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Abstract. Aerosol-cloud interactions (aci) are the largest source of uncertainty in inferring the magnitude of future warming 

consistent with the observational record. The effective radiative forcing due to aci (ERFaci) is dominated by liquid clouds and 15 

is composed of two terms: the change in cloud albedo due to redistributing liquid over a larger number of cloud droplets (Nd) 

and the change in cloud macrophysical properties due to changes in cloud microphysics. These terms are respectively referred 

to as the radiative forcing due to aci (RFaci) and aerosol-cloud adjustments. While the magnitude of RFaci is uncertain, its 

sign is confidently negative and results in a cooling in the historical record. In contrast, the adjustment of cloud liquid water 

path (LWP) to enhanced Nd and associated radiative forcing is uncertain in sign. Increased LWP in response to increased Nd 20 

is consistent with precipitation suppression while decreased LWP in response to increased Nd is consistent with enhanced 

evaporation from cloud top. Observational constraints of these processes are poor in part because of causal ambiguity in the 

relationship between Nd and LWP. To better understand this relationship, precipitation (P), Nd, and LWP surface observations 

from the Eastern North Atlantic (ENA) atmospheric observatory are combined with the output from a perturbed parameter 

ensemble (PPE) hosted in the Community Atmosphere Model version 6 (CAM6). This allows causal interpretation of observed 25 

covariability. Observations of precipitation and cloud from ENA constrain the range of possible LWP aerosol-cloud 

adjustments relative to the prior from the PPE by 15%, resulting in a global value that is confidently positive (a historical 

cooling) ranging from 2.1 to 6.9 g/m2. It is found that observed covariability between Nd and LWP is dominated by coalescence 

scavenging and that this observed covariability is not strongly related to aerosol-cloud adjustments. 

1 Introduction 30 

Atmospheric aerosols affect the global radiation budget through direct interactions with radiation and indirect 

interactions via clouds. Aerosol-cloud interactions (aci) are facilitated by aerosols serving as surfaces for water vapor to 
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condense onto, forming cloud droplets. These aerosols are called cloud condensation nuclei (CCN) and are essential for 

forming clouds in the troposphere (Gordon et al., 2023; Mason, 1960; Wilson, 1900).  

While many CCN have natural sources, such as dust and sea spray (e.g., Carslaw et al., 2013), there are also CCN 35 

emitted from anthropogenic activities, including increased emission of carbonaceous aerosols (Hamilton et al., 2018) and 

sulfur dioxide (Charlson et al., 1992). Changing the amount of CCN in a cloud can change the droplet number concentration 

(Nd) of the cloud, shifting the cloud’s albedo (Twomey, 1974). This is referred to as the radiative forcing from aci (RFaci, 

following notation from Bellouin et al., 2020).  By affecting cloud and precipitation processes, changes in Nd driven by CCN 

can also change macrophysical cloud properties such as cloud liquid water path (LWP) (Ackerman et al., 2004; Albrecht, 40 

1989). Changes in cloud macrophysics driven by changes in cloud microphysics in response to anthropogenic aerosols are 

referred to as aerosol-cloud adjustments. The sum of RFaci and forcing due to aerosol-cloud adjustments is termed the effective 

radiative forcing due to aci (ERFaci).  

Overall, there is high confidence that anthropogenic aerosols led to cooling during the historical record (Bellouin et 

al., 2020). Aerosol cooling since the Industrial Revolution has offset warming from anthropogenic greenhouse gas emissions 45 

(Andreae et al., 2005; Charlson et al., 1992), but the degree to which warming has been offset is uncertain. Because of this gap 

in our knowledge, it is difficult to know the true sensitivity of Earth’s surface temperature to greenhouse gas emissions (Forster, 

2016; Watson-Parris and Smith, 2022). Aerosol cooling is dominated by ERFaci (Bellouin et al., 2020). Uncertainty in RFaci 

and aerosol-cloud adjustments both contribute to uncertainty in ERFaci. Uncertainty in the radiative forcing due to aerosol-

cloud adjustments based on observations and global modelling outpaces uncertainty driven by RFaci (Bellouin et al., 2020; 50 

Gryspeerdt et al., 2020; Heyn et al., 2017). The range of predicted future climate consistent with the historical record motivates 

developing constraints on ERFaci and in particular the sign and amplitude of the large aerosol-cloud adjustments forcing term 

(Andreae et al., 2005; Watson-Parris and Smith, 2022). 

  There are several factors that contribute to the uncertainty of RFaci and aerosol-cloud adjustments. While the basic 

understanding of what processes set aci and aerosol-cloud adjustments is good (Ackerman et al., 2004; Albrecht, 1989; 55 

Bretherton et al., 2007; Khairoutdinov and Kogan, 2000; Mülmenstädt and Feingold, 2018; Wood, 2012), these processes 

operate at small spatial and temporal scales that cannot be resolved by the global models that we rely on to calculate forcing. 

This scale mismatch means that we must parameterize these processes in global climate models (GCMs). This results in 

parametric uncertainty related to how a given process is parameterized (Regayre et al., 2018). It also results in structural 

uncertainty related to which processes are parameterized and represented in a given GCM (Regayre et al., 2023). In addition 60 

to uncertainty related to how microscale aerosol, cloud, and precipitation processes translate to the global scale, our ability to 

constrain ERFaci is hindered by our lack of knowledge regarding the pre-industrial (PI) baseline. We lack observations of PI 

aerosol spatial distribution, emission, and composition outside of a few regions (Hamilton et al., 2014) that maintain a pristine 

state in the present day (PD). This lack of observational constraint of the baseline PI atmosphere drives substantial uncertainty 

in forcing due to aci (Carslaw et al., 2013; McCoy et al., 2020b).  65 
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To narrow uncertainty in ERFaci we need to confront the GCMs that we rely on for calculations of ERFaci with 

observations of aerosol, clouds, and precipitation to identify whether there are parameter combinations that agree with 

observations and if our GCMs are structurally deficient (Ghan et al., 2016; Mülmenstädt and Feingold, 2018). A broad issue 

is that the causality linking aerosol, clouds, and precipitation is complex (Fons et al., 2023; Gryspeerdt et al., 2019; McCoy et 

al., 2020a; Stevens and Feingold, 2009). We provide a schematic illustration of some of the causal linkages in this aerosol-70 

cloud-precipitation system in Figure 1. Coalescence scavenging of aerosol and cloud droplets further confounds the 

relationship linking cloud droplet number to liquid cloud properties (i.e., through aerosol-cloud adjustments that can increase 

and decrease LWP). Except in very specific situations (Christensen et al., 2022), we cannot untangle this causality using 

observations alone. In this study we unite a model where causality can be explicitly determined with observations of clouds 

and precipitation where we must infer causality. 75 

We examine the adjustment of cloud LWP to changes in Nd. When evaluating how increased aerosol affects cloud 

liquid water content via Nd, there are two main effects of changes on Nd theorized to play a substantial role in setting ERFaci 

(Mülmenstädt and Feingold, 2018). The first is precipitation suppression, wherein the decrease in average droplet size from 

increased Nd reduces the precipitation production of a cloud, increasing the cloud’s LWP (Albrecht, 1989). The second process 

is size-dependent evaporation and entrainment, wherein the increased Nd may increase entrainment or evaporation at the cloud-80 

top, reducing cloud liquid water content (Bretherton et al., 2007; Hill et al., 2009; Wang and Albrecht, 1994; Wang et al., 

2003; Xue and Feingold, 2006).  

