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Abstract 11 

Satellite observations are instrumental in observing spatiotemporal variability in carbon dioxide (CO2) concentrations 12 
which can be used to derive fluxes of this greenhouse gas. This study leverages NASA’s Orbiting Carbon Observatory-13 
2 and -3 (OCO-2/3) CO2 observations with a Gaussian Process (GP) machine learning inverse model, a Bayesian non-14 
parametric approach well-suited for integrating the unique spatiotemporal characteristics of these satellite 15 
observations, to estimate sub-regional CO2 fluxes. Utilizing the GEOS-Chem chemical transport model (CTM) which 16 
simulates column-average CO2 concentrations (XCO2) for 2020 in California – a period marked by the Coronavirus 17 
disease (COVID-19) pandemic and significant wildfire activity – we estimated state-wide CO2 emission rates 18 
constrained by OCO-2/3. This study developed prior fossil fuel emissions to reflect reduced activities during the 19 
COVID-19 pandemic, while net ecosystem exchange (NEE) and fire emissions were derived based on satellite data. 20 
GEOS-Chem source-specific XCO2 concentrations for fossil fuels, NEE, fire, and oceanic sources were simulated 21 
coincident to OCO-2/3 XCO2 retrievals to estimate statewide sector-specific and total CO2 emissions. GP inverse 22 
model results suggest annual posterior median fossil fuel emissions were consistent with prior estimates (317.8 and 23 
338.4±46.4 Tg CO2 yr-1, respectively) and that posterior NEE fluxes had less carbon uptake compared to prior fluxes 24 
(-36.8±32.8 vs. -99.2 Tg CO2 yr-1, respectively). Posterior fire CO2 emissions were estimated to be 68.0±50.6 Tg CO2 25 
yr-1 which was much lower compared to a priori estimates (103.3 Tg CO2 yr-1). The total median annual CO2 emissions 26 
for the state of California in 2020 were estimated to be 349.6 Tg CO2 yr-1 (range of 272.8 – 428.6 Tg CO2 yr-1; 95% 27 
confidence level), aligning closely with the prior total estimate of 342.5 Tg CO2 yr-1. This study, for the first time, 28 
demonstrates that OCO-2/3 XCO2 observations can be assimilated into inverse models to estimate state-wide, source-29 
specific CO2 fluxes on a seasonal- and annual-scale. 30 

Short Summary. Satellites, such as NASA’s Orbiting Carbon Observatory-2 and -3 (OCO-2/3), retrieve carbon 31 
dioxide (CO2) concentrations which provide vital information for estimating surface CO2 emissions. Here we 32 
investigate the ability of OCO-2/3 retrievals to constrain CO2 emissions for the state of California for the major 33 
emission sectors (i.e., fossil fuels, net ecosystem exchange, wildfire). 34 

  35 
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1. Introduction 36 

Carbon dioxide (CO2) is the most abundant greenhouse gas in Earth’s atmosphere and contributes predominantly to 37 
the present-day increase in global radiative forcing (Dunn et al., 2022). Due primarily to anthropogenic emissions 38 
from fossil fuel production and usage, global concentrations of CO2 have nearly doubled since the beginning of the 39 
pre-industrial era (Gulev et al., 2021; Lan et al., 2023). A recent comprehensive budget analysis of global CO2 fluxes 40 
suggests that as of 2022 anthropogenic emissions are ~10 Gt C yr-1 (primarily from combustion of coal, oil, and natural 41 
gas) with an oceanic and terrestrial uptake offset of ~3 Gt C yr-1 and ~4 Gt C yr-1, respectively (Friedlingstein et al., 42 
2023). According to this report, the United States (US) contributes 14% (~1.4 Gt C yr-1) of global CO2 anthropogenic 43 
emissions. The sectors contributing the most to US anthropogenic emissions are transportation, electricity generation, 44 
and industry (EPA, 2023). One of the larger emitters of greenhouse gases in the US is the state of California which as 45 
of 2021 contributes ~0.1 Gt C yr-1 of CO2 (CARB, 2023). In 2006, the state of California passed Assembly Bill 32 46 
(AB 32) which required that by 2020 the state’s greenhouse gas emissions must be reduced to 1990 levels. California 47 
was able to achieve this goal but in order to validate this, and other future emission reduction goals, it is vital to have 48 
accurate estimates of past- and present-day greenhouse gas emissions. 49 

 Bottom-up inventories of CO2 are commonly used to derive country-level to state-wide fossil fuel 50 
anthropogenic emissions in the US (e.g., Andres et al., 2012; CARB, 2023). Calculations of natural sources and sinks 51 
(e.g., terrestrial and marine biosphere, wildfires) contributing to total CO2 emissions are frequently estimated using 52 
model predictions (Friedlingstein et al., 2023). The California Air Resources Board (CARB) has quantified state-wide 53 
greenhouse gas emissions for California between 2000-2021 (CARB, 2023). Anthropogenic and natural bottom-up 54 
CO2 flux estimates are typically implemented in atmospheric transport models and compared to atmospheric 55 
observations in order to assess their accuracy. In situ observations of CO2 from ground-based, tower, and aircraft 56 
platforms, due to their high accuracy and precision, are most frequently used to evaluate the quality of these emission 57 
estimates (Graven et al., 2018; Cui et al., 2022). While highly accurate, these types of in situ observations are limited 58 
in their spatiotemporal coverage and ability to constrain large regions and annual cycles of emissions. The assimilation 59 
of satellite-retrieved column-averaged dry-air mole fraction of CO2 (XCO2) (e.g., Orbiting Carbon Observatory-2 60 
(OCO-2), Orbiting Carbon Observatory-3 (OCO-3)) into atmospheric transport models has been demonstrated to be 61 
able to constrain emissions on a global- to country-level scale more effectively in regions which lack dense in situ 62 
measurement networks (Peiro et al., 2022; Philip et al., 2022; Byrne et al., 2023). This study focuses on CO2 fluxes in 63 
the state of California, where OCO-2 and OCO-3 have been used to constrain urban-scale emissions in the mega-city 64 
of Los Angeles (Hedelius et al., 2018; Ye et al., 2020; Kiel et al., 2021; Wu et al., 2022; Roten et al., 2023). However, 65 
to-date, no studies have demonstrated the capability to evaluate and constrain CO2 fluxes using satellite-retrieved 66 
information on a state-wide spatial domain such as California. For California and other states this is important because 67 
some state agencies only release statewide inventories (not specifically for urban areas) and many climate programs 68 
are generated based on the statewide inventories.  69 

