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Abstract.

This study introduces a novel dynamical systems model designed to capture the highly non-periodic nature of Dansgaard-

Oeschger (DO) events. Such events are difficult to model adequately due to their variable durations — some lasting around

a century, while others span multiple millennia — and the occurrence of short precursor events that precede the longer DO5

events despite similar boundary climate conditions. Utilizing
:::::::
Utilising

:
a simplified two-equation framework derived from the

Stommel model, our approach integrates an internal control parameter which acts as a feedback parameter on the Antarctic

Bottom Water (AABW) formation. Through both analytical and numerical methods, we establish a suitable parameter domain

within which the newly adjusted models can accurately replicate the paleoclimatic records of DO events as described by sum-

mary statistics derived from ice-core data. The analysis also shows that without the novel control parameter, the model does10

not have a suitable parameter domain in which it can reproduce the wide range of event characteristics seen in the ice-core

record. The study provides new insights into the underlying mechanisms driving these highly significant climate phenomena

and the necessary timescale in which they are forced, by allowing the new model’s parameters to vary through time. This

allows our model to achieve unprecedented precision in capturing a realistic sequence of DO events with timing characteristics

matching those of the observational record. This refined model not only enhances our understanding of the DO cycles but also15

demonstrates the potential of simple dynamical systems to simulate complex climate interactions.

Short summary

We introduce a new model that simulates Dansgaard-Oeschger events, dramatic and irregular climate shifts within past ice

ages. The model consists of simplified equations inspired by ocean-current dynamics. We fine-tune this model to capture the20

Dansgaard-Oeschger events with unprecedented accuracy, providing deeper insights into past climate patterns. This helps us

understand and predict complex climate changes, aiding future climate-change resilience efforts.
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::::::::::
Abbreviation

:::
Full

:::::
Form

:::::
AABW

:::::::
Antarctic

::::::
Bottom

::::
Water

:

:::::
AMOC

::::::
Atlantic

::::::::
Meridional

::::::::::
Overturning

::::::::
Circulation

:

:::
BPS

::::::
Bipolar

:::::
Seesaw

:

::::::
CCSM4

:::::::::
Community

::::::
Climate

::::::
System

:::::
Model

:
4
:

::
DO

:::::::::::::::
Dansgaard-Oeschger

:

:::::
NGRIP

::::
North

::::::::
Greenland

:::
Ice

::::
Core

:::::
Project

:

:::
MIS

:::::
Marine

::::::
Isotope

:::::
Stage

::
SO

:::::::
Southern

:::::
Ocean

::
NA

::::
North

:::::::
Atlantic

Table 1.
:::
List

::
of

::::::::::
abbreviations

:::
and

::::
their

:::
full

:::::
forms.

1 Introduction

The Atlantic Meridional Overturning Circulation (AMOC) is a critical component of the global climate system, responsible

for transporting vast amounts of heat and influencing the oceanic and atmospheric circulation worldwide (Pedro et al. (2018);25

Broecker (1998); Li and Born (2019) &

references therein). Variations in AMOC have far-reaching effects on regional and global climate patterns, including surface

temperature and precipitation (Pratap et al., 2023; Bellomo et al., 2023; Frankignoul et al., 2013). Therefore, understanding the

behaviour of AMOC and its response to various climate forcings in the past is essential for prediction
::
of future climate change

and its impacts on society and ecosystems.30

It has been proposed that the strength of the AMOC is linked to the observed abrupt changes in climate over the northern

Atlantic during the last glacial (Henry et al., 2016). These Dansgaard-Oeschger (DO) events are characterized
:::::::::::
characterised

by a dramatic rise in temperature that transitions from a cooler stadial phase to a warmer interstadial phase with temperature

changes of around 5–16.5 K occurring over the North Greenland Ice Core Project (NGRIP) drilling site sometimes within

a couple of decades (Kindler et al., 2014). The abrupt warming is followed by first a gradual cooling, then often an abrupt35

jump back to the cool stadial, after a period that can last from a century to millennia (Rasmussen et al., 2014). Notably, the

DO events show comparable shape and magnitude, while exhibiting substantial irregularity in duration and the time between

events. Coinciding with the DO events, Antarctica exhibits a contrasting climatic pattern, where interstadial warm phases in

the Northern Hemisphere correspond to phases of cooling conditions in the south, and vice versa, this observation of
:
.
::::
This

:::::::
observed

:
interhemispheric connection through a southern

::
an ocean thermal reservoir is well captured in the empirical bipolar40

seesaw (BPS) model (Stocker and Johnsen, 2003; Pedro et al., 2018, 2022).

Several conceptual models based on a few coupled ODEs
:::::::
ordinary

:::::::::
differential

::::::::
equations

:
have been proposed to model DO

cycles (Mitsui and Crucifix, 2017; Kwasniok, 2013; Berglund and Gentz, 2010; Roberts and Saha, 2017). In a broad sense,

some emphasize
::::::::
emphasise the bimodality as in Stommels

:::::::::
Stommel’s model of the thermohaline circulation (Stommel, 1961),
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others emphasize
::::::::
emphasise

:
the oscillatory nature of the DO events (Roberts and Saha, 2017). Other studies focus on the45

stochastic nature of the events, and whether these climate events arise from purely random processes (Ditlevsen, 1999) or are

significantly influenced by external factors (Schulz, 2002). While some aspects of these events can be modelled as stochastic,

the sequence and modulation over time appear to be strongly shaped by external climatic effects (Mitsui and Crucifix, 2017;

Lohmann and Ditlevsen, 2018). Another method employed in the dynamical systems regime accentuates the stochastic nature

of climate transitions, providing a bridge between deterministic dynamical systems and real-world data that exhibits random50

variability (Kwasniok, 2013).

These models neglect the BPS interhemispheric elements, which are critical for a complete understanding of global climate

interactions during these abrupt events (Pedro et al., 2018). Including the Antarctic climate record as well, fast-slow dynamical

models, such as the FitzHugh-Nagumo have been proposed (Mitsui and Crucifix, 2017), which also fits well with the self-

sustained DO-oscillations found in a comprehensive ocean model (Vettoretti et al., 2022).55

Advances in global climate modelling, particularly with the Community Climate System Model 4 (CCSM4) (Gent et al., 2011; Vettoretti and Peltier, 2016, 2018; Vettoretti et al., 2022)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Gent et al., 2011; Vettoretti and Peltier, 2018; Vettoretti et al., 2022) have successfully simulated spontaneous, unforced DO

events within the climate system (Vettoretti and Peltier, 2016), for an overview of other models see Malmierca-Vallet et al.

(2023). Analysis of the CCSM4’s phase space trajectories, in particular comparing the AMOC strength against the Antarctic

Bottom Water (AABW) strength, has led to the development of a simplified model whose phase-space behaviour aligns closely60

with those predicted by more comprehensive models like CCSM4 (Vettoretti et al., 2022). This indicates that simpler dynamical

systems models can effectively encapsulate the core dynamics of DO events despite the complexity inherent in comprehensive

models. For simple models, a difficult aspect of the DO cycles to capture is the existence of the so-called precursor events,

a term coined by Capron et al. (2010). These events are short interstadials lasting a hundred to a couple of hundred years,

followed by a brief stadial phase directly followed by an interstadial of longer duration (typically more than a thousand years).65

The extreme examples – which are the ones highlighted in Capron et al. (2010) – are the precursors to interstadials 23 and 21,

denoted GI-23.2 and GI-21.2 following Rasmussen et al. (2014), but the short events GI-16.2, GI-15.1, and to some degree

GI-17.2 within Marine Isotope Stage (MIS) 3 share the key characteristics, being short interstadials just prior to interstadials

of much longer duration, .
::::
The

::::::::
precursor

:::::
events

:::
are

:
shown in red in fig. 1

:::::
Fig. 1. This behaviour is not easily captured in sim-

ple models without requiring the addition of large amounts of noise or unrealistically quick changes to the
::::::
model’s

:
control70

parameters, neither of which are aligned with our understanding of the underlying physical system.

