

Spatiotemporal variations in atmospheric CH₄ concentrations and enhancements in northern China based on a comprehensive dataset: Ground-based observations, TROPOMI data, inventory data and inversions

5

Pengfei Han^{1,2*}, Ning Zeng³, Bo Yao⁴, Wen Zhang⁵, Weijun Quan⁶, Pucai Wang², Ting Wang², Minqiang Zhou^{1,2}, Qixiang Cai^{7,8*}, Yuzhong Zhang^{9,10}, Ruosi Liang^{9,10}, Wanqi Sun^{11*}, Shengxiang Liu^{2,12}

¹Key Laboratory of Atmospheric Environment and Extreme Meteorology, Institute of Atmospheric

10 Physics, Chinese Academy of Sciences, Beijing 100029, China

²Carbon Neutrality Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

³Department of Atmospheric and Oceanic Science, and Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland, USA

⁴Department of Atmospheric and Oceanic Sciences and Institute of Atmospheric Sciences, Fudan 15 University, Shanghai, China

⁵State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

- ⁶Institute of Urban Meteorology (Key Laboratory of Urban Meteorology), China Meteorological 20 Administration, Beijing, China
 - ⁷State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China ⁸Qiluzhongke Institute of Carbon Neutrality, Jinan, China

⁹Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang, China

¹⁰Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China ¹¹Meteorological Observation Centre, China Meteorological Administration, Beijing, China ¹²Jiujiang University, Jiujiang, Jiangxi, China

* Correspondence to: Pengfei Han (pfhan@mail.iap.ac.cn); Qixiang Cai (caiqixiang@mail.iap.ac.cn);

Wanqi Sun (sunwanqi2008@126.com) 30

25

Abstract. Methane (CH_4) is a potent greenhouse gas with a global warming potential that is 28–36-fold higher than that of CO_2 at the 100-year scale. Northern China notably contributes to CH_4 emissions. However, high uncertainties remain in emissions, and observation gaps exist in this region, especially in urban areas. Here, we compiled a comprehensive dataset (available at

- 35 <u>https://doi.org/10.5281/zenodo.10957950</u>) (Han et al., 2024), including ground- and satellite-based observations, inventory data and modeling results, to study the CH₄ concentration, enhancement and spatiotemporal variation in this area. High-precision in situ observations from Beijing and Xianghe revealed that obvious seasonal cycles and notable enhancements (500–1500 ppb) occurred at a regional background site (Shangdianzi). We found significant increasing trends in the CH₄ concentration over
- 40 time in both the ground- and satellite-based observations and positive correlations between these observations. Anthropogenic emissions largely contributed to surface concentration variations and their increases in middle and southern Shanxi Province and northern Hebei Province. However, a spatially inconsistent pattern was observed between the results of optimized simulations driven by surface atmospheric inversion data and Tropospheric Monitoring Instrument (TROPOMI) column CH₄
- 45 observations in summer. Further validation on the basis of this comprehensive dataset indicated that the TROPOMI data may exhibit systematic bias in summer. The posterior concentrations generally agreed well with the surface in situ observations (mean biases ranging from -2.3~80.7 ppb). The posterior surface CH_4 concentrations (with a spatial resolution of $0.5^{\circ} \times 0.625^{\circ}$) revealed that southern Shanxi, northern Henan, and Beijing exhibited relatively high levels (an increase of ~300 ppb), which were
- 50 positively correlated with the PKU-CH₄-v2 emission inventory data. This study provides a comprehensive dataset of CH₄ concentrations and enhancements in high-emission areas, which can benefit the research community and policy-makers for designing future observations, conducting atmospheric inversions and formulating policies.
- 55 Keywords: Methane, in situ measurements, TROPOMI, TCCON, emissions inventory; atmospheric inversions

1 Introduction

Methane (CH₄) is a potent greenhouse gas (GHG) that exhibits a 28–36-fold greater global warming

- potential than that of CO_2 at the 100-year scale (Hu et al., 2024; Lin et al., 2021), with a radiative forcing of 0.61 W m⁻², and CH₄ is responsible for almost one-third of the total warming to date (Etminan et al., 2016; IPCC, 2022). According to National Oceanic and Atmospheric Administration (NOAA) atmospheric observations, the global mean atmospheric CH₄ growth rate increased dramatically to 13.2 ppb in 2022, resulting in record-high CH₄ levels above 1900 ppb throughout 2022
- 65 (https://gml.noaa.gov/ccgg/trends_ch4/). The fluctuations in the atmospheric CH₄ concentration are driven by various natural (e.g., wetlands) and anthropogenic sources (e.g., fossil fuel exploitation), and atmospheric CH₄ can be removed by sinks via chemical oxidation involving hydroxyl radicals (OH) and dry soil sinks involving aerobic methane-oxidizing bacteria (Lin et al., 2021; Saunois et al., 2020; Tan et al., 2022; Turner et al., 2019). Anthropogenic sources contribute approximately 60% to global
- 70 CH₄ emissions (Jackson et al., 2020; Saunois et al., 2020). Thus, reductions in anthropogenic CH₄ emissions have significant implications for achieving near-term climate goals (Gouw et al., 2020; IPCC, 2022; Staniaszek et al., 2022). To limit global warming to 1.5 °C, more than 130 countries have pledged to achieve carbon neutrality or net-zero emissions, which requires the combined reduction in both CO₂ and non-CO₂ (GHG) emissions (Fankhauser et al., 2022; Ou et al., 2021).
- 75 Emissions originating from urban areas account for approximately 21% of global CH₄ emissions (Zhao et al., 2019). For example, Crippa et al. (2021) reported that urbanization contributed to a sixfold faster increase in CH₄ emissions stemming from urban centers and that energy, transport, and waste were the dominant drivers of increases in urban emissions. Since 2000, CH₄ emissions in China have rapidly increased in response to industrialization and urbanization development (Lin et al., 2021).
- Accompanying this trend, notable expanding hotspots in megacities and high-energy-exploitation regions have become a concern. China enacted an ambitious plan to reach carbon neutrality before 2060 to address climate change. In November 2023, China issued the Methane Emissions Control Action Plan, which targets a utilization volume of coal mine methane of 6 billion cubic meters, a utilization rate of urban household waste of approximately 60%, and a utilization rate of dung and waste from livestock of at least 80% by 2025 (MEE, 2023). Understanding the current emission status,
- impacts on atmospheric CH₄ concentration increases, and mitigation potentials for CH₄ emissions are

prerequisites for developing effective mitigation policies.