 While satellite-based atmospheric inverse modeling provides a significantly enhanced method for 70 
quantifying CO2 emissions, using satellite observations in atmospheric inversions introduces two principal challenges. 71 
These include: 1) incorporating the spatiotemporal covariance inherent in satellite data and 2) accurately estimating 72 
the hyperparameters, such as the length scale, of this covariance. Satellite observations contain both spatial and 73 
temporal properties, which means that the data have inherent spatial and temporal characteristics that inform us about 74 
surface emissions. However, numerous inverse modeling studies have not consistently incorporated both covariance 75 
structures (Johnson et al., 2016; Fischer et al., 2017; Cui et al., 2019; Graven et al., 2018; Nathan et al., 2018; Ye et 76 
al., 2020; Wu et al., 2022; Roten et al., 2023). While some studies have accounted for both spatial and temporal 77 
covariances, they have not determined optimal hyperparameters that align with the satellite observations (Turner et 78 
al., 2020). For example, the length scale parameter is crucial for influencing the covariance, which in turn affects the 79 
estimation of the unknown functions; in many cases, however, this parameter is not estimated explicitly for its optimal 80 
value but instead prescribed. In this study, we applied an atmospheric inversion system which fully utilizes the 81 
spatiotemporal properties embedded in satellite data (i.e., OCO-2 and OCO-3). This system is built based on the 82 
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Gaussian Process (GP) machine learning (ML) approach enabled by modern Probabilistic Programming Languages 83 
(PPLs). GP is an ML technique that treats predictions as distributions rather than single points, providing a measure 84 
of prediction uncertainty, which is ideal for atmospheric inverse modeling (see Sect. 2.4), because posterior 85 
uncertainties are vital for providing quantitative information on the confidence level of the emissions constraint. 86 
Inverse CO2 models, other than analytical systems, cannot always provide posterior emission uncertainties, and these 87 
estimates can be unreliable and computationally expensive to calculate (e.g., Liu et al., 2014; Bousserez et al., 2015). 88 
The kernels (i.e., covariance functions) of GP models are employed to capture the intricate spatiotemporal correlation 89 
structures of OCO-2/3 data. PPLs have been used in previous studies (e.g., Jeong et al., 2017, 2018), but modern PPLs 90 
provide significantly improved capabilities to implement GP models. Specifically, the built-in functions for GP kernels 91 
in modern PPLs enhance our ability to model the covariance structure of OCO-2/3 data. 92 

 This study applies inverse modeling techniques following GP/ML methods described in further detail in Sect. 93 
2.4 to estimate CO2 fluxes in California for a full year in 2020 using XCO2 observations from OCO-2 and OCO-3. 94 
The year 2020 had numerous anomalous features likely impacting total CO2 fluxes in California such as reduced 95 
anthropogenic emissions caused by coronavirus disease pandemic (COVID-19) lockdown procedures (Yañez et al., 96 
2022), extreme wildfire activity (Jerret et al., 2022; Safford et al., 2022), and drought conditions (Steel et al., 2022). 97 
The impact these types of events have on CO2 fluxes are challenging to predict and difficult to replicate in bottom-up 98 
emission inventories. The study is structured as follows: Sect. 2 presents the forward and inverse models, satellite 99 
observations, and bottom-up emission inventories; Sect. 3 discusses the results of the study, and Sect. 4 contains the 100 
discussion and conclusions. 101 

2. Methods 102 

2.1 GEOS-Chem forward model 103 

The forward model used to calculate atmospheric concentrations of CO2 corresponding to OCO-2 and OCO-3 104 
observations was the GEOS-Chem (version 14.0.1) chemical transport model (CTM) (Bey et al., 2001; Nassar et al., 105 
2010). GEOS-Chem was used to simulate XCO2 concentrations corresponding to each OCO-2 and OCO-3 retrieval 106 
for a nested North America domain (10°–70°N, 40°–140°W) driven by Modern-Era Retrospective Analysis for 107 
Research and Applications, Version 2 (MERRA-2) meteorology at 0.5° × 0.625° spatial resolution using 47 vertical 108 
levels from the surface to 0.01 mb. Chemical boundary conditions (BCs) of CO2 used in the nested simulations were 109 
provided by global GEOS-Chem-based 4D-Var data assimilation system runs at 4.0° × 5.0° horizontal spatial 110 
resolution using 47 vertical levels. These global simulations of CO2 for the year 2020 were constrained using inverse 111 
model methods through the assimilation of OCO-2 XCO2 land nadir + land glint (LN+LG) retrievals and global in 112 
situ observations (Philip et al., 2019, 2022). The bottom-up emission inventories for CO2 fluxes from fossil fuel (FF), 113 
net ecosystem exchange (NEE), wildfires, and oceans are described in Sect. 2.2. GEOS-Chem was initialized with 114 
chemical BCs and run for the entire year of 2020 with two months of spin up time. 115 

Total atmospheric CO2 and source-apportioned (i.e., FF, NEE, fire, ocean, and boundary conditions) 116 
concentrations were calculated over California for all OCO-2 and OCO-3 observations. These source-attributed 117 
concentrations were calculated with sensitivity simulations by turning off individual source fluxes or boundary 118 
conditions and comparing these results to the total atmospheric CO2 concentration predictions from simulations with 119 
all sources included. Model-simulated XCO2 corresponding to each OCO-2 and OCO-3 retrieval (𝐻) were derived 120 
through the convolution of model CO2 profiles with the column averaging kernel vector (𝒂) from OCO-2 and OCO-3 121 
following Eq. (1): 122 

 𝐻 = 𝑋𝐶𝑂2𝑎 + 𝒂𝑇(𝒇(𝝈(𝒙)) − 𝒄𝒂)       (1) 123 

where prior profiles of CO2 (𝒄𝒂) and prior column CO2 (𝑋𝐶𝑂2𝑎) represent prior information used in the OCO-2 and 124 

