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Abstract. Data-driven techniques have shown the potential to outperform process-based models for rainfall-runoff simulation.

Recently, hybrid models, which combine data-driven methods with process-based approaches, have been proposed to leverage

the strengths of both methodologies, aiming to enhance simulation accuracy while maintaining certain interpretability. Ex-

panding the set of test cases to evaluate hybrid models under different conditions, we test their generalization capabilities for

extreme hydrological events, comparing their performance against Long Short-Term Memory (LSTM) networks and process-5

based models. Our results indicate that hybrid models show similar performance as LSTM network for most cases. However,

hybrid models reported slightly lower errors in the most extreme cases, and were able to produce higher peak discharges.

1 Introduction

Data-driven techniques have demonstrated the potential to outperform process-based models for rainfall-runoff simulation ,

excelling not only in predicting average system states (Kratzert et al., 2019; Lees et al., 2021; Feng et al., 2020)but also in10

simulation of extreme events (Frame et al., 2022). The latter addresses .
:::::::::
Moreover,

::::::::::::::::
Frame et al. (2022)

::::::::
addressed

:::
the

:
concerns

about the generalization capability of data-driven methods to out-of-sample conditions, showing
:::
for

:::::::::::
extrapolation

::
to

:::::::
extreme

::::::
events,

::
by

::::::::::::
demonstrating that Long Short-Term Memory (LSTM) networks (Hochreiter and Schmidhuber, 1997) outperformed

process-based models in this type of scenario.

Recently, techniques to combine process-based models with data-driven approaches into so-called hybrid models have been15

proposed (Reichstein et al., 2019; Shen et al., 2023). The idea behind hybrid models is that they integrate the strengths of

both process-based and data-driven approaches to improve simulation accuracy while maintaining a notion of interpretability

(Jiang et al., 2020; Hoge et al., 2022). Among the various approaches available to combine
::::
these methodologies, the parame-

terization of process-based models using data-driven techniques has shown promising results (Tsai et al., 2021). One view of

this technique is that a neural network is integrated with a process-based model in an end-to-end pipeline, where the neural20

network handles the parameterization of the process-based model. Alternatively, this can be viewed as a neural network with a
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process-based head layer, which not only compresses the information into a target signal but has a certain structure that allows

for the recovery of untrained variables. Kraft et al. (2022) applied this method, demonstrating that substituting poorly under-

stood or challenging-to-parameterize processes with machine learning (ML) models can effectively reduce model biases and

enhance local adaptivity. Similarly, Feng et al. (2022) and Acuña Espinoza et al. (2024) employed LSTM networks to estimate25

the parameters of process-based models, achieving state-of-the-art performance comparable with LSTMs and outperforming

stand-alone conceptual models.

In a previous study, Acuña Espinoza et al. (2024) tested the performance and interpretability of hybrid models, with the

overall goal of looking at the advantages provided by adding a process-based head layer to a data-driven method. They

show that hybrid models can achieve comparable performance with LSTM networks, but
::::
while

:::::::::::
maintaining

:
a
::::::

notion
:::

of30

::::::::::::
interpretability.

:::
In

:::
this

::::
type

:::
of

::::::
hybrid

::::::
model,

:::
the

:::::::::::::
interpretability

:::::
arises

:::::
from

::::::::::
association.

:::::::::::
Specifically,

:::
the

::::::
authors

:::::
map

:::
the

:::::::::
parameters

:::
and

:::::::::::
components

::
of

::::::::::::
process-based

::::::
models

::
to
:::::::::

predefined
:::::::::

processes,
::::::::
domains,

::::
and

:::::
states

::::
(e.g.,

:::::::::
baseflow,

::::::::
interflow,

::::
snow

::::::::::::
accumulation).

::::::
While

:::
this

::::::::
approach

::::
does

::::::
provide

::
a

::::
sense

::
of

:::::::::::::
interpretability,

:
it
::
is

::::::::
important

::
to

::::::
clarify

:::
that

:::
this

:::::::::::::
interpretability

:
is
::::::
indeed

::::::
limited

::
to

:::::::::::
associations,

:::
and

::::
may

:::
lack

::::::::
rigorous

:::::::
physical

::::::::
principles,

:::::::::
especially

::::
when

::::
one

::::
uses

::::::
models

::::
such

::
as

:::
the

::::::
Simple

:::::::::::
Hydrological

:::::
Model

::::::
(SHM)

::::::::::::::::
(Ehret et al., 2020)

::
or

:::
the

:::::::::::
Hydrologiska

::::::
Byråns

:::::::::::::::::::
Vattenbalansavdelning

::::::
(HBV)

:::::::::::::::
(Bergström, 1992)

:
,35

:::::
which

::::::
present

:::::::::
significant

::::::::::::
simplifications

::
of

:::
the

:::::::::
underlying

:::::::
physical

:::::::
process.

:::::::::
Moreover,

::::::::::::::::::::::::
Acuña Espinoza et al. (2024)

:::
also

:
warn

about the possibility that the data-driven section of the hybrid model compensates for structural deficiencies in the conceptual

layer.

Building on this research line, and expanding the set of test cases to evaluate hybrid models under different conditions,

this study follows the procedure proposed by Frame et al. (2022) to investigate the ability of different models to predict out-40

of-sample conditions, focusing on their generalization capability to extreme events. We compare the performance of hybrid

models against both traditional process-based models and stand-alone data-driven models. Our aim is
::
We

::::
aim

:
to determine

which model demonstrates higher predictive accuracy, particularly in simulating large
:::::::
extreme hydrological events. We thereby

address the following two research questions:

– How do hybrid models compare to traditional
::::
does

:
a
::::::

hybrid
::::::
model

:::::::
compare

::
to

::
a process-based and a

:
stand-alone data-45

driven models
:::::
model in the simulation of extreme hydrological events?

– Does the combination of process-based and data-driven techniques offer an advantage
:
a
::::::
higher

::::::::::
performance

:
over stand-

alone data-driven approaches?

To achieve this objective, we have structured this article as follows: Section 2 describes the training/test data split and gives

an overview of the different models. In Section 3, we present
::::::
compare

:
the results of various tests that compare

:::::
assess the50

generalization capabilities of data-driven, hybrid, and conceptual models. Lastly, Section 4 summarizes the key findings of the

experiments ,
:::
and

:
presents the conclusions of the study, and suggests areas for further research.
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2 Data and methods

Donoho (2017) emphasize the importance of community benchmarks to drive model improvement. In the hydrological com-

munity, this practice has also been suggested to enable a fair comparison between new and existing methods (Shen et al., 2018;55

Nearing et al., 2021; Kratzert et al., 2024). Consequently, we built our experiments considering two existing studies. First,

we used the procedure proposed by Frame et al. (2022) to evaluate the generalization capability of different models (see sec-

tion 2.1). In accordance with this study, the experiments were conducted using the CAMELS-US dataset (Addor et al., 2017;

Newman et al., 2015), in the same subset of 531 basins. Second, we used the hybrid model architecture δn(γ
t,βt), further ex-

plained in section 2.2.2, proposed by Feng et al. (2022). This architecture demonstrated competitive performance with LSTM60

networks in their original experiments, which also used the CAMELS-US dataset.

2.1 Data handling: training/test split

To produce an out-of-sample test dataset and evaluate the generalization capability of the different models to large
:::::::
extreme

streamflow events, we split the training and test periods by years, based on the return period of the maximum annual discharge

event. Closely following the procedure recommended by Bulletin 17C (England Jr et al., 2019), we fitted a Pearson III dis-65

tribution to the annual maxima series of each basin, which we extracted from the observed CAMELS-US discharge records.

We then calculated the magnitude of the discharge associated with different probabilities of exceedance. Using the discharge

associated with the 5-year return period as a threshold, we classified the water years
:::::
(here,

:
a
:::::
water

::::
year

::
is

::::::
defined

::
as

:::
the

::::::
period

::
of

::::
time

:::::::
between

:::
the

::
1st

::
of

:::::::
October

::::
and

::
the

::::
30th

::
of

:::::::::
September

::
of

:::
the

::::::::
following

:::::
year) into training or test set. Figure ??

::
1a

:
shows

an example of the training/test split for basin 01054200, in the northeast of the United States
::::
(US). The water years (a water70

year is defined as the period of time between the 1st of October and the 30th of September) which contained only discharge

records smaller than the associated 5-year threshold were used for training, while cases in which this threshold was exceeded

were used for testing. It is important to note that there was a 365-day buffer between each training and testing period. The

value of 365 days corresponds to the sequence length used by the LSTM model, and the buffer period avoids leaking test

information during training. The results of the frequency analysis and the training/test data split for each basin can be found75

in the supplementary material accompanying this study. The original dataset contained 531 basins, each with 34 years of data

(from 1980 to 2014), for a total of 18 054 years of data. After the data split process, 9 489 years were used for training, 3 429

for testing and 5 136 were buffers. Excluding the buffer data, 73% of the data was used for training and 27% for testing. This

distribution is consistent with the 80%-20% theoretical split associated with the 5-year return period.