Previous observations characterizing the sensitivity of LWP to Nd have shown a positive correlation between Nd and 

LWP in low-Nd clouds and a negative correlation in high-Nd clouds, with an average negative sign in oceanic cloud (Fons et 

al., 2023; Glassmeier et al., 2021; Gryspeerdt et al., 2019). However, it is challenging to understand cloud susceptibility to Nd 85 

based on observations without accounting for precipitation. Coalescence scavenging (via precipitation) is a strong controller 

on Nd in marine low clouds (Kang et al., 2022; Wood et al., 2012) and CCN below the cloud may be removed by wet scavenging 

of aerosol (Textor et al., 2006). These relationships and the observed correlations between clouds and precipitation from 

observations from the East North Atlantic (ENA) (Wood et al., 2015) atmospheric observatory, our surface observations 

source, are shown for reference (Figure 1).  90 
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While there have been many studies inferring cloud adjustments from LWP sensitivity to Nd observed by satellites 

(Amiri-Farahani et al., 2017; Christensen et al., 2017; Fons et al., 2023; Gryspeerdt et al., 2017, 2019; Lebsock et al., 2008; 

McCoy et al., 2020a), there are comparatively fewer studies of aerosol-adjustments from a surface perspective (Chiu et al., 95 

2021; Feingold et al., 2003; Gettelman et al., 2020; McComiskey and Feingold, 2012; Wu et al., 2020). There are benefits and 

drawbacks to the use of surface observations. An obvious drawback to using surface observations is that they only provide a 

limited sampling of the atmosphere relative to a satellite. Another drawback related to sampling is that it is unclear how surface 

measurements scale to a GCM grid cell (McComiskey et al., 2009; Mülmenstädt and Feingold, 2018). However, surface 

observations have several benefits in terms of observing clouds and precipitation. Commonly-used satellite Nd products have 100 

sparse airborne validation and potentially large systematic uncertainties in some cloud regimes (Ahn et al., 2018; Grosvenor 

et al., 2018; Gryspeerdt et al., 2022; Kang et al., 2021; McCoy et al., 2018). One source of uncertainty in satellite Nd is due to 

lack of homogeneity in the satellite footprint (Grosvenor and Wood, 2014). Surface remote-sensing has a substantially smaller 

footprint (McComiskey et al., 2009), which reduces the uncertainty inherent in passive retrieval-based calculations of Nd  (Cho 

et al., 2015; Grosvenor et al., 2018; Nakajima and King, 1990). Precipitation is challenging to observe from space (Kidd and 105 

Huffman, 2011; Pradhan et al., 2022; Sun et al., 2018). The ability to directly observe precipitation flux at the surface is 

uniquely advantageous. There are also benefits in surface observations of LWP – the retrieval used in this work (detailed in 

Figure 1 A schematic describing the causal links on aerosol-cloud adjustments. The blue or red shading indicates a positive or 
negative correlation between the two variables at ENA and the size of the shaded arrow indicates the relative magnitude of the 
correlation at ENA. This data is further detailed in Figure 7.  
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Section 2.1.1) utilizes an ensemble of instruments to observe LWP, allowing for higher confidence than a large-footprint 

passive microwave radiometer. In concert with the surface P and Nd retrievals, we have a suite of fine-resolution observations 

for analysis. 110 

Here, we constrain aerosol-cloud adjustments based on observable properties sampled at ENA: cloud and 

precipitation state variables and their covariances. A perturbed parameter ensemble (PPE) hosted in a GCM is used to define 

the causal inference from observations. Surface observations are used to provide a constraint on global-mean aerosol-cloud 

adjustments in LWP. Section 2 describes observational data and the PPE used. Section 3.1 describes the framework used in 

this study to provide causal inference from observed cloud and precipitation. Section 3.2 constrains the PPE using observations. 115 

Section 3.3 provides a constraint on global-mean aerosol-cloud adjustments. Section 4 discusses the results and provides 

suggestions for future studies. Section 5 summarizes the conclusions. 

2 Data and Methods 

2.1 Observations 

We leverage surface remote sensing and in situ observations from the Atmospheric Radiation Measurement (ARM) 120 

Eastern North Atlantic (ENA) observatory (Wood et al., 2015). ENA is located in the northeastern Atlantic Ocean 

approximately 1,000 miles (~1,600 km) west of Portugal on Graciosa Island in the Açores.  

Use of surface-based observations and the selection of ENA is motivated by logistical and scientific concerns. Surface 

observations provide a unique set of strengths that align with the framework for constraining aerosol-cloud adjustment strength 

as described above. Our underlying constraint framework is not dependent on the source of observations of LWP, P, and Nd. 125 

However, we argue that surface observations are better suited for this problem than spaceborne remote sensing despite the 

much larger data volume and coverage afforded by spaceborne remote sensing. Precipitation rates are challenging to measure 

from space, especially for lighter precipitation rates (Pradhan et al., 2022). Surface measurements of precipitation rate, in 

contrast, are a direct measurement, although they still struggle with observing very light precipitation and cannot observe virga. 

Liquid cloud microphysical state can be measured remotely from space and the surface. The calculation of Nd from remote 130 

sensing is based on the assumption of a homogeneous cloud within the sensor footprint (Grosvenor et al., 2018; Nakajima and 

King, 1990). Aircraft observations of Nd are in reasonable agreement with spaceborne estimates in homogeneous cloud, but 

the agreement degrades in more heterogeneous cloud (Gryspeerdt et al., 2022). The sensor footprint of surface-based remote 

sensing of Nd is drastically smaller and aircraft evaluation suggests minimal impacts from changes in cloud heterogeneity 

(Zhang et al., 2023).  135 

ENA is one of three surface sites administered by ARM where observations of LWP, Nd, and P are available. The other 

locations are ARM Southern Great Plains site (SGP) centered near Lamont, Oklahoma and the Layered Atlantic Smoke 

Interactions with Clouds (LASIC) field campaign that took place on Ascension Island in the central Atlantic. Maritime liquid 

clouds are a significant contributor to the uncertainty surrounding ERFaci (Bellouin et al., 2020; Carslaw et al., 2013; McCoy 
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et al., 2017; Wall et al., 2022, 2023) and we argue that a marine environment provides more information about the cloud and 140 

precipitation processes driving global aerosol-cloud adjustments. This suggests that SGP is less relevant to our current analysis. 

Between ENA and LASIC, ENA has a significantly larger pool of observations due to its considerably longer observational 

period, with LASIC only providing two years of data compared to ENA’s nine (at the time of writing). Further, LASIC observes 

layers of carbonaceous aerosols in the free troposphere from Southern Africa, the largest biomass burning region in the world 

(Zuidema et al., 2015). This unusual atmospheric aerosol regime adds the complexity of substantial aerosol semi-direct effects 145 

along with aerosol-cloud adjustments and may not be representative of a broader global regime. Bearing these points in mind, 

we see ENA as the most suitable observatory for the purposes of this study. 