OCO-3 XCO2 retrieval (O'Dell et al., 2012) and 𝒇(𝝈(𝒙)) is the GEOS-Chem-predicted vertical profiles of CO2 125 

interpolated to the retrieval levels of OCO-2 and OCO-3.  126 
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2.2 Bottom-up emission inventories 127 

Bottom-up emission inventories used to drive GEOS-Chem simulations are described in Table 1 and annually-128 
averaged emission rates are displayed in Fig. 1 (maps of seasonal emissions are displayed in Fig. S1). The Vulcan 129 
version 3.0 FF emission inventory covers all anthropogenic source sectors of CO2 in California (i.e., residential, 130 
commercial, industrial, electricity production, onroad, nonroad, commercial marine vessel, airport, rail, and cement) 131 
between 2010-2015 (Gurney et al., 2020). To create a spatially and temporally resolved Vulcan inventory in California 132 
for the year 2020 (𝑉2020) using Eq. (2), the CARB inventory for 2020 (𝐶2020) (which accounts for COVID-19 133 

lockdown emissions reductions; CARB, 2022) was used to calculate monthly scaling factors (𝑅𝑀𝑜𝑛𝑡ℎ ) for CO2 134 
emissions in 2020 compared to 2015 (𝐶2015).  135 

 𝑉2020 = 𝑉2015 × 𝐶2020/2015 × 𝑅𝑀𝑜𝑛𝑡ℎ      (2) 136 

The Vulcan inventory for 2015 was then multiplied by these scaling factors to produce 𝑉2020. Both Vulcan and CARB 137 
provide the same sector-level emissions estimates, so the scaling was done for each emission sector separately.  138 

 139 

Figure 1. Annually-averaged 2020 CO2 emissions (μmol m-2 sec-1) for the state of California. Emissions from 140 
the terrestrial portion of the domain are shown for a) FF, b) Fire, and c) NEE. 141 

Natural CO2 emission source (NEE, wildfire, and ocean) estimates were available for the year 2020 and no 142 
scaling was necessary. Biospheric fluxes of CO2 were derived using monthly 5 km × 5 km NEE calculations from the 143 
Solar-Induced Fluorescence for Modeling Urban biogenic Fluxes version 1 (SMUrF v1; We et al., 2021) model. 144 
SMUrF calculates gross primary production (GPP), respiration (Reco), and NEE (= Reco – GPP) fluxes using 1) land 145 
cover type 500 m MODerate resolution Imaging Spectroradiometer (MODIS) data, 2) solar induced florescence (SIF) 146 
from the OCO-2 sensor, 3) above ground biomass at 100 m resolution from GlobBiomass, 4) observed flux 147 
measurements from eddy-covariance towers, and 5) gridded soil and air temperature data products. Wildfire CO2 148 
emissions were implemented using a modified Global Fire Emissions Database version 4 (GFED4) data set (van Wees 149 
et al., 2022). This modified version of GFED4 was produced using MODIS burned area and fire detections data with 150 
a spatial resolution of 500 m. Finally, oceanic CO2 fluxes were derived from CarbonTracker (CT2022; Jacobson et 151 
al., 2023) 1° × 1° output. These CT2022 coarse spatial scale fluxes were interpolated to match the GEOS-Chem model 152 
spatial resolution. 153 

Table 1. Bottom-up prior CO2 emission inventories and 2020 carbon budget (Tg CO2 yr−1) for California. 154 

Source  Inventory Name Spatial Res. Annual Flux: California Reference 

FF Vulcan 1 km × 1 km 338.4 Gurney et al., 2020 

NEE SMUrF 5 km × 5 km -99.2 Wu et al., 2021 

Fire GFED (modified) 500 m × 500 m 103.3 van Wees et al., 2022 

Ocean CarbonTracker (CT2022) 100 km × 100 km N/A Jacobson et al., 2023 
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Net   342.3  

2.3 OCO-2 and OCO-3 observations 155 

NASA has two operational satellites with the spatial resolution and precision necessary to constrain point-source to 156 
regional- and global-scale CO2 emissions (i.e., OCO-2 and OCO-3). OCO-2 was launched in 2014 and is a sun-157 
synchronous polar orbiting satellite which is in the Afternoon Constellation (A-train) of Earth Observing Satellites 158 
with a local overpass time of ~1:30 pm retrieving XCO2 at 1.3 km × 2.3 km spatial resolution (Crisp et al., 2017). 159 
OCO-3 has been onboard the International Space Station (ISS) since 2019 and has an orbital inclination of 51.6° 160 
providing observations at varying times of the day (Eldering et al., 2019). OCO-3 makes orbital observations; 161 
however, differs from OCO-2 as it has the capability to make snapshot area maps (SAMs) which cover 80 km × 80 162 
km at the native spatial resolution of 1.6 km × 2.2 km. XCO2 retrievals from OCO-2 and OCO-3 both use the 163 
Atmospheric Carbon Observations from Space (ACOS) algorithm (O'Dell et al., 2018) and this study applied version 164 
11r and version 10.4r of OCO-2 and OCO-3, respectively. Retrievals of XCO2 from LN+LG retrievals modes were 165 
used to compare to GEOS-Chem and estimate posterior state-wide CO2 emissions. Since individual high 166 
spatiotemporal OCO-2 and OCO-3 retrievals do not provide independent pieces of information, in this study they are 167 
averaged to the 0.5° × 0.625° spatial resolution of GEOS-Chem. In total, 1614 co-located model-satellite data points 168 
were available during 2020 to evaluate prior XCO2 predictions and constraining posterior CO2 emissions. The 169 
seasonal distribution (meteorological seasons: winter [December, January, February; DJF], spring [March, April, 170 
May; MAM], summer [June, July, August; JJA], fall [September, October, November; SON],) of these co-locations 171 
were: 386, 299, 551, and 378 for winter, spring, summer, and fall months, respectively. 172 

2.4 Inverse model technique 173 

The inverse model developed for this study used a GP/ML framework. GP is a flexible, non-parametric approach, 174 
distinguished by its use of hyperparameters, which defines a prior probability distribution over functions (Williams 175 
and Rasmussen, 2006; Biship, 2007; Murphy, 2022). A GP is fully characterized by its mean function 𝑚(𝐱) and kernel 176 
𝑘(𝐱, 𝐱′): 177 