It should be noted that the results from the training/test data split differed from the ones proposed by Frame et al. (2022).80

In their study, the frequency analysis was done with instantaneous peak flow observations taken from the USGS NWIS

::::::::::::
(Survey, 2016), and a maximum cap of 13 water years was used to train each basin. Instead, we used the observed daily

data from the CAMELS-US dataset and did not impose restrictions on the maximum number of training years. We would also

like to re-emphasize that this setting is
::::::
training

:::
the

::::::
model

:::::::::
exclusively

:::
on

:::::
water

::::
years

::::::::::
containing

:::::
events

:::::::
smaller

::::
than

:
a
::::::
5-year

:::::
return

::::::
period,

:::
and

::::::
testing

::
it

::
on

:::::
water

::::
years

::::
with

::::::
events

:::::
larger

::::
than

:::::
5-year

::::::
return

::::::
period,

:::
was

:
meant as a form of stress-test to get85
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Figure 1.
::
a) Observed discharge in mm/day from 1984 to 2016 for catchment id 01054200. Green

:::
Grey lines represent training data, including

discharge below the 5-year return period threshold, marked by the dashed line Q_5
::
Q5. Blue lines indicate test data for discharge exceeding

this threshold. This training/test split, based on discharge exceedance probability, is designed to assess model performance under extreme

hydrological conditions.
::
b)

:::::::
Example

::
of

::::
peak

::::::::::
identification

:::
for

::::
basin

::::::::
01054200

::
in

:::
one

::::
year

::
of

:::
the

:::
test

::::::
period.

:::
Q1 :::::::

represent
:::
the

:::::::
one-year

::::
return

:::::
period

::::::::
threshold,

:::::
which

:::
was

::::
used

::
to

::::::
identify

::::
peak

:::::
events.

:::
Q5:::::::

represent
:::
the

:::::::
five-year

:::::
return

:::::
period

:::::::
threshold,

:::::
which

::::
was

:::
used

:::
for

:::
the

:::::::::::
training/testing

:::
data

::::
split.

an intuition of the model behavior regarding large
::::::
extreme streamflow events. In practical applications, one would not choose

to use this type of setup, but one should use all available information about this kind of events for model training.

2.2 Data-driven, hybrid and conceptual models

The experiments in this study were conducted using three models: a stand-alone LSTM, the Hydrologiska Byråns Vattenbalansavdelning

(HBV ) model (Bergström, 1992)
::::
HBV

::::::
model as a stand-alone conceptual model, and a hybrid approach. Both the LSTM and90

the hybrid model were trained using the Neural Hydrology (NH) package (Kratzert et al., 2022), while the optimization of the

stand-alone conceptual model used the SPOTPY library (Houska et al., 2015). Consistent with previous studies, the LSTM and

hybrid models were trained regionally, using the information from all 531 basins at the same time, while the stand-alone con-

ceptual model was trained basin-wise (locally). In other words, in this study we compare model results of an LSTM network,

a hybrid model, and 531 individually trained conceptual models.95

2.2.1 LSTM

The hyper-parameters for the stand-alone LSTM were taken from Frame et al. (2022). We used a single-layer LSTM with 128

hidden states, a sequence length of 365 days, a batch size of 256 and a dropout rate of 0.4. The optimization was done using the

Adam algorithm (Kingma and Ba, 2014). An initial learning rate of 1e-3 was selected, which was decreased to 5e-4 and 1e-4

after 10 and 20 epochs,
:
respectively. The basin-averaged NSE loss function proposed by Kratzert et al. (2019) was used for the100

optimization. In a slight deviation from the original study
::::::::::::::::
Frame et al. (2022), we trained our model for 20 epochs instead of 30.

We trained our models using 5 dynamic inputs from the daymet forcing: prcp
::::::::::
precipitation

:
(mm/day), srad

::::::
average

::::::::::
short-wave
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:::::::
radiation

:
(W/m2), tmax

::::
m2),

:::::::::
maximum

::::::::::
temperature

:
(C), tmin

::::::::
minimum

::::::::::
temperature

:
(C), vp

::::
vapor

:::::::
pressure

:
(Pa), plus the 27

static attributes
:
, listed in Table A1 of Kratzert et al. (2019)

:
,
:::::::::
describing

:::::::
climatic,

::::::::::
topographic,

:::::::::
vegetation

:::
and

::::
soil

::::::::::::
characteristics

::
of

:::
the

:::::::
different

:::::
basins.105

We used an ensemble of 5 LSTM networks to produce the final simulated discharge. In other words, we trained 5 individual

LSTM models, with the architecture described above, but initialized each one using a different random seed. After training, we

ran each model, individually, to retrieve the simulated discharges, and took the median value as the final discharge signal that we

used in the analysis. The advantage of using ensemble methods in LSTM networks was reported in Kratzert et al. (2019)
:::::
Using

::
an

::::::::
ensemble

::
of

::::::
LSTM

:::::::
networks

::::::
allows

::
us

::
to

:::::::
produce

::::
more

::::::
robust

:::::
results

::::::::::::::::::::::::::::::::::::::::::::::::
(Kratzert et al., 2019; Lees et al., 2021; Gauch et al., 2021)110

:::
and

::::::
reduces

:::
the

::::::
effects

:::::::::
associated

::::
with

:::
the

:::::::
random

::::::::::
initialization

::
of

:::
the

:::::::
models.

2.2.2 Hybrid model: LSTM+HBV

As mentioned in the introduction, for the
::
For

:::
the

:
hybrid model architecture, we used the δn(γ

t,βt) model proposed by Feng

et al. (2022). In this architecture, an ensemble of 16 HBVs acting in parallel was parameterized by a single LSTM network.

Each of the 16 ensemble members contained an HBV model with 4 buckets, whose flows were controlled by 11 static plus 2
:::
two115

time-varying parameters. The discharge of the ensemble was calculated as the mean discharge of the 16 members. Moreover,

to produce the final outflow, the ensemble discharge was routed using a two-parameter unit hydrograph. In total, the LSTM

produced 210 parameters (
::
16

::::::::
ensemble

::::::::
members,

::::
each

::::
with

:
13 HBV parameters*16 ensemble members+ 2

::::
HBV

::::::::::
parameters

:::
plus

::::
two

:
routing parameters) which were used to control the ensemble of conceptual models plus the routing scheme. The

model was trained end-to-end.
:::::
Figure

:::
A1

::
in

::::::::
Appendix

::
A
::::::
shows

:
a
:::::::
scheme

::
of

:::
the

::::::
hybrid

:::::
model

::::::::
structure.

:
120

During training, each batch contained 256 samples, each with a sequence of 730 days. The first 365 days were used as

a warmup period, to stabilize the internal states (buckets) of the HBV and reduce the effect of the initial conditions. These

365 values did not contribute to the loss function. The remaining 365 elements
::::
time

::::
steps

:
were used to calculate the loss,

backpropagate the gradients, and update the model’s weights and biases. Further details on the model implementation can be

found in the
:::::::::::::::::::::
hybrid_extrapolation_seed

::
#.yml files of the supplementary material. To validate our pipeline, we benchmarked our125

hybrid model implementation using the experiments proposed by Feng et al. (2022). These results are shown in Appendix A,

where we show a similar performance between our implementation and their results. Only after validating our pipeline, we ran

the extrapolation experiments.

2.2.3 Stand-alone conceptual model: HBV

As mentioned before, to
::
To

:
have a full comparison of the model spectrum, we also included a stand-alone conceptual model.130

We used a single HBV model plus a unit hydrograph routing routine, resulting in a model with 14
::::::::
calibration

::::::::::
parameters (12

HBV +
::::
from

:::
the

:::::
HBV

:::
plus

:
2 routing) calibration parameters. This

::::
from

::
the

::::::::
routing).

::::
Note

:::
that

::::
this HBV instance has one fewer

parameter (12 instead of 13) than the versions
:::::
version

:
used in the hybrid model. This one parameter difference is to maintain

consistency with Feng et al. (2022), where the authors used the 13-parameter HBV only when dynamic parameterization

was included, and the 12-parameter model for the static version. Similar to Acuña Espinoza et al. (2024), the stand-alone135
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conceptual models were trained basin-wise, using Shuffled Complex Evolution (SCE-UA) (Duan et al., 1994) and Differential

Evolution Adaptive Metropolis (DREAM) (Vrugt, 2016), both implemented in the SPOTPY library (Houska et al., 2015). We

then selected, for each basin, the calibration parameters that yielded better results.

2.3
:::::::::::

Performance
::::::
metrics

::
To

:::::::
evaluate

:::
the

::::::
overall

::::::::::
performance

::
of

:::
the

:::::
model

:::
we

::::
used

:::::::::::::
Nash–Sutcliffe

::::::::
efficiency

:::::
(NSE)

::::::::::::::::::::::
(Nash and Sutcliffe, 1970).

::::::::
However,140

::
the

:::::
main

::::::::
objective

::
of

::::
this

::::
study

::
is
::
to
::::::::

evaluate
:::
the

:::::
ability

:::
of

:::
the

::::::
models

::
to

::::::
predict

::::::::
high-flow

:::::::::
scenarios.