While surface observations provide direct measurements of precipitation fluxes and are essentially looking through a 

much shorter pathlength in the atmosphere to remotely sensed cloud properties, due to their nature, their sampling is limited 

in extent compared to spaceborne remote sensing. For developing a constraint, understanding the systematic uncertainty from 150 

observations is much more important than understanding the random uncertainty; while it is easier to estimate an instrument’s 

random uncertainty (e.g. by having two instruments measure the same thing), because it scales with !
√#

 where N is the number 

of observational samples, our random uncertainty goes towards zero quickly over the years of data recorded. Structural 

uncertainty is a lot harder to estimate for these observations. Unfortunately, no published systematic uncertainties could be 

found for the observational products used. Though the observatory has been recording data since it was established in May 155 

2014, we are limited to observations from October 2014 through October 2019 due to the combined availability of the three 

datasets detailed below. In all cases, data is averaged from its original time resolution to a 3-hour resolution. In this study we 

examine the cloud and precipitation properties highlighted in Figure 1: LWP, P, and Nd. We briefly describe the observational 

data sets used to quantify each property below. 

 160 

Figure 2 (a) ENA ∆LWP regressed on global ∆LWP with a slope of 0.94 and an R2of 0.60. (b) a map of PPE 
mean ∆LWP, with ENA’s location marked with a star. 
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2.1.1 Liquid water path 

Cloud macrophysical state is characterized by LWP. Observations of LWP are provided by the Microwave 

Radiometer Retrievals with MWRRET Version 2 (MWRRETv2) value-added product (VAP) at ENA. In the MWRRETv2 

VAP, LWP is retrieved at a ~15 second resolution with a physical-iterative algorithm detailed in Turner et al., 2007 that utilizes 

microwave brightness temperatures from the on-site 3-channel microwave radiometer and radiosonde temperature, pressure, 165 

and humidity profiles (launched three times daily and interpolated to 1-minute temporal resolution). 

2.1.2 Precipitation 

The ARM Video Disdrometer Quantities VAP VDISQUANTS (Hardin et al., 2020) provides observations of surface 

rain rate. Surface rain flux is observed at 1-minute intervals. While the video disdrometer is considered to be reliable and is 

frequently used as the truth for validation of satellite retrievals of rainfall (Raupach and Berne, 2015; Schuur et al., 2001; 170 

Tokay et al., 2020), the instrument may miss small drops, including those within the drizzle domain, due to wind-induced error 

(Nešpor et al., 2000). The surface precipitation measurements are inherently limited in that they miss virga because the 

precipitation evaporates before reaching the surface. Given drizzle and virga’s prevalence in ENA’s climatology (Wu et al., 

2020), this may constitute a component of the sink of cloud water through precipitation. Supplementing surface flux 

observations of precipitation with radar would provide an estimate of the virga and drizzle sink term, but also require the 175 

implementation of a radar simulator (Silber et al., 2022), which is beyond the scope of our current study.  

2.1.3 Droplet number concentration 

Retrievals of Nd from the ARM Droplet Number Concentration VAP NDROP are calculated following the method 

described in McComiskey et al. (2009). This method uses cloud optical depth obtained from a multifilter rotating shadowband 

radiometer (MFRSR); cloud base temperature and pressure from interpolated radiosonde observations; LWP from the 180 

microwave radiometer; and cloud boundary information from the Active Remote Sensing of Clouds (ARSCL) VAP. Because 

the MFRSR requires sunlight for its retrieval, Nd retrievals are only available during the daytime. The Nd calculated from 

NDROP compares favorably with aircraft and other surface remote sensing Nd retrievals, but it tends to overestimate Nd in 

broken cloud and low LWP regimes (Zhang et al., 2023). 

2.2 The Sixth Community Atmosphere Model (CAM6) Perturbed Parameter Ensemble (PPE) 185 

In GCMs, processes that take place on smaller scales than the model grid size (typically ~100 km) must be 

parameterized. Parameterizations are a source of uncertainty because (i) the uncertainty in the coefficients in the 

parameterization (parametric uncertainty) and (ii) the uncertainty in how processes are represented mathematically within the 

model and which processes are represented (structural uncertainty). While structural uncertainty is difficult to quantify 

(Regayre et al., 2020, 2023), we can use perturbed parameter ensembles (PPEs) to systematically explore parametric 190 

uncertainties in GCMs (Lee et al., 2011; Sexton et al., 2021). 

We leverage a PPE hosted in Community Earth System Model version 2’s (CESM2) atmospheric component, the sixth 

Community Atmosphere Model (CAM6) (Duffy et al., 2023; Eidhammer et al., 2024; Song et al., 2024) . The CAM6 PPE is 
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utilized as a tool to link the strength of the LWP adjustment between the PI and the PD atmosphere to present day variability 

in clouds and precipitation. 195 

Following the setup in Eidhammer et al., 2024, the CAM6 PPE varies 45 parameters that are sampled across 263 

ensemble members. The parameters come from 4 physics schemes: Cloud Layers Unified By Binormals (CLUBB; Golaz et 

al., 2002), version 2 of the Morrison and Gettelman (2008) scheme (MG2; Gettelman & Morrison, 2015), the Modal Aerosol 

Model (“Aerosol” in Table 1; Liu et al., 2012), and the Zhang-McFarlane deep convection scheme (ZM; G. J. Zhang & 

McFarlane, 1995). Each ensemble member in the PPE has a different, random, combination of parameter settings. These 200 

parameter combinations are generated using Latin hypercube sampling in order to efficiently fill the uncertainty space between 

parameters (Eidhammer et al., 2024; Lee et al., 2011). The varied parameters, along with their default values (i.e. the values 

in CAM6) and bounds, are detailed in Table 1.  
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The CAM6 PPE uses the default CAM6 spatial resolution of 1.25°×0.9375°. Two scenarios are integrated to calculate 205 

adjustment strength in the CAM6 PPE: present day (PD) and preindustrial (PI). The PD scenario has emissions set for the year 

2000 and the PI scenario has emissions set for 1850. Otherwise, the scenarios are the same. Wind and temperature fields are 

nudged to Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA2) reanalysis (Molod et al., 

2015) with a 24-hour relaxation time to set the large-scale circulation to be the same between ensemble members and 

observations following previous studies comparing CAM6 to observations (Gettelman et al., 2020; Song et al., 2024).  210 

Data output is cumbersome for PPEs due to their large number of ensemble members. Higher frequency outputs and 

three-dimensional outputs are provided for ENA, allowing for direct comparison from observations. The outputs analyzed 

from the ENA surface site are detailed in Table 2.  

Table 1 Perturbed parameters from the CAM6 PPE. Table from Eidhammer et al., 2024. 
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Table 2 CAM6 PPE outputs at ENA analyzed in this study.  215 
 

CAM6 history field Units Description 

AWNC m-3 Average cloud water number concentration 
CLOUD fraction Cloud fraction 

TGCLDLWP kg/m2 Total grid-box cloud liquid water path 
PRECC m/s Convective precipitation rate 

PRECL m/s Large-scale (stable) precipitation rate 

 

Precipitation rate is calculated by adding together the convective precipitation rate (PRECC) and the large-scale 

precipitation rate (PRECL). Cloud droplet number concentration is calculated by dividing vertically-resolved, grid-average 

cloud water number concentration (AWNC) by liquid cloud fraction (CLOUD), giving in-cloud droplet number concentration. 220 

A vertically distributed Nd calculation is obtained and then averaged through liquid clouds in the column. We believe this to 

be the best analogue for NDROP from CAM6, although it should be noted that NDROP data is constrained to single layer 

clouds, and there is not a way to do this in a GCM. Model LWP (TGCLDLWP) is directly comparable to microwave radiometer 

LWP. 

This study seeks to provide observational constraints on aerosol-cloud adjustments based on observations from ENA. 225 

The outputs used to calculate aerosol-cloud adjustments between PI and PD are detailed in Table 3. 

Table 3 CAM6 PPE outputs from the global domain analyzed in this study.  