Although previous efforts have been made to improve the accuracy of CH_4 emission estimates for China, substantial inconsistencies remain, especially in hotspot regions (Lin et al., 2021; Liu et al.,

- 90 2021b; Miller et al., 2019; Sheng et al., 2019). The recent emission inventories of PKU-CH₄ v2 (Liu et al., 2021b), Community Emissions Data System (CEDS) v2021-4-21 (Hoesly, 2019) and Emissions Database for Global Atmospheric Research (EDGAR) v7.0 (Crippa, 2023) exhibit a wide range of 47–67 Tg for 2019, which highlights the considerable uncertainty in the application of bottom-up methods. These uncertainties are due mainly to differences in source-specific emission factors and spatial
- 95 disaggregation of national or provincial annual totals (Crippa, 2023; Lin et al., 2021; Peng et al., 2016; Zhang et al., 2016). Furthermore, differences among inventories could substantially affect inversions using inventory data as prior estimates. The adoption of data from existing top-down studies (Miller et al., 2019; Yin et al., 2021) based on outdated bottom-up inventories could bias the determination of trends in CH₄ emissions in China (Liu et al., 2021b). Tan et al. (2022) also reported that the inversion
- 100 model performance is highly affected by prior data and measurements of trends across China. There is a pressing need to improve the accuracy of CH₄ emission estimates to support the implementation of mitigation strategies and better characterize regional CH₄ surface fluxes. Satellite observational platforms provide promising pathways for tracking spatial and temporal

variations in CH_4 sources (Irakulis-Loitxate et al., 2021; Jacob et al., 2016; Pandey et al., 2019; Schuit

- 105 et al., 2023; Turner et al., 2015). Satellite retrievals of the column-averaged dry air mole fraction of methane (XCH₄) with an unprecedented spatiotemporal coverage and resolution can be used to rapidly detect CH₄ variations and verify bottom-up inventories. Although several previous studies have involved the use of data from the Greenhouse Gases Observing Satellite (GOSAT) and the SCanning Imaging Absorption Spectrometer for Atmospheric Chemistry (SCIAMACHY) to characterize
- 110 atmospheric CH₄ concentrations in China, the monitoring of emissions originating from large sources remains limited because of the relatively sparse observations and coarse resolution (Chen et al., 2022a; Chen et al., 2022b; Tan et al., 2022). Furthermore, Plant et al. (2022), Maasakkers et al. (2022), and Peng et al. (2023) reported that inventoried urban CH₄ emissions are underestimated relative to Tropospheric Monitoring Instrument (TROPOMI)-based estimates. Several studies have shown the ability of the recently launched TROPOMI to track and quantify CH₄ emissions stemming from point
- ability of the recently radiened TKOFOWI to track and quantify CH4 emissions stemming from

and regional sources (Barré et al., 2021; Jacob et al., 2016; Schuit et al., 2023). Gouw et al. (2020) reported that the TROPOMI can identify distinct methane emission increases in oil and natural production regions in the United States. Liu et al. (2021c) developed a new divergence method to estimate CH_4 emissions in Texas (North America) on the basis of TROPOMI observations. Liang et al.

120 (2023) used TROPOMI observations to estimate emissions in East Asia.

Northern China, encompassing the Beijing–Tianjin–Hebei (BTH) region and its surrounding provinces (including Shanxi, Shandong, Jiangsu, Anhui, and Henan), is a populous region with rapid socioeconomic development, and more than 30% of the anthropogenic CH₄ emissions in China in 2019 was generated in this region (PKU-CH₄, Fig. 1). Previous studies have indicated that northern China is

125 a CH₄ emission hotspot region (Liang et al., 2023; Tan et al., 2022). Emissions resulting from the production of raw coal in northern China constitute one of the major sources, and Shanxi is the largest regional CH₄ emitter, yielding 5.7 Tg of emissions in 2019 (PKU-CH₄). Notably, northern China is a hotspot region for atmospheric CH₄ concentration and flux studies.

In this study, we used high-precision in situ observations, Total Carbon Column Observing Network (TCCON) observations, satellite data, inventory data, and modeling data from atmospheric inversions to better understand the spatiotemporal variations and spatial gradients of atmospheric CH₄ concentrations and the correlations between emissions and concentrations in northern China. On the basis of this comprehensive dataset, we aimed to (1) quantify the spatiotemporal CH₄ concentrations and enhancements in northern China; (2) study the correlations between satellite- and ground-based

- 135 observations; and (3) assess the consistency and deviation in results derived from surface and satellite observations. First, we studied the temporal variations in local CH₄ concentrations and their enhancement in urban areas. Second, we analyzed the correlations between satellite-based column CH₄ concentrations and surface observations. Third, we assessed the model performance via high-precision measurements. Finally, we analyzed the spatial and temporal variations in posterior concentrations
- 140 determined with the Westlake model, which exhibits a satisfactory output and performance, at the monthly, seasonal, and yearly scales.

2 Data and methods

2.1 Surface observations

To monitor GHG emissions in support of assessing the realization of carbon neutrality goals, China is 145 making great efforts in terms of its GHG monitoring capacity (Han et al., 2018; MEE, 2021; Sun et al., 2022; Zeng et al., 2021). Three stations equipped with high-precision (1 ppb) Picarro instruments have been established in the BTH region, namely, the urban Beijing station (BJ), the suburban Xianghe station (XH), and the regional background Shangdianzi station (SDZ) (Fig. 1, Table 1), since 2019. Wind rose plots for data from these sites are shown in Fig. S1. Moreover, two TCCON stations 150 (http://www.tccon.caltech.edu/), namely, the Hefei and Xianghe stations, were established to continuously monitor the variability in the atmospheric XCH₄. In this study, we analyzed surface measurements along with satellite observations to better understand the temporal variations and seasonal cycles of atmospheric CH₄ from 2019 to 2021, while TCCON data were also employed to assess TROPOMI observations.

155

Table 1 Information on the three regional high-precision observation sites

Station name	Abbreviations	Station	Longitude	Latitude	Altitude	Height of the
Station name		type	(°E)	(°N)	(m)	inlet (m)
Beijing	BJ	Urban	116.3667	39.9667	49	80/280
Xianghe	XH	Suburban	116.9578	39.7833	95	60/100
Shangdianzi	SDZ	Regional	117.1166	40.6500	293	16/80
		background				

2.1.1 Ground-based high-precision in situ measurements

In situ measurements of atmospheric CH₄ dry mole fractions were conducted at the three sites (BJ, XH, and SDZ) via Picarro GHG analyzers (Fig. 1). The BJ station (116.37 \oplus , 39.97 \mathbb{N}) is located at the Institute of Atmospheric Physics, Chinese Academy of Sciences, in urban Beijing between the Third and Fourth Ring Roads (Liu et al., 2021a). This area is densely populated, and CH₄ concentrations are frequently influenced by local residential and transportation emissions. The XH station (39.75 \mathbb{N} , 116.96 \oplus) is located at a suburban site that represents the transition region from urban to regional

- background areas (Yang et al., 2021). The SDZ station (117.12 E, 40.65 N) is one of the regional Global Atmosphere Watch (GAW) stations of the World Meteorological Organization (WMO) in China and occurs on a mountainside 100 km northeast of urban Beijing. There is a small village in the lower valley of the mountain. The major vegetation types are shrubs and corn (Fang et al., 2016). The Mona Loa (MLO, 19.54 N, 155.58 W) site is a GAW station representing the global background (not shown in Fig. 1) located atop a mountain on Hawaii Island with the longest history of observations. The
- background map in Fig. 1 shows 10 km×10 km gridded anthropogenic CH_4 emissions from the PKU-CH₄ inventory with hotspots in Shanxi, Beijing, Henan, Anhui, and Inner Mongolia, while the subplots show sectoral CH_4 emissions from 2000 to 2019 at the provincial scale (Figs. 1 and S2).

175 Fig. 1 Observation sites (red dots) and gridded anthropogenic CH₄ emissions and sectoral emissions in northern China from the PKU-CH₄-v2 inventory.

