
Avalanche Simulation Tools for OpenFOAM

The OpenFOAM user guide can be found on https://www.openfoam.com/documentation/user-guide/

Author: Matthias Rauter
Mail: matthias (@) rauter (.) it
Twitter: igt_matti

Introduction

This module provides a model and tools for the simulation of:

dense snow avalanches,

powder snow avalanches,

mixed snow avalanches,

turbidity currents and
other gravitational mass flows that fit into the scheme. This can either be flows of water, debris flows or pyroclastic flows. However, some adaptions

to e.g. the friction model might be required.

A depth-integrated flow model is applied and solved with the Finite Area Method. Tools for simulation setup and post processing are provided. Tools focus

on a tight integration with Geographic Information System and provide in- and output routines for Shapefiles and Gridfiles.

Note: Variable names differ between the academic publications and the code and this documentation. The reason is that some of the variable names in
literature (e.g. for phase fraction) are already used in the internals of OpenFOAM (where phi is the flux). Therefore the full equations are repeated here.

Note: This readme and its latex syntax aim to look good when used with LaTeX and StackEdit. Some interpreter struggle to parse the math expression.

Copyright

Source code

Licence: GPL-3.0-or-laters

Real case example

Wolfsgrube

The digital elevation model for tutorial wolfsgrube is provided by AMT DER TIROLER LANDESREGIERUNG (AdTLR) Abteilung Geoinformation

Licence: Creative Commons Attribution 3.0 License (CC-BY).

Monterey Canyon

The digital elevation model for tutorial montereycanyon is provided by Monterey Bay Aquarium Research Institute (MBARI)

Licence: MBARI provides these data “as is”, with no warranty, express or implied, of the data quality or consistency. Data are provided without support and without

obligation on the part of the Monterey Bay Aquarium Research Institute to assist in its use, correction, modification, or enhancement.

Models (Solver)

faSavageHutterFoam

The solver can be found applications/solver/faSavageHutterFoam and called with faSavageHutterFoam if the OpenFOAM module is loaded. For some

options see faSavageHutterFoam -help .

The solver is based on a depth-integrated flow model, similar to the Savage-Hutter model (Savage and Hutter; 1989, 1991).

The theory of this solver is described by Rauter and Tukovic (2018). The respective preprint is availabel on arxiv.org.
The application to natural terrain is described by Rauter, Kofler, Huber and Fellin (2018).

The governing equations can be expressed in terms of surface partial differential equations as

ϕ

∂h

https://www.openfoam.com/documentation/user-guide/
https://gis.tirol.gv.at/ogd/geografie_planung/DGM/LA_DGM10.zip
http://www3.mbari.org/data/mapping/Monterey_Bay/default.htm
https://dx.doi.org/10.1017/S0022112089000340
https://dx.doi.org/10.1007/BF01175958
https://dx.doi.org/10.1016/j.compfluid.2018.02.017
https://arxiv.org/abs/1802.05229
https://doi.org/10.5194/gmd-11-2923-2018

with unknown flow fields

depth-averaged flow velocity ,
flow thickness and

basal pressure .

Constant parameters are

the density and

the gravitational acceleration .

User-selectable models (see below) have to be provided for

the basal friction (frictionModel)

the volumetric entrainment rate (entrainmentModel)

the volumetric deposition rate (depositionModel)

Initial conditions have to be provided for

the flow thickness ,
the depth-integrated flow velocty and

the mountain snow cover thickness (for entrainment of fresh snow).

The classic surface pressure equation (e.g. Fischer et al. 2013) can be applied by deactivating the second term on the right hand side of Equation (3) (switch

pressureFeedback in tansportProperties).

Spatial differential operators

and

are described in detail by Rauter and Tukovic (2018).

The numerical solution is based on the Finite Area Method.

faParkerFukushimaFoam

This solver implements the Turbidity Current model of Parker et al. (1986).

