Supplementary for:

The spatial-temporal variations of atmospheric CH_4 concentrations and urban enhancements over the northern China based on a comprehensive dataset: ground-based observations, TROPOMI, inventory and inversions

Pengfei Han^{1,2*}, Ning Zeng³, Bo Yao⁴, Wen Zhang⁵, Weijun Quan⁶, Pucai Wang², Ting Wang², Minqiang Zhou^{1,2}, Qixiang Cai^{7,8*}, Yuzhong Zhang^{9,10}, Ruosi Liang^{9,10}, Wanqi Sun¹¹, Shengxiang Liu^{2,12}

¹State Key Laboratory of Atmospheric Environment and Extreme Meteorology, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

²Carbon Neutrality Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

³Department of Atmospheric and Oceanic Science, and Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland, USA

⁴Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University, Shanghai, China

⁵State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

⁶Institute of Urban Meteorology (Key Laboratory of Urban Meteorology), China Meteorological Administration, Beijing, China

⁷State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

⁸Qiluzhongke Institute of Carbon Neutrality, Jinan, China

⁹Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang, China

¹⁰Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China

¹¹Meteorological Observation Centre, China Meteorological Administration, Beijing, China

¹²Jiujiang University, Jiujiang, Jiangxi, China

^{*} Correspondence to: Pengfei Han (pfhan@mail.iap.ac.cn); Qixiang Cai (caiqixiang@mail.iap.ac.cn)

Fig. S1 Wind rose plots at three regional sites: BJ (Beijing), XH (Xianghe), and SDZ (Shangdianzi)3
Fig. S2 Sectoral CH_4 emissions for the North China at provincial scale in 20193
Fig. S3 Monthly mean $\mathrm{CH_4}$ concentration enhancements of Beijing (BJ) and Xianghe (XH) compared with Shangdianzi (SDZ)4
Fig. S4 Temporal variations of mean monthly XCH_4 (TROPOMI, TCCON) and surface CH_4 concentrations observed in XH (a, b), and correlation relationships of mean monthly XCH_4 (TROPOMI, TCCON) and surface concentrations observed by Picarro in XH during 2019-20214
Fig. S5 Hourly comparisons of optimized GEOS-Chem model simulations with in-situ high-precision measurements at three sites. MB is mean bias and RMSE is mean root square error. BJ, XH, and SDZ represent Beijing, Xianghe, and Shangdianzi observations5
Fig. S6 Monthly comparisons of WestLake and CAMS model simulations with in-situ high-precision measurements at three sites. MB is mean bias and RMSE is mean root square error. BJ, XH, and SDZ represent Beijing, Xianghe, and Shangdianzi observations5
Fig. S7 Posterior and observed seasonal mean column XCH ₄ concentrations from WestLake (optimized GEOS-Chem, left 2 columns) and TROPOMI (right 2 columns) for the North China in 20196
Fig. S8 Correlation relationships of posterior (WestLake, in x-axis) and observed (TROPOMI, in y-axis) seasonal mean column XCH ₄ concentrations7
Fig. S9 Model posterior monthly mean column CH ₄ concentrations for the North China in 20197
Fig. S10 Relationships of TROPOMI XCH $_4$ with GEOS-Chem modeled surface CH $_4$ in each season and annual mean in 20198
Fig. S11 Relationships of TROPOMI XCH ₄ with PKU-CH ₄ emissions at grid levels in Shanxi Province in 20198

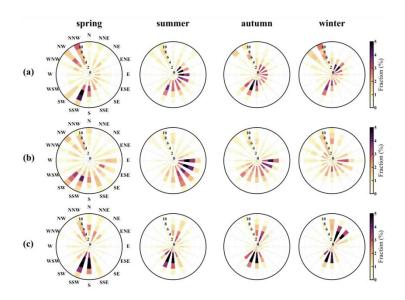


Fig. S1 Wind rose plots at three regional sites: BJ (Beijing), XH (Xianghe), and SDZ (Shangdianzi).