In this paper, we present a simple two-equation model of the Atlantic Ocean circulation. Our model is derived from a

formulation similar to a simple ocean box model (Stommel, 1961), but incorporates a time-dependent dynamic forcing that

introduces variations between monostable fixed points and limit cycles. Our model introduces a novel control parameter that

represents a feedback between changes in the AMOC and AABW. Our objective is to capture more of the observed variability75

of DO events in terms of duration and temporal spacing and ultimately to reproduce precursor events. We provide a physical

process-based motivation for our model from modifications to the system described in Vettoretti et al. (2022). We also perform

a stability analysis of our model to evaluate its theoretical behaviour under varying conditions following the methodology

established in Berglund and Gentz (2010). Specifically, we utilise a novel visualization
::::::::::
visualisation

:
technique that involves
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solving the eigenvalues of the system’s Jacobian and illustrates the parametric stability of the phase space of the dynamical80

system.

2 Methods

We first describe the statistical methodology used to characterize
::::::::::
characterise

:
and examine the dynamics of DO events. Our

method applies a statistical framework for comparing our conceptual model outcomes with the paleoclimate records from

the NGRIP ice-core record. Then the conceptual model of Vettoretti et al. (2022) is introduced as a simplified, buoyancy-85

driven box model, adapted to simulate the rapid transitions and slow climatic shifts associated with DO events. The conceptual

model and its connection to the physical world are first discussed in Sect. 2.2 in order to explain the overall model design and

behaviour with only the necesarry mathematical details. We then argue for why an extra factor has to be added to the model: A

critical component of our analysis is the introduction of the α parameter, which modulates the model’s sensitivity to changes

in Southern Ocean (SO) buoyancy fluxes, directly impacting the dynamics of AABW formation and the AMOC strength. A90

more rigorous theoretical approach is developed in Sect. 2.3.2. Readers not interested in the theoretical background can skip

Sect. 2.3.1, Sect. 2.3.2, Sect. 2.3.4, Sect. 2.3.5
::::::::
Sect. 2.3 and jump direcly to Sect. 3.

2.1 The statistical framework

As a basis for our analysis of the characteristics of the modelled and observed DO variability, we make use of the statistical

framework proposed by Lohmann and Ditlevsen (2018). This allows for a quantitative comparison of the behaviour of our95

conceptual model with the paleoclimate records from NGRIP. Here, the observations are considered as a specific realisation

of a stochastic process, acknowledging that another realisation of the climatic evolution of the last glacial period would likely

come out differently. Thus, a model should not necessarily reproduce the NGRIP record but rather have similar characteristics,

and rather than over-fitting to observations, our focus is on a few so-called summary statistics, characterizing
:::::::::::
characterising

the observed record and the underlying dynamics. Therefore, we have constructed the model such that it is computationally100

light enough that robust statistics can be obtained for a large number of realisations.

In our statistical framework, the time series are characterised by two summary statistical parameters: The number of DO

events E(t) in a 20-kyr window around at a given time t, and the fraction of time spent in stadial-like conditions P (t) within

the same 20-kyr window. We use this statistical framework to compare our model with the NGRIP ice core
:::::::
ice-core records,

thereby enabling us to assess the likelihood that the observed summary statistics can
::::
could

:
be drawn from the distribution of105

summary statistics produced by the model as seen in Fig. 1. We then utilise a grid search
:::::::::
grid-search

:
method to explore the

parameter space and identify the optimal set of parameters that best fit the data. To bound the grid search, we use the constraints

derived from the stability analysis found in Sect. 2.3.5.
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Figure 1. The ice-core record. a) The δ18O record from NGRIP with the classification of interstadials by Rasmussen et al. (2014). All ages

are given in thousands of years relative to the year 2000 C.E (denoted ka b2k). The precursor interstadial events, from left to right GI-23.2,

GI-21.2, GI-17.2, GI-16.2, GI-15.1 are shown in red. b) The number of
::
DO

:
events, E(t), and fraction of time spent in stadial conditions,

P (t), within running 20-kyr-long windows, following Lohmann and Ditlevsen (2018).

2.2 The physical conceptual model

We here present a thorough introduction to the simple model briefly introduced in Vettoretti et al. (2022) , and describe the110

relationship between the model physics and the time series it generates. Then we briefly explain our extension of the model of

Vettoretti et al. (2022). We do this with a minimum of formalism and concepts from dynamical system theory. Readers with

interest in the detailed derivation and stability analysis of the set of governing equations for the dynamical system are refered

to (Sect. 2.3.1 - Sect. 2.3.5).

The model consists of two non-dimensional governing equations. The non-dimensionality is discussed in more detail in115

Sect. 2.3.2:

∆̇b=−B− |q|(∆b− b0)+σdW, (1)

Ḃ =
1

τ
(∆b− γ)+σdW. (2)

The first variable is the meridional buoyancy gradient, ∆b, which describes the buoyancy difference between the northern and120

southern Atlantic, akin to changes in the AMOC. ∆b is driven by the transport factor q (explained further in Sect. 2.3.2), which
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Figure 2. The box model. The Stommel-like box model illustrates the simplified physical transport system described by the governing

equations. The focus is on the meridional buoyancy difference (∆b) between the northern and southern Atlantic regions driven by the

transport factor q. The buoyancy flux, B, describes the combined heat and freshwater flux into or out of the ocean surface, applied to the SO

with a corresponding balance to the north.
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depending on the value of ∆b, can reverse the direction of transport (illustrated in Fig. 2) and thereby induce the abrupt changes

in AMOC, we wish to simulate. The second variable is the buoyancy flux,B, which describes the combined heat and freshwater

flux into or out of the ocean surface. B is applied to the SO with a corresponding balance to the north, and is physically related

to changes in the AABW formation. Through this mechanism, our model incorporates the fundamental principles of the BPS125

(Vettoretti et al., 2022). b0 is a tuning parameter, introduced to shift the system along the ∆b axis. The term σdW represent

noise .
:::::
factor

:::
dW

::
is
::::::::
Gaussian

:::::
noise

:::::
added

:::
at

::::
each

:::::::
timestep

::::::
scaled

::
by

:::
σ.

::::
This

:::::::::
represents

:::
the

::::::
internal

:::::::
climatic

:::::::::
variability

::::
and

:::
can

::::
lead

::
to

:::::::::::
noise-induced

:::::::
tipping.

:
See the end of Sect. 2.3.5 and Sect. 3.1 for more details on the properties of the noise.

The presence of 1/τ in the so-called slow equation, Eq. (2), with τ ≫ 1, means that the two equations describe a slow–fast130

:::::::
slow-fast

:
system. Thus any change in the ∆b parameter will be much faster than a corresponding change in the B parameter,

mimicking the fast response of an interstadial onset, compared to the much slower corresponding BPS response in and around

Antarctica. The behaviour of the system is controlled by the relative position of the two nullclines (∆̇b= 0 and Ḃ = 0) as

seen in Fig. 3. The ∆b nullcline corresponds to the inverted "S" shaped curve, while the B nullcline corresponds to the flat

horizontal line. In this paper we will refer to the ∆b nullcline as the slow manifold; the curve where the system evolution is135

dominated by the slow parameter, following the formalism outlined in Berglund and Gentz (2010). We note that nullclines and

manifolds are generally not identical for finite values of τ , but the difference is not important in this case, especially due to the

presence of noise. As Ḃ = 0 =⇒ ∆b= γ
::::::::::::::::
Ḃ = 0 ⇐⇒ ∆b= γ, γ can be seen as a control parameter (in Vettoretti et al. (2022)

taken to be the CO2 concentration expressed in units of buoyancy) that moves the B nullcline up and down. The location of

the intersection of the two nullclines determines the dynamics of the model. When the nullcline intersects the slow manifold140

in either the upper or lower part , the system has a fixed point and is in a stable interstadial- or stadial-state; this is the case for

Fig. 3 a) and c) respectively.