Cavity ring-down spectroscopy (CRDS) instruments (Picarro G2301/G2401, Picarro Inc.) were used to continuously measure in situ atmospheric CH₄ concentrations at BJ, XH and SDZ. CH₄ concentration

- 180 data from the Waliguan (WLG) and MLO sites were obtained from the World Data Center for Greenhouse Gases (WDCGG; https://gaw.kishou.go.jp/). At the three regional sites, ambient air was sampled by an oil-free vacuum pump at different tower levels after particles were removed with a 2-μm filter. Then, the air was dried with a Nafion dryer to the dewpoint at -25°C, and the pressure and flow rate were stabilized before the air samples were analyzed with a CRDS instrument. All the observation
- 185 systems were calibrated every 6 hours by WMO X2007 standard gases. The accuracy of the observations was greater than 1 ppb at a 1-minute resolution. The sampling height was 80/280 m above ground level at BJ, 60/100 m at XH, and 16/80 m at SDZ.

2.1.2 Ground-based total column measurements

The TCCON aims to measure column-average mole fractions of CO₂, CH₄, and other gases beginning

- 190 in 2004 across 30 sites worldwide via solar absorption spectroscopy in the near-infrared region (Laughner et al., 2023). It is a ground-based network of Fourier transform spectrometers (FTSs) designed to retrieve high-precision data on GHG emissions and to provide a validation dataset for space-based measurements (Wunch et al., 2011; Wunch et al., 2010). Here, we used GGG2020 TCCON data from the Hefei (HF, 117.17 E, 31.9 N) and XH stations (Liu, 2023; Zhou, 2022). A
- 195 high-resolution FTS (IFS125HR, Bruker GmbH, Germany) system and a solar tracker (Tracker-A Solar 547, Bruker GmbH, Ettlingen, Germany) have been installed at the HF site since January 2014 (the site location shown in Fig. 1) (Wang et al., 2017). The observatory is located in the northwestern suburbs of Hefei and is surrounded by wetlands and croplands (Tian et al., 2018). Therefore, the CH₄ concentration observed at the HF station may be partly influenced by local anthropogenic emissions
- 200 from urban areas and cultivated lands and by natural emissions from wetlands (Tian et al., 2018; Wang et al., 2017). The bias correction factor for CH₄ at HF is 0.9765, with a 1σ standard deviation of 0.0020 (Tian et al., 2018). Additionally, an automatic weather station (ZENO 3200, Coastal Environmental Systems, Inc., Seattle, USA) was installed near the solar tracker instrument on the roof in September 2015 to collect meteorological data (Shan et al., 2019; Wang et al., 2017). The other TCCON site is
- 205 located at XH in the suburban area 50 km southeast of Beijing (Zhou et al., 2023). The XH station is surrounded by croplands and residential buildings (with an average height of ~20 m) (Yang et al., 2021). A Bruker IFS 125HR instrument was installed in the upper level of a four-story building in June 2016, and a solar tracker instrument was installed on the rooftop in June 2018 (Yang et al., 2021). The

retrieved XCH4 products at XH are subjected to air-mass-dependence correction and calibrated to the

210 WMO scale (Wunch, 2015; Yang et al., 2020).

2.2 Satellite observations

The TROPOMI onboard the Copernicus Sentinel-5 Precursor is a nadir-viewing, imaging spectrometer covering wavelength bands between the ultraviolet and shortwave infrared (SWIR) bands (Veefkind et al., 2012). The TROPOMI retrieves a methane column from the 2305–2385-nm SWIR band and the 757–774-nm near-infrared band, with a daily global coverage at a fine spatial resolution of 5.5 km×7

- 215 757–774-nm near-infrared band, with a daily global coverage at a fine spatial resolution of 5.5 km×7 km since August 2019 (7 km×7 km from January to August 2019) and a swath width of ~2600 km (Butz et al., 2012; Hu et al., 2016; Lorente et al., 2021). We used the TROPOMI CH₄ total column level 2 data product to quantify the variations and trends in northern China from January 2019 to December 2021. We employed XCH₄ retrievals with quality values greater than 0.5 (Gouw et al., 2020). To ensure
- comparison with surface measurements, bottom-up inventories and inversion results at different spatial resolutions, the TROPOMI XCH₄ observations were averaged to three spatial resolutions of $0.1 \,^{\circ}\times 0.1 \,^{\circ}$, $0.25 \,^{\circ}\times 0.25 \,^{\circ}$, and $0.5 \,^{\circ}\times 0.5 \,^{\circ}$. The TROPOMI data were resampled to each of the spatial resolutions. We first defined the spatial bounds of the resampled grids and then placed the original pixels into coarser grids according to the longitude and latitude of the pixel center. We defined the resampled values of
- 225 XCH₄ as the average of the original pixels belonging to the new resampled grids. This method ensures consistency between the regionally averaged XCH₄ values before and after resampling, with an average relative error of 0.03%. We used TCCON data from HF and XH to evaluate the accuracy and precision of the TROPOMI observations.

2.3 Bottom-up inventory

A gridded inventory of anthropogenic CH₄ emissions from Peking University (PKU-CH₄ v2) (Liu et al., 2021b; Peng et al., 2023; Peng et al., 2022), which has been assessed in our previous study (Lin et al., 2021), was adopted in this study. PKU-CH₄ v2 is an annual bottom-up inventory based on provincial activity data and regional, sector-specific emission factors for eight major sectors in China (Liu et al., 2021b; Peng et al., 2016). The inventory provides a priori knowledge of the temporal and regional distribution characteristics of anthropogenic CH₄ emissions in China. The main sources of CH₄

emissions in China are coal mining and agriculture, which contributed approximately 77% to the total

national emissions in 2019 (Lin et al., 2021; Liu et al., 2021b).

Coal mining is the dominant driver of CH₄ emissions in China, accounting for >80% of the increase in the total emissions in the 2000s due to the growth in coal production with rapid economic development
 and the increasing energy demand (Lin et al., 2021; Liu et al., 2021b). However, the reductions in both coal production and emission factors, with increasing utilization rates, contributed to slowing coal methane emissions from 2010–2019 (Liu et al., 2021b).

2.4 Atmospheric modeling and inversions

We employed the GEOS-Chem model as the forward model and an analytical Bayesian method for

- 245 inversions to optimize a state vector x containing annual methane emissions from 600 clusters and average methane column biases at four model boundaries covering East Asia (Liang et al., 2023), and Westlake data were considered optimized concentration data, with a spatial resolution of 0.5 %0.625 °. TROPOMI XCH₄ observations were used for data assimilation purposes. The former is a combined product. For oil and gas, we used the Global Fuel Exploitation Inventory (GFEI) v1.0 dataset, and for
- 250 coal in China, we used the inventory of Sheng et al. (2019), while the data for other sectors were derived from the EDGAR v4.3.2 dataset (Janssens-Maenhout et al., 2019). To consider major patterns in the distribution of emissions and significantly reduce the inversion computation burden, emissions were optimized on the basis of 600 spatial clusters instead of the native 0.5 °×0.625 ° grid, which were generated with a Gaussian mixed model algorithm (Turner and Jacob, 2015). The model performance
- 255 was evaluated by high-precision in situ observations. The optimized surface and column concentrations were used to analyze the spatiotemporal dynamics of CH₄ concentrations and emissions. Moreover, Copernicus Atmosphere Monitoring Service (CAMS) global inversion-optimized greenhouse gas concentrations were used in the comparison, which are coarse-resolution (2 °×3 °) monthly data that can provide a regional baseline (Rayner et al., 2016).