Global model output Units Description 

ACTNL m-3 Average Cloud Top droplet number 

FCTL fraction Fractional occurrence of cloud top liquid 

TGCLDLWP kg/m2 Total grid-box cloud liquid water path 

PRECC m/s Convective precipitation rate 

PRECL m/s Large-scale (stable) precipitation rate 

 

Due to space constraints, the three-dimensional output saved at ENA are not available over the globe and cloud-top Nd 

is used in the calculation of a global Nd. To calculate cloud-top Nd, average cloud top droplet number (ACTNL) is divided by 230 

fractional occurrence of cloud top liquid (FCTL). 

2.3 Gaussian Process Emulation 

PPEs are useful for exploring the parametric uncertainty, but it would be prohibitively computationally expensive to 

explore that uncertainty space systematically because the number of ensemble members needed to regularly sample 𝑝 
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dimensional parameter space with 𝑛 samples in each dimension is 𝑛$  (Lee et al., 2011). To explore parameter space efficiently 235 

we leverage the Earth System Emulator (ESEm) package (Watson-Parris et al., 2021) to build Gaussian Process (GP) 

emulators. By generating a multivariate distribution via GP regression of ensemble output (for example, LWP) on input 

ensemble parameters, we can emulate the relationship between sampled parameters and outputs. This is advantageous, as this 

sampling of the 45-dimensional parameter space across 263 PPE members is, while an even sampling of the space, a collection 

of discrete points rather than smooth surface, so emulation is critical to provide statistically meaningful results and understand 240 

linkages between processes and model behavior. This approach has been used in many other model-evaluation studies (McCoy 

et al., 2020b; Regayre et al., 2018, 2020, 2023; Song et al., 2024; Watson-Parris et al., 2020). 

To create an emulator, training samples and testing samples from the PPE members are randomly chosen. Of the ensemble 

members available, 15 are set aside as the testing sample and the remainder are used for training. To validate these emulators, 

the testing portion of the dataset withheld from training is compared with the emulator prediction. GPs carry an estimate of 245 

their own prediction confidence. If the emulator is good, 95% of the test data set should overlap with the 95% confidence 

interval for each prediction (Lee et al., 2011). 

After the emulators are validated, 10 million emulated ensemble members (hereafter referred to as “emulates”) are created 

randomly sampling the 45 input parameters within their individual minimum and maximum bounds (see Table 1). This gives 

a smooth surface to examine the model’s uncertainty space.  250 

Because we have no observational record of PI cloud properties, we use the difference between PD and PI PPE scenarios 

to make inferences about the PI to PD adjustment strength. When discussing the difference in a modeled quantity across PD 

and PI, ∆ is used. E.g., ∆LWP = PD LWP - PI LWP.  

We create emulators for ENA median ln LWP (med. ln LWPENA), ENA median ln Nd (med. ln Nd, ENA), ENA mean-

state P (P%&'%%%%%%), ENA (( )*&!
( )*+

), ENA (( )* ,-+
( )*+

), ENA (( )* ,-+
( )*&!

), the PD-PI change in average global LWP (∆LWPgl), and the PD-255 

PI change in average global Nd (∆Nd, gl). We then observationally constrain the parameter range by removing each emulate that 

does not contain the observed value within the emulate’s 95% confidence interval. In the case of the covariances, the 

observation and its 95% confidence interval from the standard error of the regression are used for constraint. For the other 

variables, because we are using average values from a large dataset (five years of continuous observations), we are unconcerned 

with random uncertainty and only utilize the single observation value in constraint. For all testing emulates in all emulators, 260 

there is 100% overlap of PPE validation data with the emulates’ 95% confidence interval (Figure 3). The linear regression fit 

and associated R2 for each validation is also provided in Figure 3. 

https://doi.org/10.5194/egusphere-2024-2158
Preprint. Discussion started: 30 August 2024
c© Author(s) 2024. CC BY 4.0 License.



12 
 

 

3 Results 

3.1 Developing a causally-aware framework for aerosol-cloud adjustments 265 

The relationship between Nd and LWP does not exist in isolation (Figure 1). Confounding sources of variability make 

it difficult to discern the causal link flowing from Nd to LWP based on observed covariability between these terms. We illustrate 

this by examining the relationship between Nd and LWP in CAM6 in the PI and PD in the northern hemisphere (NH) (Figure 

4a). This is similar to previous studies examining the observed PD relationship between LWP and Nd (Gryspeerdt et al., 2019), 

but within CAM6 we can contrast PD and PI relationships between LWP and Nd. The lack of agreement between the PI and 270 

PD illustrates that we cannot assume the observable covariation between Nd and LWP is, on its own, predictive of the transient 

response of LWP to changes in Nd driven by anthropogenic aerosol.  

Given the numerous confounding factors acting on Nd and LWP (Gryspeerdt et al., 2019; Stevens and Feingold, 

2009), a more complex analysis than examining covariance between Nd and LWP is required to isolate a causal relationship. 

Previous studies have described coalescence scavenging of droplets acting to create a negative correlation between LWP and 275 

Nd  (Gryspeerdt et al., 2019; McCoy et al., 2020a). To illustrate the importance of this confounding factor, we examine PI and 

PD LWP binned by precipitation rate (Figure 4b). In each bin of precipitation rate, coalescence scavenging is approximately 

constant. While holding coalescence scavenging constant, we contrast PI and PD LWP and PD LWP binned into the top and 

Figure 3 Validation plots for each emulator. For each emulator, the withheld test runs are plotted against emulator predictions. The 
blue vertical error bars are 95% confidence intervals of the emulate uncertainty. The explained variance and slope are noted for 
each emulator along with the kernels used to generate the emulator. 
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bottom terciles of Nd (Figure 4b). Precipitation suppression in CAM6 leads to higher LWP at higher Nd and a constant rain 

rate. For low rain rates, the high-Nd regime has a distinctly higher LWP than its low-Nd counterpart in the same precipitation 280 

bin. 

 

The relationship between LWP and Nd in the PD is not predictive of PI to PD changes in LWP (Figure 4a). We cannot 

rely on PD covariance between LWP and Nd to predict aerosol-cloud adjustments and we need to consider non-causal sources 

of covariance between LWP and Nd in developing a constraint on aerosol-cloud adjustments from the PD (Mahfouz et al., 285 

2024; Mülmenstädt et al., 2024a, b). The following covariances, which are intended to contain information about processes 

illustrated in Figure 1, are considered:   

• ( )*&!
( )*+

, for the below-cloud scavenging of droplets from precipitation. 

• ( )* ,-+
( )*+

, for autoconversion, the process by which cloud droplets collide with each other to form drizzle drops, 

which ultimately leave the cloud via precipitation. 290 

• ( )* ,-+
( )*&!

, for the observed susceptibility of cloud liquid water content to different droplet number concentrations. 

This can be thought of as an “observed adjustments term”, although as discussed above, it does not describe a 

causal relationship between Nd and LWP. 

