

:::::::::
interquartile

::::
range

::::::::
(shading)

::
of

horizontal velocity components. All clusters are shown
::
The

:::::::
residual

:::::
cluster

:::::
(gray)

::
has

::::
been

:::::::
removed

::::
from

:::
(a),

::
(c)

:::
and

:::
(d).

exclusive backward (−72h< t < 0h) or forward (0h< t < 72h)trajectories
:::::
often,

:::
but

::::
also

:::::::::
trajectories

:::
that

:::
are

::::
very

::::
well

::::::
mixed550

:::::::::
(especially

::
in

:::
the

::::::::::
horizontal),

::::::
which

::
is

:
a
::::::
feature

::::::::
observed

:::::
more

:::::
often

::
in

:::::::::
combined

:::::::
forward

:::
and

:::::::::
backward

::::::::::
trajectories.

::::
Our

::::::::
alternative

::::::
metric

::::
(the

:::::
largest

:::::::::
eigenvalue

:::
of

:::
the

:::::::
restricted

::::::::
matrices)

::::::
offers

::
the

:::::
same

:::::::::
indication

:::
(cf.

:::
Fig.

:::
S5

::
in

:::
the

::::::::::
supplement).

In contrast to the example above, the clusters are separated to a larger degree in the vertical, which is caused by predominantly

synchronized movement in the horizontal as well as absence of any updrafts, as will be shown below. The air parcels move

considerably less far both in the horizontal and in the vertical, especially during their approach into the blocking. In fact, the555
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bulk of the air parcels are already within or in close vicinity to the anomaly region three days before – some are even east of

the blocking. Therefore, it comes as no surprise, that latent heating does not play a role for the air parcels traced (cf. Fig. 7 (b)).

The vast majority of parcels stays in the upper troposphere between 300 and 600 hPa the whole time. While the orange

(3) cluster undergoes descending motion throughout, the purple (2) cluster performs
:::
and

::::::
brown

:::
(4)

::::::
clusters

:::::::
perform

:
a mod-

erate ascent into the blocking, though all clusters descend after passage through the blocking, which is no surprise, since the560

initialization points populate the whole upper troposphere and passage through the tropopause is generally unlikely.

To investigate closer the movement of the parcels, Fig. 8 (bc) and (c
:
d) displays the horizontal velocities of the respective

clusters. Most of the air parcels experience zonal velocities below a magnitude of 10 m s-1 throughout their journey, but

especially during their approach (−48h< t < 0h), which reflects the blocking’s eponymous obstruction of mid-latitudinal

westerlies. The obstruction also explains the larger meridional velocitiy magnitudes visible in Fig. 8 (c).565

Judging from both Fig. 4 and Fig. 8, the six-day journey of the clusters (or more precisely, the air parcels) can be roughly

divided into four phases:

1. Day 1 (01 May; −72h< t <−48h): The brown (0
:::::
purple

::
(2) and the orange (3) clusters are already in vicinity of

the blocking region, while the green (1) and purple (2
:::::
brown

:::
(4)

::::
and

::::
blue

:::
(1) clusters contain “tails” that gradually

travel eastward.
:::
The

::::::
brown

::::::
cluster

::
is

:::::
quite

:::::::::
distributed

:::::
which

::
is
::::
also

::::::::
imprinted

:::
in

::
its

::::::::
relatively

::::
high

::::::
escape

::::::::::
probability570

:::
(cf.

:::
Fig.

::
8
::::
(b)). Those parcels already within the vicinity of the blocking are subject to the quasi-stationary anticyclonal

flow field, such that Xt seems to curl in. The purple cluster is located on the southern flank of the blocking and, therefore,

experiences westward velocities. The increase in d and a decrease in ℓ (cf. Fig. 4) is a result of convergence horizontally

and vertically and the advent of the trailing air parcels into the blocking reducing the amount of filamentation of Xt.