Schematic representation of the behaviour of the model. The sequence from a) to d) showcases the system’s progression

between stadials and interstadials when it is in the oscillatory regime (as shown in Fig. 3b). The coloured points demonstrate

how various segments of the time series (e–f) align with the different states (a–d) as the system oscillates along the slow145

manifold. The inner part details key physical processes driving the transitions within the comprehensive climate model which

has been shown to have the same qualitative behaviour as our conceptual model (Vettoretti et al., 2022).

When the B nullcline intersects either the upper or lower part of the slow manifold (either above or below the corresponding

bifurcation points marked by green points in Fig. 3), the model has a stable fixed point and will tend towards this fixed point.

:::::
These

::::::::
represents

::
a
:::::
stable

:::::::::
interstadial

::
or
::::::
stadial

::::
state

:::
as

::::
seen

::
in

:::::
Fig. 3

::
a)

:::
and

::
c)

:::::::::::
respectively.150

When the B nullcline intersects the middle part of the slow manifold, shown as the dashed line in Fig. 3b, the fixed point is

unstable and the system will perform oscillations by following the limit cycle, shown as the two arrows in Fig. 3. The diagram

in Fig. 4 demonstrates the relationship between the model’s phase space and the resultant time series it generates when it is

oscillating. In the (a,b,c,d) panel cycle, we observe how the state of the system traverses around the limit cycle, with each155

transition between points linked to the specific events happening here. The inner red section of this panel shows the actual
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Figure 3. Different Regimes of the simple model
:::::::
Different

:::::::
regimes

::
of

:::
the

:::::
simple

:::::
model. The ∆b nullcline (the multi-coloured inverted

S-shape), and its stability regimes are constant through the three panels. a) When the horizontal B nullcline intersects the upper part of the

∆b nullcline, the system is in a stable interstadial-state
::::::::
interstadial

::::
state. b) If the intersection takes place in the middle, the system oscillates

and follows the limit cycle. c) If the intersection of the nullclines is located on the lower part of the ∆b nullcline, the system is in a stable

stadial-state
::::
stadial

::::
state. As γ changes (the cases γ = 1.5,1.2,0.7 are shown), the B nullcline moves up and down, and bifurcations take

place at the green points which separate the three regimes.
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Figure 4.
::::::::
Schematic

::::::::::::
representation

::
of

:::
the

::::::::
behaviour

::
of
:::

the
::::::

model.
:::
The

:::::::
sequence

::::
from

::
a)
::

to
:::

d)
::::::::
showcases

:::
the

:::::::
system’s

:::::::::
progression

::::::
between

::::::
stadials

:::
and

:::::::::
interstadials

:::::
when

:
it
::
is
::
in

:::
the

::::::::
oscillatory

:::::
regime

:::
(as

:::::
shown

::
in

:::::
Fig. 3

::
b).

:::
The

:::::::
coloured

:::::
points

:::::::::
demonstrate

::::
how

::::::
various

:::::::
segments

::
of

::
the

::::
time

:::::
series

:::
(e–f)

:::::
align

:::
with

:::
the

:::::::
different

::::
states

::::
(a–d)

::
as

:::
the

:::::
system

:::::::
oscillates

:::::
along

:::
the

:::
slow

::::::::
manifold.

:::
The

::::
inner

::::
part

:::::
details

:::
key

::::::
physical

:::::::
processes

::::::
driving

:::
the

::::::::
transitions

:::::
within

:::
the

:::::::::::
comprehensive

::::::
climate

:::::
model

:::::
which

:::
has

::::
been

:::::
shown

::
to

::::
have

::
the

:::::
same

::::::::
qualitative

:::::::
behaviour

::
as

:::
our

::::::::
conceptual

:::::
model

:::::::::::::::::
(Vettoretti et al., 2022).
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physical processes associated with these transitions as inspired by the comprehensive model simulations in Vettoretti et al.

(2022). Meanwhile, the generated time series are seen in panels e and f, marked by coloured points and intervals aligned with

the system’s position on the limit cycle.

160

This simple model has its limitations in terms of mimicing
::::::::
mimicking

:
observed DO variability by exhibiting a high degree

of periodicity when the system is oscillating, as well as having limited variability in the duration of the interstadial-stadial

configurations; when γ attains higher values, the system exhibits longer interstadials and short stadials, and vice versa. To

better mimic the behaviour seen in ice-core records, one can force the system with a high-amplitude, fast-varying γ value,

which is not consistent with the idea that γ represents the CO2 concentration. To address this limitation, we propose adding165

another term, αB/τ , to Eq. (2), representing a feedback mechanism that changes the rate at which the ocean takes up heat or

gives off heat during a DO cycle. The α parameter affects the rate of change of AABW production, reducing the rate of change

of buoyancy flux in interstadials, and increasing it in stadials. Physically it is associated with a SO warming or freshwater flux

parameter, described in more detail in Sect. 2.3.4. We will call α the "slope parameter" because it leads to a nonzero
:::::::
non-zero

slope of the B nullcline as seen in Fig. 5. By introducing the combination of changing the magnitude of the slope and moving170

the nullcline up and down, it is possible to more dynamically control both the durations of the stadials and interstadials, as well

as the periodicity of DO events through time.

2.3 Detailed model description and stability analysis

In the following sections, we provide an in-depth description of our extended model, which is formulated in terms of buoyancy,

and the link between the non-dimensional model formulation and the physical world. We then introduce the slope parameter175

α as an extra term in the governing equations and analyse the extended model’s stability. Readers mainly interested in how the

model performs compared to the observed DO cycle can move directly to the results in Sect. 3.

2.3.1 The buoyancy framework

We employ a simplified box model with the flow driven by buoyancy differences based on the principles of the multi-vessel

Stommel model (Stommel, 1961), as described in (Vettoretti et al., 2022)
:::::::::::::::::
Vettoretti et al. (2022). The conceptual model (illus-180

trated in Fig. 2) is formulated in terms of buoyancy and buoyancy fluxes, with ∆b defined as the meridional gradient between

the buoyancy of the southern box (bS) and the northern box (bN ). The southern box’ buoyancy is greater than the northern

box’ buoyancy, ergo, ∆b is always positive in our standard conceptual model. Therefore, one might think of this difference

in physical terms as sinking in the north with denser northern waters returning at intermediate depths, e.g.,
:

Stommel (1961).