𝑓(𝐱)~𝐺𝑃 (𝑚(𝐱), 𝑘(𝐱, 𝐱′))         (3) 178 

𝒚 = 𝑓(𝐱) + 𝜖           (4) 179 

where y is the OCO-2 and OCO-3 satellite observation vector, including additive noise ϵ (i.e., noisy version of 𝑓(𝐱)). 180 
Although sampling every possible value of the function 𝒇(𝐱) across a continuous domain is supported, we sample a 181 
finite set of points (i.e., OCO-2/3 observation time and locations), leading to a vector of function values, 𝒇 = [𝑓(𝐱1),182 
𝑓(𝐱2), … , 𝑓(𝐱𝑁)], which follows a joint Gaussian distribution with mean vector 𝝁 = 𝑚(𝐱1), 𝑚(𝐱2), … , 𝑚(𝐱𝑁) and 183 

covariance matrix [𝐶𝑜𝑣]𝑖,𝑗 = 𝑘(𝐱𝑖, 𝐱𝑗) . In this work, the terms "kernel" and "covariance function" are used 184 

synonymously.  185 

For our flux inference application, we define the mean function 𝑚(𝐱) as: 186 

𝑚(𝐱) =  𝑲𝛌+D          (5) 187 

where 𝑲 is the input data, a 𝑛 × 𝑘 matrix, derived from GEOS-Chem model predictions, λ is a vector (𝑘 × 1) of 188 
scaling factors, which quantify the adjustment required for our prior emissions estimates to be consistent with 189 
observations, and D is the systematic bias. In this work, we estimate a single value for D for each month in 2020. 190 
Thus, each element of vector D is populated with the same value for each month of 2020. We assume that this bias 191 
term captures systematic bias due to instrument error, model transport error, and GEOS-Chem BC errors (Jeong et al., 192 
2017). Here, D and λ are considered a GP hyperparameter because it directly scales 𝑚(𝐱). This mean function has 193 
been widely adopted in atmospheric inverse analysis for estimating greenhouse gas emissions (Jeong et al., 2017; Ye 194 
et al., 2020; Ohyama et al., 2023). In GP modeling, it is important to note that the function Kλ + D is used as the mean 195 
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of the latent (i.e., unknown) GP function, 𝑓(𝐱). In traditional Bayesian inversion methods (e.g., Jeong et al., 2017), 196 
the mean function was directly related to y in the form y = Kλ + D + ϵ. The prior distributions for λ and other 197 
hyperparameters are described in Text S3. 198 

The second component of a GP is the covariance function (i.e., GP kernel), which dictates how function 199 
values at different points relate. For the spatial part of the kernel, we employ the Matérn 5/2 kernel, a widely used 200 
covariance function for modeling spatial data (Bevilacqua et al., 2022). The Matérn 5/2 kernel between two spatial 201 
points can be expressed as: 202 

𝑘(x, x′) = (1 +
√5𝑟

ℓ𝑠
+

5𝑟2

3ℓ𝑠
2) exp (−

√5𝑟

ℓ𝑠
)         (6) 203 

𝑟 = √(𝑥1 − 𝑥′1)2 + (𝑥2 − 𝑥′2)2         (7) 204 

where 𝑟 is the Euclidean distance between the points x and x′, 𝑥1 and 𝑥2 represent longitude and latitude, and ℓ𝑠 is 205 
the spatial length scale. The length scale is prescribed, estimated, or computed based on independent data (Baker et 206 
al., 2022). In this work, we estimate it simultaneously with other hyperparameters (e.g., the scaling factors). We used 207 
the Squared Exponential kernel for the temporal covariance to express the relationship between two temporal points: 208 

𝑘t(x, x′) = exp (−
(𝑥3−𝑥3

′  )
2

2ℓ𝑡
2 )        (8) 209 

where 𝑥3 denotes the time and ℓ𝑡 is the temporal length scale. The spatiotemporal kernel matrix is then constructed 210 
by multiplying the spatial and temporal kernels: 211 

𝑘st(𝐱, 𝐱′) = 𝜎2𝑘s(𝐱, 𝐱′) ⋅ 𝑘t(𝐱, 𝐱′)        (9) 212 

where 𝜎2 denotes the variance of the kernel, which scales the amplitude of the function values predicted by the GP. 213 
The spatiotemporal kernel, 𝑘st, is realized by element-wise multiplication of the spatial, 𝑘s, and temporal, 𝑘t, kernels. 214 
The resulting spatiotemporal kernel maintains the dimensionality of its constituent kernels.  215 

We perform inversions using three distinct mean functions as depicted in Eq. (5). Model 1 incorporates a 216 
systematic bias term D, assuming a normal distribution with a mean of 0 and a standard deviation (sd) of 0.5 ppm. 217 
Model 2 resembles Model 1 but adopts a standard deviation of 1.0 ppm for the bias term. In contrast, Model 3 excludes 218 
the systematic bias term D and instead corrects the OCO-2 or OCO-3 a priori and background concentrations by 219 
applying scaling factors, thus addressing any biases in the OCO-2 or OCO-3 a priori and background concentrations 220 
multiplicatively. We evaluate the three GP models using their expected log pointwise predictive density (ELPD), a 221 
metric for model predictive performance. Further details on the model comparison through ELPD are provided in the 222 
Supporting Information (Text S1 and Figure S2). 223 

We employed the Markov chain Monte Carlo (MCMC) method to estimate the hyperparameters of the GP 224 
model framework. MCMC has been utilized in several atmospheric inverse modeling studies (Ganesan et al., 2014, 225 
2015; Jeong et al., 2016, 2017, 2018). However, we adopt the No-U-Turn Sampler (NUTS), a modern and advanced 226 
MCMC algorithm (Hoffman and Gelman, 2014). We utilized the PyMC PPL (Abril-Pla et al., 2023) to implement the 227 
NUTS algorithm for MCMC sampling, generating 4,000 samples each month following a tuning phase of 3,000 steps. 228 
More details for the GP model structure and the prior distribution for the hyperparameters are described in the 229 
Supporting Information Text S2 and Figure S3.  230 