2. Days 2–3 (02–03 May, −48h< t < 0h): All four clusters are quite close horizontally, but both the purple and the green575

:::
blue

:
clusters still gather some trailing parcels vertically, resulting in the continued convergence and increase in d. Shear-

ing deformation is not present, rather all clusters stay within the blocking region sequentially experiencing the same

velocities. In Fig. 8, both horizontal velocities show parallel curves for the different clusters, indicating a simple time

shift between similar movements.

3. Day 4 (04 May, 0h< t < 24h): The movement pattern of the different clusters continues under addition of (mostly)580

meridional translation as the air masses travel out of the blocking into the northerly jet on the blocking’s eastern flank.

Vertical motion is almost non-existent, but transport out of the blocking starts to shear Xt, reducing d and ℓ.

4. Day 5–6 (05–06 May, 24h< t < 72h): Under combined isentropic downward motion caused by movement out of the

high pressure region, all clusters get strained horizontally along the cyclonic flow field to the southeast of the blocking’s

last position above the Great Lakes. Both trailing air parcels belonging to the lowest (purple) cluster and leading air585

parcels belonging to the highest (blue) cluster experience a strong westerly flow caused by a cyclone located above

northeastern Canada. Both of these effects elongate and disperse Xt resulting in a rapid decrease in both d and ℓ as the
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Figure 9. Same as Fig. 2 but for
::::::
Synoptic

::::::::
conditions

::
at

::::
three

::::
time

:::::::
instances

:::
(all

:
at
:::
00

::::
UTC)

:::::
during

:
the Northern Europe 2017 case. Surface

::::::::
Upper-level

:::
PV

::::::::
(shaded),

:
2
:::
pvu

::::::
contour

::::::::::
(tropopause)

::
in

:::::
black,

::::::::
upper-level

:::::
wind

::::
(blue

::::::
vectors,

::::
only

:::::
shown

:::
for

::::
wind

:::::
speeds

:::::
larger

:::
than

:::
30

:::::
ms-1),

:::::
surface

:::::::
cyclones

:::
(sea

::::
level

:
pressureintervals are ;

:::::
yellow

:::::::
contours from 970 hPa to 990 hPa every 5 hPa;

::::
note

:::
the

:::::::
difference

::
to

:::
Fig.

:::
2),

:::
and

::::::
blocking

:::::
region

:::::::
(magenta

:::::::
contour;

::
cf.

::::
Sect.

:::
3.1

::
for

:::::::::
definition).

:::::::::
Upper-level

::::
fields

:::
are

:::::::
vertically

:::::::
averaged

::::::
between

:::
500

:::
and

:::
150

::::
hPa.

::::
Note

:::
that

:::::::
horizontal

::::
wind

:::::::
velocity

:
is
:::::::
indicated

:::
by

::
the

:::::::
quivers’

:::::
length.

::::::
Denser

:::::
quivers

::::::
towards

:::
the

::::
poles

:::::
result

::::
from

:::::
denser

::::::::
longitudes.

anticyclonic vortex has been scattered by neighboring cyclones working towards the reestablishment of the westerly jet

stream.

4.2 Northern Europe 2017590

The second example revolves around a blocking originating over the North Atlantic during winter, suggesting different char-

acteristics than the case discussed above. The boreal winter 2016/2017 was marked by a number of severe cold spells over

Central and Eastern Europe and Russia, accompanied by warm conditions in the Arctic, a low sea ice extent especially in the

Barents–Kara–Sea and an exceptionally weak polar vortex. The conditions likely both favored and were enhanced by notably

high blocking activity throughout mid-latitudinal Eurasia (Tyrlis et al., 2019). The conditions drastically influenced the lifes of595

millions of people (Anagnostopoulou et al., 2017; Demirtaş, 2022; Kostopoulou, 2023).

The blocking investigated here was just the last in a number of strong European blockings, but has reached a considerable

extent both spatially and temporally. This suggests low-frequency variability as a possible cause for onset as concluded by

Nakamura et al. (1997), though Miller and Wang (2022) pointed to high-frequency components as key factors. Our blocking

data set recognizes blocked grid points between 23 January 2017 12 UTC and 30 January 2017 12 UTC. Figure 9 shows the600

synoptic conditions over the region of influence for three selected times representative for onset, maintenance and decay of the

blocking (a video containing synoptic conditions for all time steps is provided in the supplement).

