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Abstract. The development of continuous river turbidity monitoring systems is essential, since it is a critical water quality 

metric linked to the presence of organic and inorganic suspended matter. Current monitoring practices are mainly limited by 

low spatial and temporal resolution, and costs. This results in the huge challenge to provide extensive and timely water quality 

monitoring at global scale. In this work, we propose an image analysis procedure for river turbidity assessment using different 20 

camera systems (i.e., fixed trap camera, camera on board of an Unmanned Aerial Vehicle, and a multispectral camera). We 

explored multiple types of camera installation setup during a river turbidity event artificially re-created on site. The outcomes 

prove that processed digital camera data can properly represent the turbidity trends. Specifically, the experimental activities 

revealed that single band values were the most reliable proxy for turbidity monitoring in short terms, better than band ratios 

and indexes. The best camera positioning, orientation and lens sensitivity, as well as daily and seasonal changes in lightning 25 

and river flow conditions, may affect the accuracy of the results. The reliability of this application will be tested under different 

hydrological and environmental conditions during our next field experiments.  The final goal of the work is the implementation 

of this camera system to support existing monitoring techniques with early warning strategies and help in finding innovative 

solutions to water resources management. 
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1 Introduction 

Nowadays, compliance with the European Water Framework Directive and World Health Organization (WHO) guidelines for 

water quality is becoming more and more challenging (Santos et al., 2020; WHO chronicle, 2011), since human-related 

activities and climate change are heavily impacting water resources. Therefore, fresh water will be a more and more valuable 35 

resource which deserves to be properly monitored, exploiting all available techniques, and also wisely managed (Manfreda et 

al., 2024). In this context, turbidity is a key factor for water quality monitoring and an optical property often used as an indicator 

of suspended particles and floating pollutants (Stutter et al. 2017; Tomperi et al., 2022). In inland water bodies, turbidity level 

and trophic state can strongly change with seasonality (Jalón-Rojas et al.,2015), soil erosion, extreme events, and farming 

activities (Lu et al., 2023). Despite expensive costs for instruments and personnel, conventional in-situ monitoring techniques, 40 

using regular but not frequent sampling, return poor information to properly characterize temporal trends and spatial variability 

of hydrological and environmental conditions in river basins (Guo et al.,2020), usually underestimating the real loads 

(Gippel,1995).   

In the last years, several innovations have been introduced in hydrological monitoring which exploit satellites, Unmanned 

Aerial Vehicles (UAV) or camera systems in combination with image processing and machine learning techniques (Manfreda 45 

et al., 2018; Manfreda and Ben Dor, 2023). These methods offer the opportunity to provide large scale and detailed information 

on specific hydrological processes with relatively low costs. Within this context, many remote sensing applications for water 

quality applications have been developed (Ritchie et al., 2003; Ahmed et al., 2020), exploring the potential information coming 
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from the water spectral signatures (Gholizadeh et al. 2016) and investigating the dynamics of riverine ecosystems (Zhao et al., 

2019; Lama et al., 2021).  50 

Many of these studies developed turbidity estimation algorithms using satellite products, mainly for very large rivers, reservoirs 

(Potes et al., 2012; Constantin et al., 2016; Garg et al., 2020; Hossain et al., 2021) and coastal areas (Dogliotti et al., 2015). 

Unfortunately, satellite spatial resolution can’t provide distributed estimations of water turbidity (WT) along the entire river 

network (Sagan et al., 2020) and the frequency of data collection is limited by satellite revisit period, usually of 5-10 days for 

Sentinel 2 and Landsat 8 (Jia et al., 2024). Recent studies are starting to investigate the perspective of digital cameras and low-55 

cost optical sensors for river turbidity monitoring (Gao et al., 2022; Droujko & Molnar, 2022). However, no studies focused 

yet on the potential of image analysis applied in a real riverine environment. Such an application could definitively grant 

continuous high-frequency data, across the inland water bodies even without spatial resolution issues. Moreover, latest 

advances in computer vision techniques can certainly help us in extracting water quality information from images. The present 

study explores the use of an image-based monitoring procedure for river turbidity estimation. It was carried out within a real 60 

river where an artificial perturbation of the water turbidity has been used to find the optimal configuration for camera systems, 

the best performing band and range of applicability of the procedure. The manuscript contains a short introduction with the 

background used, then the field experiment and methods are illustrated in Section 2, finally results are discussed providing our 

final remarks. 