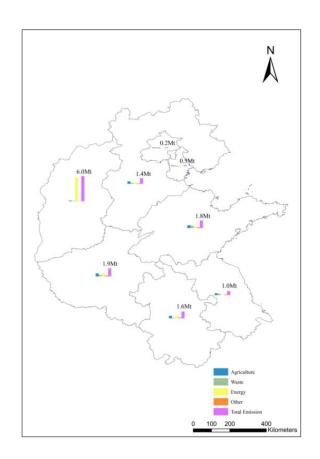


Fig. S2 Sectoral CH₄ emissions for the North China at provincial scale in 2019

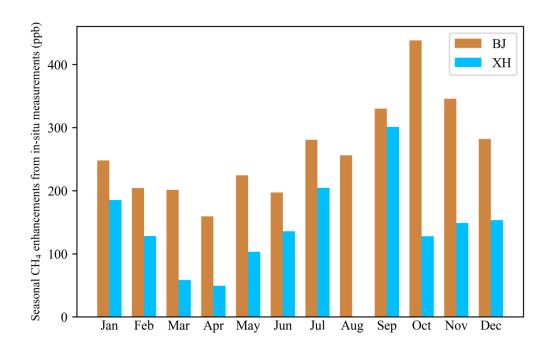


Fig. S3 Monthly mean CH₄ concentration enhancements of Beijing (BJ) and Xianghe (XH) compared with Shangdianzi (SDZ).

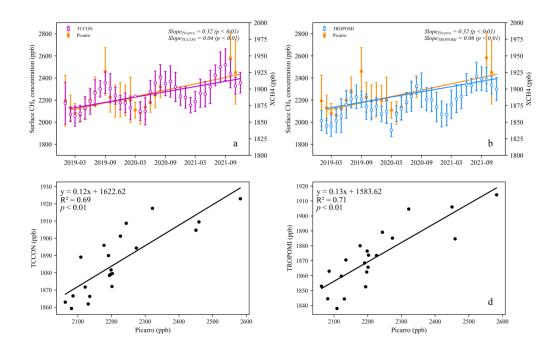


Fig. S4 Temporal variations of mean monthly XCH_4 (TROPOMI, TCCON) and surface CH_4 concentrations observed in XH (a, b), and correlation relationships of mean monthly XCH_4 (TROPOMI, TCCON) and surface concentrations observed by Picarro in XH during 2019-2021.

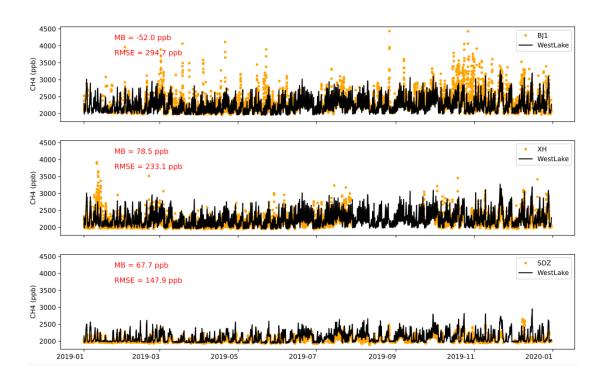


Fig. S5 Hourly comparisons of optimized GEOS-Chem model simulations with in-situ high-precision measurements at three sites. MB is mean bias and RMSE is mean root square error. BJ, XH, and SDZ represent Beijing, Xianghe, and Shangdianzi observations.

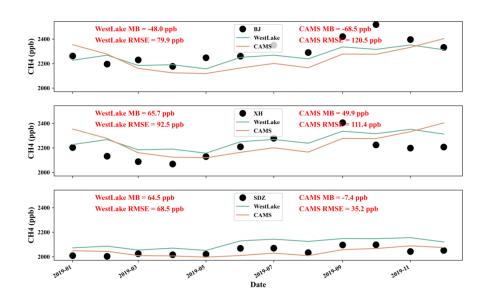


Fig. S6 Monthly comparisons of WestLake and CAMS model simulations with in-situ high-precision measurements at three sites. MB is mean bias and RMSE is mean root square error. BJ, XH, and SDZ represent Beijing, Xianghe, and Shangdianzi observations.

