
The authors (referred to as Espinoza24 thereafter) have made a valuable contribution with their
analysis. This comparison provides useful insights. Espinoza24 demonstrates that the LSTM
model performed moderately better than the hybrid model (NH-hybrid) for return periods of 5-10,
10-25, and 50-100 years, while the NH-hybrid was slightly superior for return periods exceeding
100 years. They also showed their Hybrid model’s results are comparable to observed soil
moisture which is encouraging.

We have run similar experiments on our end, which show that our version of single hybrid
model, dHBV, outperformed LSTM in nearly all return-period categories. These results are
documented here: https://t.co/BnWtEy6NEk. The conclusions seemed to be modestly different
from Espinoza24.

To understand where discrepancies lie, we performed extensive due diligence by running
multiple experiments with the same setups as the authors to understand the observed
differences. We appreciate the authors for making their code available, enabling this
exploration. Our experiments used the same data split as Espinoza24. The models compared
include:

● LSTM: NeuralHydrology version of LSTM from Espinoza24.
●NH-Hybrid: Differentiable HBV from Espinoza24 based on the NeuralHydrology package.
● dHBV1.0 hydroDL: Differentiable HBV by Feng et al., 2022, based on the HydroDL package.
● dHBV1.1p hydroDL: An improved version with updates to the loss function and capillary
terms from dHBV1.0 hydroDL.

●HBV: Traditional HBV.

A notebook reproducing the results of dHBV1.0 hydroDL (blue box in Figures C1 and C2) is
available here
(https://colab.research.google.com/drive/12xUvTu9NoGVdcRWqJvypy4DGg5jy5q9T#scrollTo=v
0JIEuFZjkxq).

Both dHBV1.0 hydroDL and dHBV1.1p hydroDL showed advantages over LSTM and
NH-Hybrid, particularly for high peaks (Figure C1) and the 531 largest peaks (Figure C2), with
the benefits being more pronounced for larger return-period event. Notably, NH-Hybrid exhibited
larger peak errors than LSTM for the 25-50 and 50-100 return periods, while the HydroDL
versions showed smaller errors. This discrepancy may influence perceptions of the relative
strengths of these models.

Further, we observed that alternative choices (Table C1) in experimental design, which might
align more closely with Frame et al., 2022, or represent more realistic tests, could yield greater
advantages for dHBV HydroDL over LSTM (Figure C3). Specifically, the experiments in
Espinoza24 may allow LSTM to operate more within an “interpolation” regime, whereas true
experiments should challenge models in an “extrapolation” context.

Additionally, Espinoza24 interpreted the 16 multicomponents in dHBV as an ensemble, but this
setup is more analogous to the "hidden size" concept in LSTM. Due to the process-based
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nature of differentiable models, a true ensemble should consist of different model structures
(e.g., HBV, SAC-SMA, PRMS, CFE). Preliminary results (not shown here, but to be provided in
a subsequent publication) indicate that such structural variations improved NSE metrics.

While Espinoza24 conducted an experiment to verify that NH-hybrid could reproduce earlier
results from Feng et al. (2022), it is important to note that this does not imply that other
experiments would yield the same outcome. The claimed equivalence, which could influence
how some readers interpret the results, is not established here.

In conclusion, while the LSTM model in Espinoza24 represents a substantial effort, it may not
reflect the state-of-the-art due to differences in training frameworks and frontend LSTM
configurations. The community may benefit from more explicit specification of implementations
used, pulling the original dHBV1.0 HydroDL code into the comparison, and that alternative
methodologies in the community could produce different results.

We respect the authors’ alternative implementations of our idea, which adds to the healthy
discussion of pure data-driven vs. interpretable hybrid models. Hopefully more research can go
this way to understand the Pros and Cons of each method.

Figure C1 Absolute percentage error between the observed peak discharge and the associated
simulation value for the different models, classified by the return period of the observed peaks.
The four categories to the right of the dashed vertical line present the errors associated with
observed discharge above the 5-year return period threshold, evaluating the out-of-sample
capabilities of the models. The n-value below each category indicates the amount of data used
to produce the box-plot.



Figure C2. a) CDF of the 531 observed highest discharge values across all basins and their
respective simulated values. The blue dots help visualize that under 3% of the events have
values between 200 and 400 mm/day. b) Absolute percentage error of the 531 highest
discharges for the different models.

Figure C3. Comparisons in the experiments we have run, presented in Song et al, 2024.

Reasons
--- Impact

Differences Comments



1. Package
difference

--- significant
favor for
LSTM

Espinoza24 used their own training
framework built on
NeuralHydrology (NH) package
including a sequence-to-one LSTM
network, while we employed our
framework (HydroDL) with a
sequence-to-sequence LSTM
network with slightly different
implementations.

While it seems the NH-hybrid
package can give the same
performance in the benchmark
case used in Feng et al 2022,
it gives suboptimal
performance in extreme event
tests.

2. Ensemble
strategy

--- large on
NSE; maybe
minor on
extreme
events

Espinoza24 used ensemble LSTM
to compare with a single dHBV
model

Espinoza24 misinterpreted the
dHBV hybrid model. The
multicomponent in HBV is not
an “ensemble” . Rather, it is
similar to the hidden size in
LSTM. The real ensemble of
differentiable models should
be composed of different
model structures, e.g., HBV,
SAC-SMA, PRMS. We have
ongoing work that shows the
true model ensemble provides
better NSE. That being said,
the impact on extreme impact
needs more time to
understand.

3. Experiment
design

--- moderately
favored LSTM
impact on
extreme
events

Espinoza24 et al. validated the
model using holdout years within
the training period --- they trained
the model with CAMELS data from
1980-2014, and tested it using
years within 1980-2014 that had
extreme events and were held out
during training.

We trained from 1995/10/01 to
2014/09/30, holding out water
years with peak flows greater than
a 5-year return period. We then
tested models on a separate
continuous time period, from
1980/10/01 to 1995/09/30.

We argue a true test should
purely exist in continuous
history or future years to avoid
any kind of information leak.
Even though Espinoza24
would say the data in some
years is held out for test,
during training LSTM still sees
what the future looks like after
the extreme events. Somehow
this makes it a simpler task
than purely predicting in
untrained years.

We have run the tests, a pure
extrapolation like what we did
represents a harder case, and
LSTM shows more
disadvantages less favored
under such a more real-world
scenario.
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