1.1 RGB image acquisition and interpretation 65 

The use of digital cameras in river monitoring activities can increase our knowledge of the real status of water bodies, solving 

the above-mentioned cost and data resolution problems of the existing techniques. The challenge of image-based procedures 

is the proper red, green, and blue (RGB) signal interpretation and processing. Goddijn et al. (2009) affirm that cameras can be 

seen as three-band radiometers, able to measure the water-leaving spectral response. The actual water upwelling light Rw that 

reaches the camera lens, schematically shown in Figure 1, is the sum of various reflectance components of the suspended 70 

particles (Rs), the riverbed background (Rb) and the water itself. One component could prevail over the others, depending on 

the variability of hydrological (water level, flow velocity, etc.) and environmental (suspended solids concentration, floating 

pollutants, etc.) characteristics of the river. Digital cameras receive these inputs and return a signal in terms of RGB pixel 

intensity values.   
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 75 

Figure 1: Light behaviour within shallow (b) and non-shallow water (a): The solar irradiance (IR) passes through the water, whose 

reflectance (Rw) is influenced by the background (Rb) and suspended particles (Rs) presence, by varying the water level (H). Finally, 

the total water reflectance (Rw) signal is caught by the digital camera that produces an image with different pixel intensities of red, 

green and blue values (RGB). 

1.2 Turbidity image-based measurements 80 

In the literature, there is a robust relationship between digital camera output and water quality indicators. Each of these methods 

requires specific solutions to provide trustable results based on the absolute water colour estimation under changing light 

conditions. For instance, Goddijn and White (2006) fixed a pipe around the camera lens to avoid external reflections for 

adjusting the image data collection. Leeuw and Boss (2018) developed an innovative smartphone app called “Hydrocolor”, 

using images of the sky and a grey card nearby the camera’s view field as radiometric references for turbidity estimation from 85 

the pictures of the water. Nevertheless, the reliability of their results strongly depends on the quality of the unsupervised image 

data coming from the citizens and the environmental conditions, resulting in inaccurate estimates for water surface roughness 

and changing weather conditions. More recently, Ghorbani et al. (2020) provided a continuous monitoring camera tool for 

suspended sediment concentrations (SSC) and turbidity, by using image analytics methods and machine learning techniques. 

They found evidence of correlation between SSC and camera images in their experiments under laboratory-controlled 90 

conditions.  

In real riverine environments there are many more variables to consider. The image reflectance can be strongly influenced by 

several factors regarding river flow and light conditions variability. Moreover, different bands could provide several 

information about the water status, both considering single bands and their combinations. Nechad et al. (2010) demonstrated 

that single bands in the red and NIR (Near-Infrared) spectral ranges give a robust outcome in mapping total suspended matter 95 
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in coastal turbid waters using several satellite data sources. However, the choice of single bands or their combination is dictated 

by the concentration of the suspended solids and the type of floating pollutants, as well as water depth and riverbed background. 

In addition, the accuracy of the estimates is certainly influenced by camera positioning and orientation with respect to the 

examined river section. Our analysis involved the installation of a trap camera (TC), a multispectral camera (MSC), and an 

Unmanned Aerial Vehicle (UAV) in order to examine the best spectral response of red, blue, green, NIR bands and their 100 

combinations, as well as the best camera installation setup.  

The purpose of the field campaign was to conduct tests on the potential practical applications of the image processing for river 

turbidity monitoring. This tool can promote the development of early warning networks at river basin scale, moving water 

research forward thanks to a large increase of data on water bodies and the reduction of operating expenses. 

2 Materials and methods 105 

2.1 Full-scale experiment 

The field experiment took place in February 2023, in the monitoring station of Meisdorf, Germany, better described in Miglino 

et al. (2022). The selected river section was the Selke River, within the TERENO (TERrestrial ENvironmental Observatories) 

global change exploratory catchment managed by the Helmholtz Association, Germany (Wollschläger et al., 2017). Recently, 

the Bode basin has gone through prolonged droughts from 2015 to 2019, resulting in changes in land use, water quantity and 110 

quality. This could potentially impact also the suspended solids load and pollutants concentration. In this experiment a 

synthetic turbidity event was recreated by adding kaolin clay into the water, upstream enough from the monitored river cross-

section, to ensure the complete mixing of the tracer (Figure 2).  Kaolin is usually exploited to prepare turbidity standard 

solutions. In addition, it is a harmless, easy to handle, and a cheap mineral, which is also a common silicate in natural soils 

and sediments. 115 

 

Figure 2: View of Selke River, before (a) and during (b) the synthetic turbidity peak in the field experiment. 