::::::::
Therefore

:::
the

::::::::
majority

::
of

:::
the

:::::::
analyses

::::
were

:::::
done

::::
using

:::::
only

::::
peak

:::::
flows.

:

:::::
Given

:::
the

::::::
amount

:::
of

::::
data

:::::::::
comprised

::
in

:::
the

:::
test

::::::
period

::::::
(3 429

::::
years

::::
over

::::
the

:::
531

:::::::
basins),

:::
the

::::
peak

::::::::::::
identification

:::
was

:::::
done

:::::::::::
automatically.

::::
For

:::
this

::::
task,

:::
we

:::::
used

:::
the

:::::::::
find_peaks

:::::::
function

::
of

:::
the

::::::
signal

::::::
module

::
in
:::

the
::::::

SciPy
::::::
library

::::::::::::::::::
(Virtanen et al., 2020)

:
,
:::::::
defining

:
a
:::::
7-day

:::::::
window

:::
as

:::
the

:::::::
criterion

:::
for

::::::::::
independent

:::::::
events.

::::::::
Moreover,

:::
we

:::::::
selected

:::::
only

:::
the

:::::
peaks

:::::
above

:::
the

::::::::
one-year145

:::::
return

::::::
period

::::::::
threshold,

::
to

:::::
have

:
a
:::::
better

::::::::::::
representation

:::
of

::::::::
high-flow

::::::::
scenarios.

:::::
After

:::
we

::::::::
identified

:::
the

::::::
peaks

::
in

:::
the

::::::::
observed

::::::::
discharge

:::::
series,

:::
we

::::::::
extracted

:::
the

:::::::::
associated

::::::
values

::::
from

:::
the

:::::::::
simulated

:::::
series

::
of

:::
the

::::::::
different

:::::::
models.

:::::
Figure

:::
1b

::::::::::
exemplifies

:::
this

:::::::
process

::
for

:::::
basin

:::::::::
01054200

::
in

::::
one

::::
year

::
of

:::
the

::::
test

:::::
period

::::::
where

::::
each

:::
dot

:::::::::
represents

:::
an

::::::::
identified

:::::
peak.

::::
Once

::::
the

:::::
peaks

::::
were

::::::::
identified,

:::
we

:::::::::
calculated

:::
the

:::::::
absolute

:::::::::
percentage

:::::
error

:::::
(APE)

::
as

::
a
:::::
metric

:::
for

::::::
model

:::::::::::
performance:

APE =
|yobs − ysim|

yobs
,

:::::::::::::::::

(1)150

:::::
where

::::
yobs :::

and
::::
ysim:::

are
:::
the

::::::::
observed

:::
and

:::::::::
simulated

::::::::
discharge,

:::::::::::
respectively.

3 Results and Discussion

After training the models, we performed multiple analyses to evaluate their generalization capabilities
::
to

:::::::
extreme

::::::
events. The

results of these analyses are presented in this section. All the results discussed here are for the test period.

3.1 Model performance comparison for whole test period155

Figure 2 shows the cumulative distribution functions (CDF) for the Nash–Sutcliffe Efficiency (NSE ) reported by
::::
NSE

:::::::
reported

::
for

:
each model, over the whole test period. We can see that the LSTM outperforms the hybrid model, reporting

::::
with a median

NSE of 0.75 and 0.71 respectively. Moreover, both models outperform the stand-alone HBV model, which has a median NSE

value of 0.64. The implication here is that
::::
result

::::
that

::::
both

:::
the

::::::
LSTM

:::
and

:::
the

::::::
hybrid

:::::
model

::::::::::
outperform

::
the

::::::::::
stand-alone

:::::
HBV

::
is

:::
not

::::::::
surprising,

::::
and

::::::
similar

:::::
results

::::
have

::::
been

::::::::
reported

:
in
:::
the

::::::::
literature

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Kratzert et al., 2019; Lees et al., 2021; Loritz et al., 2024; Feng et al., 2022; Acuña Espinoza et al., 2024)160

:
.
::::
This

:::
can

:::
be

:::::::::
attributed

::
to

:::
the

::::
fact

::::
that

::::::::::::
process-based

:::::::
models

::::::
present

::
a
::::::::
relatively

::::::
simple

::::::::
structure

::::
that

:::
in

:
a
:::

lot
:::

of
:::::
cases

:::::::::::
oversimplifies

:::
the

:::::
actual

:::::::
physical

:::::::::
processes.

:::
For

::::::::
example,

:::
the

::::
HBV

::::::
model

:::::::
assumes

:::
that

:::
all

::::
flows

:::::
have

:
a
:::::
linear

::::::::::
relationship

::::
with

::
the

:::::::
storage,

::::
that

:::
the

::::::::::::::
storage/discharge

:::
rate

:::::
does

:::
not

::::::
change

::::
over

::::
time,

::::
and

:::
that

:::::
snow

::::::
melting

::
is

:
a
:::::
linear

:::::::
process,

:::::::::::
proportional

::
to

::
the

:::::::::
difference

:::::::
between

::
a

::::::::
threshold

::::::::::
temperature

:::
and

:::
the

:::
air

::::::::::
temperature.

:::::
Both

:::
the

::::::
LSTM

:::
and

::::::
hybrid

:::::
model

:::::
have

::::
more

:::::::
flexible

6



:::::::::
frameworks

::::
that

:::::
allow

::::
them

::
to

:::::::
increase

::::
their

::::::::::::
performance.

::::::::
Moreover,

:::
we

::::
also

::::
show

::::
that even with a different training-test split165

than the usual temporally contiguous
::::::::::::::::::
temporally-contiguous

:
subsets, our results are consistent with the ones reported by Feng

et al. (2022) and Acuña Espinoza et al. (2024), where the same model ranking was achieved
:::::::
observed.

Figure 2. Cumulative density functions
::::::
function

:::::
(CDF) of the NSE for the different models, generated using 531 basins of the CAMELS-US

dataset. The NSE was calculated over the whole test period of each basin.

3.2 Model performance comparison for peak flows

The metrics shown in Fig. 2 were calculated using the whole test period. Consequently, they summarized
:::::::::
summarize the overall

performance of the three models. However, the main objective of this study is to evaluate the ability of the models to predict170

high-flow scenarios. To accomplish this objective, the remaining analyses were done using only peak flows.

Given the amount of data comprised in the test period (3 429 years over the 531 basins), the peak identification had to be done

automatically. For this
:::
For

:::
this,

:
we used the find_peaks function of the signal module in the SciPy library (Virtanen et al., 2020)

, defining a 7-day window as the criterion for independent events. Moreover, we selected only the peaks above the one-year

return period threshold, to have a better representation of high-flow scenarios. After we identified the peaks in the observed175

discharge series, we extracted the associated values from the simulated series of the different models
::::
APE

::::::
metric,

::::::
which

:::
we

::::::::
calculated

::::::::
following

:::
the

:::::::::
procedure

::::::::
described

::
in

::::::
section

:::
2.3. Figure ??a exemplifies this process for basin 01054200 in one year

of the test period where each dot represents an identified peak.

a) Example of peak identification for basin 01054200 in one year of the test period. Q1 represent the one-year return period

threshold, which was used to identify peak events. Q5 represent the five-year return period threshold, which was used for the180

training/testing data split b) Absolute percentage error between the observed peak discharge and the associated simulation

value for the different models. The results of subplot b present the error distribution, from all 531 basins, calculated only for

the peak flows of their test period (total of 17580 values).

7



Once the peaks were identified we calculated the absolute percentage error as a metric for model performance:

Abs percentage error =
|yobs − ysim|

yobs
,185

where yobs and ysim are the observed and simulated discharge, respectively. Figure ??b
::
3a

:
presents, for each model, the

distribution of the absolute percentage error
::::
APE for all the peak flows. This figure shows a similar distribution for the three

models, with the LSTM presenting a slightly lower median error than the hybrid and stand-alone HBV.
:::::
Lower

::::::
values

:::
are

:::::
better

::
for

:::
the

:::::
APE

::::::
metric. The finding that LSTMs outperformed

:::::::::
outperform

:
process-based models aligns with Frame et al. (2022)

and helps to challenge the notion that data-driven methods are less capable of extrapolation (Reichstein et al., 2019; Slater190

et al., 2023). In the case of the hybrid model, although the LSTM exhibits a slightly lower median error, the error distributions

of both models are similar. This trend will also be observed in other experiments discussed in the following sections. Therefore,

we do not find strong evidence suggesting that one architecture is significantly better than the other in this scenario, leaving it

to the reader’s discretion to choose the model that best suits their needs.