We argue, consistent with previous studies (Fons et al., 2023; Glassmeier et al., 2021; Gryspeerdt et al., 2019; McCoy 

et al., 2020a; Mülmenstädt et al., 2024b), that to infer the strength of aerosol-cloud adjustments we need to consider the 295 

confounding relationship that flows from LWP to precipitation and to Nd. By considering covariances between LWP and P 

and Nd, we can estimate the strength of this term. To characterize aerosol-cloud adjustments in the context of these covariances 

Figure 4 Northern hemisphere (30N-70N) PD and PI LWP in CAM6 binned by Nd (a) and rain rate (b). In (b) 
PD LWP is shown separated into the top and bottom terciles of Nd. The northern hemisphere is used 
specifically in this figure to highlight the effect of aerosol-cloud adjustments, since this is the region that we 
would expect so see the most anthropogenic aerosol emissions (and thus the highest PD-PI difference). 
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we need to have an underlying causal model. Here, we leverage the CAM6 PPE in this capacity to allow us to build a framework 

linking the aerosol-cloud adjustment due to anthropogenic aerosol to observed PD covariance between LWP, P, and Nd. We 

constrain the PPE by the observed mean-states of LWP, P, and Nd and the covariances between them (Table 4). By selecting 300 

the parameter space where PPE ensemble members agree with the quantities in Table 4 at ENA, we can link PD observations 

to the ∆LWP due to anthropogenic aerosol emissions. 

Table 4 Base-state variables and covariances at ENA used in this study to constrain aerosol-cloud adjustments. 

Variable name Description 

median-state ln LWP natural logarithm of the median-state liquid water path 

median-state ln Nd natural logarithm of median-state droplet number concentration 

mean-state P the mean-state precipitation rate 
d ln LWP
d ln P  

the covariance of the natural logarithm of liquid water path with the natural logarithm 
of precipitation rate 

d ln LWP
d lnN(	

 
the covariance of the natural logarithm of liquid water path with the natural logarithm 
of droplet number concentration 

d lnN(
d ln P  

the covariance of the natural logarithm of droplet number concentration with the 
natural logarithm of precipitation rate 

 

One concern is how relevant observations at ENA are to understanding global-mean aerosol-cloud adjustment and, 305 

by extension, ERFaci. However, across the CAM6 PPE cloud adjustments at ENA (∆LWPENA) are found to be correlated with 

global adjustments (∆LWPgl) with a slope of 0.94 and an R2 of 0.60 (Figure 2a). This correspondence between aerosol-cloud 

adjustments at ENA and global-mean aerosol-cloud adjustments is sensible because ENA straddles the border of the 

extratropics and subtropics (Figure 2b); we expect that the same aerosol, cloud, and precipitation processes being observed at 

ENA are relevant over the other oceans in these regions where marine stratocumulus dominates. 310 

In the PPE, we find differences in the predictive ability of ∆Nd for ∆LWP in the local (ENA) and global regimes. 

Specifically, we find that while ∆Nd alone is not a good predictor of ∆LWP in the global regime (as expected following Figure 

4), it has more predictive ability in the ENA regime (Figure 5). This indicates that in CAM6 local-scale adjustments are 

sensitive to local perturbations in Nd, while global-scale adjustments are more influenced by physical processes. 
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 315 

3.2 Model-observation comparison 

Before applying the framework described in the preceding section to constrain aerosol-cloud adjustments, we 

characterize PD Nd, LWP, and P at ENA in the observations and in the CAM6 PPE (Table 4). The observations are found to 

fall within the range of the PPE (Figure 6).  

In the PPE and the observations, the mean-state of precipitation rate is used instead of the median-state because the 320 

video disdrometer cannot see extremely low precipitation rates, which are prevalent in the PPE data over ENA, consistent with 

most GCMs (Stephens et al., 2010). Differences between observed and PPE precipitation rate may also be due to sampling 

differences between averaged CAM6 data from a largely oceanic grid cell ~100 x 100 km2 and observation data from a single 

point on an island. 

 325 

Figure 5 The distributions of emulated ∆Nd and ∆LWP in the global and ENA regimes are represented by the rainbow-
colored hexbins. The original PPE ensemble members are represented by scattered white dots with black borders.  
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Covariances between variables are characterized by the linear regression slope of their constituent variables (e.g., 
( )* ,-+
( )*+

 is the slope of the regression of ln LWP on ln P). We observe . )* /01
. )*#"

 to be -0.236 with a 95% confidence interval of 

+/- 0.051 (from the standard error of the linear regression),  ( )* ,-+
( )*+

 to be 0.338 with a 95% confidence interval of +/- 0.009, 

and ( )*&!
( )*+

 to be -0.258 +/- 0.092 (Figure 7). All values are unitless. These slopes were used to scale the shaded arrows in 330 

Figure 1. To match the 3-hour temporal resolution of the PPE data used to calculate the PPE covariances, we have binned the 

observations to 3 hours. As expected, there is a strong positive correlation between P and LWP with an r-value of 0.741 (Figure 

7). Consistent with previous satellite-based studies there is a negative correlation between LWP and Nd (Gryspeerdt et al., 

2019). Consistent with our understanding of coalescence scavenging, there is a negative correlation between P and Nd (Kang 

et al., 2022; Wood et al., 2012). Observed ( )* ,-+
( )*+

  and ( )*&!
( )*+

  are closer to the PPE distribution means (Figure 8) while 335 

observed ( )* ,-+
( )*&!

 is on the very low end of PPE predictions, with an opposite sign compared to most of the PPE distribution. 

This result is discussed in more detail in Section 4. 

Figure 6 Distributions of median ln LWP, median ln Nd, and mean P across the PPE with the observational equivalents depicted 
with black bars. 
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Figure 7 Observed covariances at ENA, derived with observations binned to 3-hour temporal resolution. 2D histograms 
relating LWP to P (a), LWP to Nd (b), and Nd to P (c).  	𝒅 𝒍𝒏𝑳𝑾𝑷

𝒅 𝒍𝒏𝑷
,	𝒅 𝒍𝒏𝑳𝑾𝑷
𝒅𝒍𝒏𝑵𝒅

 , and 	𝒅 𝒍𝒏𝑵𝒅
𝒅 𝒍𝒏𝑷

  derived from linear regressions are 
noted in a-c and summarized in (d).  

Figure 8 Distributions of  𝐝 𝐥𝐧𝐋𝐖𝐏
𝐝 𝐥𝐧𝐏

,	𝐝 𝐥𝐧𝐋𝐖𝐏
𝐝 𝐥𝐧𝐍𝐝

 , and 	𝐝 𝐥𝐧𝐍𝐝
𝐝 𝐥𝐧𝐏

	across the PPE with the observational equivalents depicted with 
black bars. 
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We leverage the CAM6 PPE to understand linkages between covariances and states of LWP, Nd, and P and 340 

parameterized processes in CAM6. This is done by correlating values of perturbed parameters (Table 1) with mean-states and 

covariances (Table 4) across the PPE (Figure 9). While many of these correlations are low, there are stronger correlations 

associated with cloud and precipitation process parameters. This supports the utility of the framework in this study since it is 

picking out information about these processes.  