We conducted the tracer experiment on 14 February 2023, adding 50 kg of kaolin tracer evenly distributed to the whole stream 

cross section at 12:05, 700 m upstream of the monitored river section. The mean flow velocity was 0.47 m/sec, the flow 
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discharge was 2.3 m3/s, while the water level was 0.54 m, and the width of the river section was 9 m. The turbidity level 120 

started to artificially increase after 12:20, the peak was reached around 12:30, and the event ended after 13:00. 

Several monitoring instruments were used during the experiment: three low-cost trap cameras (TC-Ceyomur CY50), one 

multispectral camera (MSC-Tetracam ADC Snap) and one unmanned aerial vehicle (UAV-DJI Mavic 2 Enterprise Dual) were 

placed in different positions. By looking at Figure 3, the MSC, in red, was installed on the bridge and the square in red 

represents its field of view. Two TCs were installed on the left riverbank (LRB) and the right riverbank (RRB), while the third 125 

TC was fixed on the bridge. The last camera was on the UAV, which ensured a zenithal field of view on the river section, 

indicated by the light blue square. The flight height of the UAV was 5 m. 

 

Figure 3: Plan of the monitored river section during the field experiment, showing the generated synthetic turbidity events, using 

kaolin clay tracer. 130 

The collected data could be affected by sun-glint, shadows and other external light sources. For these reasons, it’s essential to 

find the optimum camera installation design, for minimizing the uncertainties from water images. The camera data was 

compared to the measurements of the turbidimeters installed underwater in the river cross-section (Figure 4). They were located 

with a distance of 2 m each from the right and left stream bank for ensuring to detect the complete mixing of the suspended 

solids. 135 
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Figure 4: Optical measurements of turbidity, using two turbidimeters installed on the right and the left riverbed sides during the 

experiment. 

The frame set in Figure 5 displays all the camera's fields of view along the stream during the experiment. The region of interest 

(ROI) was selected making sure that it included only the water surface area. The mean of the pixel values inside the ROI area 140 

was considered as the representative value for the turbidity level for each single picture. Moreover, a radiometric calibration 

panel (RCP) was installed within the picture area, close to the investigated water surface. It consisted of a waterproof plastic 

laminated panel containing the reference RGB colour values for the image processing steps below. 

 

Figure 5: Frame set of the camera types, fields of view and installation points during the start and the peak event time of the field 145 
experiment. 
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2.2 Image processing procedure 

This work defines and tests an image-based method that takes into account variables occurring within time- and site-specific 

riverine environments. It’s important to build a robust procedure, since the acquired camera data cannot provide information 

as they are because they are not yet compared to physically meaningful units. Herein, our workflow (Figure 6) sets out the 150 

general algorithm of image processing for WT analysis, starting from a correct image extraction and stabilization. Then, the 

steps of radiometric calibration and binarization allowed us to homogenize and select the relevant features from the image 

data. Finally, the WT indexes were defined from processed signals and validated by field measurements to train the model and 

quantify the river turbidity level. 

 155 

Figure 6: Image processing procedure workflow. 

2.2.1 Image extraction and stabilization 

The image data were stored as timelapses with a set frame rate depending on the type of camera. The number and the format 

of the extracted images were fixed for each timelapse frame, also collecting frequencies, to ensure the correct comparison 

between cameras and measurement data.  160 

The image sequences were involved in the image stabilization process, because the position of the objects in the scene could 

be shifted by environmental factors and camera instability. The image stabilization techniques performed an automatic 

detection and matching of features within the selected image area close to the RCP (Figure 7). In particular, we used the Harris-

Stephens corner detection algorithm to identify feature points and remove apparent movements and jitter within the field of 

view in the videos (Harris & Stephens, 1988; Abdullah et al., 2012). This step was necessary to grant the correct detection of 165 

the RCP and ROI areas location required for the following image analysis processes.  
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Figure 7: Stabilization of the RCP coordinates for each extracted frame. The yellow lines show the panels shift during a camera 

monitoring period of two months. 