During onset (a) the low-PV anomaly developed as a vast region of low pressure over the North Atlantic and the Arctic lets

subtropical air travel north, disrupting the jet stream. Blocking formation can be seen as an example of anticyclonal Rossby
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wave breaking, which is in agreement with Miller and Wang (2022). The blocking progressed remarkably little over the course605

of the ensuing week and severely obstructed the usual westerly flow of air. A typical Ω-blocking configuration is visible in

(b) as two regions of high PV develop at the lower lateral flanks of the low-PV anomaly region. This leads to a considerable

deflection of the jet stream and low-PV air masses are guided northwards on the western flank just as high-PV air masses are

guided southward on the eastern flank of the blocking along strong meridional wind bands.

The blocking eventually traveled eastward, gradually dispersing over the Ural mountains and Siberia (c). Insights gained610

from the previous case study corroborate the argument of Steinfeld and Pfahl (2019) that WCBs tend to strengthen the negative

PV anomaly, which would imply that absence of which makes decay of the blocking more likely. In the present case, the

blocking persisted for an extended amount of time over Scandinavia and eventually dissolved over mainland Russia, such that

a possible hypothesis is that the decay of the blocking coincided with the cessation of WCBs feeding due to a lack of moisture,

a weakening of the adjacent surface cyclone and large-scale subsidence.615

To analyze air stream coherence, we apply the same value for the scale parameter κ= 15 km hPa-1 and obtain between

50 and 19,200 initial points (cf. Fig. A1 in App. A). The variation of κ is, again, inside a moderate range of 12.09 km hPa-1

to 19.82 km hPa-1 and does not show a great influence on the eventual clustering of trajectories. Temporal evolution of κ

indicates relatively weaker motion in the vertical, the later the trajectories pass through the blocking. Average velocities both in

horizontal and vertical direction develop similarly and largely decrease with time, which is related to the presence and absence620

of WCBs and the traced air parcels’ vicinity to the stagnant flow field dominated by the blocking. Mean velocities over the

trajectories’ whole six-day time period are provided in the supplement as Fig. S2.

4.2.1 Trajectory Density

We show the estimates of both d(t) and ℓ(t) for the present example in Fig. 10. Data corresponding to trajectories initialized

at 23 January 2017 12 UTC have been removed, since the initial point generation resulted in only 50 trajectories. We find that625

the distributions of d(t) and ℓ(t) over time and across the blocking’s life cycle bears some resemblance to the first case, though

we note that values are generally slightly higher for both heuristics, which we attribute to the higher number of trajectories.

For d(t), we identify maxima of well below 3 for point clouds with the most points (cf. Fig. 10) and close to the initialization

time and recognize a more or less monotonic decrease away from those. Regions of larger d(t) are, again, visible for t > 0

h for trajectories initialized during the maturing phase (25–26 January) and for t < 0 h for trajectories initialized during the630

late maintenance phase (27–28 January). This sparks the question, whether the same physical processes are responsible for the

observations as in the first case study.

Onset and early maintenance of the blocking were heavily influenced by the strong low pressure region to the west of it.

Both d and ℓ increase considerably as air is transported into the blocking along the strong wind band on the surface cyclones’

eastern flank. Similar to rolling up a fish net (the rotational axis in the p direction), Xt contracts and increases in dimension as635

the parcels end up in the blocking and stay there, while the approximated grid length increases slightly. Considerable upward

motion supports this process. This is in contrast to the first case study, where ℓ stayed largely constant during this phase. The

compressed, almost three dimensional Xt stays largely intact and inside the blocking as it stagnates and grows over Northern
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Figure 10. Same
::
(a)

:::
d(t)

:::
and

:::
(b)

:::
ℓ(t)

:::::
plotted

:
as Fig. 4

:
a
::::::
function

::
of

::::::::::
initialization

:::
time

:::
(28

::::::::::
initializations, but

:::::
vertical

::::
axis)

:::
and

::::
time

:::
step

::::
(144

:::
time

::::
steps

::::
from

:::
-72

:
h
::
to
:::
+72

::
h,
::::::::
horizontal

::::
axis) for the 2017 Northern Europe

::::
2017 case. Data corresponding to trajectories initialized at the

23 January 2017 12 UTC has been removed.
:::::
White

:::::::
diagonals

::::::
indicate

:::::::::
isochrones

:::
(all

::
00

:::::
UTC).