3.3 Model performance comparison for out-of-sample peak flows195

Figure ??b
::
3a

:
allowed us to evaluate the performance of the models only in peak discharges. However, this still did not give us

a performance metric for values exclusively outside of the training range. More specifically, the results presented in Fig. ??b

::
3a

:
evaluated the error in 17 580 observed events. Considering that the test period contained 3 429 years, we got an average

of 5 peaks per year. However, as shown in Fig. ??a
::
1b, these peaks were not necessarily larger than the 5-year return period

thresholds used during training. Figure 3
:
b
:
shows the same error metric but classifies the peaks based on their return period.200

The four categories to the right of the dashed vertical line present the errors associated with discharge outside of the training

range
:::::::::
discharges

::::::
beyond

:::
the

::::::
5-year

:::::
return

::::::
period

::::::::
threshold, giving a strict evaluation of the generalization capabilities of the

models. We can see that the LSTM slightly outperformed the hybrid and HBV models in the 1-5 and 5-25 return period. In

the remaining three intervals the performance of the LSTM and hybrid are comparable, with the HBV also showing similar

behavior for the last two. As shown
:::
one.

::::::
Figure

:::
B1

:
in Appendix B , the differences in the median values of the

:::::
shows

:::
the205

:::::::
variation

::
in

:::
the

::::
APE

::::
due

::
to

:::
five

:::::::
random

:::::::::::
initializations

:::
of

::
the

:::::::
models.

:::
We

::::
can

:::
see

:::
that

::
in

:::
the

:
last three categoriesare within the

range of statistical noise. Figure B1 shows that if we use the individual predictions of the 5 members of the LSTM ensemble,

instead of reporting the median signal, the ranking of these three categories can change. Consequently, we can conclude
:
,
:::
the

:::::
LSTM

:::::::::
performed

:::::
better

:::
in

::::
three

:::::
cases,

:::
the

::::::
hybrid

::
in
:::::

seven
::::

and
::::
they

::::
both

:::::::
reported

:::
the

:::::
same

:::::::
median

::::
value

:::
in

::::
four.

:::::::::
Moreover,

::
the

::::::::::
differences

::
in

:::
the

::::::
median

:::::
value

::::::::
between

:::
the

:::::
LSTM

::::
and

:::
the

::::::
hybrid

:::::
model

:::
are

:::::::
smaller

::::
than

:::
the

:::::
metric

::::::::
variation

::::
due

::
to

:::
the210

::::::
random

:::::::::::
initialization,

:::::::::
supporting

:::
our

:::::::::
hypothesis

:
that for higher return periods all models perform similarly.

In most cases, the errors increased for higher return periods. This was expected as models were trying to generalize to flows

farther away from their training range. On the other hand, the 100+ return period peaks presented similar or slightly lower

errors than the ones in the 50-100 category. At this point, the reported errors were close to 60%, which indicated that no model

could satisfactorily reproduce the observed peaks. Moreover, because of the characteristic of the metric (see equation
:::
Eq.

:
1),215

8



the error was scaled by the magnitude of the observation, which would explain why the 50-100 and 100+ presented similar

errors.

Figure 3. Absolute percentage error
:

a)
::::
APE

:
between the observed peak discharge and the associated simulation value for the different

models
:
.
:::
The

:::::
results

:::::
show

::
the

::::
error

:::::::::
distribution,

::::
from

::
all

:::
531

::::::
basins,

::::::::
calculated

:::
only

:::
for

:::
the

::::
peak

::::
flows

::
of

::::
their

:::
test

:::::
period

:::::
(total

::
of

:::::
17580

:::::
values)

::
b)

::::
APE,

:
classified by the return period of the observed peaks. The four categories to the right of the dashed vertical line present the

errors associated with observed discharge above the 5-year return period threshold, evaluating the out-of-sample capabilities of the models.

The n-value below each category indicates the amount of data used to produce the box-plot.

3.4 Saturation
::::::
Spatial

:
analysis : behavior of the models during extreme flow scenarios

::::::
model

:::::::::::
performance

Kratzert et al. (2024) explain that due to the LSTM model architecture, there is a theoretical prediction limit for this type of

model, which is a function of the weights and bias of the head linear layer, and consequently is defined during the training220

process. In other words, independently of the input series,
::
To

::::::
further

:::::::::
understand

:::
the

:::::::
capacity

::
of the associated prediction cannot

go above the theoretical limit. On the other hand, both
:::::::
different

:::::::
models,

:::
we

::::::::
evaluated

::::
their

:::::::::::
performance

::
in

::::::
space,

:::::::::
examining

:::
how

:::::::::
predictive

::::::::
accuracy

:::::
varies

::::::
across

::::::
regions

::::
and

:::::::::
identifying

:::::::::
differences

::::::::
between

:::
the

:::::::
models.

:::
As

:::::
shown

:::
in

::::::::
Appendix

:::
C,

::
in

:::
Fig.

:::
C1,

:::
all

::::::
models

::::::::
exhibited

:::::
lower

::::::::::
performance

::
in

:::
the

::::::
basins

::::::
located

::
in

:::
the

:::::
Great

:::::
Plains

:::::::
(center)

:::
and

::::::::
southwest

::
of

:::
the

::::
US.

::::
This

::::::
pattern,

:::::::::
previously

::::::::::
documented

::
in

:::
the

::::::::
scientific

::::::::
literature

::
for

::::
both

::::::::::
data-driven

:::::::
methods

:::::::::::::::::
(Gauch et al., 2021)

:::
and

::::::::::::
process-based225

::::::
models

::::::::::::::::::
(Newman et al., 2015)

:
,
::
is

:::
also

::::::::
observed

::
in
:::
the

::::::
hybrid

:::::::::::
architecture,

::
as

:::::::::::
demonstrated

:::::
here.

:::::::::::::::::::::::
Martinez and Gupta (2010)

::::::::
identified

:::::
aridity

:::::::::
(PET/P )

::::
and

:::::
runoff

:::::
ratio

::::::
(Q/P )

::
as

:::::
good

::::::::
predictors

::
of

::::::
model

:::::::::::
performance.

::::
The

::::::::::
comparison

:::::::
between

::::
Fig.

::
C1

::::
and

::::
Fig.

:::
C3

:::::::
supports

::::
this

:::::::::
hypothesis,

::::::::
revealing

:::
an

:::::::::
association

::::::::
between

:::::
lower

:::::::::::
performance

:::
and

:::::::
regions

:::::::::::
characterized

:::
by

::::
high

:::::
aridity

::::
and

:::
low

::::::
runoff

:::::
ratios.

:

:::::
Given

:::
the

::::::
shared

:::::::
behavior

:::::::
between

:::
the

:::::::
models,

:::
and

:::
in

:::
line

::::
with

:::
the

::::::::
objective

::
of

::::
this

::::::::::
comparison

:::::
study,

:::
we

::::::
further

:::::::
evaluate230

::
the

::::::::::
differences

::
in

:::::
their

:::::::::::
performance.

::::::
Figure

::
4

:::::
shows

::::
the

::::::::
difference

::::::::
between

:::
the

::::::
hybrid

::::
and the hybrid and

:::::
LSTM

:::::::
model,

::::::::
calculated

::
as

:::::::::::::::::::::
APEHybrid −APELSTM.

::::::::::::
Consequently,

:::::::
negative

:::::
(blue)

::::::
values

:::::::
indicate

::::
that the stand-alone HBV model do not

have such a theoretical limit. The conceptual model architecture is defined with an unlimited capacity in the buckets, and

due to mass conservation, all the water received by the models, after evapotranspiration and other abstractions, has to go out.
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Therefore, as a further analysis, we evaluated the behaviour of the model in the overall highest events.
:::::
hybrid

::::::
model

:::::::::
performed235

:::::
better

::::
(i.e.,

::::::::
presented

:::::
lower

:::::
error),

:::::
while

:::::::
positive

::::
(red)

::::::
values

:::::
favor

:::
the

::::::
LSTM.

First, we selected the 531 highest peaks in the test period. These peaks were selected as the overall highest events and came

from 171 out of the 531 basins. Therefore, not all basins participated in this analysis and the number of peaks that came out of

each basin did not have to be the same. Then, we selected the respective simulated values and plotted their CDF in Fig. 5a.

From this figure, we can see thatall three models underestimate the peak discharges. This phenomenon as such is not240

necessarily an indication of model deficiencies. All models provide an estimation of the expected streamflow for a given

timestep. However, since we selected the highest discharges across all basins for this exercise, it stands to reason that we

selected observations from the upper-quantiles of the respective conditional distributions. Figure 5a shows that the LSTM

produces the lower maximum among the three models, and that the HBV and hybrid models present a similar CDF. The

similarity between the last two indicates that in extreme regimes,
:::
The

::::
first

::::::
spatial

:::::::
tendency

::::
that

::
we

::::
can

:::::
notice

::
is

::::
that,

:::::
along

:::
the245

:::::
central

::::
part

::
of

:::
the

::::
US,

:::
the

::::::
LSTM

::::
tends

::
to
:::::::
perform

::::::
better.

:::
As

::::::::
previously

:::::::::
discussed,

::::
this

:::
area

::
is
:::::::::::
characterized

:::
by

::::
arid

::::::
basins.

::
In

:::
arid

::::::
basins,

::::::
surface

::::::
runoff

:::
can

::
be

:::::::::
associated

::::
with

::::::::::::
high-intensity

:::::
events

::::
over

:
a
:::::
short

::::
time

::::::
period.