260

3 Results and discussion

3.1 Temporal variations in the in situ CH₄ concentrations and enhancements in urban areas determined by ground-based high-precision measurements

To determine the importance of understanding the uncertainties in concentrations and emissions in the

- study area, we firstly analyzed the temporal variations and the spatial enhancements on the basis of ground-based observations. There were clear temporal variations in the high-precision in situ CH₄ concentrations (Fig. 2) at all three sites from the urban BJ station to the suburban XH station to the regional background SDZ station. The concentrations at BJ and XH ranged from ~2000 ppb for the baseline to 4000–5000 ppb for the peak values in September and January in some heavily polluted
- 270 cases in winter. These results could be associated with high emissions from nearby wetlands at XH in summer and high residential and natural gas power plant emissions at BJ in winter (Ji et al., 2020). Such high concentrations have also been observed in large cities in Canada and the U.S., such as Los Angeles (Verhulst et al., 2017), Washington, D.C., and Baltimore (Huang et al., 2019), and Indianapolis (Mitchell et al., 2022). Furthermore, the WLG site (green line) provided a continental baseline, while
- 275 the MLO site (red line) provided a global baseline. There were also notable seasonal cycles and high spatial gradients at the three regional sites (Figs. 2 and 3, respectively). In contrast, SDZ and WLG exhibited fewer seasonal cycles.

Fig. 2 Hourly CH₄ variations at the four sites in northern China on the basis of ground high-precision observations. For WLG, we used weekly data because of data availability.

Fig. 3 Enhancements in the in situ CH₄ concentrations at BJ and XH compared with that at SDZ for the hourly mean from 00:00–23:59 (UTC time) in each month (Panel a) and during the four seasons and for the annual mean (Panel b) in 2019.

For the CH₄ enhancements in urban and suburban areas, the urban BJ station exhibited the greatest enhancements, with an annual mean enhancement ranging from 200–350 ppb over the 2019 season (Fig. 3a and b), followed by the suburban XH station (with seasonal enhancements ranging from 50– 200 ppb), compared with the concentration at the regional background SDZ station. The jumps during the months shown in Fig. 3a occurred because the hourly means from 23:00–23:59 within a certain month differed from those from 00:00–00:59 within the next month. The MLO data revealed the lowest

295

290

surface concentrations (~1800 ppb) and provided a global-scale background. The three regional sites all exhibited obvious enhancements over the MLO. The CH₄ dome observed in northern China is

al., 2017) and Washington, D.C. (Huang et al., 2019), but higher than that observed in Salt Lake City and Toronto, with values ranging from 100–1000 ppb (Mitchell et al., 2022). These surface enhancements also exhibited seasonal cycles, with higher values in autumn (371 and 193 ppb at BJ and XH, respectively) and lower signals in spring (195 and 70 ppb at BJ and XH, respectively). Moreover,
the monthly enhancements were consistent with this trend, with high enhancements from September to November (Fig. S3). In addition, the diurnal cycle was obvious each month, with a convex curve mostly influenced by the planetary boundary layer height (PBLH), which is similar to that of CO₂ (Bao et al., 2020) and air pollutants (Chu et al., 2019; Su et al., 2018).

305 **3.2** Correlations between the satellite-based XCH₄ concentrations and surface observations

Satellite observations have an advantage in spatial coverage, yet they need careful calibrations and validations, especially for regional scale studies. The satellite and surface observations generally agreed well in capturing seasonal variations, the CH_4 concentration was highest in autumn, and the concentration decreased to a low level in winter (Fig. 4). The phase of the cycles in the seasonal column CH_4 concentrations at BJ, XH, and SDZ from the TROPOMI data was consistent with that of the surface in situ measurements at the monthly scale (Fig. 4a, b and Fig. S4). However, the in situ CH_4 concentrations were greatly influenced by local emissions and meteorological conditions, with larger amplitudes than those of the TROPOMI data, thus yielding lower correlations with XCH_4 (R^2 =0.16 and 0.48, for *p*<0.05 and 0.01 at BJ and SDZ, respectively; Fig. 5a, b). Furthermore, the urban BJ station

315 exhibited higher XCH₄ values than those at the suburban XH station and the regional background SDZ station, which is consistent with the surface in situ measurements with higher signals. These results also indicated high local anthropogenic emissions in the urban areas of Beijing. At HF, the average XCH₄ was highest from August–September because of emissions originating from surrounding wetlands and rice paddies (Figs. 4d and 1). BJ and SDZ exhibited the highest values from September–October.

Fig. 4 Temporal variations in the mean monthly XCH₄ and surface CH₄ concentrations observed at the BJ (a), SDZ (b), XH (c), and HF (d) stations from 2019–2021. Note that the scales differ between BJ and SDZ.

As expected, the phase and magnitude of the seasonal cycles observed in the TROPOMI data at XH 325 and HF better agreed with those in the TCCON data than did the in situ comparisons (Fig. 4), with higher variations in the in situ observations (Fig. 4a, b). The R^2 values were 0.76 and 0.75 for XH and HF (Fig. 5c, d), respectively, which are higher than those with the in situ observations (Fig. 5a, b), with a *p* value <0.01 at both sites.

Moreover, there were seasonal trends between the TROPOMI and TCCON observations, with positive biases in the TROPOMI observations in spring and summer (5–15 ppb, or 0.5%) and negative biases in winter (~-5 ppb, or 0.25%) compared with the higher-precision TCCON observations, which is consistent with the findings of Sha et al. (2021). The TROPOMI XCH₄ and Hefei TCCON XH₂O values were significantly positively correlated, with $R^2 = 0.43$ and a *p* value <0.01 (Fig. 6b). Similar results have also been reported in other studies. High CH₄ biases at high latitudes correlated with H₂O

columns were found in H₂O retrievals from the TROPOMI by Schneider et al. (2020) and Lorente et al. (2021). The satellite retrieval biases might also be associated with cloudiness in summer and thus the limited number of TROPOMI observations (Qu et al., 2021) and relevant surface albedo and scattering issues (Barr éet al., 2021; Schneising et al., 2023; Schneising et al., 2019). Moreover, we calculated the

XCH₄ and in situ CH₄ growth rates. The XCH₄ level observed from the TROPOMI data clearly 340 increased from 2019–2021, with increase rates ranging from 1.4 to 1.6 ppb month⁻¹ (p < 0.01, Fig. 4). Future TROPOMI validations for potential H₂O impacts need vertical profile observations in southern area (e.g. in Anhui and Henan Province) in summer.

345 Fig. 5 Correlations between the mean monthly XCH₄ concentration from the TROPOMI dataset and the surface CH₄ concentration observed at BJ (a) and SDZ (b) and correlations between the mean monthly XCH₄ concentrations from the TROPOMI and TCCON datasets at XH (c) and HF (d) from 2019–2021.

350

Fig. 6 (a) Seasonal and annual biases of the TROPOMI XCH₄ observations minus the Hefei TCCON observations from 2019–2021. (b) Positive correlations between the monthly XH₂O from the Hefei TCCON observations and XCH₄ from the TROPOMI observations.