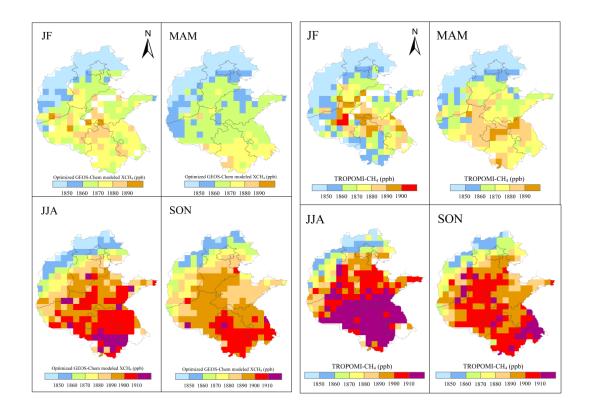


Fig. S7 Posterior and observed seasonal mean column XCH₄ concentrations from WestLake (optimized GEOS-Chem, left 2 columns) and TROPOMI (right 2 columns) for the North China in 2019

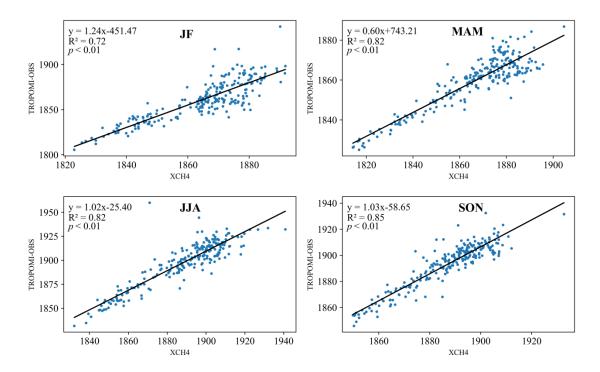


Fig. S8 Correlation relationships of posterior (WestLake, in x-axis) and observed (TROPOMI, in y-axis) seasonal mean column XCH₄ concentrations.

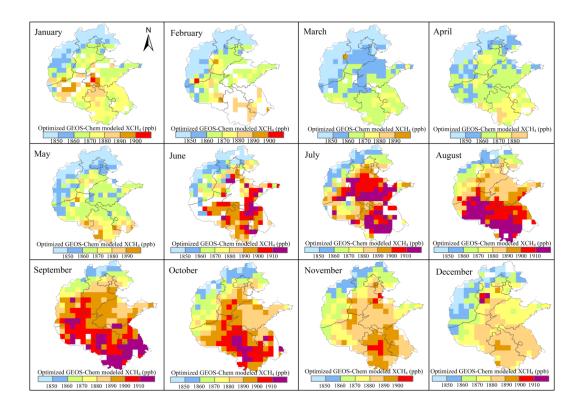


Fig. S9 Model posterior monthly mean column CH₄ concentrations for the North China in 2019

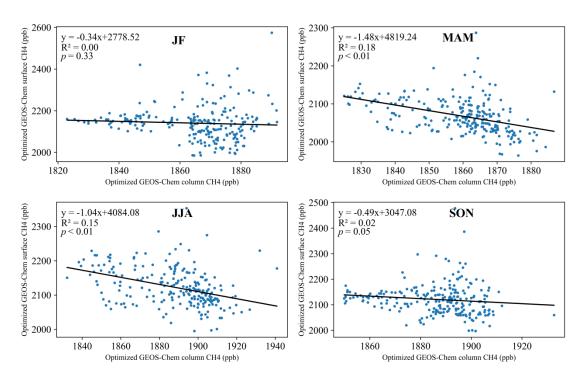


Fig. S10 Relationships of TROPOMI XCH $_4$ with GEOS-Chem modeled surface CH $_4$ in each season in 2019.

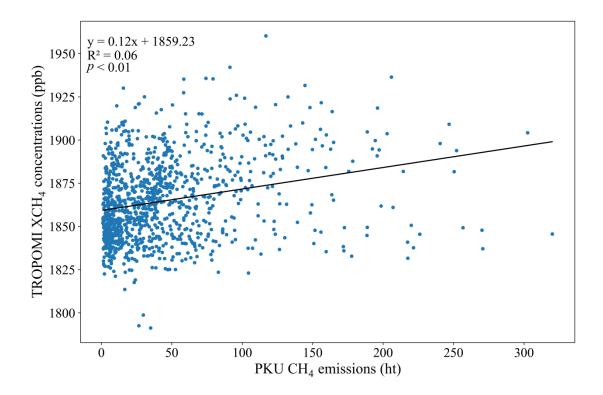


Fig. S11 Relationships of TROPOMI XCH₄ with PKU-CH₄ emissions at grid levels in Shanxi Province in 2019.