:::::::::
Moreover, the data-driven part

of
::::
HBV

::::::
model

::::::::
generates

::::::
runoff

:::::
under

:::
the

::::::::::
assumption

:::
that

:
the

:::::::
discharge

::
is
::
a
:::::::
function

::
of

:::
the

:::::
basin

:::::::
storage,

:::
and

:::::
lacks

::
a

:::::
direct

::::::
channel

::
to

::::::::
transform

:::::::::::
precipitation

::::
into

::::::
surface

:::::
runoff

:::::
(e.g.,

::
the

:::::
water

::::::
always

::::::
routes

::::::
through

::
a

:::::
linear

::::::::
reservoir).

::::
This

::::::::::
assumption

:::::
might

:::
not

::::
hold

:::
for

:::
the

::::::::::::::
runoff-generating

:::::::
process

:::
on

:::
arid

::::::
basins.

:::::::::::
Considering

:::
that

:::
the

::::::
hybrid

::::::
model

:
is
::::::::::
regularized

::
by

:::
an

:::::
HBV250

::::
layer,

::::
this

::::::::
structural

::::::::
deficiency

::::::
would

::::::
explain

::::
why

:::
the

::::::
LSTM

::::::::::
outperforms

:::
the

:
hybrid model does not contribute much, and the

conceptual part is the one that allows the model to produce higher flows than the stand-alone LSTM. Moreover, we can also

see that all three models do not produce values larger than the maximum value they saw during training (dashed vertical line

in Fig. 5a)
::
in

:::
this

:::::
area.

:::
The

::::::
second

::::::
spatial

::::::::
tendency

::::
that

:::
we

:::
can

:::::::
observe

::
is

::::
that,

:::
for

:::
the

:::::
100+

:::::
return

::::::
period

:::::
map,

::::
there

::
is
::

a
::::::
cluster

:::
on

:::
the

::::::
Pacific255

::::::::
Northwest

::
in
::::::
which

:::
the

::::::
hybrid

:::::
model

::::::::::
outperforms

:::
the

::::::
LSTM. Figure 5b shows the error distribution for the same 531 highest

peaks. The three models present a similar median error, with the hybrid and HBV models reporting slightly longer tails

towards smaller absolute percentage errors.
:::::
These

::::::
basins

:::
are

:::::::::::
characterized

:::
by

::::
high

:::::::::::
precipitation

::::::
values

::::
(see

::::
Fig.

::::
C3c)

::::
and

::::
high

:::::::::
discharges.

::::
This

::
is

::
a

::::::::
challenge

:::
for

:::
the

::::::
LSTM

::::::::::
architecture,

::::
due

::
to

::::::::
saturation

:::::::::
problems,

:::::
which

::::
will

::
be

:::::::::
explained

::
in

:::::
detail

::
in

:::
the

::::
next

:::::::
section.

:
260

:::::
Figure

:::
C1

::::::
further

:::::::
presents

:::
the

::::::::::
differences

:::::::
between

:::
the

:::::
HBV

::::
and

:::::
LSTM

:::::::
models

::
as

::::
well

::
as
::::::::

between
:::
the

::::::
hybrid

:::::
model

::::
and

::::
HBV.

:::
In

:::
the

:::
first

:::::
case,

:::
the

::::::
LSTM

::::::::::
outperforms

:::
the

:::::
HBV

::
in

::::
most

::::::
cases,

::::
with

:::
the

::::
same

:::::::::
exception

::
of

:::
the

::::::::
northwest

:::::
coast

:::
for

:::
the

::::
100+

:::::
return

:::::::
period.

::
In

:::
the

::::::
second

::::
case,

:::
the

::::::
hybrid

:::::
model

:::::::
presents

:::
an

::::::
overall

:::::
better

:::::::::::
performance.

3.5
:::::::::

Saturation
::::::::
analysis:

::::::::
behavior

::
of

:::
the

::::::
models

:::::::
during

:::::::
extreme

::::
flow

::::::::
scenarios

The saturation problem in LSTM models with a single linear head layer , as described by Kratzert et al. (2024),
::::::::::::::::::::::::::::::::
(as described by Kratzert et al., 2024)265

arises due to the inherent limitations of the model architecture, resulting in a theoretical prediction limit (see equation B2

of Kratzert et al. (2024)).
:::::::::::::::::::::::::::::::::
(see equation B2 of Kratzert et al., 2024)

:
.
::
In
:::::

other
:::::::

words,
::::::::::::
independently

::
of

::::
the

:::::
input

:::::
series,

::::
the

::::::::
associated

:::::::::
prediction

::::::
cannot

:::
go

:::::
above

::::
the

:::::::::
theoretical

:::::
limit.

::::
This

:::::
limit

::
is

:
a
::::::::

function
::
of

:::
the

:::::::
weights

::::
and

::::::
biases

::
of

:::
the

:::::
head

10



Figure 4. a) CDF
:::::
Spatial

:::::::::
visualization

:
of the 531 observed highest discharge values across all basins

:::::::
difference

:::::::
between

::
the

::::
APE

:::
for

:::
the

:::::
hybrid and their respective simulated values

:::::
LSTM

::::::
models.

::::
Each

::::
point

:::::::::
corresponds

::
to
:::
one

:::::
basin.

:
The blue dots help visualize that under

3% of
:::
four

::::
maps

:::
are

::::::::
associated

::::
with the events have values between 200 and 400 mm/day

::::::
different

:::::
return

::::::
periods. b) Absolute percentage

error of
:::
The

::::
color

::::
scale

:::::::
indicates

:
the 531 highest discharges

:::::::
difference

:::::::
between

::
the

::::::
median

::::
APE

:
for the different models.

:::
The

::::::::
difference

:
is
::::::::
calculated

::
as

::::::::::::::::::
APEHybrid −APELSTM,

:::::::
therefore

:::::::
negative

:::::
(blue)

:::::
values

::::::
indicate

:::
that

:::
the

::::::
hybrid

:::::
model

:::::::
performs

::::
better

:::
and

:::::::
positive

::::
(red)

:::::
values

::::::
indicate

:::
that

:::
the

:::::
LSTM

:::::::
performs

:::::
better.

:::::
linear

::::
layer

::::
and

:::::
varies

:::
for

::::
each

::::::
trained

:::::
model

::::::::
instance.

:
From our experiments, we can see

:::::
where

:::
the

:::::
model

::
is

::::::
trained

::::
only

:::
on

::::::::
discharge

:::::
values

:::::
below

::
a
:::::
5-year

::::::
return

::::::
period,

::
we

::::::::
observed that the maximum value predicted by an LSTM instance

::
the

::::::
LSTM270

was 78.9 mm/day
:
, which is close to the

::::::::
calculated theoretical prediction limit , which we calculated to be

:
of

:
83.9 mm/day.

::::
This

::::::::
saturation

::::
limit

:::::::
explains

:::
the

:::::::
LSTM’s

::::
low

::::::::::
performance

:::
for

:::
the

::::::
cluster

::
of

:::::
basins

::
in

:::
the

::::::
Pacific

:::::::::
Northwest

::
of

:::
the

:::
US,

:::
for

:::
the

:::::
100+

:::::
return

:::::
period

:::::
case.

:::
Out

::
of

:::
the

:::
ten

::::::
basins

::::
with

:::
the

::::::
highest

:::::
errors

::::::
within

:::
this

::::::
cluster,

:::::
seven

:::
of

::::
them

::::::::
presented

:::::
100+

:::::
return

::::::
period

::::::::
discharges

::::::
above

:::
the

:::::::::
saturation

::::
limit

::
of

:::
the

:::::::
LSTM.

:::::::::
Therefore,

::::::::::::
independently

::
of
::::

the
::::::
forcing

::::::
series,

:::
the

::::::
model

:::
was

::::
not

::::
able

::
to

::::
reach

:::::
such

::::::
values.

::::::
Figure

::
5a

::::::
shows

::
an

::::::::
example

::
in

:::::
which

::::
this

::::::::
saturation

::::::::
problem

::
is

:::::::::
particularly

:::::::::::
pronounced.

:::
On

:::
the

:::::
other275

::::
hand,

::::
both

:::
the

::::::
hybrid

::::
and

::
the

::::::::::
stand-alone

:::::
HBV

:::::
model

:::
do

:::
not

::::
have

::::
such

::
a
:::::::::
theoretical

::::
limit.

::::
The

:::::::::
conceptual

::::::
model

::::::::::
architecture

:
is
:::::::
defined

::::
with

:::
an

::::::::
unlimited

:::::::
capacity

:::
in

:::
the

:::::::
buckets,

:::
and

::::
due

::
to

:::::
mass

:::::::::::
conservation,

:::
the

:::::
water

::::::::
received

::
by

:::
the

:::::::
models,

:::::
after

:::::::::::::::
evapotranspiration

:::
and

:::::
other

::::::::::
abstractions,

:::::
must

::
be

:::::::::
accounted

:::
for

:::::
within

:::
the

:::::::
system.