2.2.2 Radiometric calibration 170 

For absolute radiometric correction in monitoring activities where the distance between the ground and the camera is less than 

100 meters, it is assumed that the atmosphere is not influencing the light signal. Nevertheless, other site-specific and 

meteorological variables can still affect the camera measurement (Daniels et al., 2023). The radiometric signal of an object is 

influenced by the geometry of the measurements, depending on the relative positions of the sun, the measured object and the 

optical sensor. The direct-diffuse ratio, the atmosphere absorption, and scattering of the solar radiation in the space from the 175 

object to the sensor, and also the camera sensitivity are all significant factors influencing the natural illumination conditions. 

Using reference targets or recognized radiometric standards within the scene is necessary to convert the uncalibrated image 

pixel intensity (PI) values, also called digital numbers (DNs), into radiometrically meaningful units such as reflectance or 

radiance (Guo et al., 2019; Kinch et al., 2020). In this experiment, we chose a simplified design of the radiometric calibration 

panel with inside the assumed reference values (RVrc) of the maximum PIs of red, green and blue for all the image (Figure 180 

8.b), considered as the mean of the respective single band values of the pixels inside the panel squares. 
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Figure 8: Example of radiometric calibration procedure applied to a TC image, using the reference mean RGB values (a) of the 

radiometric calibration panel (b) installed within the camera field of view (c). 

The image PI values were reassigned considering the RCP reference values frame by frame, for each band, as follow: 185 

𝑃𝐼𝑟𝑐 =  { 1 , 𝑃𝐼/𝑅𝑉𝑟𝑐},           (1) 

where 𝑅𝑉𝑟𝑐 is the panel reference value of red, green and blue for the radiometric calibration process. 

  

PI values range for each band goes from 0 to 255, but we considered normalized values between 0 and 1. Once the radiometric 

signal is correctly calibrated, the effect of changes in light conditions on the image information is substantially reduced.  190 

Therefore, some image areas could still be affected by sun glare and overly intense shadow. These pixels must be removed by 

binarization because they do not contain useful information about the water reflectance. 

2.2.3 Image binarization 

Image binarization techniques convert images into binary representations typically applying predetermined thresholds to 

grayscale or RGB values. Here, the adopted procedure follows the Otsu’s approach (Otsu, 1975). The global threshold was 195 

defined, separately for each band and for each frame, as a result of the minimization of the weighted variance of two clusters. 

All the values above this threshold are replaced with 1, while the other values with 0. The procedure involves iterations through 

every image pixel and counts the occurrence of each intensity. From the combination of the binarized single bands (Figure 9) 
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it is possible to remove the pixel with signal distortions due to the effect of sun glare and the shadows. In this way, only the 

actual water reflectance information can be retrieved from the pictures. 200 

 

Figure 9: UAV image before (a) and after (b) the binarization procedure. 

2.2.4 Water turbidity camera index 

All the information coming from the camera bands could be properly considered for getting information on WT level in the 

monitored river site. We selected the most representative remote sensing applications for each band and index, as explained in 205 

Table 1. 

 

Table 1: Camera band combinations selected for on-site river turbidity remote measurements 

Single green and red bands were considered the most representative signals for identifying the turbidity. The NIR band is also 

effective in detecting very high turbidity levels. Some ratios between these bands were taken into account too. We selected 210 

from literature the ratio between red and green, the normalized difference turbidity index (NDTI) derived from RGB-imagery 

and the normalized difference water index (NDWI) that combine NIR and green bands.   
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3 Results 

Our experiments highlighted the capability of digital cameras to detect variations in WT level. We observed that digital camera 215 

results are influenced by several factors, such as the type of sensor adopted, the camera sensitivity, position and orientation. 

In particular, MSC results in Figure 10 describe distinct behaviours of the single bands. Red and green bands can capture 

turbidity increases above the measured value of 20 NTU, while the NIR band spectral response is much lower. Since the NIR 

band is totally absorbed by the water surface, its substantial changes can be detected only for very high concentrations of 

suspended particles. If we consider the NDWI, the correlation between the camera and turbidimeter data becomes more 220 

consistent, as well as those of red and green bands. 

