
Supplemental Information 

Text S1. Model Comparison 

We compare versions of the GP inversion model using their expected log pointwise predictive 

density (ELPD), evaluated at unseen data points. Thus, ELPD is a measure of the predictive 

performance of the model (Vehtari et al., 2017). We estimate the ELPD values based on the leave-

one-out cross-validation (LOO-CV) method using the ArviZ Python package 

(https://python.arviz.org/en/stable/). Specifically, ELPD is the sum of the log pointwise predictive 

density (LPPD) for each observation, which represents the log probability of the observed data 

under the posterior predictive distribution: 

ELPD = ∑ LPPD𝑖

𝑛
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, 

where LPPD can be expressed as: 

LPPD𝑖 = log∫ 𝑝(𝑦𝑖 ∣ 𝜃)𝑝(𝜃 ∣ 𝑦)𝑑𝜃 

where the integral computes the predictive posterior probability for each observation 𝑦𝑖, 

quantifying the expected likelihood of the observed data under the model's posterior distribution. 

The Bayesian LOO-CV procedure provides an estimate of the out-of-sample predictive fit, 

crucial for evaluating the generalizability of a statistical model. This is quantified by ELPD 

specifically adapted for LOO (Vehtari et al., 2017): 

ELPDLOO = ∑ log

𝑛
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𝑝(𝑦𝑖 ∣ 𝑦−𝑖), 

where 𝑝(𝑦𝑖 ∣ 𝑦−𝑖) represents the predictive density of the 𝑖th observation, calculated using the 

remaining data: 

𝑝(𝑦𝑖 ∣ 𝑦−𝑖) = ∫ 𝑝(𝑦𝑖 ∣ 𝜃)𝑝(𝜃 ∣ 𝑦−𝑖)𝑑𝜃 

where 𝑝(𝜃 ∣ 𝑦−𝑖) is the posterior distribution of the parameters 𝜃, derived from the dataset 

excluding the 𝑖th observation. Thus, ELPDLOO represents that the ELPD is adjusted for each leave-

one-out scenario, providing a cross-validated measure of the model’s predictive accuracy. Figure 

S2 compares the computed 𝐸𝐿𝑃𝐷𝐿𝑂𝑂 values, with the model performance ranked from best to 

worst. Overall, Model 1 showed the best performance across all months; therefore, we have used 

its results for subsequent seasonal and sectoral analyses. 

Text S2. Graphical Description of Model Structure 

We define the probability distributions for hyperparameters and likelihood-associated parameters 

using probabilistic programming with PyMC (Abril-Pla et al., 2023). As illustrated in Figure S3, 

we treat these parameters as random variables with specified prior distributions (see Text S3 for 

the prior distributions). The probabilistic graph in the figure shows the hyperparameters associated 

https://python.arviz.org/en/stable/


with the kernel: “kernel_length_T,” “kernel_length_S,” and “kernel_var”, which denotes the 

temporal length scale, the spatial length scale, and the kernel variance, respectively. The graph 

shows that these hyperparameters are sampled from priors of Gamma, Gamma, and Exponential 

distributions, respectively (see Text S3 for details). Once the model is configured, as shown in 

Figure S3, we implement it through probabilistic programming using PyMC.  

The graph in Figure S3 also illustrates that we sample the scaling factors (denoted as 

“Lambda”) from a truncated normal distribution, which serves as the prior. The prior probability 

distributions and the likelihood function that correspond to Fig. S3 are described in Text S3. 

Additionally, the bias term (denoted as “bias”) is sampled from a normal distribution. For the GP 

noise term (denoted as “noise”), we use a Half Cauchy distribution as the prior. The graph displays 

the connections of the hyperparameters of the mean function—specifically, the scaling factor and 

the bias—and the three hyperparameters associated with the GP kernel to the GP function (denoted 

as 'f'). This relationship illustrates that the behavior of a GP is determined by its mean function and 

its kernel. 

Text S3. Prior Distributions for Parameters and Likelihood Function 

This section describes the prior distributions for the hyperparameters and the likelihood function 

used in the GP model. Figure S3 also presents the prior distributions for the parameters and the 

likelihood function in a graphical format. 