355 **3.3 Validation of the model performance against in situ measurements**

To assess the accuracy of the posterior CH_4 data from the GEOS-Chem and CAMS models, we compared the simulated concentrations with the high-precision measurements at BJ, XH, and SDZ. We used the mean bias (MB) and root mean square error (RMSE) to assess the model performance. The MB is an indicator of systematic biases, while the RMSE reflects the spread in simulations with higher

- 360 weights for large errors. In general, the models captured the CH₄ trends and variations (Figs. 7 and 8, respectively). The daily comparisons between the simulations and observations revealed a negative bias at the urban BJ site (MB=-57.2 ppb) and positive biases at the XH (77.4 ppb) and SDZ (68.0 ppb) sites (Fig. 8). The optimized GEOS-Chem model captured the observed baseline at BJ (Fig. 7a) but slightly overestimated the baselines at XH and SDZ (Fig. 7b, c and Fig. 8). Moreover, the RMSEs for the three
- 365 sites decreased from the urban BJ site (185.6 ppb) to the suburban XH site (157.7 ppb) and the regional background SDZ site (110.7 ppb) (Fig. 8). The simulations could not capture some of the peak values in urban Beijing (Fig. 7a), indicating considerable simulation challenges in urban areas with complex anthropogenic emissions, which is consistent with the CO₂ and air pollutant simulations (Feng et al., 2019; Liang et al., 2022).

- 370 The seasonal and annual biases of the GEOS-Chem and CAMS models relative to the in situ measurements were calculated (Fig. 8). Both models showed negative biases (-39 ~ -152 ppb) from spring to autumn in Beijing and positive biases (17~86 ppb) in winter, which was due to the higher baseline simulations on clean days (Fig. 8a). The GEOS-Chem model simulations revealed positive biases in the annual mean at the suburban and regional background sites during most seasons (Fig. 8b,
- 375 c). The CAMS model showed positive biases at XH and negative biases at SDZ, and both sites showed positive biases in winter (Fig. 8b, c). The hourly and monthly comparisons also revealed similar variations and trends (Figs. S5 and S6, respectively), while the monthly and seasonal data from the CAMS model also revealed negative biases in urban areas and positive biases in suburban areas, with lower biases at the suburban and regional background sites than at the urban site (Figs. 8c and S6).

380

square error. BJ, XH, and SDZ denote the observations from the Beijing, Xianghe, and Shangdianzi stations, respectively. Fig. 7 Daily comparisons of the Westlake model simulations with the in situ high-precision measurements at the three sites. MB denotes the mean bias, and RMSE is the mean root

385

Fig. 8 Seasonal and annual biases for the Westlake and CAMS models compared with the high-precision in situ measurements.

390 **3.4** Spatial characteristics of the inversion-optimized surface CH₄ concentrations and their correlations with emissions

Northern China serves as a notable CH_4 source, and the total emissions increased to 14.2 Tg yr⁻¹ in 2019 (Figs. 1 and S2), accounting for 30% of the total emissions in China (Liu et al., 2021b). Correspondingly, the optimized GEOS-Chem model surface CH_4 concentration reached 2112.1 ppb in

395 2019. High surface concentrations were mostly consistent with high emissions in southern Shanxi, northern Henan, Hebei and Beijing (Figs. 9–11 and Fig. 1), which has also been reported by Peng et al. (2023) in Shanxi. In contrast, most parts of Shandong, Jiangsu and Anhui indicated a relatively low

annual mean concentration in 2019. In terms of seasonal and monthly spatial patterns, spring (March-April-May) exhibited the lowest values, while autumn (September-October-November) and winter (January-February) exhibited much higher concentrations (Figs. 9 and 10, respectively). The northern part demonstrated lower concentrations in winter than in summer, largely due to the favorable climatic conditions for dispersion, with greater wind speeds in winter than during the other seasons (Figs. 9 and 10). We also compared the Westlake column CH₄ data with the TROPOMI observations, and these two datasets exhibited consistent spatial patterns across all seasons (Fig. S7) and suitable correlations

405 ($R^2=0.72\sim0.85$, p < 0.01; Fig. S8).

Moreover, the spatial patterns of the surface and column concentrations revealed inconsistent trends in spring (March–April–May) and summer (June–July–August) (Figs. 10 and S9, respectively), and the *p* values for the negative correlations during both seasons were less than 0.01 (Fig. S10), which may be caused by the dynamic seasonal vertical profiles and potential influences of water vapor. Further

410 evidence from direct in situ vertical observations is needed. This phenomenon, in which the inverted surface concentrations are not positively correlated with the column concentrations, even indicating negative correlations in summer, must be investigated further via in situ profile observations.

415 Fig. 9 Posterior annual and seasonal spatial distributions of the surface CH₄ concentration (Westlake) in northern China in 2019.

Fig. 10 Posterior monthly spatial distributions of the surface CH₄ concentration (Westlake) in northern China in 2019.

Enhanced surface CH₄ concentrations are an indication of high local emissions associated with coal mining, oil and gas activities, agriculture, or wetland processes (Barr é et al., 2021; Gouw et al., 2020; Zhang et al., 2020). The correlation between the PKU emissions and the simulated surface concentrations at the grid level (Fig. 11) was statistically significant (*p*<0.05), albeit with a low R² value of 0.06. Positive relationships with low R²have also been found in oil and gas production regions in the U.S. (Gouw et al., 2020).

Fig. 11 Correlations between the CH₄ emissions and the PKU-CH₄-v2- and Westlake-modeled surface CH₄ concentrations.

430

Moreover, we found a positive correlation between the TROPOMI column CH_4 and $PKU-CH_4-v2$ emission inventories in Shanxi (Fig. S11), which demonstrates the ability of satellite data to detect large local sources, such as coal mining (Peng et al., 2023), in urban regions. Recent studies have also indicated that TROPOMI data combined with other satellite observations can be employed to identify

435 large emission sources in gas and oil well blowouts (Cusworth et al., 2021; Schuit et al., 2023). These findings showed the potential use of satellite data in detecting hotspot emissions that may be omitted from emissions inventory, and thus further mobile observations (e.g. cars and UAVs) can be used for field double check in environmental enforcement.

4 Conclusions

- 440 In this study, we compiled a comprehensive dataset to study the spatiotemporal characteristics of surface and column CH_4 concentration variations and their correlations with emissions. We found that surface CH_4 concentrations can be much greater (500–1500 ppb) than regional background CH4 concentrations in urban and suburban areas because of anthropogenic emissions. Notable seasonal surface enhancements of 200–350 ppb at urban Beijing station and 50–200 ppb at the suburban
- 445 Xianghe station were observed compared with the concentration at the regional background Shangdianzi station. Positive relationships were found between the surface (both in situ and TCCON) and TROPOMI column observations. The inversion-optimized concentrations generally agreed well with the surface in situ observations in terms of the seasons and annual means in 2019. The optimized surface CH₄ concentrations were relatively high in southern Shanxi, northern Henan, and Beijing (with
- 450 enhancements of ~300 ppb), whereas relatively low concentrations were observed in southern Anhui and most parts of Jiangsu, which was positively correlated with the PKU-CH₄-v2 emission inventory data. However, the optimized surface concentrations were not positively correlated with the column concentrations and even indicated negative correlations in summer. Further investigations are needed to obtain column concentration algorithms and validate the in situ profile observations. This study
- 455 provides a comprehensive dataset of CH_4 concentrations and spatial gradients in northern China, which provides key data for further observations, atmospheric inversions and policy-making related to emission reduction.