2.5 Evaluation techniques 231 

Prior and posterior emissions can be indirectly evaluated using atmospheric observations for accuracy and uncertainty 232 
using normalized mean bias (NMB) and root mean square error (RMSE), respectively (Vermote and Kotchenova, 233 
2008). GEOS-Chem forward and inverse model simulations were evaluated using daily OCO-2 and OCO-3 LN+LG 234 
XCO2 retrievals during 2020. These model predictions were evaluated for each season to determine the accuracy of 235 
prior and posterior emissions and BCs which have large variability throughout the year (see seasonal a priori emissions 236 
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in Fig. S1). General statistical parameters were used to evaluate model simulations: NMB, RMSE, correlation 237 
coefficient (R), and simple ordinary least-squares linear regression (slope, y-intercept, etc.). Calculations of NMB are 238 
normalized by OCO-2 and OCO-3 observation values as shown in Eq. (10): 239 

 𝑁𝑀𝐵 =  
∑ (𝑀𝑖−𝑦𝑖)𝑁

𝑖=1

∑ 𝑦𝑖
𝑁
𝑖=1

         (10) 240 

where 𝑁 is the total number of model (𝑀𝑖) and OCO-2 and OCO-3 (𝑦𝑖) co-locations. Equation (11) is used to calculate 241 
RMSE values: 242 

 𝑅𝑀𝑆𝐸 =  √
∑ (𝑀𝑖−𝑦𝑖)2𝑁

𝑖=1

𝑁
         (11) 243 

3. Results 244 

3.1 California prior emissions 245 

According to prior emission inventories used in this study, the majority of CO2 emitted in California is from 246 
anthropogenic FF sources (see Table 1). The Vulcan FF emission inventory, scaled to 2020 emissions using the CARB 247 
state-wide inventory, suggests that anthropogenic sources contributed 338.4 Tg CO2 yr-1, and these sources are 248 
primarily located in the Los Angeles Basin and San Francisco Bay Areas where there are highly populated cities (see 249 
Fig. 1). It is estimated that CO2 emissions in 2020 were reduced by ~10% compared to 2019 due to COVID-19 250 
restrictions (CARB, 2022). According to GFED4, a total of 103.3 Tg CO2 yr-1 was emitted from biomass burning 251 
during 2020, which was one of the most active wildfire years in California on record. Figure 1 shows that the majority 252 
of these emissions came from the large wildfires which occurred in northern and central California. These fire 253 
emissions were nearly offset by the biospheric uptake of CO2 in California of -99.2 Tg CO2 yr-1 estimated by the 254 
SMUrF model (i.e., our prior model). The largest NEE uptake is estimated to occur in the forested regions of northern 255 
California and the Sierra Nevada Mountains and largest respiration fluxes were in the Sacramento and San Joaquin 256 
Valley areas and the Tulare Basin.  257 

 For emission sources other than FF, such as wildfire and NEE, CO2 fluxes in the bottom-up data products 258 
had noticeable seasonality (see Fig. S1). Wildfires in 2020 had pronounced emissions during the summer and fall 259 
months compared to minimal emissions in the winter and spring which is California’s rainy season. The fire season 260 
of 2020 was exceptionally active with multiple large complexes occurring between August and September (Keeley 261 
and Syphard, 2021). Prior emissions suggest that in California between August and September fires emitted 95.4 Tg 262 
CO2 which was 92% of the annual total. Biospheric fluxes also displayed large seasonality with largest uptake in the 263 
warmer growing season during the spring and summer and highest respiration rates during the colder months of the 264 
winter and fall. NEE uptake peaked between May and June with average monthly uptake rates of around -27.0 Tg 265 
CO2 while respiration peaked between September and October with average monthly rates ~11.0 Tg CO2. Less 266 
seasonality is apparent in Vulcan 2020 FF emissions for California, with monthly emission rates ranging between 23.0 267 
and 32.0 Tg CO2; however, our CARB-adjusted prior FF model does capture the decrease in anthropogenic CO2 268 
emissions upon the initiation of the COVID-19 lockdown during spring 2020. 269 

3.2 Evaluation of model-simulated XCO2 using prior emissions 270 

To indirectly evaluate a priori bottom-up emissions, GEOS-Chem forward model simulations were evaluated with 271 
OCO-2 and OCO-3 XCO2 retrievals. Figure 2 shows the comparison of modeled and satellite XCO2 values using 272 
prior emissions and observations by season. For spring months, GEOS-Chem using prior emissions displayed a slight 273 
high bias (NMB=1.1 ppm) and low correlation (R = 0.38) as the model did not capture the variability of XCO2 274 
retrieved by satellites. While the model captures the mean XCO2 values observed, high and low values observed in 275 
the spring months were not replicated by the model (linear regression slope = 0.24). A similar evaluation was derived 276 
for the winter months as the model had a similar high bias (NMB=1.0 ppm), low correlation (R = 0.39), and relatively 277 
low linear regression slope (0.24). A somewhat different comparison was calculated between the model with prior 278 

https://doi.org/10.5194/egusphere-2024-2152
Preprint. Discussion started: 9 August 2024
c© Author(s) 2024. CC BY 4.0 License.



8 

 

emissions and observations for the summer and fall months. The GEOS-Chem simulations during the summer were 279 
able to capture the variability in satellite-retrieved XCO2 values with high correlation (R = 0.73) and linear regression 280 
slope of 0.75. The model and prior emissions resulted in a small negative bias during the summer months (NMB=-0.4 281 
ppm). The prior model runs had the least bias in the fall months (NMB=-0.3 ppm) and also displayed moderate 282 
correlation (R = 0.52) and linear regression slope (0.34). The evaluation of the prior model displayed similar RMSE 283 
values throughout 2020 ranging between 1.4 and 1.8 ppm with the largest random error in the fall months and lowest 284 
values in the summer. GEOS-Chem using prior emission displayed biases and errors which varied by season and 285 
suggests that observational constraint could improve the estimates of CO2 emission in California. The following 286 
sections present the inversion of CO2 emissions when assimilating satellite-derived XCO2 values and the evaluation 287 
of posterior emissions. 288 