It can be found in applications/solver/faParkerFukushimaFoam and called with faParkerFukushimaFoam . For some options see

faParkerFukushimaFoam -help .

with unknown flow fields

depth-averaged flow velocity ,

flow thickness and

depth-averaged sediment (or particle) concentration .

Constant parameters are

the density ration between sediment and water (or more generally, particles and fluid) and
the gravitational acceleration .

User-selectable models (see below) have to be provided for

​ +
∂t
∂h

∇⋅ h =(u) S ​ −e S ​,d

​ +
∂t

∂ h(u)
∇ ​⋅ h =s (uu) − ​τ ​ +

ρ

1
b hg ​ −s ​∇ ​ h p ​ ,

2 ρ
1

s (b)

∇ ​⋅ h =n (uu) hg ​ −n ​∇ ​ h p ​ −
2 ρ
1

n (b) ​n ​ p ​,
ρ

1
b b

u
h

p ​b

ρ

g = g ​ +s g ​n

τ ​b

S ​e

S ​d

h

u
h ​msc

∇ ​ =n n ​ n ​ ⋅(b b) ∇

∇ ​ =s I − n ​ n ​ ⋅(b b) ∇

​ +
∂t
∂ h

∇ ⋅ h =(u) S ​e
(w)

​ +
∂t

∂ hu
∇ ​ ⋅s h =(uu) R g ​ h −s c ​ Rg ​ ∇ ​ h −

2
1

n s (c 2) τ ​b

​ +
∂t

∂ hc
∇ ⋅ h =(c u) S ​ −e

(s)
S ​d

(s)

u
h

c

R

g = g ​ +s g ​n

https://stackedit.io/dx.doi.org/10.1016/j.coldregions.2012.01.005
https://arxiv.org/abs/1802.05229
https://doi.org/10.1017/S0022112086001404

the basal friction (suspensionFrictionModel)

the volumetric sediment entrainment rate (suspensionEntrainmentModel)

the volumetric sediment deposition rate (suspensionDepositionModel)

the volumetric ambient fluid entrainment rate (ambientEntrainmentModel)

Initial conditions and boundary conditions have to be provided for

the flow thickness ,
the depth-integrated flow velocty and

the depth-integrated sediment concentration

the erodible sediment thickness

faTwoLayerAvalancheFoam

The solver implements a two layer approach for a mixed snow avalanche. The dense flow layer is simulated with the Savage-Hutter model (Savage and

Hutter; 1989, 1991), similar to faSavageHutterFoam and the powder cloud layer is simulated with the model of Parker et al. (1986), similar to
faParkerFukushima. The equations can be found in the sections above. It can be found in applications/solver/faTwoLayerAvalancheFoam and called with

faTwoLayerAvalancheFoam . For some options see faTwoLayerAvalancheFoam -help .

The dense flow model fields are marked with a index 1, the suspension flow fields are marked with an index 2. The two layers are coupled with two fluxes:

The suspension deposition that brings particles from the suspension to the dense core and the dense core fluidisation flux that brings particles from the
dense core to the suspension, .

Further, the coupling flux is associated with a momentum flux that is not shown in the Equations for simplicity. The suspension entrainment is only
active if there is no dense flow present at the respective position.

User-selectable models (see below) have to be provided for:

the dense flow basal friction (frictionModel)

the dense flow entrainment rate (entrainmentModel)

the dense flow deposition rate (depositionModel)

the dense flow fluidisation rate (couplingModel)
the suspension basal friction (suspensionFrictionModel)

the suspension entrainment rate (suspensionEntrainmentModel)

the suspension deposition rate (suspensionDepositionModel)

the suspension ambient fluid entrainment rate (ambientEntrainmentModel)

Friction models

Dense flow friction models (frictionModel)

The friction model describes the friction between flowing mass (avalanche) and the terrain. The direction of the friction vector always aligns with the

velocity vector . These models are used in the solvers:

faSavageHutterFoam

faTwoLayerAvalancheFoam

The friction model has to be set in the file constant/transportProperties (see below).