::::::
Vertical

:::::
white

:::
line

:::::::
indicates

::::::::::
initialization

::::
time.

Europe. Consequently, temporal development of d and ℓ in approaching air parcels during the blocking’s period of largest

extent is also dominated by parcels already in or close to the blocking, such that neither d, nor ℓ change considerably.640

The blocking reached its peak extent around the 27 January (cf. Fig. A1). Subsequent shrinking means air masses under

the influence of the quasi-stationary flow field inside the blocking now escape and come under the influence of a low pressure

center in the upper troposphere at the southeasterly flank of the blocking. This is why forward trajectories initialized around

25–26 January see essentially no decrease in d or ℓ, but those initialized around 27 January do. This is in contrast to the first

example case discussed, which showed both a later peak and a slower subsequent decline in size. Disintegration of the blocking645

and its associated flow field leads to decreases in both heuristics similar to the first case study, albeit less pronounced.

4.2.2 Coherent Air Streams

We apply our diagnostic presented in Fig. 7 (b) for the present case to study and summarize the occurrence of coherent

air streams featuring latent heating and show results in Fig. 11 (b
:
a). WCBs are found almost exclusively among backward

trajectories arriving in the blocking during its lifetime’s first half. During that period, however, they make up a considerable650
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Figure 11. Same as Fig. 7 but
::
(a):

::::::
Median

:::::
(line)

::
of

::::::
potential

:::::::::
temperature

:::::::::
distribution

:::::
among

::::::
clusters

:::
that

::::::
exhibit

:
a
::::::::
difference

::::::
between

:::::
initial

:::
and

:::
end

::::
value

::::
larger

::::
than

:
5
::
K for

::::::
different

::::::::::
initialization

::::
times

:::::::
indicated

::
by

:::
line

:::::
color.

::::
Line

:::::::
thickness

:
is
::::::::
according

::
to

::::::
number

:
of
:::::::::

trajectories
::
in

:::::
cluster

::::
(mi).::::

Gray
:::
bar

::::
chart

::
in the 2017 Northern Europe case with clusters

::::::::
background

:::::
shows

::::
ratio

::::::
between

::::::
number

::
of

::::::::
trajectories

::::::::
contained

in
::::
WCB

::::::
clusters

::
to

::
the

::::
total

::::::
number

::
of

::::::::
trajectories

:::
for

::::
each

:::::
arrival (a

:::::::::
initialization)

:::
time.

:::
(b):

::::::
Median

:::::
(line)

:::
and

:::::::::
interquartile

::::
range

::::::::
(shading)

:
of
:::::::

potential
:::::::::
temperature

:::::::::
distribution

:::::
among

::::::::
individual

::::::
clusters from trajectories initialized at 26 January 2017 18 UTC

:::
Fig.In

:::
12.

::
A

::::::
residual

(a
::::
gray) , a boundary cluster has been removed.

share of all trajectories traced. Miller and Wang (2022) also identified diabatic heating as a major cause for blocking onset in

the European region.