 289 

Figure 2. Comparison of seasonal GEOS-Chem XCO2 predictions (ppm) using prior (blue) and posterior 290 
(purple) emissions and observed OCO-2 and OCO-3 concentrations (ppm). This result is based on the GP 291 
inversion model with a systematic bias of 0.5 ppm (Model 1). RMSE values for the prior and posterior model 292 
simulations are presented in the figure legend. 293 

3.3 Inverse GP model evaluation 294 

This section describes the evaluation of the GP inversion model using posterior predictive checks (PPCs). PPCs ensure 295 
that the inversion results accurately represent the observed data (Gelman et al., 1996). The method involves using the 296 
posterior distribution of the model parameters to generate new datasets, which are then compared to the actual 297 
observed data. PPCs assess whether the model is capable of producing data similar to the observed data, thereby 298 
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providing insight into the model's ability to capture the data-generating process accurately. Text S1 describes the 299 
comparison of the different GP inversion model setups and how Model 1 performs most accurately. Due to the best 300 
performance by Model 1, the rest of the results in this study are based on these outputs. Figure 3 shows PPCs using 301 
probability density functions (PDFs) for the middle of each season (except January) using Model 1. Due to an 302 
insufficient number of OCO-2 and OCO-3 XCO2 observations (N < 10) in January, the PPC for February is included 303 
instead to represent the winter season. We construct the PDFs by utilizing local enhancements in XCO2 concentrations 304 
after subtracting the OCO-2 or OCO-3 a priori XCO2 and modeled BCs from the total satellite XCO2 concentrations. 305 
The results in Fig. 3 demonstrate that the data generated from the Model 1 posterior parameters generally agree with 306 
observations. 307 

 308 

Figure 3. Evaluation of the GP inverse model (Model 1) performance using PPCs for months representative 309 
of each season in 2020 (April = spring; July = summer; October = fall; February = winter). The observed 310 
satellite XCO2 data (y; in units of ppm) are represented by the bold lines, while the fine lines (yrep) depict 4000 311 
samples (in units of ppm) simulated with parameters drawn from the posterior distributions. Each sample 312 
(i.e., each fine line) for each month is of equivalent size to the number of the model-observation co-locations 313 
(noted in parentheses).  314 

The comparison between the posterior predictions from the GP inversion and the observed satellite XCO2 315 
data indicates an improvement in the RMSE for all seasons (posterior RMSE values on average ~17% lower compared 316 
to prior model simulations), suggesting a more accurate model fit than the initial prior predictions (Figure 2). The GP 317 
inversion was also able to remove the majority of systematic bias imposed by the prior emissions along with BCs used 318 
in the nested GEOS-Chem simulations along with improving correlation with satellite XCO2 observations. For spring 319 
months, posterior model simulations displayed a small bias of ~0.3 ppm and slightly improved correlation (R = 0.39) 320 
compared to prior model results. Posterior model results for the summer season displayed nearly zero bias and high 321 
correlation values of 0.79. The statistical evaluation of posterior model performance in the fall months improved 322 
compared to prior simulations with bias ~-0.1 ppm and correlation of 0.57. Finally, for winter months posterior results 323 
had bias ~0.1 ppm, a significant improvement from 1.0 ppm from the prior result, and moderate correlation of 0.41. 324 
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Overall, posterior results from the GP inversion performed in this study proved to be more accurate compared to prior 325 
simulations suggesting the emission estimates from these inverse model runs are robust, as expected from the PPCs. 326 

3.4 Posterior emissions by season and sector 327 

We estimate state-wide posterior emissions by season and sector based on Model 1, which was evaluated to perform 328 
the best based on the ELPD metric (see Text S1). Figure 4 shows the seasonal state-wide total posterior CO2 fluxes 329 
from all 3 GP inversion models (see Text S2) and the prior estimates for each source sector in California during 2020. 330 
In general, all 3 GP inversion models are relatively consistent with respect to median posterior emissions estimates 331 
for all source sectors and seasons. This consistency suggests that the GP models are robust in inferring posterior 332 
emissions, despite slight performance variations by season and sector for each model. The rest of the results discussed 333 
in this section are focused on posterior estimates from Model 1. Figure 4 shows that posterior FF emissions align 334 
closely with the prior estimates, indicating consistency between the initial assumptions and the inversion-derived 335 
results (PDFs for Model 1 shown in Fig. S4). Posterior FF emissions are most consistent with prior estimates during 336 
the spring and summer months when COVID-19 lockdown restrictions were most strict, suggesting that corrections 337 
applied to the 2020 Vulcan data applying CARB data were accurate compared to observations. For the fall and winter 338 
seasons posterior FF emission estimates were reduced by 10-15 Tg CO2 compared to a priori assumptions, although 339 
the reduction is within the margin of error. Seasonal posterior 2σ uncertainty (95% confidence level) had a range of 340 
20-30 Tg CO2 which on average is ~30% of the seasonal posterior median FF emission values. 341 

 342 

Figure 4. Sectoral emission estimates (Tg CO2) by season using three distinct models: Model 1 (“sd = 0.5”), 343 
where a standard deviation (sd) of 0.5 ppm is applied to the prior probability distribution for the systematic 344 
bias; Model 2 (“sd = 1.0”), with a standard deviation of 1.0 ppm for the prior for the systematic bias; and Model 345 
3 ('Scaling'), which optimizes the OCO-2 and OCO-3 a priori and model-predicted BC concentrations using 346 
scaling factors analogous to sector emissions adjustments. The error bars in this figure reflect the 2σ 347 
uncertainty (i.e., 95% confidence) values for each source sector. All 2σ confidence intervals were calculated 348 
using 4000 MCMC samples. 349 
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Posterior NEE fluxes from the GP inversion indicate that prior estimates assumed carbon uptake which was 350 
too strong during the drought year of 2020, suggesting an overestimation of the ecosystem’s carbon sequestration 351 
capacity. Besides the fall season, posterior NEE was much less negative compared to the a priori fluxes, and even 352 
transitioned from a small sink to a small source during the winter season (see Fig. 4). Posterior NEE fluxes are 25–35 353 
Tg CO2 less (lower NEE) compared to prior estimates in the growing seasons of the spring and summer. The posterior 354 
adjustments during the fall were smaller and tended to be consistent with prior estimates from SMUrF. Posterior NEE 355 
emissions were consistent with the prior estimates within a 2σ uncertainty range for the spring and fall seasons; 356 
however, were not statistically consistent for winter and summer months. Seasonal posterior NEE values displayed 357 
the largest uncertainty values of all source sectors in California and were on average ~95% of the seasonal posterior 358 
median emission value.  359 