The buoyancy flux (B) captures the haline and thermal forcing of the ocean surface. Classically, boxes are forced by an equal185

amount of freshwater leaving a southern or equatorial box and entering a northern box, with the density gradient being mainly

driven by salinity changes (Cessi, 1994). In a similiar methodology, here the buoyancy flux always removes buoyancy at the

southern box, while the northern box gains buoyancy, and the transport q (which may be positive or negative), keeps this ∆b

gradient in balance, either in a strong positive (interstadial) or weak positive (stadial) state. As outlined in Fig. 4, there are

10



four essentially different states of the DO cycle. Starting our description in the mode of strong AMOC and weak AABW190

(a), corresponding to the beginning of an interstadial period, the southern buoyancy flux is weak and the circulation is largest

(q > 0). As the system is autonomous, the AMOC decreases, and the southern buoyancy flux begins to increase and removes

more buoyancy from the southern box (in Fig. 2, the buoyancy flux moves buoyancy out of the SO, decreasing bS). While the

transport acts to move some of the less buoyant water from the southern box to the northern box, it does not fully compensate

for the decreasing buoyancy in the southern box, and the circulation weakens. This is typically understood as a freshwater195

feedback, where the freshwater transport is out of the northern box southwards, which creates a feedback where more salt is

brought into the North Atlantic by a stronger AMOC. This results in a feedback of more freshwater transport out of the northern

box with the stronger AMOC. Here we describe how the buoyancy decreases (or density increases) in the southern Box
:::
box, so

this mimics a transport of freshwater to the northern box, which weakens the circulations. This is the negative salt-advection

feedback.200

Conversely, the equal and opposite buoyancy flux in the north is adding buoyancy to the northern box, the combination

of which weakens the buoyancy gradient to bring us to a strong (but not maximum) AMOC and strong AABW mode (b),

here q = 0, and there is no salt-advection feedback. The system then tips abruptly into the mode with weak AMOC and strong

AABW (c) and q reverses (the positive salt-advection feedback). The buoyancy flux removal in the southern box remains strong

while the system transitions to the lower stable branch. The flow then gradually moves buoyancy, via the positive salt-advection205

feedback, from the northern box to the southern box to slowly increase the positive buoyancy gradient. While at
::
At

:
the same

time, the buoyancy flux (AABW) begins to weaken in the southern box, conversely, the buoyancy flux into the northern box

strengthens. The strong reversed flow begins to weaken and we enter a mode with weak but slightly strengthened AMOC and

weak AABW (d). As the system approaches the lower bifurcation point and then jumps to the upper part of the slow manifold,

the transport switches sign (q > 0) and the removal of buoyancy remains weak while the circulation is strongest (when ∆b is210

large), and the cycle repeats.

The behaviour of the conceptual DO box model can be related to physical processes. The removal of buoyancy in the

southern box represents AABW formation through the removal of buoyancy at the surface, which one might physically think

of as brine rejection from forming sea ice, or the removal of heat from the ocean surface by katabatic winds blowing downslope

over the Antarctic peninsula, forming latent-heat polynyas. The increase in buoyancy associated with a positive buoyancy flux215

into the northern box can be related to the transport of thick Arctic sea ice into regions of North Atlantic Deepwater formation.

Removal of heat would act to decrease buoyancy, but haline influences on buoyancy dominate at high latitudes. The transport

q can be related to the Fov parameter used in many studies (Cimatoribus et al., 2014), that investigate the bistability of the

AMOC
:
,
::::

e.g.
::::::::::::::::::::
Cimatoribus et al. (2014). It can reflect the convergence or divergence of salt into the North Atlantic which helps

to act as positive or negative feedback.220

2.3.2 Model formalism

Based on the physical arguments, in Sect. 2.2 we derived the set of stochastic ordinary differential equations (Eqs. (1) and (2))

for the conceptual model of Vettoretti et al. (2022). Ignoring for a moment the stochastic noise terms, the deterministic part of

11



the model is of the general form: dy
dt = (f(y)−x), dx

dt = (y−γ)/τ . With the choice f(y) = a(y−y3)+ b, the model becomes

the FitzHugh-Nagumo model, previously used in simple models of DO events (Mitsui and Crucifix, 2017). Instead, our model225

is formulated as a simplified box model with the flow driven by buoyancy differences based on the principles of the multi-vessel

Stommel model (Stommel, 1961) as described in Vettoretti et al. (2022) but with model overturning described in terms of the

meridional buoyancy gradient rather than density (as in Stommel (1961)) using the following equivalency:

∆b=
−g
ρ0

∆ρ, (3)

where g is the gravitational acceleration and ρ0 a reference density.230

The parameters used in our model are inferred from the comprehensive modelling study of DO variability (see the sup-

plement of Vettoretti et al., 2022). In the CCSM4 simulations of glacial climate, a linear relationship between the meridional

buoyancy gradient (∆b) in the Atlantic and the strength of the AMOC was observed. A relation for the box-model transport

was presented (q = q0+q1(∆b−b0)) as a process-based relationship with salt-advection feedback, where the non-dimensional

constants are q0 =−9 and q1 = 12. Inserting q = q0 + q1(∆b− b0) into Eq. (1), we arrive at the first equation of the non-235

dimensional conceptual model of Vettoretti et al. (2022):

∆̇b=−B− |q0 + q1(∆b− b0)|(∆b− b0)+σdW, (4)

where we have introduced a Wiener process,
:::::
dW , with a scalable σ parameter to describe the internal variability of the system.

In the following section, we will explain the relationship between the flow parameter, q
:
q, and the strength of the AMOC.240

Additionally, we will outline the process of converting the non-dimensional equations into the appropriate physical units.

2.3.3 Coupling of flow with AMOC strength and redimensionalization
::::::::::::::::::
redimensionalisation

In the simple model, we can replicate the range of values of the AMOC in the comprehensive model simulations of the

DO oscillation by introducing constants that describe the characteristic scales of transport (ψ0,ψ1) in the ocean to obtain

physically meaningful values. The AMOC is then a function of the buoyancy gradient through the following relationship:245

ψ0 =−4.5 · 106m3s−1, ψ1 = 20.0 · 106m3s−1, AMOCdim = ψ0 +ψ1∆b. This redimensionalization
::::::::::::::::
redimensionalisation

:
of

the AMOC ensures that it is positive definite at all times as in the real ocean, where the non-dimensional q is a transport

which can switch directions as in the classic Stommel model and represents a transport of buoyancy in either direction (the

thermal and haline modes). The buoyancy and buoyancy flux can be redimensionalized
:::::::::::::::
redimensionalised to physical units

with the characteristic values used to non-dimensionalize
::::::::::::::::
non-dimensionalise

:
the physical equations, bc = 0.004 ·ms−2 and250

Bc = 3.8 · 10−10m−2s−3.

Additionally
:
, connection is made in our formulation between the buoyancy flux and AABW production or transport suggest-

ing that the density change in the southern box is related to AABW production and therefore there is an interplay between the

AABW and AMOC strength (Klockmann et al., 2018; Nadeau and Jansen, 2020). Following Vettoretti et al. (2022), AABW
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production is proportional to B. The non-dimensional buoyancy flux can be transformed to AABW units (Sv) as follows:255

AABWdim = ψA +χA
Bc

bc
B (5)

where χA is a scaled area of the Atlantic where buoyancy is fluxed downwards, with the following values, A= 7.0 ·1012 ·m2,

χ= 2.5, ψA = 5.0 · 106 ·m3s−1, as derived in the supplementary material of Vettoretti et al. (2022).

In this parametrization
:::::::::::::
parametrisation, the flow q reaches zero at the end of the interstadial period at the upper bifurcation

point (see Fig. 3) which results in bifurcation-induced tipping into the stadial period. At this point, the flow reverses (q < 0,260

but the AMOC remains positive). While the transport q in the non-dimensional form used here transports buoyancy, it captures

freshwater transport between boxes and is therefore related to the salt-advection feedback used in other simple models and in

comprehensive models used to assess bistability of the AMOC (Dijkstra, 2007).

2.3.4 The role of the α parameter

To alter the periodicity of oscillations within the simple model and to capture other physical time-dependent processes associ-265

ated with buoyancy fluxes in the SO, we introduce an additional term, αB/τ , to Eq. (2) as discussed at the end of Sect. 2.2.