Both example cases presented here feature WCBs (according to our definition: coherent air streams with a three-day change

in median potential temperature of more than 5 K) almost exclusively during the onset and early maintenance phase. In both

cases, these are caused by adjacent surface lows. Compared to the first case study, the WCB fraction decreases less monotoni-655

cally. A possible explanation is that moisture availability is dependant
::::::::
dependent on oceanic sources to a larger degree in winter

(Pfahl et al., 2014), but proving this would require moisture source tracking, which is outside the scope of the present study. In

comparison to the first evaluation of WCBs, the potential temperature levels tend to be a bit lower in this case, which reflects

the different seasons they occurred in. Notably, the second blocking does not show lower levels of potential temperature with

time since it does not move to higher latitudes.660

As a last demonstration of our methodology, we pick the set of backward trajectories initialized at 26 January 2017 18 UTC,

which we understand as a turning point in the blocking’s lifecycle in several senses. Firstly, at this point in time the blocking has

almost reached its maximum extent allowing for a total of 18,349 individual initial points. Secondly, from a process-oriented

perspective, Fig. 11 (b) reveals that this point in time is the last featuring a WCB with considerable size, but the trajectories

also exhibit the behavior responsible for profiles of d and ℓ characteristic for later phases, which will be shown in the following.665

The synoptic conditions at the selected point in time differ only marginally compared to Fig. 9 (b).
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Figure 12. (a): Same as Fig. 5 but
:::::::
Coherent

:::
Sets

:
for backward trajectories initialized at 26 January 2017 18 UTC. Clustered trajectories

for ϵ= 2× 104
:::::::::
ϵ= 5× 104 km2. Points are shown for t=−72 h, black contour shows location of identified blocking regions at t= 0

h. One boundary
::::
(gray)

:::::::
residual cluster has been removed.

:::::::
Horizontal

:::::::::
coordinates

:::
are

::
in

::::::::::
stereographic

:::::::::
projection. (b): Median horizontal

velocities of
:::
Exit

::::::::::
probabilities

:::::::
Pexit(Ik) ::

for each
::
of

::
the

::::::
clusters

:::::
shown

::
in

:::
(a)

:::
(full

::::::
circles)

:::
and

:::
the

::::::
residual cluster displayed as

::::::
removed

::::
from

:
(ahodograph

:
). 0◦ corresponds to exclusively northward motion

:::
For

:::
each

::
of
:::
the

::::::
clusters,

:::
the

:::::::::
distribution

::
of

:::
exit

:::::::::
probabilities

::
of

:::
100

::::::::
randomly

:::::::
generated

:::
test

:::
sets

::
of

:::
the

::::
same

:::
size

::
is

:::::::
presented

::
by

:
a
::::::::::
box-whiskers

::::
plot. Markers indicate time steps

:::::
These

::::
show

::
the

::::::
median

:::::::::
(horizontal

::::
line),

:::
first

:::
and

::::
third

::::::
quartiles

::::
(box

:::::
limits)

:::
and

:::
the

::::::
farthest

:::
data

::::
point

:::::
lying

:::::
within

::
1.5

:::::
times

::
the

::::::::::
interquartile

::::
range

::::
from

:::
the

:::
box

::::::::
(whiskers).

After calculating boundary points with α= 103 km again (cf. Fig. A3 for resulting α-hull edge length distribution), we

identify a moderate spectral gap after six eigenvalues (cf. supplementary Fig. S4 (b)) and select ϵ= 2× 104
::::::::::
ϵ= 5× 104 km2

to cluster the trajectories. The result is shown in Fig. 12 (a), where a cluster with boundary points
::::::
residual

::::::
cluster

:
has already

been removed for visibility. Note also
::::
This

:::::::
residual

::::::
cluster

:::::
stands

:::
out

:::::::::
drastically

::
in
::::
Fig.

:::
12

:::
(b)

:::::::
attaining

::
a
::::
very

::::
high

:::::::
average670

:::
exit

:::::::::
probability

:::
of

:::::
above

::::
0.5,

:::::::
whereas

:::
the

:::::
other

::::::
clusters

:::
are

:::::::
proven

::
to

::
be

::
a
::
lot

:::::
more

::::::::
coherent

::::
than

:::
the

::::::::
randomly

::::::
chosen

::::
test

:::
sets.

::::::
Again,

:::
the

::::::
largest

::::::::::
eigenvalues

::
of

:::
the

::::::::
restricted

:::::::
matrices

:::::
show

:
a
::::::
similar,

:::
but

::::
less

::::
clear

:::::::
picture,

::::::::
especially

::::
with

::::::
regard

::
to

:::
the

::::::
residual

::::::
cluster

:::
(cf.