460 Supporting information

Sectoral CH_4 emissions at the provincial level and simulated posterior monthly mean CH_4 concentrations, enhancements, etc., are contained in the Supporting information.

Data availability statement

The data used to generate the figures in this manuscript are available as open-access data at

465 <u>https://doi.org/10.5281/zenodo.10957950</u> (Han et al., 2024).

Competing interests

The authors declare that they have no conflicts of interest.

Funding

- This research was supported by the National Key R&D Program of China (No. 2023YFC3705500 and 2017YFB0504000), the China Quality Certification Center project—Monitoring, simulation and inventory joint assessment of carbon emissions in typical industrial parks against the background of carbon peaking and carbon neutrality (grant no. 2022ZJYF001), the Qiluzhongke Institute of Carbon Neutrality Program of Jinan Dual Carbon Simulator, and the Chinese Academy of Sciences (CAS) Proof of Concept Program—Carbon neutrality-oriented urban carbon monitoring system and its
- 475 industrialization (grant no. CAS-GNYZ-2022).

Author contributions

PFH, QXC and WQS conceived and designed the study. PFH, QXC, RSL, WQS, and SXL collected and analyzed the datasets. PFH led the writing of the paper, with contributions from all coauthors. All coauthors contributed to the descriptions and discussions in the manuscript.

480 Acknowledgments

We thank all the team members involved in the surface in situ observations. We thank Professor Shushi Peng for kindly providing the emission inventory and suggestions for the manuscript. We thank Dr. Xiaohui Lin and Mr. Zhoutong Liang for their help in the data analyses.

485 **References**

486	Bao, Z., Han, P., Zeng, N., et al., 2020. Observation and modeling of vertical carbon dioxide
487	distribution in a heavily polluted suburban environment. Atmospheric and Oceanic
488	Science Letters 13, 371 - 379.
489	Barré, J., Aben, I., Agustí-Panareda, A., et al., 2021. Systematic detection of local CH4 anomalies
490	by combining satellite measurements with high-resolution forecasts. Atmos. Chem. Phys.
491	21 (6), 5117-5136.
492	Butz, A., Galli, A., Hasekamp, O., et al., 2012. TROPOMI aboard Sentinel-5 Precursor: Prospective
493	performance of CH4 retrievals for aerosol and cirrus loaded atmospheres. Remote
494	Sensing of Environment 120, 267-276.
495	Chen, D., Chen, A., Hu, X., et al., 2022a. Historical trend of China's CH4 concentrations and
496	emissions during 2003–2020 based on satellite observations, and their implications.
497	Atmospheric Pollution Research 13 (12), 101615.
498	Chen, Z., Jacob, D.J., Nesser, H., et al., 2022b. Methane emissions from China: a high-resolution
499	inversion of TROPOMI satellite observations. Atmos. Chem. Phys. 22 (16), 10809-10826.
500	Chu, Y., Li, J., Li, C., et al., 2019. Seasonal and diurnal variability of planetary boundary layer height
501	in Beijing: Intercomparison between MPL and WRF results. Atmospheric Research 227,
502	1-13.
503	Crippa, M., Guizzardi, D., Pisoni, E., et al., 2021. Global anthropogenic emissions in urban areas:
504	patterns, trends, and challenges. Environmental Research Letters 16 (7), 074033.
505	Crippa, M.G., Diego; Pagani, Federico; Pisoni, Enrico, 2023. GHG Emissions at sub-national level.
506	European Commission, Joint Research Centre (JRC) [Dataset]
507	doi:10.2905/D67EEDA8-C03E-4421-95D0-0ADC460B9658 PID:
508	http://data.europa.eu/89h/d67eeda8-c03e-4421-95d0-0adc460b9658, accessed on
509	17th January 2024.
510	Cusworth, D.H., Duren, R.M., Thorpe, A.K., et al., 2021. Multisatellite Imaging of a Gas Well
511	Blowout Enables Quantification of Total Methane Emissions. Geophysical Research
512	Letters 48 (2), e2020GL090864.
513	Etminan, M., Myhre, G., Highwood, E.J. and Shine, K.P., 2016. Radiative forcing of carbon dioxide,
514	methane, and nitrous oxide: A significant revision of the methane radiative forcing.
515	Geophysical Research Letters 43, 12,614 - 12,623.
516	Fang, S., Tans, P.P., Dong, F., Zhou, Hg. and Luan, T., 2016. Characteristics of atmospheric CO2
517	and CH4 at the Shangdianzi regional background station in China. Atmospheric
518	Environment 131, 1-8.
519	Fankhauser, S., Smith, S.M., Allen, M., et al., 2022. The meaning of net zero and how to get it right.
520	Nature Climate Change 12 (1), 15-21.
521	Feng, T., Zhou, W., Wu, S., et al., 2019. High-resolution simulation of wintertime fossil fuel CO2 in
522	Beijing, China: Characteristics, sources, and regional transport. Atmospheric Environment
523	198, 226-235.
524	Gouw, J.A.d., Veefkind, J.P., Roosenbrand, E., et al., 2020. Daily Satellite Observations of Methane
525	from Oil and Gas Production Regions in the United States. Scientific Reports 10 (1), 1379.
526	Han, P., Zeng, N., Wang, Y., et al., 2018. Regional carbon monitoring for the Beijing-Tianjin-Hebei
527	(JJJ) City Cluster. 20th EGU General Assembly, EGU2018, Proceedings from the