This modification leads to our updated version of the slow-timescale equation:

Ḃ =
1

τ
(∆b+αB− γ)+σdW, (6)

which together with Eq. (4) forms our set of model equations.

Incorporating the new parameter into the B equation transforms the nullcline from a constant to a linear relation (∆b=270

γ−αB). The nullcline represents areas where the rate of change of B (Ḃ) switches between positive and negative. Essentially,

the vertical distance to the nullcline indicates the magnitude of this rate of change of B; a smaller distance implies a slower

rate of change. By introducing a slope to the nullcline, this distance — and consequently the rate of change of B — becomes

variable rather than fixed. This adjustment allows for more control of the dynamics throughout interstadial and stadial periods,

making the model’s simulation of these periods more adaptable to varying climatic conditions. Secondly, the nonzero
:::::::
non-zero275

slope of the B nullcline leads to the formation and elimination of intersections with the slow manifold within very small

changes in α and γ compared to the case with the horizontal nullcline. For example, for appropriate values of the slope, it

becomes possible for the model to go from having a single stable fixed point on the upper part of the slow manifold to a single

stable fixed point on the lower part of the slow manifold with small changes in the α and γ. Lastly, the new B nullcline allows

for the system to have two stable fixed points simultaneously, one in the upper part and one in the lower part of the slow280

manifold, transforming the system to a purely noise-driven bistable system, creating non-periodic oscillations.

The α parameter plays a crucial role in representing a key influence on the buoyancy of the SO. An increase in α affects

the buoyancy flux (or AABW), dampening buoyancy changes during interstadials and amplifying them during stadials. This

results in prolonged interstadials and shortened stadials, indicating that SO warming or an additional buoyancy flux associated

with sea-ice formation could play a significant role, should similar mechanisms operate in the real world. An increase in α285

could be indicative of increased meltwater flow from melting Antarctic sea ice, pointing to a significant accumulation of either
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freshwater or heat. This condition is further demonstrated when there is an intersection of the B nullcline with the upper part

of the slow manifold. In such instances, the robustness of the increased meltwater flow is sufficient to prevent a collapse of

the AMOC, possibly by hindering sea-ice formation or through other mechanisms. In such scenarios, the AMOC remains in a

slightly reduced mode compared to the onset of a DO event, maintaining a quasi-interglacial or "modern" state.290

2.3.5 Stability analysis

The governing equations (4 and 6) of our model represent a slow-fast system where the analysis can be split into fast changes in

∆b, analogous to the stadial-interstadial transitions, and slow changes along the stable parts of a slow manifold which dictates

the behaviour of the system on longer timescales. To constrain the domain of relevant values of the control parameters, we

analyse the stability of the dynamical system. This is done by finding the eigenvalues λ1,2 of the Jacobian, J , for the model295

including the slope term given by

J ≡

∂∆̇b
∂∆b

∂∆̇b
∂B

∂Ḃ
∂∆b

∂Ḃ
∂B

=

 x 1/τ

−1 α/τ

 , (7)

where

x=−|q0 + q1(∆b− b0)| − q1Λ(∆b)(∆b− b0), (8)

with300

Λ(∆b) =

0 if ∆b= −q0
q1

+ b0

sign(q0 + q1(∆b− b0)) otherwise
.

The panels in the right part of Fig. 5 show the eigenvalues of J as ∆b changes. In all panels, the real parts of λ1,2 are

different for low ∆b values, become identical for values of ∆b close to 1, and then differ again for large ∆b values. When the

two are not identical, |Re(λ1)| is diverging with larger |∆b| values, while |Re(λ2)| remains small. The imaginary parts of the

eigenvalues (purple lines) are zero for most values of ∆b, but when the real parts coalesce around ∆b= 1, and at the point of305

non-differentiability, the imaginary parts are also non-zero (purple points).

To determine the stability of the state we use three conditions
:::
look

::
at
:::::
three

:::::
cases; if Re(λ)< 0 the system is stable and for

Re(λ)> 0 the state is unstable, lastly if λ ∈ Im, here called
:
λ

::
is

:
purely imagnary then the state is in

::::::
system

::
is

::::::::::
undergoing

a bifurcation. First, we analyze
::::::
analyse

:
the situation with α= 0, fig. 5( c & d), to compare with the literature (Mitsui and

Crucifix, 2017; Vettoretti et al., 2022). For ∆b < 1, the system is in a stable state (blue region). This corresponds to the lower310

part of the slow manifold. Then, when ∆b= 1, λ1,2 becomes purely imaginary and the system undergoes a bifurcation (green

horizontal line). Increasing ∆b, the system becomes unstable (purple region). Here, the system will always converge to the limit

cycle, and exhibit oscillatory DO-like behaviour. At ∆b= −q0
q1

+ b0 = 1.38, the manifold is non-differentiable and therefore
∂∆̇b
∂∆b is undefined. Kowalczyk and Glendinning (2011) show that a non-smooth bifurcation occurs and that the derivative, ∂∆̇b

∂∆b

should be defined to 0. After the bifurcation, we again have a stable system (yellow region)here in the interstadial-state
:
,
::::
now315

::
in

:::
the

::::::::::
interstadial

::::
state.
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Figure 5. The phase space of the system and the eigenvalues of the Jacobian for three different configurations of the model: (a,b)

α= 0.6, (c,d) α= 0 (equivalent to the cases in fig. 3), and (e,f) α=−0.6. (a,c,e) Phase space of ∆b and B showing the ∆b and B

nullclines, bifurcation points, and fixed points in different colours based on their stability. (b, d, f) The stability is determined from the

system’s Jacobian J which has two eigenvalues whose real and imaginary components are shown.
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When α ̸= 0, the stability changes as shown on Fig. 5(b & f). The eigenvalues as a function of ∆b have the same shape as

for α= 0 but shift with the size of α. The combined movements of the real and imaginary parts result in a drastic change in the

stability of the manifold. For α=−0.6 fig. 5(e & f), the lower part of the manifold becomes stable for a larger interval of ∆b

values. In the same way, the lower bifurcation happens at this higher value for ∆b. The bifurcation at the non-differentiability320

(∆b= 1.38) disappears as α changes the real part of the eigenvalues for the Jacobian (Kowalczyk and Glendinning, 2011) to

be non-zero.

For α= 0.6 fig. 5(a & b), the stability of the whole manifold changes. The entire manifold becomes unstable (purple shading)

and the system diverges instead of converging to a fixed point or the limit cycle. A very small part of the lower manifold is still

stable when the real part of λ2 (dark red) is negative. This allows for a half-stable limit cycle where, if the system is inside the325

limit cycle, it converges out to the limit cycle, but if it is outside, it diverges. This condition results in a highly unstable system,

as the noise-driven variability can quickly push the system outside of the limit cycle. Relating this scenario to the physical

explanation of α, the α parameter leads to a feedback mechanism that not only maintains but actively accelerates the AMOC.

Such continuous acceleration is considered unphysical as it implies an unsustainable increase in the system’s intensity.

From these observations, we derive the region where the behaviour of the system will exhibit cyclic behaviour and respond330

to changes in the control parameters. From the previous analysis, α is constrained to [−1,0]. We will argue that the upper

bound is a good choice in Sect. 3.1. To keep the nullcline inside the relevant area of the system, γ is constrained to [0.6,3].

The noise in the system comes from a Wiener process dW . At each time step it adds a random number drawn from a unit

Gaussian that is scaled with a parameter, σ. To ensure that our model exhibits behaviour that is governed by its deterministic

structure rather than by random fluctuations, we set a limit on the parameter σ, which controls the intensity of the noise in335

the model. If σ is too high, the model behaves like a random walk, leading to abrupt and unrealistic transitions in the system.