We briefly discuss some of the stronger correlations between observables and processes and how these may link 345 

processes and observed quantities in a qualitative sense. Within CAM6, aerosol-cloud adjustments should occur through 

precipitation suppression operating through the autoconversion parameterization. This can be seen as a grouping of strong 

correlations related to ‘micro_mg_autocon_’ parameters  (see Table 1 for descriptions). The inferred strength of coalescence 

scavenging (( )*&!
( )*+

) correlates strongly with the accretion enhancement factor (micro_mg_accre_enhan_fact). Mean-state Nd 

is strongly correlated with the subgrid velocity and liquid activation parameters (micro_aero_npccn_scale, 350 

microp_aero_wsub_min, and microp_aero_wsub_cale). Several parameters are important for setting the median-state LWP 

and strong correlations can be seen relating median-state LWP to CLUBB parameters that relate to skewness in vertical 

velocity (clubb_c1, clubb_C8, and clubb_c14) which results in changes in cloud liquid content and, subsequently, reflectivity 

(Eidhammer et al., 2024; Guo et al., 2014). Mean state precipitation properties are correlated with several parameters in the 

ZM convection scheme that are important for setting the amount and strength of convection and likely affect the creation of 355 

convective precipitation (zmconv_tiedke_add, zmconv_momcu, zmconv_ke_lnd, zmcomv_ke, zconv_dmpdz, and 

zmconv_capelmt). 
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Figure 9 Correlations between covariances and PPE parameters at ENA. Note that the colorbar bounds span 
between -0.6 and +0.6, with the highest magnitude r-value recorded at 0.55.  
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3.3 Constraining LWP adjustment strength from present-day observations 

We seek to constrain aerosol-cloud adjustment strength in CAM6 by leveraging process-scale observations at ENA. 360 

As discussed in Section 3.1, we need to simultaneously consider relationships between P, LWP, and Nd. We constrain the PPE 

by the variables detailed in Table 4. Before constraining global adjustments, it is useful to understand how each observation is 

constraining its own variable within the emulated PPE. In Figure 10, distribution of each variable in the emulator field are 

shown overlaid by the distribution of emulates that are observationally constrained by that variable. Observations are found to 

be within the PPE distribution for all variables.  365 

When we use these same individual constraints to examine global-mean aerosol-cloud adjustments (∆LWPgl), we see 

that observational constraints do not uniformly pull ∆LWPgl one way or the other (Figure 11). The degree to which an 

observational constraint is effective at reducing the 95% confidence interval for ∆LWP is determined by (i) the distance 

between the observation and the mean of the distribution and (ii) the relative variance of the emulates within the distribution. 

This illustrates why mean-state precipitation is such a powerful constraint: the observation is relatively far from the mean, out 370 

towards the right tail of the distribution (Figure 10e), while the average relative variance is relatively low. Intuitively, ( )* ,-+
( )*&!

 

(Figure 10f) should be one of the strongest constraints on aerosol-cloud adjustments given its proximity to the processes 

responsible for aerosol-cloud adjustments (Figure 1) and its relatively large distance from the mean. However, this emulator 

was relatively uncertain (Figure 3) and the standard error from the linear regression was relatively high (Section 3.2), so the 

observation remains within the permissible range for many emulates. 375 

After discarding all invalid emulates, we are left with only the emulates that agree with the observations. This subset 

of emulates is the observationally-constrained dataset that is analyzed for most of the remainder of this paper. 
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 380 

 

 

 

 

 385 

 

Figure 10 Distributions of PPE emulates with the observationally-constrained regions shaded in. For each plot, 
the variable is only being constrained by its associated observation. For instance, the shaded region in (a) is the 
subset of emulates that contain the observed value within their respective variances; in other words, the emulates 
of median-state ENA ln LWP that are observationally-constrained. (b), (c), (d), (e), and (f) are the same for their 
respective variables. 
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Constraining ∆LWP by the variables in Table 4 removes the vast majority of emulates, leaving 11,053 (0.11%) of the 

original 107 emulates. While this is a small fraction of the total number of prior emulates, 45 dimensions are being constrained 

and even moderate constraints in a few dimensions scale quickly. For instance, a fractional reduction in range of 𝑓 in 𝑛 

dimensions scales as 𝑓2 remaining emulates and the reduction described above is equivalent to constraining to 50% of the 390 

range of 6 parameters.  

The constraints on the prior parameter ranges results in a constraint on ∆LWPgl (Figure 12). The prior distributions 

of ∆LWPgl ranges from 0.99 g/m2 to 6.64 g/m2 while the constrained ∆LWPgl ranges from 2.08 g/m2 to 6.87 g/m2; ∆LWPgl is 

constrained by 15% (calculated by the change from confidence intervals).  The observational constraint of ∆LWPgl does not 

strongly skew the distribution away from the CAM6 default adjustments. 395 

 

 

Figure 11, ∆LWPgl is constrained by individual constraints, with the color-shaded region in each plot representing 
the constrained distribution and the gray region representing the prior distribution. These constraints are (a) 
median-state ENA ln LWP, (b) 𝒅 𝐥𝐧𝑳𝑾𝑷

𝒅 𝐥𝐧𝑷
, (c) median-state ENA ln Nd, (d)	𝒅 𝐥𝐧𝑵𝒅

𝒅 𝐥𝐧𝑷
, (e) mean-state ENA P, and (f)	

𝒅 𝐥𝐧𝑳𝑾𝑷
𝒅 𝐥𝐧𝑵𝒅

.	Black vertical lines are the 95% CIs for unconstrained emulate distributions and colored vertical lines are 
the 95% CIs for constrained emulate distributions. 
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When examining the parameters constrained by the observations, we see substantial constraints in the distributions 

of parameters in the CLUBB, MG2, and ZM physics schemes (Figure 13). This is consistent with the correlations between 400 

variables in Table 4 and the CAM6 parameters (Figure 9) as well as our a priori expectations based on underlying model 

physics. Autoconversion is the process through which precipitation is suppressed in aerosol cloud adjustments in CAM6 and 

we find that the associated terms within MG2 (micro_mg_autocon_fact, micro_mg_autocon_lwp_exp, 

micro_mg_autocon_nd_exp, and micro_mg_accre_enhan_fact; see Table 1 for details) are constrained in that the posterior 

distribution is very different than the flat prior distribution for each parameter. Additionally, we find that several parameters 405 

that are important for setting the mean state of Nd (micro_aero_npccn_scale, micro_aero_wsub_min, and 

micro_aero_wsub_scale); convective versus large-scale precipitation occurrence (cldfrc_dp2, zmconv_capelmt, 

zmconv_dmpdz, and zmconv_tiedke_add); and other boundary layer cloud properties (clubb_C2rt, clubb_c8, clubb_c14, 

clubb_c11, clubb_c1) (Eidhammer et al., 2024; Guo et al., 2014) are substantially constrained. 

 410 

Figure 12 Constrained and unconstrained distributions for the global and ENA ∆LWP regimes. Unconstrained 
95% confidence intervals are bounded by black dashed lines and constrained 95% confidence intervals 
bounded by red dashed lines. 
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Finally, we investigate the relationship between the emulated distributions of ∆LWPgl and ( )* ,-+
( )*&!

 (Figure 14) and 

whether their covariance, particularly the correspondence between negative ( )* ,-+
( )*&!

 and positive ∆LWPgl, is causal. ∆LWPgl 

and ( )* ,-+
( )*&!

 are clearly related but the processes driving Nd and LWP and their linkage via adjustments are more complex 

than can be captured by a simple causal relationship between Nd and LWP characterized by a linear regression of LWP on 415 

Nd. Figure 14Figure 14Figure 14 

To interpret these results, it is useful to understand how autoconversion and accretion are parameterized in GCMs. 