528	conference held 4-13 April, 2018 in Vienna, Austria, p.4149.
529	Han, P., Zeng, N., Yao, B., et al., 2024. Methane concentration and emissions data for the northern
530	China. [Zenodo]. Available at <u>https://doi.org/10.5281/zenodo.10957950</u> , last accessed on
531	April 11th 2024.
532	Hoesly, R., O'Rourke, P., Braun, C., Feng, L., Smith, S. J., Pitkanen, T., Seibert, J. J., Vu, L., Presley, M.,
533	Bolt, R., Goldstein, B., and Kholod, N., 2019. Community Emissions Data System (Version
534	Dec-23-2019), Zenodo, https://doi.org/10.5281/zenodo.3592073, Accessed on 17th
535	January 2024.
536	Hu, H., Chen, J., Zhou, F., et al., 2024. Relative increases in CH4 and CO2 emissions from wetlands
537	under global warming dependent on soil carbon substrates. Nature Geoscience 17 (1),
538	26-31.
539	Hu, H., Hasekamp, O., Butz, A., et al., 2016. The operational methane retrieval algorithm for
540	TROPOMI. Atmos. Meas. Tech. 9 (11), 5423-5440.
541	Huang, Y., Kort, E.A., Gourdji, S.M., et al., 2019. Seasonally resolved excess urban methane
542	emissions from the Baltimore/Washington, DC metropolitan region. Environmental
543	science & technology.
544	IPCC, 2022. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of
545	Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on
546	Climate Change [HO. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck,
547	A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)].
548	Cambridge University Press. Cambridge University Press, Cambridge, UK and New York,
549	NY, USA, 3056 pp., doi:10.1017/9781009325844.
550	Irakulis-Loitxate, I., Guanter, L., Liu, YN., et al., 2021. Satellite-based survey of extreme methane
551	emissions in the Permian basin. Science Advances 7 (27), eabf4507.
552	Jackson, R.B., Saunois, M., Bousquet, P., et al., 2020. Increasing anthropogenic methane emissions
553	arise equally from agricultural and fossil fuel sources. Environmental Research Letters 15
554	(7), 071002.
555	Jacob, D.J., Turner, A.J., Maasakkers, J.D., et al., 2016. Satellite observations of atmospheric
556	methane and their value for quantifying methane emissions. Atmos. Chem. Phys. 16 (22),
557	14371-14396.
558	Janssens-Maenhout, G., Crippa, M., Guizzardi, D., et al., 2019. EDGAR v4. 3.2 Global Atlas of the
559	three major greenhouse gas emissions for the period 1970–2012. Earth System Science
560	Data 11 (3), 959-1002.
561	Ji, D., Zhou, M., Wang, P., et al., 2020. Deriving Temporal and Vertical Distributions of Methane in
562	Xianghe Using Ground-based Fourier Transform Infrared and Gas-analyzer
563	Measurements. Adv Atmos Sci 37 (6), 597-607.
564	Laughner, J.L., Toon, G.C., Mendonca, J., et al., 2023. The Total Carbon Column Observing
565	Network's GGG2020 Data Version. Earth Syst. Sci. Data Discuss. 2023, 1-86.
F C C	Liang, R., Zhang, Y., Chen, W., et al., 2023. East Asian methane emissions inferred from
566	
566 567	high-resolution inversions of GOSAT and TROPOMI observations: a comparative and
566 567 568	high-resolution inversions of GOSAT and TROPOMI observations: a comparative and evaluative analysis. Atmos. Chem. Phys. 23 (14), 8039-8057.
566 567 568 569	high-resolution inversions of GOSAT and TROPOMI observations: a comparative and evaluative analysis. Atmos. Chem. Phys. 23 (14), 8039-8057. Liang, Z., Tang, W., Zeng, N., et al., 2022. High-precision observation and WRF model simulation
566 567 568 569 570	high-resolution inversions of GOSAT and TROPOMI observations: a comparative and evaluative analysis. Atmos. Chem. Phys. 23 (14), 8039-8057. Liang, Z., Tang, W., Zeng, N., et al., 2022. High-precision observation and WRF model simulation of surface atmospheric CO2 concentration in Beijing-Tianjin-Hebei region (in Chinese).

572	Lin, X., Zhang, W., Crippa, M., et al., 2021. A comparative study of anthropogenic CH4 emissions
573	over China based on the ensembles of bottom-up inventories. Earth Syst. Sci. Data 13 (3),
574	1073-1088.
575	Liu, C.W., W.; Sun, Y.; Shan, C., 2023. TCCON Data from Hefei (PRC), Release GGG2020.R1.
576	https://doi.org/10.14291/tccon.ggg2020.hefei01.R1.
577	Liu, D., Sun, W., Zeng, N., et al., 2021a. Observed decreases in on-road CO2 concentrations in
578	Beijing during COVID-19 restrictions. Atmos. Chem. Phys. 21 (6), 4599-4614.
579	Liu, G., Peng, S., Lin, X., et al., 2021b. Recent Slowdown of Anthropogenic Methane Emissions in
580	China Driven by Stabilized Coal Production. Environmental Science & Technology
581	Letters.
582	Liu, M., van der A, R., van Weele, M., et al., 2021c. A New Divergence Method to Quantify
583	Methane Emissions Using Observations of SentineI-5P TROPOMI. Geophysical Research
584	Letters 48 (18), e2021GL094151.
585	Lorente, A., Borsdorff, T., Butz, A., et al., 2021. Methane retrieved from TROPOMI: improvement of
586	the data product and validation of the first 2 years of measurements. Atmos. Meas. Tech.
587	14 (1), 665-684.
588	Maasakkers, J.D., Varon, D.J., Elfarsdóttir, A., et al., 2022. Using satellites to uncover large methane
589	emissions from landfills. Science Advances 8 (32), eabn9683.
590	MEE, M.o.E.a.E.o.t.P.s.R.o.C., 2021. Carbon monitoring and assessment pilot work programme (in
591	Chinese). Available at
592	https://www.mee.gov.cn/ywdt/spxw/202109/t20210923_952715.shtml , accessed on
593	17th January 2024.
594	MEE, M.o.E.a.E.o.t.P.s.R.o.C., 2023. Methane emissions control action plan (in Chinese). Available
595	at https://www.mee.gov.cn/xxgk2018/xxgk/xxgk03/202311/t20231107_1055437.html ,
596	accessed on 17th January 2024.
597	Miller, S.M., Michalak, A.M., Detmers, R.G., et al., 2019. China's coal mine methane regulations
598	have not curbed growing emissions. Nature Communications 10 (1), 303.
599	Mitchell, L.E., Lin, J.C., Hutyra, L.R., et al., 2022. A multi-city urban atmospheric greenhouse gas
600	measurement data synthesis. Scientific Data 9 (1), 361.
601	Ou, Y., Roney, C., Alsalam, J., et al., 2021. Deep mitigation of CO2 and non-CO2 greenhouse
602	gases toward 1.5 $$ °C and 2 $$ °C futures. Nature Communications 12 (1), 6245.
603	Pandey, S., Gautam, R., Houweling, S., et al., 2019. Satellite observations reveal extreme methane
604	leakage from a natural gas well blowout. Proceedings of the National Academy of
605	Sciences 116 (52), 26376-26381.
606	Peng, S., Giron, C., Liu, G., et al., 2023. High-resolution assessment of coal mining methane
607	emissions by satellite in Shanxi, China. iScience 26 (12), 108375.
608	Peng, S., Lin, X., Thompson, R.L., et al., 2022. Wetland emission and atmospheric sink changes
609	explain methane growth in 2020. Nature 612 (7940), 477-482.
610	Peng, S., Piao, S., Bousquet, P., et al., 2016. Inventory of anthropogenic methane emissions in
611	mainland China from 1980 to 2010. Atmos. Chem. Phys. 16, 14545-14562.
612	Plant, G., Kort, E.A., Murray, L.T., Maasakkers, J.D. and Aben, I., 2022. Evaluating urban methane
613	emissions from space using TROPOMI methane and carbon monoxide observations.
614	Remote Sensing of Environment 268, 112756.
015	