Through a search of the domain of the summary statistics presented in Sect. 3.1, we selected an optimal
:
a
:
value for σ that best

replicates the behaviour observed in the ice-core record.

3 Results

In this section, we present the findings of our simulations and analyses aimed at exploring the behaviour of the AMOC in340

response to varying control parameters. We begin by detailing the results of our simulation studies in Sect. 3.1, where we

examine the effects of introducing the slope parameter α into our model and its implications on the summary statistics. This

section also discusses the structural changes in the achievable results from varying parameters, and how we use this analysis

to set a fixed noise level. Following this, in Sect. 3.2, we explore how an idealised forcing can produce results resembling the

dynamics of the last glacial period.345

3.1 Output space

To see the effect of introducing the α parameter, we run simulations across the extensive parameter space delineated by the

stability analysis. Each simulation generates a non-dimensional AMOC time series. Each run is initiated such that it ends at
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Figure 6. Achievable µ′
P and µ′

E pairs. A scatter plot of µ′
P and µ′

E , with the (P (t),E(t)) time series from Fig. 1 superimposed. The

numbers mark the ages at 10-kyr spacing. Each pair is coloured by the value of γ (left column) or σ (right column) used in the corresponding

model run. The value of α decreases from the top (α= 0) to bottom (α=−1).
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11703 b2k, at the beginning of the Holocene (Rasmussen et al., 2014). The model runs with a constant timestep of 20 yrs which

comes from a balance between run time and the stiffness of the system. Therefore we start the simulation at 119123 b2k, with350

initial conditions (∆b,B) = (1,0). This is the closest to the transition out of the Eemian a whole number of 20-year steps from

11703 b2k can come. The simulations are therefore run for 5371 steps. The simulations were carried out using a stochastic

Runge-Kutta method without adaptive stepping to mitigate the stiffness of the system (Ansel et al., 2024; Kidger et al., 2021;

Li et al., 2020). As we initialise in GS-26 the initial conditions are chosen to be in a stadial-state. Using two threshold values

for the stadial and interstadial-states as outlined in Mitsui and Crucifix (2017), we automatically classify when the AMOC time355

series is in stadial and interstadial periods, respectively. From this classification, we calculate the E′(t) and P ′(t) series for

each run. For the remainder of this paper, primed values will denote E and P values for the modelled time series.

The modelled temporal averages µ′
E and µ′

P for each set of control parameters are shown in Fig. 6 with the left column

coloured by the γ and the right coloured by the σ value of the simulation. Each µ′
E and µ′

P value pair is an ensemble average

of 100 individual runs for a specific set of parameters. The model is run for 104 different sets of γ, α, and σ in the domain360

found in Sect. 2.3.5.

The simulations are unstable for α= 0 and γ > 1.85 and have been omitted. We also show the temporal evolution of

(P (t),E(t)) values calculated from the ice-core record as described in Lohmann and Ditlevsen (2018) as also shown on

Fig. 1. For α= 0 (Fig. 6, a & b), the model’s outcomes appear to arch around the values derived from the ice-core record. For

some periods, e.g. around 81 ka b2k, the model can capture the (P (t),E(t)) pair found in the ice-core record. However, for365

most of the ice-core records, this is not possible. Clear arches for each noise level are seen in the right panel, while almost

vertical bands of similar µ′
P corresponding to each γ value are seen in the left panel. This is a clear consequence of the model

properties. γ controls the magnitude of the gradient along the slow manifold, and if γ is near the upper bifurcation
:::::
point in

the unstable region, the system will have a small gradient along the upper part of the manifold but a large gradient along the

lower part. This in turn leads to longer interstadials and shorter stadials. With larger σ, the system becomes more volatile and370

it will jump from the stable parts of the manifold more readily leading to more events over a
:::::
given time average. Interpolating

and extrapolating to uncharted parts of the parameter domain is fairly straightforward: With decreasing γ, µ′
P moves to higher

values, and increasing the σ will increase µ′
E . Either way, it would not be possible with α= 0 to reach most of the observed

(P (t),E(t)) values.

Including the slope parameter allows the model to better capture the observed behaviour and thereby match the (P (t),E(t))375

values. Decreasing the α parameter extends the arches downward, so each line of constant γ now reaches lower values of µ′
E .

In the middle and lower panels, the observed values are now more fully represented by the possible values found in the model.

The correlations observed between µ′
P and γ, and µ′

E and σ are still maintained. As α decreases, γ has to increase to keep the

B nullcline in the relevant region of the phase space where DO events occur, as γ controls the intercept of the B nullcline with

the ∆b axis of the phase space. This is also illustrated in the left column of Fig. 5, where the overall γ values increase with380

decreasing α value. From the right column, we can see that increasing α moves the entire arch downwards, and replaces the

upper parts of the arch with higher noise levels. Thus for α <−1 it would require an even higher value of σ for enough events

to happen to capture the period around 101 ka b2k. This higher value will make the system even more noise-driven. From the
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superimposed (P (t),E(t)) time series on Fig. 6, it is apparent that there is no single panel which encompasses the entirety of

the observed dynamics in a single colour, representing a fixed set of control parameters.385

The results shown in Fig. 6 and discussed above come from stationary models where the given set of parameters {σ,γ,α} are

constant over the entire simulation. This allowed us to analyse the behaviour of the new model with non-zero α compared to the

old one without the sloping nullcline. However, due to the variable nature of the glacial climate, there is no reason to believe

that the parameters are stationary, and it is thus less relevant to try to fit the stationary model to the observed P ((t),E(t))

values. What we conclude from this analysis is, that a dynamically forced model with the addition of the α parameter should390

be able to simulate the behaviour seen in the ice-core record, as the whole time series is now within the achievable domain

illustrated in Fig. 6.

When trying to fit an idealised forcing to optimally resemble the dynamics of the ice-core record, we experienced that the

α and γ parameters relied so heavily on the noise level, that any optimization
::::::::::
optimisation algorithm would choose a random

noise level, optimising only the α and γ parameters, and thus risk getting stuck in a local minimum. It was not possible to395

optimize
:::::::
optimise on the α and γ parameters first, and then optimize

:::::::
optimise

:
on the noise level as this led to non-optimal

solutions. Therefore, we decided to use the arches from Fig. 6 as an argument for choosing a constant σ = 0.2 for our further

analysis: because the yellow points in the right panels together span the entire area, it should be possible with σ = 0.2 to find a

pair of γ and α that can reproduce the dynamics of the ice-core record at any time. Previous studies suggest a higher variability

in stadial-states compared to interstadial-states (Ditlevsen et al., 2002). Ideally, this would lead us to assign different noise400

levels to each state. However, due to the lack of a method to numerically estimate or computationally derive distinct values for

each state, we have opted to use a constant noise level for both states.

A more accurate picture from the simple model could be achieved if we had a better estimate of the appropriate noise levels

for stadial and interstadial periods.
:::::::
Previous

::::::
studies

:::::::
suggest

:
a
::::::
higher

::::::::
variability

::
in

::::::
stadial

:::::
states

::::::::
compared

::
to
::::::::::
interstadial

:::::
states

::::::::::::::::::
(Ditlevsen et al., 2002)

:
.
::::::
Ideally,

::::
this

::::::
would

::::
lead

::
us

:::
to

:::::
allow

:::::::
different

:::::
noise

:::::
levels

:::
in

::::
each

:::::
state.