The inversion results for fire emissions imply that the prior estimates are consistent with the posterior results 360 
within the 2σ uncertainty range although the posterior median values for summer were lower than the prior. As 361 
expected, prior and posterior CO2 emissions from fires were small during the winter and spring months. Posterior 362 
median seasonal total CO2 emissions ranged between 20 and 50 Tg CO2 for the summer and fall seasons, respectively. 363 
Constraints from OCO-2 and OCO-3 observations reduced emission estimates compared to the prior during both of 364 
these seasons with the largest reduction occurring for summer months (-21%). Seasonal posterior fire emission values 365 
displayed moderate to high uncertainty values and were on average ~80% of the seasonal posterior median emission 366 
values.  367 

3.5 State-wide posterior total CO2 emissions 368 

This section describes the annual state-wide CO2 flux estimates constrained using OCO-2 and OCO-3 observations 369 
for each source sector in 2020. Table 2 shows the results of the prior and posterior state-wide flux estimates for each 370 
source sector and the overall net terrestrial flux. The PDFs of these annual state-wide CO2 fluxes are displayed in Fig. 371 
5. Both the table and figure show that the net state-wide CO2 flux from both prior and posterior estimates are nearly 372 
identical around 340-350 Tg CO2 yr-1. However, larger differences are evident when the state-wide annual emissions 373 
are broken down by source sector. Large constraints were imposed by OCO-2 and OCO-3 observations when focusing 374 
on NEE fluxes, where the posterior median estimate (-36.8 Tg CO2 yr-1) was 63% lower (reduced carbon sink) 375 
compared to prior estimates (-99.2 Tg CO2 yr-1). Prior emissions from wildland fires were also reduced when 376 
constrained by satellite observations as state-wide posterior estimates of 68.0 Tg CO2 yr-1 were ~35% lower compared 377 
to a priori estimates. Finally, posterior FF emissions were 317.8 Tg CO2 yr-1 which is ~5% lower compared to the 378 
prior estimates. 379 

Table 2. Prior and posterior (median) California CO2 budget for 2020. 380 

Source  Prior CO2 Flux (Tg CO2 yr-1) Posterior CO2 Flux (Tg CO2 yr-1) 

FF 338.4 317.8 

NEE -99.2 -36.8 

Fire 103.3 68.0 

Total 342.5 349.6 

 For total CO2 fluxes, including all source sectors, California state-wide emissions are constrained with 381 
relatively high confidence using OCO-2 and OCO-3 XCO2 observations as the 2σ standard deviation on this total flux 382 
is ~23% of the annual median posterior estimate. Annual posterior emission estimates were most confident for FF 383 
sources as the 2σ standard deviation from these sources was 47 Tg CO2 which is ~15% of the posterior median value. 384 
Natural fluxes of CO2 (i.e., NEE and wildland fire) in California displayed higher uncertainties for their posterior 385 
estimates indicated by the wider PDFs in Fig. 5. The 2σ standard deviation of annual posterior NEE fluxes was on 386 
average ~35 Tg CO2 which is ~95% of the posterior median value indicating this is the most uncertain carbon flux 387 
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when using satellites to constrain emissions. Posterior annual fire emissions were also associated with larger 388 
uncertainty as the 2σ uncertainty range was 43 Tg CO2 (64% of the median posterior flux). 389 

 390 

Figure 5. Annual CO2 emission totals (Tg CO2) for California by source sector in 2020. The numerical labels at 391 
the base of each PDF denote the 5th, 50th (indicated by the bold vertical line), and 95th percentile estimates of 392 
the posterior emissions, respectively. The vertical dotted line indicates the prior emission estimate, with the 393 
corresponding value displayed. Note that the annual PDF presented here was derived by aggregating seasonal 394 
MCMC samples. 395 

4. Discussion and conclusions 396 

This study presents the first attempt to constrain state-wide CO2 fluxes from California using spaceborne XCO2 397 
observations using both OCO-2 and OCO-3. We chose to focus on the year 2020 as this time period was characterized 398 
by anomalous features likely impacting total CO2 fluxes in California including: reduced anthropogenic emissions 399 
caused by the COVID-19 lockdown (Yañez et al., 2022), elevated wildfire activity (Jerret et al., 2022; Safford et al., 400 
2022), and drought occurrence (Steel et al., 2022). Assimilating OCO-2 and OCO-3 LN+LG XCO2 observations into 401 
a GP inversion framework was demonstrated in this study to be effective for constraining state-wide CO2 fluxes with 402 
a high degree of accuracy. The median posterior top-down annual total CO2 flux of 349.6 Tg CO2 yr-1 was consistent 403 
with the a priori estimate and constrained with low 2σ uncertainty levels of ~23%. The posterior uncertainty estimates 404 
of this study are similar to other recent research that have used OCO-2 and OCO-3 XCO2 data to constrain city-wide 405 
CO2 emissions in California (e.g., Roten et al., 2023), other city flux estimates (e.g., Wu et al., 2020), and country-406 
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wide CO2 budgets (e.g., Byrne et al., 2023). Our study adds to the growing evidence of how satellite XCO2 data can 407 
be used to confidently estimate city- to country-scale CO2 fluxes. 408 