616	inverse analysis of observations from the TROPOMI and GOSAT satellite instruments.
617	Atmos. Chem. Phys. 21 (18), 14159-14175.
618	Rayner, P., Michalak, A.M. and Chevallier, F., 2016. Fundamentals of Data Assimilation. Geosci.
619	Model Dev. Discuss. 2016, 1-21.
620	Saunois, M., Stavert, A.R., Poulter, B., et al., 2020. The Global Methane Budget 2000–2017. Earth
621	Syst. Sci. Data 12 (3), 1561-1623.
622	Schneider, A., Borsdorff, T., aan de Brugh, J., et al., 2020. First data set of H2O/HDO columns from
623	the Tropospheric Monitoring Instrument (TROPOMI). Atmos. Meas. Tech. 13 (1), 85-100.
624	Schneising, O., Buchwitz, M., Hachmeister, J., et al., 2023. Advances in retrieving XCH4 and XCO
625	from Sentinel-5 Precursor: improvements in the scientific TROPOMI/WFMD algorithm.
626	Atmos. Meas. Tech. 16 (3), 669-694.
627	Schneising, O., Buchwitz, M., Reuter, M., et al., 2019. A scientific algorithm to simultaneously
628	retrieve carbon monoxide and methane from TROPOMI onboard Sentinel-5 Precursor.
629	Atmos. Meas. Tech. 12 (12), 6771-6802.
630	Schuit, B.J., Maasakkers, J.D., Bijl, P., et al., 2023. Automated detection and monitoring of methane
631	super-emitters using satellite data. Atmos. Chem. Phys. 23 (16), 9071-9098.
632	Sha, M.K., Langerock, B., Blavier, J.F.L., et al., 2021. Validation of methane and carbon monoxide
633	from Sentinel-5 Precursor using TCCON and NDACC-IRWG stations. Atmos. Meas. Tech.
634	14 (9), 6249-6304.
635	Shan, C., Wang, W., Liu, C., et al., 2019. Regional CO emission estimated from ground-based
636	remote sensing at Hefei site, China. Atmospheric Research 222, 25-35.
637	Sheng, J., Song, S., Zhang, Y., Prinn, R.G. and Janssens-Maenhout, G., 2019. Bottom-Up Estimates
638	of Coal Mine Methane Emissions in China: A Gridded Inventory, Emission Factors, and
639	Trends. Environmental Science & Technology Letters 6 (8), 473-478.
640	Staniaszek, Z., Griffiths, P.T., Folberth, G.A., et al., 2022. The role of future anthropogenic methane
641	emissions in air quality and climate. npj Climate and Atmospheric Science 5 (1), 21.
642	Su, T., Li, Z. and Kahn, R., 2018. Relationships between the planetary boundary layer height and
643	surface pollutants derived from lidar observations over China: regional pattern and
644	influencing factors. Atmos. Chem. Phys. 18 (21), 15921-15935.
645	Sun, Y., Yin, H., Wang, W., et al., 2022. Monitoring greenhouse gases (GHGs) in China: status and
646	perspective. Atmos. Meas. Tech. 15 (16), 4819-4834.
647	Ian, H., Zhang, L., Lu, X., et al., 2022. An integrated analysis of contemporary methane emissions
648 640	and concentration trends over Uning using in situ and satellite observations and model
049 650	simulations. Atmos. Chem. Phys. 22 (2), 1229–1249.
650 651	Han, Y., Sun, Y., Liu, C., et al., 2018. Characterisation of methane variability and trends from
651 651	near-infrared solar spectra over Hetel, China. Atmospheric Environment 1/3, 198-209.
002 650	rumer, A.J., Frankenberg, C. and Kort, E.A., 2019. Interpreting contemporary trends in
000	aunospheric methane. Proceedings of the National Academy of Sciences 110 (8),
004 655	2003-2013. Turner All and leash D.1. 2015. Palancing aggregation and smoothing errors in inverse models
656	Atmos Chem. Phys. 15 (12), 7030, 7048.
657	Turner All Jacob D.] Wecht K.] et al. 2015 Estimating global and North American methane
658	emissions with high spatial resolution using GOSAT satellite data. Atmos. Chem. Phys. 15
659	(12), 7049-7069.

660	Veefkind, J.P., Aben, I., McMullan, K., et al., 2012. TROPOMI on the ESA Sentinel-5 Precursor: A
661	GMES mission for global observations of the atmospheric composition for climate, air
662	quality and ozone layer applications. Remote Sensing of Environment 120, 70-83.
663	Verhulst, K.R., Karion, A., Kim, J., et al., 2017. Carbon dioxide and methane measurements from
664	the Los Angeles Megacity Carbon Project – Part 1: calibration, urban enhancements, and
665	uncertainty estimates. Atmos. Chem. Phys. 17 (13), 8313-8341.
666	Wang, W., Tian, Y., Liu, C., et al., 2017. Investigating the performance of a greenhouse gas
667	observatory in Hefei, China. Atmos. Meas. Tech. 10 (7), 2627-2643.
668	Wunch, D., Toon, G.C., Blavier, JF.L., et al., 2011. The Total Carbon Column Observing Network.
669	Philosophical Transactions of the Royal Society A: Mathematical, Physical and
670	Engineering Sciences 369 (1943), 2087-2112.
671	Wunch, D., Toon, G.C., Wennberg, P.O., et al., 2010. Calibration of the Total Carbon Column
672	Observing Network using aircraft profile data. Atmos. Meas. Tech. 3 (5), 1351-1362.
673	Wunch, D., Toon, G. C., Sherlock, V., Deutscher, N. M., Liu, C., Feist, D. G., & Wennberg, P. O., 2015.
674	Documentation for the 2014 TCCON Data Release (GGG2014.R0). CaltechDATA.
675	https://doi.org/10.14291/TCCON.GGG2014.DOCUMENTATION.R0/1221662.
676	Yang, Y., Zhou, M., Langerock, B., et al., 2020. New ground-based Fourier-transform
677	near-infrared solar absorption measurements of XCO2, XCH4 and XCO at Xianghe,
678	China. Earth Syst. Sci. Data 12 (3), 1679-1696.
679	Yang, Y., Zhou, M., Wang, T., et al., 2021. Spatial and temporal variations of CO2 mole fractions
680	observed at Beijing, Xianghe, and Xinglong in North China. Atmos. Chem. Phys. 21 (15),
681	11741-11757.
682	Yin, Y., Chevallier, F., Ciais, P., et al., 2021. Accelerating methane growth rate from 2010 to 2017:
683	leading contributions from the tropics and East Asia. Atmos. Chem. Phys. 21 (16),
684	12631-12647.
685	Zeng, N., Han, P., Liu, Z., et al., 2021. Global to local impacts on atmospheric CO2 from the
686	COVID-19 lockdown, biosphere and weather variabilities. Environmental Research
687	Letters 17 (1), 015003.
688	Zhang, B., Yang, T., Chen, B. and Sun, X., 2016. China's regional CH4 emissions: Characteristics,
689	interregional transfer and mitigation policies. Applied energy 184, 1184-1195.
690	Zhang, G., Xiao, X., Dong, J., et al., 2020. Fingerprint of rice paddies in spatial-temporal dynamics
691	of atmospheric methane concentration in monsoon Asia. Nature Communications 11 (1),
692	554.
693	Zhao, X., Marshall, J., Hachinger, S., et al., 2019. Analysis of total column CO2 and CH4
694	measurements in Berlin with WRF-GHG. Atmos. Chem. Phys. 19 (17), 11279-11302.
695	Zhou, M., Langerock, B., Wang, P., et al., 2023. Understanding the variations and sources of CO,
696	C2H2, C2H6, H2CO, and HCN columns based on 3 years of new ground-based Fourier
697	transform infrared measurements at Xianghe, China. Atmos. Meas. Tech. 16 (2), 273-293.
698	Zhou, M.W., P.; Kumps, N.; Hermans, C.; Nan, W., 2022. TCCON Data from Xianghe, China,
699	Release GGG2020.R0. https://doi.org/10.14291/tccon.ggg2020.xianghe01.R0.
700	