::::
Fig.

:::
S5

::
in

:::
the

:::::::::::
supplement).

::::
Note that the positions of the air parcels is only shown at t=−72 h whereas the blocking’s location is shown at time t= 0

h. This is because air parcel locations overlap considerably for t=−72 h and t= 0 h and would therefore be impossible to675

distinguish.

This time, clusters are separated stronger horizontally owing to a larger degree of vertical mixing compared to the previous

example. Clusters at t=−72 h appear rather filamented (except for the purple cluster (3
::::
pink

::::::
cluster

::
(5)) and even feature

seemingly disconnected pockets of air (blue cluster (1
:::
red

:::::
cluster

:::
(0)), which highlights the role the final configuration close to

t= 0 h plays. The distributions of θ of the individual clusters over time shown in Fig. 11 (a), however, prove that all but the blue680

:::
red clusters are concentrated in the upper levels of the atmosphere. The blue

:::
red cluster, on the other hand, can be identified as

one of the WCBs visible in Fig. 11 (b). Its air parcels undergo latent heating, increasing their median potential temperature by

roughly 15 K. Given the fact that the synoptic flow field and general conditions makes it likely that the other clusters have a
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Figure 13.
::::::
Median

::::::::
horizontal

:::::::
velocities

::
of

::::
each

:::::
cluster

::::
from

:::
Fig.

::
12

:::
(a)

:::::::
displayed

::
as

:
a
:::::::::
hodograph.

::
0◦

:::::::::
corresponds

::
to
:::::::::
exclusively

::::::::
northward

::::::
motion.

::::::
Markers

::::::
indicate

::::
time

::::
steps.

similar “history” and have, thus, undergone a diabatic ascent as well – just earlier – further underlines the importance of latent

heating in this case.685

The purple
:::
pink

:
cluster consists of air that is inside the blocking already at t=−72 h. During the ensuing three days,

it performs an anticyclonic rotation characteristic of high pressure systems (in the Northern Hemisphere). This is visible in

Fig. 12 (b)
::
13, where the horizontal velocity components are displayed in a hodograph for all clusters shown in Fig. 12 (a). The

polar plot enables display of both horizontal velocity components in one graph and makes clear the circular movement of the

purple
:::
pink

:
cluster. The orange (4) and red (0

::::
blue

::
(6)

::::
and

:::::
brown

:::
(4) clusters’ arrival in the blocking can be similarly identified690

by their anticyclonic movement later on, though the curves are a lot less clear. A decrease of zonal velocities reveals that the

orange
:::
blue

:
cluster arrives second before the red, the green

:::::
brown,

:::
the

::::::
purple (2) and finally the blue

:::
red.

Tracking of the individual clusters confirms the hypothesis formulated in Sect. 4.2.1. The size of the blocking determines

when and how long the traced parcels are inside its region of influence and, thus, how dense and how three-dimensional the

parcels assemble at a particular point in time. The present example also demonstrates that the processes discussed do not occur695

exclusively, but can coexist and contribute to the complexity of both individual cases and case-to-case variability.
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5 Conclusions

The present study aimed to investigate the occurrence of warm conveyor belts (WCBs) feeding into atmospheric blocking

adhering to the notion of spatial coherence. This promised to provide a complementing perspective on WCBs as phenomena

of first order importance for the behavior and development of atmospheric blocking. We also use this case study to prove700

the methodological value of the mathematical concept of coherent sets, which is an active area of research. To the best of

our knowledge, neither the study of WCBs based on their spatial coherence nor the identification of coherent air streams in

high-resolution three-dimensional atmospheric trajectories has been carried out thus far.