In CAM6’s MG2 (Gettelman and Morrison, 2015) and elsewhere (Jing et al., 2019; Michibata and Takemura, 2015), 

autoconversion is represented as a power law function of the form 

 420 

 𝑅345 = 𝐶345 ∗ 𝐿67𝑁.
8 (1) 

Figure 13 Grid of the distribution of PPE parameter values within the constrained set of 11,053 emulates, each 
distribution colored by the parameter category it is in as detailed in Section 2.2. These categories are CLUBB (orange), 
Aerosol (green), MG2 (teal), and ZM (pink). For more information on the parameters and their bounds, see Table 1. 
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where Raut is the rate of autoconversion of droplets into rain; Lc denotes cloud liquid water content; and Caut, α, and β 

are constants. Caut is the autoconversion enhancement factor, represented in the model as micro_mg_autocon_fact; α alters the 

exponent on Lc, represented in the model as micro_mg_lwp_exp; and β alters the exponent on Nd, represented in the model as 

micro_mg_nd_exp. β in the CAM6 PPE is a negative number with bounds between -2.0 and -0.8. Caut and α are positive in the 425 

CAM6 PPE with bounds of 0.005 to 0.2 and 2.10 to 3.30, respectively. Adjustments are driven by precipitation suppression as 

characterized by the exponent on Nd.  

Accretion is parameterized in CAM6’s MG2 (Gettelman and Morrison, 2015) and elsewhere (Michibata and 

Takemura, 2015) with the form 

 430 

 𝑅3669: = 𝐶3669:𝐿6𝑞9 (2) 

 

where Caccre is micro_mg_accre_enhan_fact and qr is the mixing ratio of drizzle. In the CAM6 PPE, 

micro_mg_accre_enhan_fact is a positive number with bounds of 0.0 and 10.0. Like autoconversion, accretion can be thought 

of as a sink of cloud water and scales negatively with ∆LWP and ( )* ,-+
( )*&!

 (Figure 14e). 

Observed covariability between Nd and LWP is driven by coalescence scavenging and is strongly determined by the 435 

autoconversion enhancement factor and more moderately determined by the accretion enhancement factor. This is shown in 

Figure 14b-e, where it can be seen that micro_mg_autocon_fact scales primarily with ( )* ,-+
( )*&!

; micro_mg_nd_exp  primarily 

with ∆LWP; and micro_mg_autocon_lwp and micro_mg_accre_enhan_fact scale with both. 

The relationship between ∆LWP and autconversion parameters can be understood using the steady-state conceptual 

model in Song et al. 2024 (their equation S1-5). In the PI and PD clouds are at a steady state balance between sources and 440 

sinks. The sink term is enforced by the large-scale moisture convergence, which is in turn enforced by the global pattern of 

sea surface temperature. Considering autoconversion to be the dominant sink term of cloud, the tendency from autoconversion 

should be approximately the same in PI and PD 

 

 𝐶345 ∗ 𝐿6#$
7 𝑁.#$

8 = 𝐶345 ∗ 𝐿6#%
7 𝑁.#%

8  (3) 

 445 

which can be solved for the change in ln 𝐿6 

 

 ∆ ln 𝐿6 = −
𝛽
𝛼 ∆ ln𝑁. 

(4) 
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While highly idealized, this provides some insight into the behavior in Figure 14. The autoconversion scale factor (𝐶345 or 

micro_mg_autocon_fact in Figure 14c) does not impact the adjustment strength, but it does affect the covariance between Nd 450 

and LWP through coalescence scavenging (Wood et al., 2012) by setting precipitation rate. This is consistent with the lack of 

dependence of ∆LWP on the autoconversion scale factor but the strong dependence of ( )* ,-+
( )*&!

 on this parameter in Figure 14c. 

As expected, aerosol cloud adjustments scale very strongly with the Nd exponent (𝛽 or micro_mg_nd_exp  in Figure 14d), 

while the observed covariability between Nd and LWP characterized by ( )* ,-+
( )*&!

 is not strongly affected by this term because 

of its weak overall contribution to setting precipitation rates and, by extension, coalescence scavenging. This is consistent with 455 

the strong dependence of ∆LWP in Figure 14d on micro_mg_nd_exp and the lacking dependence of ( )* ,-+
( )*&!

  on this parameter. 

The modulation of both adjustments and PD covariability between Nd and LWP by 𝛼 is less easily interpreted because both 

the adjustment strength and PD Nd-LWP covariability are substantially affected by this term. 

 If we apply a similar logic to accretion, we get 

 460 

 𝐶3669: ∗ 𝐿61;𝑞91; = 𝐶3669: ∗ 𝐿61<𝑞91< (5) 

which can be solved for the change in ln 𝐿6 

 

 ∆ ln 𝐿6 = −∆ ln 𝑞9  (6) 

 

This can be read as the strength of adjustments from accretion being dependent on the change in precipitation rates, which we 

have previously described to strongly scaled by autoconversion parameterizations. Although accretion is important for 465 

understanding the change in adjustments, and indeed follows a similar behavior to micro_mg_autocon_fact, it is less easily 

disentangled from the system than micro_mg_autocon_fact given its dependence on qr, a variable modified by accretion’s own 

parameter micro_mg_accre_enhan_fact as well as the previously discussed autoconversion parameters. Following equations 

(2) and (6, the negative correlation between micro_mg_accre_enhan_fact and both ( )* ,-+
( )*&!

 and ∆LWP is expected: the rate of 

accretion is an important part of setting precipitation rates (and by extension, the rate of coalescence), and modified 470 

precipitation rates are the critical process for adjustments. 

While precipitation suppression is the main control on adjustments in the CAM6 PPE, this does not project directly 

onto  ( )* ,-+
( )*&!

. The explained variance (R2) in adjustment strength (∆LWPgl) by ( )* ,-+
( )*&!

 (Figure 14a) is only 12%. This 

highlights the importance of considering other confounding processes when attempting to use observed covariation between 

Nd and LWP as a constraint on aerosol cloud adjustments, as has been done in assessments of the total aerosol forcing (Bellouin 475 

et al., 2020). 
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4 Discussion   

Aerosol-cloud adjustments are described in terms of interactions between Nd and LWP, but these processes occur in 

the context of precipitation and its confounding effects, driven by coalescence scavenging (Figure 1; Figure 4). We find that 480 

surface observations have utility in constraining global aerosol-cloud adjustments, despite their poor sampling of the global 

atmosphere (Figure 2). Surface observations from the DOE ARM site at ENA provide a broad suite of cloud and precipitation 

measurements (Wood et al., 2015) that enable this analysis. Figure 1Figure 4 

Observed state and covariance metrics examined in this study (Table 4) were within the range produced by the PPE 

(Figure 6; Figure 8). The regression of LWP on Nd (( )* ,-+
( )*&!

), which has been used in previous studies to characterize aerosol-485 

cloud adjustments (Bellouin et al., 2020), barely overlapped between the PPE and observations (Figure 8). We share four 

potential hypotheses to explain this behavior and suggested pathways to evaluate these hypotheses: (i) missing processes in 

Figure 14 (a) The density of emulated distributions and (b-e) how autoconversion-related parameters are distributed. The 
errorbar represents the 95% confidence interval of the observationally-constrained distribution on each axis and the circle 
shows the location of the CAM6 default runs. (a) depicts the density of the 107 emulates within the emulator space. (b), (c), 
and (d) depict the average distributions of micro_mg_autocon_lwp_exp, micro_mg_autocon_fact, 
micro_mg_autocon_nd_exp, and micro_mg_accre_enhan_fact within this space. In (b-e) pixels that contained fewer than 50 
emulates have been masked. 

https://doi.org/10.5194/egusphere-2024-2158
Preprint. Discussion started: 30 August 2024
c© Author(s) 2024. CC BY 4.0 License.



28 
 

CAM6, (ii) insufficiently broad PPE parameter priors, (iii) sampling differences between the CAM6 grid cell and the ENA 

observation footprint, and (iv) observational uncertainty. We briefly discuss each below. 