 CARB inventories for the years 2019 and 2020 suggest that anthropogenic FF CO2 emissions were reduced 409 
by ~10% in 2020 compared to the year prior in California. The state-wide annual FF CO2 source was estimated in this 410 
study using the GP inversion assimilating OCO-2 and OCO-3 XCO2 data for 2020 to be 317.8 Tg CO2 yr-1 which is 411 
~5% lower than the prior flux assumed. This top-down estimate is ~15% higher compared to the CARB 2020 inventory 412 
which suggests state-wide anthropogenic CO2 emissions for 2020 were 277.7 Tg CO2 yr-1. The state-wide FF CO2 413 
emissions estimated using OCO-2 and OCO-3 data in this study had posterior uncertainties of ~15% on an annual-414 
scale and therefore is statistically consistent with the CARB 2020 inventory. The difference between the bottom-up 415 
and top-down median FF CO2 emission estimate may be due to errors and uncertainties in the GP inversion and errors 416 
in the bottom-up CARB inventory such as missing sources. It appears the results in our study for FF emission estimates 417 
are robust as they compare well to year 2020 emission totals in California from CARB and posterior top-down 418 
estimates are associated with low posterior uncertainty. Our PPC results, which compare the simulated data from 419 
posterior parameters with observations, provide additional confidence in our GP inversion models. 420 

 The main natural sources/sinks of CO2 in California (i.e., NEE and wildland fire) were also estimated in this 421 
study using OCO-2 and OCO-3 XCO2 data. The year 2020 was a year of drought in California and also resulted in 422 
extremely large wildfire activity. The GP inversion resulted in posterior NEE fluxes which were greatly reduced 423 
compared to the initial best guess a priori data. On an annual-scale, the posterior estimate for NEE was -36.8 Tg CO2 424 
yr-1 which was 63% lower (reduced carbon sink) compared to prior estimates driven by satellite SIF retrievals. It is 425 
important to note that 2020 was towards the end of a multi-year drought that plagued California and it would be 426 
expected that the terrestrial biosphere would be less effective in its uptake of carbon (Fu et al., 2022). It should also 427 
be noted that the median annual posterior NEE estimates derived in this study with satellite retrievals were associated 428 
with uncertainty levels of ~95%. The larger uncertainty value associated with our posterior NEE estimates, compared 429 
to FF sources, is expected as satellite retrievals are less sensitive to small diffuse signals of CO2 enhancements 430 
associated with the terrestrial biosphere compared to larger FF point-sources. Wildfire activity was elevated in 431 
California during the time of this study, and we estimated that these sources contributed 68.0 Tg CO2 yr-1 to the total 432 
state-wide annual carbon budget. The posterior estimate derived in our GP inversion was ~35% lower compared to 433 
prior estimate; however, this estimate still represents highly elevated CO2 emissions from this natural source. CARB 434 
estimated that ~100 Tg CO2 yr-1 was emitted from wildfires in 2020 (https://ww2.arb.ca.gov/wildfire-emissions) 435 
which is in line with the prior estimate from GFED4 used in our study. CARB uses an emissions model which is 436 
similar to GFED4 so this is to be expected. The lower posterior wildfire estimate using our GP inversion system was 437 
associated with uncertainty levels (~64% of the median posterior flux) lower compared to NEE and were statistically 438 
consistent with the CARB 2020 state-wide estimate. Prior emission estimates from wildfires are generally uncertain 439 
and satellite observations of the CO2 resulting from these episodic events are challenging; thus, it is not surprising that 440 
posterior fire emissions are one of the more uncertain components of the 2020 California CO2 budget. 441 

In evaluating the GP inversion method used in this study compared to linear inverse models (e.g., y=Kλ+ϵ, 442 
commonly used in atmospheric inversions; (Rodgers, 2000)), advantages and disadvantages become apparent. The 443 
GP inversion offers substantial flexibility in modeling intricate, non-linear dependencies without needing a pre-444 
specified model framework (Ebden, 2015). Thus, instead of confining the unknown function 𝒇 to fixed models, the 445 
GP model allows it to be defined more indirectly yet robustly. Note that we use Kλ (adjusted model predictions) as 446 
the mean function in Eq. (5) and do not equate it directly with the unknown function 𝒇. Thus, the GP approach treats 447 
the function 𝒇 as a random function, which can be sampled from a joint Gaussian distribution, allowing for greater 448 
flexibility in fitting data compared to traditional linear inverse models. In contrast to the linear inverse model (e.g., 449 
represented as y=Kλ+ϵ), which does not account for interactions between variables, the GP model can implicitly 450 
capture interactions among input features through its choice of kernel. Also, the GP inversion intrinsically provides 451 
quantification of uncertainty, which proves advantageous in scenarios with limited data as in atmospheric inversions. 452 
However, the computational demands of the GP method increase significantly with larger datasets, potentially 453 
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restricting its application in certain contexts (Williams and Rasmussen, 2006; Murphy, 2022), although recent 454 
development for high-performance computing (e.g., GPU-enabled tools) can alleviate this issue. Conversely, the linear 455 
inverse model, while less computationally demanding, assumes linearity and typically requires explicit assumptions 456 
about the underlying distribution, which may not always be valid and can lead to underestimation of model uncertainty 457 
(Wang, 2023). 458 

Given that individual state- and country-wide CO2 flux data sets generally have over a year of latency, 459 
satellite data becomes vital as this spaceborne data is well equipped to provide more real-time estimates of these 460 
emissions. This is an important aspect of satellite data especially during times of anomalous CO2 fluxes due to 461 
economic activity, wildfire, or flood/drought. Both this study and the work by Roten et al. (2023) clearly demonstrated 462 
the ability of OCO-2, and in particular OCO-3, to help constrain FF emission estimates in California during the 463 
COVID-19 lockdown. OCO-3 is particularly effective for estimating city-wide, or other point- to area-source, fluxes 464 
using the data extracted from SAMs. These area wide observations (~80 km × 80 km) greatly improve the 465 
observational coverage compared to OCO-2 (narrow swath of only ~10 km). These SAMs allow for observations 466 
which reduce errors in assumptions about mixing between the sources and observations and illustrate intra-city 467 
variability of XCO2 which was shown to allow for sector-based emission constraints in California (Roten et al., 2023). 468 
The recent launch of satellites, and future plans for spaceborne instruments, which retrieve greenhouse gas 469 
concentrations (e.g., GHGSat, CO2M, Carbon Mapper, etc.) at high spatial resolution and precision, some of which 470 
will apply SAM observational approaches, should greatly improve the ability to accurately estimate CO2 emissions 471 
from city- to global-scales. As demonstrated, our GP inverse model has the potential to utilize these new satellite data 472 
sets to estimate surface emissions in near-real-time fashion, effectively incorporating the unique spatiotemporal 473 
coverage of space-based information. 474 
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