The other four instances of the ensemble reported similar results. The theoretical prediction limit
::
in

::
the

::::::
LSTM

:
is a function

of the weights and bias
::::
biases

:
of the head layer, which are a result of the training process. In our experiment we artificially280

restricted the training data to discharge
::::::::
discharges smaller than the 5-year return period thresholds, reducing the support of the

data space the model was fitted to. Consequently, this setup directly intensified the saturation problem. In practical applications

where the model is trained on all available data, the saturation issue would tend to decrease in relevance.
::::::::
Moreover,

::
it
::::::
would
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Figure 5.
:
a)

::::::::
Observed

:::
and

::::::::
simulated

::::::::
discharges,

:::
for

::::
two

::::
years

::
of

:::
the

::::::
testing

:::::
period,

:::
for

:::::
basin

::::::::
11532500.

:::
The

::::::
dashed

:::
and

::::::
dotted

::::
lines

::::::
indicate

::
the

:::::::
100-year

:::::
return

:::::
period

:::::::
discharge

:::
and

:::
the

::::::::
theoretical

:::::::
saturation

::::
limit

::
of

:::
the

:::::
LSTM

:::::
model,

::::::::::
respectively.

::
b)

:::
APE

::
of
:::
the

:::
531

::::::
highest

::::::::
discharges

::
for

:::
the

:::::::
different

::::::
models.

::
c)

::::
CDF

::
of

:::
the

:::
531

:::::::
observed

::::::
highest

::::::::
discharge

:::::
values

:::::
across

::
all

:::::
basins

:::
and

::::
their

::::::::
respective

::::::::
simulated

:::::
values.

:::
The

::::
blue

:::
dots

::::
help

:::::::
visualize

:::
that

:::
less

::::
than

::
3%

::
of
:::
the

:::::
events

::::
have

:::::
values

::::::
between

:::
200

:::
and

::::
400

::::::
mm/day.

::::
only

::::
affect

:::
the

::::
few

::::::
gauges

::
in

:::::
which

:::
the

:::::::
extreme

::::::::
discharges

:::
are

:::::
above

:::
the

::::::::
saturation

:::::
limit. However, a theoretical saturation limit

remains, which is an undesirable property in a hydrological model, especially in cases where we are designing infrastructure for285

extreme events outside of any training data (e.g., 1 000 year
:::::::
000-year flood). Further research should be invested in overcoming

this problem.

Apart from the statistical artifacts introduced by our selection procedure, we found two potential issues that might lead to

the peak underestimation of the hybrid models. Figure 6 shows the precipitation and observed discharge, together with the

accumulated value and the simulated discharge series, for 4 of the largest events in the dataset.290

For basins 08178880 and 08200000, the accumulated precipitation of the event is similar to or larger than the accumu-

lated discharge, however, the simulated series strongly underestimates the discharge. This behaviour
:::::::
behavior can arise due to

structural limitations in the hydrological model. For example, given the lack of a fast response channel, a high precipitation

pulse can be divided and routed through several linear reservoirs, attenuating the respective discharge peak. This effect could

have been strengthened by our training/test split, because
::::
given

::::
that the optimization parameters, which control the interaction295

between the buckets, were learned for certain conditions, which were inadequate for other out-of-sample hydrological events.

In this regard, the hybrid model presents a theoretical advantage over HBV
::
the

:::::
HBV

::::::
model

:
through the possibility of

dynamic parameterization that adapts the model behaviour
:::::::
behavior

:
to current conditions. The δn(γ

t,βt) hybrid model uses a

dynamic β coefficient to control the recharge rate at which precipitation was transferred to the other buckets. We noticed that

::::::::
However,

::
as

::::::::
discussed

::
in

:::
the

:::::::
previous

:::::::::
paragraph

:::
and

:::
as

:::::
shown

::
in

::::::
Figure

::::
D1, during high-intensity events the β value reached300

the limits of their
::
its

:
predefined interval, which limited the model to further adapt its behaviour

:::::::
behavior.
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Figure 6. Example of 4 of the most extreme events presented in the dataset. The subplots show the precipitation series and the observed

and simulated hydrographs.
∑

Q_obs and
∑

Prec indicate the cumulative sum of the discharge and precipitation series. Basins 08178880

and 08200000 have similar precipitation and discharge volumes . Basins
::::
while

:::::
basins 14182500 and 14138800 have a precipitation volume

smaller than the discharge volume. The dates of the events are in format YYYY-MM-DD.

The second issue that we found is a possible bias in the input data. For basins 14182500 and 14138800, the accumulated

precipitation is smaller than the accumulated discharge, which would explain the underestimation of the simulated values.

Given that these two
:::::::::::::::::::::::::::
Westerberg and McMillan (2015)

:::::::
indicate

::::
that

::::
bias

::
in

:::::::::::
precipitation

::::::::::::
measurements

::::
can

:::
be

::::::
caused

:::
by

::::
point

::::::::::
uncertainty,

:::::::::::
interpolation

::::::::::
uncertainty,

::::
and

:::::::::
equipment

:::::::::::
malfunction.

::::::::
Moreover

::::::::::::::::::::::::
Bárdossy and Anwar (2023)

::::::
indicate

::::
that305

::::::::::::::::
catchment-averaged

:::::::::::
precipitation

:::::
values

:::::::
present

:::::
higher

::::
bias

::::::
during

:::::::
extreme

::::::
events.

::::
This

::::
bias

:::::
poses

::
a
::::::::
challenge

:::
for

:::
the

:::::
HBV

:::
and

::::::
hybrid

::::::
model,

::::::
which

:::::
relies

:::
on

:
a
::::::::::::::::

mass-conservative
::::::::
structure.

:::::::
Without

::::::::
sufficient

::::::
water

::::
input

:::
to

:::
the

:::::::
system,

:::
the

::::::
model

::::::::
inherently

::::::
cannot

:::::::
replicate

:::
the

::::::::
observed

:::::::::
discharges.

:

::
An

:::::::::
alternative

:::::::::
hypothesis

::
to

:::::::::::
precipitation

:::
bias

::
is

:::
that

:::
the

::::
high

:::::::::
discharges

:::
are

:::::
caused

:::
by

::::::::
snowmelt.

::
In

::::
this

::::
case,

:::
the

::::::::::
accumulated

::::::::::
precipitation

::::::
during

:::
the

:::::
event

:::
can

:::
be

::::::
smaller

::::
than

:::
the

:::::::::::
accumulated

::::::::
discharge,

:::::
since

::::
part

::
of

:::
the

::::::::
discharge

::::::
would

::
be

::::::
caused

:::
by310

::::::
melting

:::::
snow

:::
that

:::::::
entered

:::
the

::::::
system

::::::
weeks

::
or

:::::::
months

::::::
before.

::::
Both

:
basins are located in the state of Oregon (north-west of

the USA), and,
:
accounting for the dates of both events, there is also the possibility that the high dischargeis partially caused

by snowmelt. In this case, the precipitation mass would need to be corrected.
:
a

:::::::::
possibility

:::
for

:::::::::::::::
snowmelt-induced

:::::::::
discharge.

Nevertheless, the snow module of HBV is not reproducing this behaviour, which again points
::::::::
behavior,

:::::
which

::::::
would

:::::
point

towards a structural deficiency in the model.315
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3.6 Limitations and uncertainties

::
In

:::
this

::::::
study,

:::
we

:::::
focus

::::
our

::::::
results

:::
and

:::::::
analysis

:::
on

::::::
model

:::::::::::
performance,

:::
as

:::
we

:::::
were

:::::::
tackling

:::
our

::::::::
research

::::::::
questions

:::::
from

:
a
:::::::::::
practitioner’s

:::::
point

:::
of

::::
view.

:::::::::
However,

::
it

::::::
should

::
be

::::::
noted

:::
that

:::::
other

:::::::
criteria,

:::::
such

::
as

::::::
model

:::::::::::::
interpretability,

::::
also

::::
play

:::
an

::::::::
important

::::
role

::
in

::
an

:::::::
integral

::::::
model

:::::::::
evaluation.

:::
We

:::::
refer

::
to

::::::
studies

::::
such

:::
as

::::::::::::::::::::::::
Acuña Espinoza et al. (2024),

:::::::::::::::
Kraft et al. (2022)

:
,

:::::::::::::::
Hoge et al. (2022)

:::
and

:::::::::::::::
Feng et al. (2022)

::
for

:::
an

:::::::
analysis

::
of

:::::
model

:::::::::::::
interpretability

:::
for

:::::
hybrid

:::::::
models.

:
320

The comparison that we presented here was done using the hybrid architecture proposed by Feng et al. (2022). This archi-

tecture was chosen because it gave a competitive performance with LSTM
::::::
LSTMs

:
in their original experiment and because

the code was open source. Other hybrid model architectures might give different results, and we
:::::::
However,

:::::
other

:::::::::::
architectures

:::::
might

::::
lead

::
to

:::::::
different

:::::::
results.

:::::
From

:::
the

:::::::
analysis

::::::::
presented

::::::
above,

:::
we

:::::::::::
hypothesized

::::
that

:
a
::::::::::::
process-based

:::::
layer

:::
that

::::::::
includes

:
a
::::::::
fast-flow

::::::
channel

::::::
might

:::::::
improve

:::::::::::
performance.