Scaling Factor 

𝛌 ∼ TrNormal(𝜇 = 𝛍𝛌, 𝜎 = 𝛔𝛌) 

where TrNormal denotes the truncated normal distribution. For all sectors, μλ (i.e., initial mean) is 

assigned a value of 1. The standard deviations σλ are set to 0.3, 0.5, 0.5, and 0.3 for the FF, NEE, 

fire, and ocean sectors, respectively. Higher σλ values are assigned to the NEE and fire sectors, 

reflecting the greater uncertainty associated with these emission sources. 

Kernel Variance 

𝜎2 ∼ Exp (2) 

where Exp denotes the exponential distribution, and the kernel variance σ2 is drawn from an 

exponential distribution with a rate parameter of 2. 

Spatial Length Scale 

ℓ𝑠 ∼ Gamma(𝛼, 𝛽) 

where α and β (with initial guesses of 0.5 for both) are parameters of a constrained Gamma 

distribution, from which random samples are drawn for ℓ𝑠 within the range of 0.01 (i.e., a small 

positive value) to three times the maximum distance between any spatial points within the 

modeling domain. 

Temporal Kernel Length Scale 



ℓ𝑡 ∼ Exp(𝑁𝑑𝑎𝑦/7) 

where Nday represents the total number of days in the year, specifically for the year 2020, and the 

number 7 (i.e., setting 7 days as a mean) corresponds to the standard duration of a synoptic weather 

cycle, measured in days (Ganesan et al., 2014). 

Noise 

𝜎𝑛𝑜𝑖𝑠𝑒 ∼ 𝐻𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦 (1) 

where 𝐻𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦 represents the Half-Cauchy distribution with a scale parameter of 1. 

Bias 

𝐷 ∼ 𝒩(0, 𝑠𝑑𝑏𝑖𝑎𝑠) 

where we sample the bias parameter D from a normal distribution with a mean of zero and a 

standard deviation 𝑠𝑑𝑏𝑖𝑎𝑠, which is set to 0.5 ppm for Model 1. 

Likelihood 

𝐲 ∼ 𝒩(𝜇 = 𝒇, 𝜎 = 𝜎𝑛𝑜𝑖𝑠𝑒) 

where 𝒇 represents the latent function, considered as latent variables, with its prior distribution 

defined by the GP (i.e., the GP mean and kernel).  



Supplemental Figures 

 

Figure S1. Seasonally-averaged 2020 CO2 emissions (μmol m-2 sec-1) for the state of California. Emissions from 

the terrestrial portion of California are shown for FF (left column), Fire (middle column), and NEE (right 

column) for the winter (first row), spring (second row), summer (third row), and fall (fourth row) months. 

  



 

Figure S2. Model comparison using ELPDLOO for each month: Model 1 (“sd = 0.5”), where a standard deviation 

(sd) of 0.5 ppm is applied to the prior probability distribution for the systematic bias; Model 2 (“sd = 1.0”), 

with a standard deviation of 1.0 ppm for the prior for the systematic bias; and Model 3 ('Scaling'). The models 

are ranked according to their performance, with the best-performing model placed at the top. The uncertainty 

associated with the ELPDLOO value is depicted by the horizontal bars. The central estimate for the highest-

ranked model for each month is indicated by the dashed vertical line. 

  



 

Figure S3. A graphical representation of the GP model structure for the month of September. It illustrates a 

probabilistic graph that outlines the dependencies among the random variables, showing the incorporation of 

the observed data (Y), hyperparameters, and prior distributions. It also notes the dataset size, 54, 

corresponding to the number of OCO observations utilized for September. This graph was generated using the 

ArviZ Python package (https://python.arviz.org/en/stable/). 

 

  



 

Figure S4. Seasonal total posterior GP inversion emission estimates using Model 1 by emission sector (Tg CO2). 

The numerical labels at the base of each PDF denote the 5th, 50th (indicated by the bold vertical line), and 95th 

percentile estimates of the posterior emissions, respectively. The vertical solid line displays the median posterior 

flux rates, and the vertical dotted line indicates the prior emission estimate for each season, with the 

corresponding value displayed. Note the seasonal PDF shown here was estimated combining monthly MCMC 

samples for the season (4000 samples each month). This approach ensures that the final seasonal PDF accounts 

for variations observed across different months. 

 