:
Preliminary results suggest405

that identifying this noise level through an analysis of global climate models or ice core data presents a more complicated

picture. Specifically, the noise in the AMOC does not
:::::::::
necessarily seem to be necessarily directly linked to the variability in the

Greenlandic ice-core records.
::::::::
Therefore,

::::
due

::
to

:::
the

:::
lack

:::
of

:
a
::::::
method

::
to

::::::::::
numerically

:::::::
estimate

:::
or

:::::::::::::
computationally

:::::
derive

:::::::
distinct

:::::
values

:::
for

::::
each

:::::
state,

:::
we

::::
have

:::::
opted

::
to

:::
use

:
a
:::::::
constant

:::::
noise

:::::
level

::
for

::::
both

::::::
states.

3.2 Fitting the forcing410

Many attempts have been made to link the control parameters of simple models to physical quantities including, e.g., global

ice volume, insolation, and CO2 concentration (Lohmann and Ditlevsen, 2018; Vettoretti et al., 2022; Mitsui and Crucifix,

2017). Adding to the complexity is the possibility that a combination of these forcings could be at play simultaneously, making

the task of testing each one through trial and error impractical. Therefore, we take another approach by fitting an idealized

:::::::
idealised

:
time-dependent forcing via α(t) and γ(t). We choose to describe α and γ , with one point every ∼ 3.6 kyr and make415

a cubic spline interpolation between these points. This allows us to resolve periodic variations in the forcing with a period on
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Figure 7. Optimal time-dependent forcing α(t) and γ(t). The top two panels (a) and (b) show the events E(t) and stadial fraction P (t)

found from an ensemble of simulations, with fixed α(t) and γ(t), but different realisations of the random noise, highlighted in blue is the

E(t) and P (t) of the realisation with the lowest RMSE compared with the observations. (c) Cubic spline interpolation between the 30 points

in each time series for α(t) and γ(t). (d) Time series generated using the forcing in (c) giving the best fit of E′(t) and P ′(t) to the observed

values. Model time runs from the beginning to the end of the last glacial.
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the order of 14 kyr. We have chosen this resolution to allow the forcing to have variations on orbitally relevant timescales, but

not on the typical scale of the DO events.

We use a Bayesian algorithm to determine α(t) and γ(t) forcing that minimizes
::::::::
minimises

:
the root mean square error

(RMSE) between the ensemble mean of E′(t) and P ′(t) of the model simulations and the observed E(t) and P (t). Given that420

P ′(t) and P (t) naturally range between 0 and 1, we normalize
:::::::
normalise

:
E′(t) and E(t) by dividing each by the maximum

observed value of E(t). This ensures that both
::
the

::::
two variables contribute equally to the optimization

::::::::::
optimisation

:
process

when calculating the root mean square error. The α(t) and γ(t) series contains 30 values that are constrained by the analysis

from Sect. 2.3.5. After the Bayesian optimization
::::::::::
optimisation, a random Gaussian noise perturbation with a standard deviation

of 0.075 is added to the first parameter of γ(t) 15 times and the best of these are found, and the parameter is updated. This425

is then done sequentially in time to all parameters, first for γ(t) and then for α(t) to find even better optima than those found

by the Bayesian optimizer
::::::::
optimiser. The results of this can be seen Fig. 7. The ensemble resembles the observations as E(t)

consistently falls within E′(t). There are periods around 91 and 21 ka b2k where the modelled P ′(t) fails to capture the

observations. This is further discussed below. The interpolated γ(t) and α(t) can be found in panel c and show that variations

with large amplitudes and frequencies are required to fit the P (t) andE(t) of the observations. Panel d shows the member of the430

ensemble of the simulations with the lowest RMSE between the simulated and observed E(t) and P (t) values. Two precursor

interstadials can be seen at 107 and 97 ka b2k, with approximate durations of 496 and 817 yr followed by 323- and 371-yr-

long stadials that lead into interstadials with durations of approximately 7668 and 5124 yr
::
7.7

::::
and

:::
5.1

:::
kyr. This demonstrates

the model’s ability to produce a DO-event sequence that somewhat resembles short precursor-style events followed by long

interstadials as observed in the ice-core record.435

4 Discussion

One of the most profound features of the DO cycles is their highly non-periodic nature with interstadial durations and event

spacing spanning several orders of magnitude. We show that by optimising the forcing and adding a novel parameter, our

conceptual model of the AMOC-driven DO dynamics can mimic the ice-core record in terms of its non-periodicity. The

idealised forcing makes the model produce summary statistics matching those of the observations. We do not claim that this440

idealised forcing can be directly linked to the likely natural forcings that were acting on the climate system during the glaciale.g.

:
,
:::
e.g.,

:
ice volume, CO2 concentration, and insolation. It does, however, show that the model output can span a realistic range

of situations with a forcing varying with periods longer than 14 kyr. The glacial climate system was likely forced by a complex

combination of forcing factors possibly combined in a non-linear and non-stationary way. In addition, the level of internal

variability, which plays a key role in the model behaviour, may have varied between stadials and interstadials, and possibly445

also on longer time scales. However, as outlined in Sect. 3.1, we here determine an idealised forcing while keeping the noise

parameter σ constant with a value of 0.2. We suspect that other σ values, or a time-varying σ(t) combined with different γ(t)

and α(t), can produce summary statistics that match the observed characteristics even better. Also, our fitting method does not

take into account the multi-dimensional first- and second-order correlations between the control parameters that arise from both
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the simple geometry of the nullclines and the strong correlations between µ′
E and µ′

P shown in Sect. 3.1. We therefore simply450

show that it is possible to get a simple model to fit the behaviour of the ice-core records to a greater extent than previously

shown in the literature. To further improve the idealised forcing
:
,
:
we suggest starting with a reformulation of the equations to

decouple α and γ, maintaining the nullcline’s proximity to the slow manifold’s critical range as α varies. This would effectively

transform the system so that the origin would lie in the middle of the manifold close to the unstable part. As α varied, the B

nullcline would therefore remain in the relevant region without necessitating large variations in γ.455

Unforced DO events produced by current earth system models are highly periodic, and the periodicity of the DO behaviour

in the simple model configuration – and our suggestion of how to break this periodicity in the model – is therefore also relevant

for the question of how more comprehensive models can be improved. The earth system model of Vettoretti et al. (2022) has

been linked to the simple model used here with α= 0 via their similar phase-space behaviour. Our analysis shows that to

mimic the non-periodicity of the ice-core record, the simple model needs α < 0. However, the larger earth system models still460

generate DO events with pronounced periodicity. By looking for a similar feedback mechanism as the feedback represented

by the α term in the simple model, the comprehensive models might be able to better replicate the non-periodic dynamics

observed in the ice-core record. A first step could be a thorough study of the parameters influencing the ocean circulation in

the southern Atlantic and SO.

A weakness of our optimization
::::::::::
optimisation

:
scheme (which is based on simply minimizing

:::::::::
minimising the overall RMSE465

of the summary statistics of the generated time series, see Fig. 7) is that it does not consider each modelled time series as an

actual time series, but as a series of individual data points without any temporal structure. This approach might result in a low

RMSE, suggesting a close fit between the model’s ensemble predictions and the summary statistics of the observed record.

However, it falls short of accurately recreating the actual observed data series. The method does not favour high accuracy in

a single time series, but a rather low variability across the collective range of the ensemble, see best fit lines on Fig. 7 a and470

b . Our examination of the current literature and theoretical models has failed to provide a method for determining whether a

specific time series originates from a population of time series. Therefore, we have opted for the analytical approach used here.