:::::::::
Moreover,

:::::::::
expanding

:::
the

:::::
hybrid

:::::::
model’s

:::::::::
parameter

::::::
range,

::
or

:::
the

::::::
number

:::
of325

:::::::
dynamic

::::::::::
parameters,

:::::
might

::
be

:::::::::
beneficial.

::::::::
However,

:::
the

::::::
added

::::::::
flexibility

:::::
might

:::::
come

::
at

:::
the

:::::::
expense

::
of

::::::
model

:::::::::::::
interpretability.

::::::::::
Additionally,

::::::::::
considering

::::
that

:::::::::::::::::
catchment-averaged

:::::::::::
precipitation

:::::
values

:::::::
present

::::::
higher

:::
bias

::::::
during

:::::::
extreme

:::::::
events,

::::::::
strategies

::
to

::::::::
overcome

:::
this

:::::::::
limitation

:::::
should

:::
be

::::::
tested.

:::::
Given

:::
the

:::::::::::::::::::
non-mass-conservative

:::::::
structure

::
of

:::
the

:::::::
LSTM,

:::::::::
systematic

::::
input

::::::
biases

:::
can

::
be

:::::::::
accounted

::::
for.

::::::::
However,

::::::
similar

::::::::
strategies

:::::::
should

::
be

::::::::
evaluated

:::
for

::::
the

::::::
hybrid

::::
case

::::
(e.g.

:::
the

::::::::
inclusion

:::
of

:
a
::::::::
dynamic

::::::::
parameter

::::
that

::::::::
factorizes

:::
the

:::::::::::
precipitation

::::::
input).

:::::::::::
Furthermore,

:::::
other

::::::::
strategies

::
to

:::::
create

::
a
::::::
hybrid

::::::
model,

::::
such

::
as

::::::::::
component330

::::::::::
replacement

:::::::::::::::::::::::::::::::
Kraft et al. (2022); Hoge et al. (2022)

:::::
should

::::
also

::
be

::::::
tested.

:::
We encourage the hydrological community to expand

the test cases presented here.

Moreover, and as we indicated before, the
::::
The training/test split

::::::
applied

::
in

::::
this

:::::
study was intended as a form of stress-

testing, to get an intuition of the modelwhen generalizing to
:
a
:::::::
model’s

:::::::
capacity

::
to

:::::::::
generalize

::
to unseen events. For the reasons

stated in previous sections, this stress-testing method directly affects the saturation problem in the LSTM and the parameter335

optimization for the hybrid and conceptual models. In a practical case, one should use
:::
not

::::::
remove

:::::::::::::
low-probability

:::::
events

:::::
from

::
the

:::::::
training

:::::
data.

:::::::::::
Furthermore,

::
in

::
an

::::::::::
operational

::::::
setting,

:
all the data

:::::
should

:::
be

:::::::
included

:
during model training, to increase the

performance of the models
:::::::::::::::
(Nevo et al., 2022).

Lastly, differences between simulated and observed values, especially in extreme events, can also be attributed to higher

uncertainty in the observed quantities, including discharge and precipitation (Di Baldassarre and Montanari, 2009; Westerberg340

and McMillan, 2015; Bárdossy and Anwar, 2023). We did not consider this type of uncertainty in our analysis, as this would

be outside of the scope of the paper.

4 Summary and conclusions

In this study, we evaluated the generalization capabilities of data-driven, hybrid, and conceptual models for predicting extreme

hydrological events. Following the methodology proposed by Frame et al. (2022), we partitioned our data based on the occur-345

rence frequencies, using the 5-year return period discharge as a threshold. We trained our models using information from water

years with discharges strictly lower than the threshold and tested their performance on low-probability data. This setting was

meant as a form of stress-test to get an intuition of the model behavior regarding large
::::::
extreme streamflow events. Our findings
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indicated that the LSTM slightly outperforms the hybrid and HBV models for 1-5 and 5-25 return periods, and all models show

similar performance for higher discharges.350

While all models underestimated extreme flow scenarios,
:::
The

::::::
spatial

::::::
analysis

:::
of

:::
the

:::::::
models’

::::::::::
performance

::::::::
revealed

:::
that

:::
all

::::
three

::::::
models

::::::::
exhibited

:::::
higher

:::::
errors

::
in
:::::
more

:::
arid

::::::
basins,

:::::::::
consistent

::::
with

::::::
findings

:::::::
reported

::
in
:::
the

::::::::
literature

::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Martinez and Gupta, 2010; Gauch et al., 2021; Newman et al., 2022)

:
.
:::::::::
Regarding

:::
the

::::::::::
differences

:::::::
between

::::
the

:::::::
models,

:::
the

::::::
LSTM

:::::::::
presented

:::::
lower

::::::
errors

::::
than

:::
the

::::::
hybrid

::::::
model

:::
in

:::::
more

::::
arid

:::::
basins,

::::::::::
particularly

:::
for

::::::
events

::
in

:::
the

::::
5-25

::::
and

:::::
25-50

:::::
return

::::::
period

:::::::::
categories.

::::
This

::::::::
disparity

:::
can

::
be

:::::::::
attributed

::
to

:::
the

::::::::
structural

:::::::::
limitations

::
of

:::
the

:::::
HBV

::::::
model,

::::::
which

:::::::
assumes

::::
that

:::::::::
discharge

::
is

:
a
::::::::
function

::
of

:::::
basin

:::::::
storage,

::
a

:::::::
premise

:::
that

:::::
may

:::
not

:::::
align355

::::
with

::::::::::::::
runoff-generating

:::::::::
processes

::
in

::::
arid

::::::
basins.

:::::
Given

::::
that

:::
the

::::::
hybrid

:::::
model

::
is
::::::::::
regularized

:::
by

::
an

:::::
HBV

:::::
layer,

::::
this

::::::::
structural

::::::::
deficiency

::::::
would

::::::
explain

::::
why

:::
the

::::::
LSTM

::::::::::
outperforms

:::
the

::::::
hybrid

:::::
model

::
in

::::
this

::::
area.

:::
On

:::
the

:::::::
contrary,

:::
for

:
the hybrid model and

HBV model were able to simulate higher discharges than the LSTM model. Upon further investigation, we noticed that the

reasons for underestimating the extreme flow scenarios were different. The LSTM had a theoretical limit due to its architecture,

and even though in practice
:::::
100+

:::::
return

:::::
period

::::::
events,

:::
the

::::::
hybrid

::::::
model

:::::::::::
outperformed

:::
the

::::::
LSTM

::
in

:
a
::::::
cluster

::
of

:::::
basins

:::::::
located360

::
on

:::
the

:::::::::
northwest

:::::
coast

::
of

:::
the

::::
US.

::::
This

::::::::
behavior

:::
can

:::
be

:::::
linked

:::
to

:::
the

:::::::
LSTM’s

:::::::::
theoretical

:::::::::
discharge

::::::::
saturation

:::::
limit,

::::::
which

:
is
::::::::::

determined
::::::
during

::::::::
training.

::
In

:::
the

:::::::::
northwest

::::::
cluster,

:::
the

:::::::
event’s

:::::::::
magnitude

::::::::
exceeded

:::
the

:::::::::
saturation

:::::
limit

::
of

:::
the

:::::::
LSTM,

::::::::
preventing

::::
the

:::::
LSTM

:::::
from

:::::::::
simulating

:::
the

::::::::
observed

:::::::::
discharges.

:::
As

::::::::
discussed

:::::::
before,

:::
the

::::::::::
training/test

::::
split

::::
used

::
in

::::
this

:::::
study

::::::::
artificially

::::::::
increased

::::
the

::::::::
saturation

::::::::
problem,

::
as

::
it
::::::::::
constricted

:::
the

::::
data

:::::
space

:::
the

::::::
model

::::
was

::::
fitted

:::
to.

:::
In

:::::::
practice,

:
this prob-

lem can be attenuated it
::
by

::::
also

::::::::::
considering

:::::::::::::
low-probability

:::::
events

::::::
during

:::::::
training.

::::::::::::
Nevertheless,

:
a
:::::::::
theoretical

::::
limit

::::
will

::::
still365

::::
exist,

::::::
which is not a desirable property for a hydrological model. Additional research to overcome this limitation should be

encouraged.

:::::::::
Expanding

::
on

:::
the

:::::::
analysis

::
to

::::::
include

:::
the

::::
most

:::::::
extreme

::::::::
scenarios

:::::
across

:::
the

::::::
whole

::::::
dataset,

::
it

:::
can

::
be

:::::::::
concluded

:::
that

:::
all

::::::
models

::::::::::::
underestimated

:::
the

::::
most

:::::::
extreme

::::
flow

:::::::::
scenarios.

::::::::
However,

:::
the

:::::
hybrid

::::::
model

:::
and

:::::
HBV

::::
were

::::
able

::
to

:::::::
simulate

::::::
higher

:::::::::
discharges

:::
than

::::
the

::::::
LSTM,

::::
and

::::::::
presented

:::
an

::::
error

::::::::::
distribution

::::
with

::::::
longer

::::
tails

::::::
toward

:::::::
smaller

::::::
values.