The parameterizations in CAM6 only explicitly address aerosol-cloud adjustments that occur through precipitation 490 

suppression. CAM6 does not contain parameterizations that fully treat size-dependent entrainment. Size-dependent 

entrainment is partially addressed in CAM6 through size-dependent droplet sedimentation (Morrison and Gettelman, 2008). 

An increase of CCN in a cloud, decreasing the average droplet size, decreases the effect of sedimentation which, in turn, 

increases entrainment. Through this process there is a partial representation of the processes leading to size-dependent 

entrainment in CAM6. These relationships are illustrated succinctly in Figure 1 of Karset et al., 2020.  495 

The lack of a complete parameterization of size-dependent entrainment is common across GCMs (Jing et al., 2019; 

Karset et al., 2020; Michibata and Takemura, 2015).  One possibility would be to implement size-dependent entrainment in a 

future version of the PPE, following previous studies, although implementation of this parameterization in a GCM was not 

found to substantially affect adjustment strength (Karset et al., 2020). A challenge in this approach will be determining if the 

structure of the size-dependent entrainment parameterization is reasonable and selecting cases and regimes with sufficient 500 

measurements to constrain the size-dependent entrainment process to isolate it from other confounding processes. We stress 

that to establish the necessity of a size-dependent entrainment parameterization to accurately represent aerosol-cloud 

adjustments appears to require careful analysis to distinguish between thinning due to size dependent entrainment and non-

causal anticorrelation between Nd and LWP driven by precipitation scavenging  (Mahfouz et al., 2024; McCoy et al., 2020a; 

Mülmenstädt et al., 2024b).   505 

While the prior distribution of ( )* ,-+
( )*&!

 is mostly more positive than observations, the PPE prior and observations from 

ENA do overlap. A simple explanation of the occurrence of observed ( )* ,-+
( )*&!

 at the edge of the PPE prior may be that the prior 

distribution for the CAM6 PPE Nd exponent (micro_mg_autocon_nd_exp, Table 1) – a parameter that governs most of the 

aerosol-cloud adjustment process in CAM6 (shown in Figure 14c for CAM6 and in other GCMs (Jing et al., 2019)) – may 

have been too narrow when the CAM6 PPE was originally designed (Eidhammer et al., 2024). Given the dependence of ( )* ,-+
( )*&!

 510 

on micro_mg_autocon_fact and micro_mg_accre_enhan_fact, in future iterations of this and other PPEs examining aerosol-

cloud adjustments we suggest considering high autoconversion and accretion enhancement factors. This should create more 

ensemble members with negative ( )* ,-+
( )*&!

. This approach would be the most useful combined with the implementation of a 

size-dependent entrainment parameterization as discussed above to evaluate the relative importance of these two processes in 

producing observed present-day cloud and precipitation behavior.  515 

Another source of disagreement may be the disparity in scale between the CAM6 grid and the ARM sampling 

footprint. Model output at finer spatial resolutions would allow characterization of the tolerance when comparing GCM grid 

cell properties to ENA observations. One possibility would be to leverage large eddy simulations (LES) to characterize the 

relationship between observations at a point to the GCM grid scale. At the time of writing, the LES ARM Symbiotic Simulation 
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and Observation (LASSO) project (Gustafson et al., 2020) for ENA is in the planning phase and may be useful for future 520 

constraint studies. LES in combination with ENA observations would enable further quantification of the impact on 

adjustments, and more broadly ERFaci, of sub-grid scale processes that are not explicitly parametrized in GCMs. For example, 

ENA aerosol-cloud-precipitation systems are influenced by varied mesoscale cloud organization (McCoy et al., 2023; Zhou 

and Bretherton, 2019) and sometimes are buffered against precipitation removal by the presence of small, Aitken mode aerosols 

(McCoy et al., 2024). Both of these mechanisms influence the radiative properties and responses to aerosols of the cloud 525 

systems but their resulting behaviors are incompletely represented in  CAM6 (McCoy et al., 2021, 2023; Zhou et al., 2021). 

From an observational perspective, there remains uncertainty related to observation (or lack thereof) of light 

precipitation and virga. Drizzle and virga conditions – two precipitation regimes for which the disdrometer is inadequately 

equipped to observe – are prevalent at ENA (Wu et al., 2020). To account for this, future work in this area should utilize remote 

sensing retrievals such as Ka-band ARM zenith radar (KAZR) reflectivity (Ghate and Cadeddu, 2019; Wu et al., 2020) to 530 

account for these otherwise-missed precipitation events. The reflectivity product available from CAM6 is not adequate to make 

a comparison to ENA’s KAZR. To facilitate this comparison, instrument simulators such as the Earth Column Collaboratory 

(EMC2) (Silber et al., 2022) are required, and may be a promising avenue for future constraint studies motivated by our finding 

that precipitation played an important role in our constraint of aerosol-cloud adjustments.  

In summary, there are several avenues we can take to build on the constraint framework laid out here. However, based 535 

on our findings, in a narrow sense we did not find a structural disagreement between ENA observations and the CAM6 model. 

Critically, although the negative correlation between Nd and LWP is used to support a prevalent thinning of cloud in response 

to increased aerosol in our assessments of aerosol forcing (Bellouin et al., 2020), we do not find that this is necessarily the 

case.  

5 Summary   540 

We present a framework for constraining aerosol-cloud adjustments using mean-state variables and covariances 

(Table 4). Our framework unites causally-ambiguous present-day observations and a perturbed parameter ensemble (PPE) 

hosted in the CAM6 global climate model (GCM) to (i) provide constraints on aerosol-cloud adjustments in liquid water path 

(LWP) as well as (ii) link this constraint to different parameterized processes. Observations from the Eastern North Atlantic 

(ENA) were used to constrain global mean aerosol-cloud adjustments. This constraint is the result of selecting model 545 

configurations where precipitation rate (P), liquid water path (LWP), droplet number concentration (Nd) and their covariance: 
( )* ,-+
( )*&!

, ( )* ,-+
( )*+

, and ( )*&!
( )*+

 extracted from the PPE at ENA match their observed equivalents. Response in global-mean LWP 

to anthropogenic aerosol is constrained to be between 2.08 g/m2 to 6.87 g/m, a 15% reduction from the prior range in the PPE. 

Within this constrained emulator space, we see constraint (based intuitively on the shape of the constrained distribution) on 18 

out of 45 of the perturbed parameters (Figure 13). Constrained parameters match our a priori expectations for processes that 550 

are relevant to aerosol cloud adjustments and set cloud and precipitation states. These processes include the autoconversion 
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parameterization that drives aerosol-cloud adjustments in GCMs (Jing et al., 2019); the accretion parameterization, which is 

comparable with constraining confounding linkages between LWP, precipitation, and Nd; and cloud and convection parameters 

that are important for setting the mean-state cloudiness and precipitation.   

As demonstrated in Figure 14, confounding effects from coalescence scavenging (Gryspeerdt et al., 2019; McCoy et 555 

al., 2020a) can operate in conjunction with autoconversion-driven precipitation suppression to reproduce this negative 

correlation between LWP and Nd. We stress that our results do not necessarily rule out size-dependent evaporation and 

entrainment as an important process in setting aerosol-cloud adjustments, but we do find that this process is not necessary to 

produce observed present-day behavior and present day observations of clouds and precipitation at ENA are consistent with a 

moderate increase in cloud liquid water path in response to anthropogenic aerosol.  560 
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