
 The authors replied: 
 For the 25-50 and 100+, we did not indicate in our manuscript that the LSTM performed better. 
 We indicated that both models performed similarly, and the differences can be explained by 
 statistical noise. This is still the case with dHBV1.0. As we showed in Figure B1 of our manuscript 
 (see figure below), different random initializations of the LSTM can create variation in the reported 
 metric. We can see that for the second row of the Figure below, the LSTM can achieve a median 
 values of 0.51 and 0.56 for the 25-50 and 100+ intervals, which are close to the 0.51 and 0.55 
 reported by the dHBV1.0 for these same cases. 

 To test the authors’ argument that this was statistical noise, we further run more random seeds on the 
 dHBV1.0 (dHBV1.1p was not retrained with more random seeds as we don’t have enough time before the 
 comment session closes), as shown in Figure CC1 (“hybrid” is what Espinoza24 trained while dHBV1.0 
 are ours). It turns out the authors’ argument was not correct. In all of these random seeds, we see a 
 steady outperformance of dHBV1.0 over LSTM for 25-50, 50-100 and of course 100+ cases. In fact we 
 can certainly run a statistical analysis to verify the statistical significance with more random seeds. LSTM 
 is better in the 5-25 than dHBV1.0 but about the same as dHBV1.1p (only one random seed). That case 
 precisely shows that LSTM is better at cases close to what is has seen in training, and worse for those 
 cases that it has not seen. 

 Figure CC1. We re-ran the experiment with more random seeds.  “hybrid” is what Espinoza24 trained 
 while dHBV1.0 & dHBV1.1p are trained by us. Each row is the result from a random seed. The random 
 seeds used for dHBV1.0 were 111111, 22222, 33333, 44444, 55555. The 1.1p was trained using the 
 same random seed due to time limitation. 



 It seems fair to say the “hybrid” model trained by the authors is not representative of the dHBV1.0 as in 
 every random seed the dHBV1.0 had smaller errors --- there is not even one exception. The difference 
 between them is due to the different training frameworks employed, as we explained in the first comment. 
 We leave it to other readers to interpret the differences, but, from our reading, the authors “hybrid” would 
 suggest LSTM tend to outperform while our figure would suggest dHBV tend to outperform for the 
 extremes. It seems fair to say the community would be better served by involving at least 
 dHBV1.0-hydroDL into the comparison to draw a more balanced conclusion accordingly. 

 The point about input scaler 
 The authors further argued that some minor differences in the setups caused the difference. The authors 
 replied: 

 The authors (us) are calculating the mean and standard deviation used to standardize the input 
 data using the whole period (training and testing). In our case, we calculated the statistics using 
 only the training years, to avoid information leaking. We believe this might be one of several other 
 reasons for the different results. 

 During training, they constructed the batches using information from the whole period 
 (1980-2014), which they send to the model in the forcTuple list. This includes both training and 
 testing years. Therefore, during training, for some elements of the batch, the model does a 
 forward pass of information contained in the testing regime. The associated simulated values are 
 not used to calculate the loss during the optimization; however, this strategy is indeed different 
 from the strategy we used. 

 First, this was a minor scaler setup and there was no data leakage because precipitation as an input is 
 supposedly known or can be assumed for the purpose of calculating the scaler. Second, we proposed an 
 experiment which cleanly and easily separates out training and test (the temporal extrapolation case 
 shown in our first comment) where the advantages of dHBV were more prominent in our test and we 
 again encourage the authors to run a case like that with NH. At least, through the temporal extrapolation 
 case we can see that the issue mentioned by the author does not have a noticeable impact. Third, one 
 can make some further effort to have a cleaner scaler. We have taken 99 steps to get close to their exact 
 setup and trust the authors can bridge the last 1 step. 

 In reality, we don’t encounter scenarios where we know both the historical and future time series and test 
 in the middle of the time series. How we use the model is like what is shown in Figure CC2b. In this 
 experimental design, the model is trained on water years with lower return periods (blue line), while water 
 years with higher return periods (green line) are held out from training. The model is then tested over a 
 separate time span that includes both extreme and low flow events. 



 . 
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 Figure CC2. Different experimental designs. 

 The final point about ensemble. 
 We still think it is unfair to compare ensemble LSTM with a single dHBV. The multicomponent in dHBV is 
 like the hidden size in LSTM. Here is a simple criterion: an ensemble of n LSTM has n neural networks, 
 whereas a dHBV has only one neural network. Because of the constraint imposed by HBV, it is not as 
 random as LSTM so random seeds are not what one should do to get an ensemble for dHBV. More effort 
 will be shown down the road on this topic. 

 Overall, this point is not highly relevant to the extreme discussion, here, now. Nevertheless, comparing 
 ensemble LSTM with a single dHBV still feels like “bringing everything you’ve got” on the LSTM side while 
 not doing much on the dHBV side. 

 Finally, we would like to say that whether this paper gets published or not is not our concern --- we just 
 want to ensure the community gets the full picture and get a balanced view. 