 

Figure 10: a) Comparison between turbidimeter measurements and data from the multispectral camera (MSC) installed on the 

bridge; b) Scatter plot of the MSC single bands values and on-site measurements; c) Scatter plot of the MSC NDWI values and  on-

site measurements. 225 

Trap camera outcomes are reported in Figure 11, where it is possible to observe different patterns depending on the installation 

position. Red and green band signals, from the TCs installed on the LRB and RRB, follow the measurement curve for the 

entire monitoring period, while the TC installed on the bridge seems to be influenced by the variation of the light condition 

during the first part of the experiment, before exceeding turbidity values higher than 50 NTU. Moreover, all the TCs results 

show the same intensity values in correspondence to the turbidity peak, except those from LRB matching the measures but 230 

with lower PI signals. The most reliable TC bands ratios and indexes were those from the RRB position (Table 2). 

https://doi.org/10.5194/egusphere-2024-2172
Preprint. Discussion started: 6 September 2024
c© Author(s) 2024. CC BY 4.0 License.



13 

 

 

Figure 11: Comparison between turbidimeter measurements, red and green band values from all the trap cameras installed on site; 

b) Scatter plot of all the cameras green band signal (in green) and red band signal (in red); c) Scatter plot of the NDTI (in magenta) 

and Red/Green (in blue) indexes from the trap camera installed on the left riverbank (LRB). 235 

The UAV camera returned partial data (Figure 12), due to the loss of signal that caused a break in the recordings for 5 minutes 

immediately after reaching the measured turbidity peak. Therefore, there is a good correspondence between UAV bands signal 

and the turbidimeter data. In the second part of the recording, we can observe that the bands signals are lower than those during 

the peak, but they don’t exactly fit the measurements decreasing curve. That’s because the white balance setting of the camera 

was on and this resulted in a discrepancy in the intensity of the starting signals, but not in terms of variations. 240 
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Figure 12: a) Comparison between turbidimeter measurements and data from the UAV camera; b) Scatter plot of the variables. 

3.1 Performance metrics 

Table 2 summarizes the performance in terms of linear and quadratic R-squared correlation coefficients, considering the 

different camera types, bands, view angles, and installation setups selected for the field tests. 245 

 

Table 2: Linear and quadratic correlation coefficients R² of the cameras bands compared to turbidity measurements, considering 

different camera types and installation points selected for the experiment. 

Red and green single bands can describe turbidity variations better than band ratios and indexes, for all the cameras used in 

this short-term experiment. Moreover, the MSC installation allowed us to understand the potential uses of bands beyond the 250 

visible spectrum. NIR band seems to have good performance for high concentration of suspended particles that reflect a 

consistent part of its radiation. In fact, considering combined MSC bands, the best performance comes from the NDWI index 

that involves the NIR and green bands. 
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4 Discussion 

Regarding the experimental setup, the presence of the submerged turbidimeters in both river sides (Figure 4) ensured to 255 

quantify the horizontal variability of the turbidity level along the river cross section. The vertical variability of turbidity on the 

water column is not so significant for a river as small as Selke, with a registered maximum water level of 1 meter. However, 

the proposed image-based procedure shall also apply for bigger rivers, since cameras capture the light from the entire water 

column until a mid-high turbidity level is reached. Once achieved this threshold (Figure 2.b), only the water surface can be 

investigated by the camera.  260 

Interesting results were observed for all three RGB bands, since we used a white clay to increase the turbidity level. Further 

experiments with multiple tracers as inputs, changing the colours and particle concentrations will help to gauge the 

effectiveness of the procedure. What we expect from a generalized application of the procedure, on the light of this and the 

past field tests experiences (Miglino et al., 2022), is the greater reliability of the red band, for variable suspended particles 

characteristics, and better performances of band ratios and indexes, for long term monitoring in different hydrological 265 

conditions.  

4.1 Range of applications 

The comparison of all experimental data in Figure 13.a shows that the initial band signal responses were different for each 

camera, depending on lens sensitivity, position, field of view, angles from water surface and orientation with respect to the 

sun's apparent motion axis. One way to homogenize these results is to consider the increment of band signals, starting from a 270 

band signal for clear water condition, referred to the image frame with minimum measured NTU value. Figure 13.b shows the 

increments between the red band signals (Red) for each frame and for the clear water conditions (Red0). Since the UAV data 

was split into two distinct videos, some of the primary turbidity event occurred during the pause between the two recordings, 

hence it was excluded. In addition, the UAV camera was the only one with a pre-set automatic light balance, making it 

impossible to integrate these data with the others.  275 

 

 

 

 

 280 
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Figure 13: Comparison of turbidimeter measurements and all the cameras’ data, in terms of red band values (A) and increments 

(B) starting from a clean water condition (Red0). 285 

It is worth to observe how there is a better overlap for the Red- Red0 increment curves than the single red band signal curves. 