:::::
Upon

::::::
further

::::::::::::
investigation,

:::
we370

::::::
noticed

::::
that

:::
the

:::::::
reasons

:::
for

:::::::::::::
underestimating

:::
the

::::::::
extreme

::::
flow

::::::::
scenarios

:::::
were

::::::::
different.

:::
For

:::
the

:::::::
LSTM,

:::
its

::::::::
saturation

:::::
limit

:::
was

:::::::
reached.

:
On the other hand, the hybrid and HBV models underestimated the discharge due to structural deficiencies and

possible bias in the input data. The dynamic parameterization of hybrid models might help reduce the former, by changing the

model response based on current conditions. This idea is conceptually similar to how an LSTM operates, in which the gate

structures operate based on current and past conditions.375

Overall, for
:
in

:::::
most

::
of the experiments performed here, we did not find strong evidence suggesting that there is a significant

difference between the extrapolation capabilities of LSTM networks and hybrid models, and we .
::::::::
However,

::::::
hybrid

:::::::
models

:::
did

:::::
report

::::::
slightly

:::::
lower

::::::
errors

::
in

:::
the

::::
most

:::::::
extreme

:::::
cases

:::
and

:::::
were

::::
able

::
to

:::::::
produce

:::::
higher

:::::
peak

:::::::::
discharges.

:::
We

:
leave it to the

reader’s discretion to choose the model that best suits their needs.
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Appendix A: Benchmarking hybrid
:::::::
Hybrid model380

As explained in the manuscript, for our hybrid
::
For

::::
our

::::::
Hybrid model we used the δn(γ

t,βt) architecture proposed by Feng

et al. (2022). Because
::
A

::::::
scheme

::
of

::::
this

::::::::::
architecture

::
is

:::::
shown

::
in
::::

Fig.
::::
A1.

:::::
Given

::::
that our experiment pipeline was executed in

the NeuralHydrology
:::::
Neural

::::::::::
Hydrology package, we first had to benchmark our model implementation against the original

case. Figure A2 shows that our model implementation produced similar results to the one reported by Feng
::::::::::::::
Feng et al. (2022).

Figure A1.
::::::
Scheme

::
of

:::
the

:::::
hybrid

::::::
model

:::::::
structure.

::::
The

:::::
LSTM

::::::
predicts

:::
the

:::::::::
parameters

::::
used

::
to

::::::::::
parameterize

:::
the

:::::::
different

::::::::::
hydrological

:::::::
modules.

::
In

::::
total,

:::
the

:::::
LSTM

::::::::
produced

:::
210

:::::::::
parameters

:::
(16

::::
HBV

:::::::
members

::::
each

::::
with

:::
13

:::::::::
parameters,

:::
plus

::::
two

::::::
routing

:::::::::
parameters).

::::
The

::
16

::::::::::
hydrological

:::::
models

:::
are

:::
run

::
in

:::::::
parallel.

:::
The

:::::::
produced

:::::::::
discharges

::
are

::::::::
averaged,

:::
and

:::
the

:::::::
averaged

:::::
signal

::
is

:::::
further

:::::
routed

:::::
using

:
a
::::

unit

::::::::
hydrograph

:::::
based

::
on

:::
the

:::::
gamma

:::::::
function.

::::
The

:::::
output

::
of

::
the

::::::
routing

::::::
module

:
is
:::::::
retrieved

::
as

:::
the

:::
final

::::::::
simulated

::::::::
discharge.

Figure A2. Cumulative density function of the NSE for different models, generated using 671 basins of the CAMELS-US dataset.
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Appendix B: Effect
:::::::
Impact

::
of

:::::::
random

::::::
model

:::::::::::
initialization on absolute percentage error due to random initialization385

of the LSTM model
:::::
metric

Figure B1 shows the effect of different model initializations, for the LSTM network, in the absolute percentage error
::
in

:::
the

::::
APE

:
metric. The ranking of the models in the last three categories (25-50, 50-100, 100+) varies depending on the model

initialization. This indicates that the differences in the median values are within the statistical noise, and we cannot conclude

that one model is better than the other.390

Figure B1. Variation in absolute percentage error
:::
APE

:
due to random initialization of the LSTM model

::
and

:::::
hybrid

::::::
models.

17



Appendix C:
::::::
Spatial

:::::::::::
visualization

::::
and

::::::::::
comparison

:::
of

:::::
model

::::::::::::
performance

Figure C1.
:::::
Spatial

:::::::::
visualization

::
of
:::::

APE,
::
for

:::
the

:::::::
different

::::::
models

:::
and

::
the

:::::::
different

:::::
return

::::::
periods.

::::
Each

::::
point

::
is
::::::::
associated

::::
with

:::
one

:::::
basin.

:::
The

::::
scale

:::::::
indicates

::
the

::::::
median

::::
APE

::::::
between

:::::::
observed

:::
and

:::::::
simulated

::::::
values,

::
for

:::
all

::
the

:::::
events

::::::::
associated

::::
with

::
the

::::::::
respective

::::
basin

:::
and

:::::
return

:::::
period.
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Figure C2.
:::::
Spatial

::::::::::
visualization

::
of

::
the

::::::::
difference

:::::::
between

::
the

::::
APE

:::
for

:::
the

::::::
different

:::::::
models.

::::
Each

::::
point

::
is

::::::::
associated

:::
with

::::
one

::::
basin.

::::
The

::::
scale

::::::
indicates

:::
the

::::::::
difference

::::::
between

:::
the

::::::
median

:::
APE

::
of
:::
the

:::::::
different

::::::
models.

:::
The

::::::::
difference

:
is
::::::::
calculated

::
in

:::
the

::::
order

::
in

::::
which

:::
the

::::::
models

::
are

::::::
named,

::::::::::::::::::::
APEmodel 1 −APEmodel 2,

:::::::
therefore

::::::
negative

:::::
(blue)

:::::
values

:::::::
indicate

:::
that

:::::
model

::
1
::::::::
performed

:::::
better

::::
while

::::::
positive

:::::
(red)

:::::
values

::::::
indicate

:::
that

:::::
model

:
2
::::::::
performed

:::::
better.
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Figure C3.
:::::
Spatial

:::::::::
visualization

::
of
::::::::::::

basin-averaged
::::
static

::::::::
attributes.

::::
Each

::::
point

::
is

::::::::
associated

:::
with

:::
one

:::::
basin.

::
a)

::::::
Spatial

::::::::
variability

::
of

:::::
aridity

:
b)
::::::

Spatial
::::::::
variability

::
of

:::::
runoff

:::
ratio

::
c)
::::::
Spatial

:::::::
variability

::
of
:::::
mean

::::
daily

::::::::::
precipitation.
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Appendix D:
::::::::
Temporal

::::::::
variation

:::
of

:::::::
dynamic

:::::::::::
parameters

:::::
Figure

:::
D1

:::::
shows

:::
the

::::::::
temporal

:::::::
variation

::
of

:::
the

::::::::
dynamic

:::::::::
parameters

::
of

:::
the

:::::
hybrid

::::::
model

:::
for

::::
three

::::::
basins.

:::
For

:::
the

:::
first

::::
two

::::::
basins,

::
we

::::
can

:::
see

::::
clear

:::::
cyclic

::::::::
patterns,

::
in

:::::
which

:::
the

:::::::::
parameters

::::::
adjust

::
in

::::::
dry/wet

:::::::
seasons

::
to

:::::::
produce

::::::::
less/more

::::::
water.

:::::
These

:::::::
patterns

::::
were

::::::::
discussed

::
in

:::::::::::::::::::::::::
Acuña Espinoza et al. (2024)

::
for

::::::::::
experiments

:::::::::
conducted

::
in
:::::::::::::
CAMELS-GB,

::::
and

::::::
suggest

:::
the

:::::::::
possibility

::::
that395

::
the

::::::
LSTM

::::::
control

:::
the

:::::
HBV

::::::
models

::
in

:
a
:::::::::
consistent

::::
way.

::::::::
However,

::::::
further

::::::::::
investigation

::
is

::::::
needed

::
to

:::::::::
understand

:::
the

:::::::::::
LSTM-HBV

:::::::::
interaction.

::
In

:::
the

:::::
third

:::::
basin,

:::
the

::::::::::
hydrograph

::::
does

:::
not

:::::::
present

::::
such

:
a
:::::
clear

:::::::::
distinction

:::::::
between

:::
dry

::::
and

:::
wet

:::::::
seasons,

::::
and

:::
we

:::
can

::::::
observe

:::::
more

::::::::
variation

::
in

:::
the

:::::::::
parameters.

:

Figure D1.
:::
Time

:::::
series

:::::::
indicating

:::
the

:::::::
variation

::
of

::::::::
parameters

:::
for

::::
three

::::::
different

:::::
basins

:::
and

::::
their

::::::::
association

::::
with

::
the

::::::::
simulated

::::::::::
hydrographs.
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