Previous simple models have not been able to produce precursor events without large and rapid variations in control pa-

rameters. The α parameter’s effect on the B derivative and the possibility of having multiple fixed points allow our model

to produce DO events with duration and spacing similar to those in the observational record, including the precursor events.475

These modelled precursor events present themselves in two different ways, which will be described here. In type I precursor

events (seen in Fig. 8), the system is going around the limit cycle akin to a regular DO event after which the system’s stability

changes and the system transitions into a stable interstadial-state. Type I events will have the same amplitude as the other DO

onsets, with a duration based on the time it takes to run a full course around the limit cycle. The difference between models

with α= 0 and α < 0 is that for α= 0 and aB-nullcline location close to the upper slow manifold, the model can only produce480

events with a very long interstadial duration, while a sloping nullcline close to the point of non-differentiability (marked by

situation (a) in Fig. 8) can produce short interstadials. The type II events, on the other hand, have even shorter interstadial

duration, more similar to the ones seen in the ice-core records and are purely noise-induced. They come in different varieties:

type IIa (seen in Fig. 9) occurs where the system has two stable fixed points close to the turns in the manifold and the system
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:
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Figure 8. Illustration of type I precursor events Initially, the system oscillates around the limit cycle, possibly relatively fast, beginning

under stadial conditions (1). The system jumps to interstadial conditions (1�2) and experiences a full interstadial period, before tipping

(3� 4) and reaching stadial conditions again. During the tipping (3�4), the nullcline has moved and an upper fixed point emerges, making

the interstadial stable. The system experiences a full stadial before tipping (5) and transitioning to interstadial conditions for the 2nd time,

where it remains there an extended time (6).
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Figure 9. Illustration of type II precursor events
:
. Initially, the system experiences a noise-induced transition from stadial to interstadial

conditions (1�2). Subsequently, the system moves to a stable fixed point (2�3) while the nullcline ascends, resulting in the disappearance

of the lower stable fixed point. Another noise-induced leap propels the system across the slow manifold (3�4). This crossing induces a brief

period resembling stadial conditions (4�5). Ultimately, the system moves back to interstadial conditions (5�6) and stabilizes
:::::::
stabilises in

an interstadial-state
::::::::
interstadial

::::
state

:
for a prolonged period (6).
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is in a stadial-state
:::::
stadial

::::
state. Here a small amount of noise can induce a DO onset, and if the system quickly jumps again, it485

barely crosses the slow manifold. If, while this process is undergoing, a bifurcation makes the lower stable fixed point vanish

(or turn into an unstable fixed point), the system will return to interstadial conditions, having exhibited very short stadial and

interstadial periods. A similar situation (type IIb) can occur if the system has a single stable fixed point in the upper part of

the manifold. This must be far enough away from the non-differentiability to prohibit noise-induced horizontal jumps off the

slow manifold, but still close enough to the unstable part of the manifold to allow vertical noise-induced transitions. After490

which
:::::::::
Afterwards

:
the system will tend toward the stable interstadial-state fixed point again. These jumps would tend to have

lower amplitude than the corresponding situation with two stable fixed points, as smaller jumps can lead the system to cross

the unstable part of the manifold, before tending towards the upper stable fixed point again. Type IIb is analogous to type IIa

but starting in interstadial conditions, (3) as seen on Fig. 9.

When type I precursor events occur, the AABW model proxy exhibits changes akin to the normal BPS response as the495

system evolves around the limit cycle. This is not observed in the Antarctic ice-core record. As the type II precursor events

are predominantly noise-induced vertical jumps, with a small change in the AABW based on the location of the upper stable

fixed point, the only sizeable response is seen in the AMOC, with little to no response in the AABW. This appears more like

the situation seen in the ice-core records, but due to the relatively slow and muted response of the Antarctic climate to AMOC

changes, this could also be a consequence of the short duration of the precursor events.500

Both kinds of type II precursor events can explain the response seen in the ice-core record, as both are linked closely to

the transition into highly stable interstadial conditions. Type IIa can only occur in the specific case of a noise-induced jump

happening while the system has two stable fixed points but is transitioning to a stable interstadial-state
:::::::::
interstadial

::::
state. IIb can

only happen while having a single stable fixed point in the upper manifold that is moving further up the manifold, implying

the system is moving towards longer interstadial periods. Conditions producing type IIa and IIb precursor events require that505

an upper stable fixed point exists, with a small vertical distance to the unstable part of the manifold, as they require the system

to cross it. Therefore, the scenarios will only lead to precursors to long interstadials when the upper fixed point is moving

upwards on the slow manifold. On the contrary, if the system is already in a long stable interstadial, the nullcline will be too

far from the unstable part of the manifold for this to occur.

Neither type of event adequately reproduces the precursor patterns observed in the ice-core record. Type I captures the510

correct amplitude but fails to replicate both the short interstadial and stadial periods that precede the longer interstadial phase.

Type II events, on the other hand, successfully mimic the brief climatic intervals but do not reach the colder
::::
fully

:::::
reach

:::
the

:::
cold

:::::
level

::
of

:
stadial conditions reflected in the data. When considering the type II precursor events, the primary distinctions

between ordinary DO events and these precursors lie in the mechanisms that trigger them. A typical DO event can occur due

to natural
:::::::
"natural"

:
oscillations (when the moving location of the B-nullcline results in an unstable fixed point) or it can arise515

from noise-induced transitions. These transitions occur when there is a stable fixed point near the turns of the manifold. The

noise-induced transitions can be triggered by fluctuations either in the ∆b or in the B direction as long as these fluctuations

lead to crossing the bifurcation threshold. However, from the previous analysis, precursor events of type II solely result from

noise-induced fluctuations in the ∆b direction, meaning these are purely triggered by variability in the AMOC.
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5 Conclusions520

Our results demonstrate why modelling the ice-core record using conventional FitzHugh-Nagumo-style models has been diffi-

cult. There is a strong second-order correlation between the µ′
E and µ′

P value pairs that can be produced by the usual control

parameters, γ and σ. The (µ′
E ,µ

′
P ) set attainable by the simple model does not contain the observed (E(t),P (t)) pairs,

:
thereby

making it impossible to match the data without allowing unphysically extreme and rapid changes in the control parameters over

decadal-to-centennial scales – faster than any known climate driver impacting the AMOC. The most difficult aspect to repre-525

sent for these models is the highly non-periodic nature of the DO events, especially the precursor events. Adding a slope does

not break the second-order correlation but it changes the set of possible (E(t),P (t)) pairs. This allows the model to capture

all observed E(t) and P (t) values. To explore the physical processes associated with the novel α parameter, our focus would

be on improving the understanding of how variations in temperature, salinity, and freshwater fluxes in the surface layer of the

Southern Ocean impact the formation of deep water. Fitting an idealised,
:
time-variable forcing with a resolution of 3.5 kyr al-530

lows the model to almost reproduce the statistical measures observed in the data. Additionally, it produces hitherto unmodelled

precursor events, an example of which can be seen in panel (d) of Figure 7 at 95 ka.

Additionally, our analysis has demonstrated that the α parameter’s influence on the B derivative is crucial in producing

precursor events that mimic the durations and spacings observed in the ice-core records. In describing the modelled precursor535

events, we differentiate between two types of precursor events. Type I events exhibit the full amplitude and duration of typical

DO onsets as determined by variations in the location of the B nullcline and α. Type II precursor events, on the other hand,

are purely noise-induced and reveal the sensitivity of the system to stochastic disturbances, leading to short interstadial-states

similar to those recorded in the ice-core record.

We observe that unlike the normal DO events, which may arise from either systemic oscillations or noise-induced shifts540

near bifurcation points, the precursor events in our model are exclusively triggered by noise-induced fluctuations in the ∆b

direction. This points to a unique role of AMOC variability as the driving force behind these events.
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