The adaptation, implementation and advancement of the methodology of Banisch and Koltai (2017) is the core contribution

of this work. The developed framework respects the scale dissimilarities of atmospheric motion, handles boundary conditions705

in a physically consistent manner and provides flexibility for application to geoscientific phenomena on other scales all while

keeping numerical efficiency and ease of application in mind.
:::
We

:::::::
employ

:
a
:::::::::

quantative
::::::

metric
:::

of
:::::::::
coherence

::
to

:::::
prove

::::
our

::::::::
adaptation

::
is
::::
able

::
to

:::::::
identify

:::::::
coherent

::::
sets

:::
that

:::
are

:::::::::
drastically

:::::
more

:::::::
coherent

::::
than

:::::::::
randomly

:::::::
selected

:::
test

::::
sets. Broadening the

range of phenomena studied in this manner is a subject of future work. To facilitate this, we provide a user-friendly python

package, GeoCS (cf. code and data availability).710

The case studies presented demonstrate our method’s capability in finding WCBs based solely on spatial information. Apart

from respecting the (arguably) common notion of WCBs as coherent, synoptic scale air streams, this perspective has the

advantage of being able to conceive WCBs as spatio-temporally extended objects in time similar to atmospheric blockings.

More specifically, we found that, on the one hand, air parcels that reach a blocking at a common point in time may have been

part of the same or different WCBs and that, on the other hand, individual WCBs can contain air parcels that reach the same715

blocking at different points in time (cf. Fig. 7).

The WCBs found in our case studies were generally remarkably distinct from other coherent sets identified, both with respect

to their dynamical properties and their pathways. Nevertheless, we did not find a rigorous dichotomy between moist and dry air

streams as it might seem when looking at distributions of maximal potential temperature change over all trajectories traced over

the whole lifetime of a blocking event (Steinfeld et al., 2022; Steinfeld, 2019; Pfahl et al., 2015). In agreement with existing720

research, for both of the two blockings investigated, the influence of WCBs was episodic and larger in earlier stages of the

life cycle. Our results suggest that this was due to large scale subsidence, inavailability of moisture and self-containment of air

parcels in blockings later in their life cycle. In earlier stages, however, we found that up to 100 % of the air parcels traced were

influenced by a WCB at some point.

In addition to clustering trajectories, the presented method provides concise information on the shape of the point cloud725

represented by the air parcels traced at each point in time. In particular, we introduced the heuristics d and ℓ approximating

the dimension and grid length of the point cloud and emphasize that both of these behave considerably different than linear

measures of distances between the points. Given that Lagrangian analysis is ubiquitous especially in atmospheric sciences, we

think that these tools are a valuable contribution.
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Figure A1. Number of trajectories m (orange squares; left axes) and scale factor κ (blue circles; right axes) calculated over all sets of

trajectories and time steps for three-day forward and three-day backward trajectories at each initialization date.

Applying these heuristics to our case studies showed that the stabilizing effect a blocking has on the synoptic flow field730

imprints on the coherence of trajectories that flow through it. This happens due to quasi-stationarity, reduced shearing and

generally lower velocities. Consistently, strong and abrupt changes in the flow field, such as when a zonal regime reestablishes

after a blocking, lead to shearing and filamentation of point clouds.

Given the complexity of the algorithm developed, a climatological evaluation of the effects discussed for the present case

studies is non-trivial and, thus, subject of future studies. As mentioned above, we are convinced that the methodological735

framework presented will give valuable insights for other meteorological (or oceanic) phenomena such as cyclones.

Code and data availability. Code to reproduce the findings in this paper is published as a python package on the python package index

repository (pypi.org/project/GeoCS/). It also contains a list of all dependencies used. ERA5 reanalysis data is available from the ECMWF’s

climate data store (CDS; cds.climate.copernicus.eu). Trajectories and averaged diffusion operator matrices (Qϵ) can be provided upon re-

quest.740

Video supplement. Videos of synoptic conditions for both case studies can be accessed online (Schoeller, 2024). Additional figures are

provided in the supplement material.
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Figure A3. 2D histogram of edge lengths of the α-hulls generated by α-shapes for the trajectories initialized at (a) 02 May 2016 00 UTC,

(b) 04 May 2016 00 UTC and (c) 26 January 2017 18 UTC. Black lines indicate median and quartiles of the distributions for a specific t.
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