In fact, the identification of the PI for the clear water could remove the mismatches between the initial PIs detected by the 

camera, both due to changes in light and camera lens sensitivity.  Next experiments will face this issue, especially for shallow 

water conditions, where the visibility of the riverbed background could become a reference value of water clarity, regardless 

of site- and time- specific variabilities.  290 

4.2 Implications in river monitoring practices 

Prior to this work, image analysis for water turbidity was predominantly conducted using satellite data for large rivers or 

through the use of camera data and specific optical sensors in laboratory. The added value of our study lies in the development 

of a monitoring procedure that can be directly implemented on-site. This allowed us to test the method under real conditions 

and to optimize the camera installation for future applications in various environments.  295 

The proposed image processing procedure offers significant advances in river monitoring practices by providing a near real-

time, continuous, and automated system for water turbidity assessment. This approach can complement current monitoring 

practices, addressing their limitations in data availability and resolution, especially for small or inaccessible rivers where 

existing methods are impracticable. Furthermore, the use of remote sensing technology minimizes environmental disturbance, 

aligning with sustainable monitoring practices. The widespread of this procedure could significantly increase the amount of 300 
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available information on water status at basin scale, thereby enhancing our understanding of the ecohydrological dynamics 

involved in river processes. 

5 Conclusions 

The experimental activities revealed that single band values were the most reliable proxy for turbidity monitoring in short-

term observations, better than band ratios and indexes. The opposite could be true for long term observations, since single band 305 

signal tends to be more influenced by the variability of light and flow conditions. The advantages of using this procedure are 

multiple. Field tests proved that cameras, even the cheap models, can produce reliable turbidity estimates continuously in time. 

Moreover, they can be easily installed, in greater numbers than turbidimeters without the burden of cost, along the river 

network, providing a comprehensive knowledge of the river basin status. On-site tests are still on-going. It will allow us to 

acquire a significant set of data, covering many environmental and hydrological conditions, to fully understand how to optimize 310 

the characteristics of the camera and the installation setups.  

The practical application of this image-based procedure could create an innovative early warning network, not only limited to 

turbidity, but also provide a great potential for other water quality (e.g. chlorophyll-a) and water related (e.g. macroplastic) 

monitoring applications (Manfreda et al., 2024), advancing and supporting the existing river monitoring techniques. The next 

natural step is the involvement of these water quality estimation algorithms in a citizen science approach. Within this context, 315 

our research group is developing a smartphone app for river monitoring (https://sites.google.com/view/riverwatch/home-

page?authuser=0), focusing in particular on macroplastics and turbidity, that are the most easy-to-capture water quality 

information collectable by the people. The selected case study for the research activity is the Sarno River in Italy, one of the 

most polluted rivers in Europe. The real implementation of a continuous image-based river monitoring network like this, can 

offer new options to water resources management strategies and the preservation of aquatic ecosystems. 320 
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Appendix A: Acronyms and scientific units 

LRB - Left riverbank 

MSC - Multispectral camera 340 

NTU - Nephelometric turbidity unit 

RCP - Radiometric calibration panel 

RGB – Red, green and blue: colour representation model used on the digital screen 

ROI - Region of interest 

RRB - Right riverbank 345 

TC - Trap camera 

UAV - Unmanned Aerial Vehicle  

WT - Water turbidity 

DN - Digital number [-] 

PI - Pixel intensity [-] 350 

IR - Solar irradiance [W/m2] 

NDTI - Normalize difference turbidity index [-] 

NDWI - Normalize difference water index [-] 

NIR - Near-infrared radiation band [0.78–3 μm] 

Rb - Reflectance of the riverbed background [-] 355 

Red0 - Red band value for clear water condition [-] 
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RVrc - RGB bands reference value of the radiometric calibration panel [-] 

Rs - Reflectance of the suspended particles [-] 

Rw - Reflectance of the water [-]  

SSC - Suspended sediment concentration [gr/l] 360 
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