These friction models can be found in the folder src/avalanche/friction and are based on the class frictionModel .

Currently there are the following friction models available:

τ ​b

S ​e
(s)

S ​e
(s)

S ​e
(w)

h

u
c

h ​msc

S ​f

​ +
∂t

∂h ​1 ∇ ⋅Γ h ​ ​ =(1 u1) S ​ −e,1 S ​ −d,1 S ​ +f S ​d,2
(s)

​ +
∂t

∂h ​ ​1 u1
ξ ​ ∇ ​ ⋅1 s

Γ h ​ ​ ​ =(1 u1 u1) − ​ +
ρ ​1

τ ​b,1
h ​ g ​ −1 s ​ ∇ ​ h ​ p ​

2 ρ ​1

1
s
Γ (1 1)

ξ ​ ∇ ⋅1 n
Γ h ​ ​ ​ =(1 u1 u1) h ​ g ​ −1 n ​ ∇ h ​ p ​ −

2 ρ ​1

1 Γ (1 1) ​ n p ​

ρ ​1

1 Γ
1

​ +
∂t

∂ h ​2 ∇ ⋅Γ h ​ ​ =(2 u2) S ​e,2
(w)

​ +
∂t

∂ c h ​2 2 ∇ ⋅Γ c ​h ​ ​ =(2 2 u2) S ​ −e,2
(s)

S ​ +d,2
(s)

S ​f

​ +
∂t

∂ 1 + Rc ​ h ​ ​(2) 2 u2
ξ ​ ∇ ​ ⋅2 s

Γ 1 + Rc ​ h ​ ​ ​ =((2) 2 u2 u2) − ​ +
ρ ​c

τ ​2
Rc ​h ​ g ​ −2 2 s ​ ∇ ​ 1 + Rc ​ g ​h ​

2
1

s
Γ ((2) n 2

2)

S ​f S ​e,2
(s)

τ ​b,1

S ​e,1

S ​d,1

S ​f

τ ​b,2

S ​e,2
(s)

S ​d,2
(s)

S ​e,2
(w)

τ ​b

u

https://dx.doi.org/10.1017/S0022112089000340
https://dx.doi.org/10.1017/S0022112089000340
https://dx.doi.org/10.1007/BF01175958
https://doi.org/10.1017/S0022112086001404

DarcyWeisbach (Liquid, formerly used for solver tests)

ManningStrickler (Liquid, formerly used for solver tests)
MuI (Granular flow, avalanche)

PoliquenForterre (Granular flow, avalanche)

Voellmy (Granular flow, avalanche)

kt (Granular flow, avalanche)

Darcy-Weisbach

DarcyWeisbach

Weisbach (1845) (wikipedia.org):

This friction model was applied in comparisons with analytical solutions in Rauter and Tukovic (2018), section 6.1.3.

frictionModel DarcyWeisbach;
DarcyWeisbachCoeffs

{

 Cf Cf [0 -1 2 0 0 0 0] 0.000625;

 g g [0 1 -2 0 0 0 0] 9.81;

}

Manning-Strickler

ManningStrickler

Manning (1890) (wikipedia.org):

Parameters:

frictionModel ManningStrickler;

ManningStricklerCoeffs

{
 n n [0 -0.333333333333333 1 0 0 0 0] 1.0;

 g g [0 1 -2 0 0 0 0] 9.81;
}

Voellmy

Voellmy

Friction model following Voellmy (1955):

This friction model was applied in Rauter, Kofler, Huber and Fellin (2018).

Parameters (see also tutorial wolfsgrube):

frictionModel Voellmy;

VoellmyCoeffs
{

 mu mu [0 0 0 0 0 0 0] 0.25; //dry friction coefficient

 xi xi [0 1 -2 0 0 0 0] 10000; //voellmy turbulence coefficient

}

Kinetic Theory

kt

Simplified Kinetic Theory following Rauter et al. (2016).

∣τ ​∣ =b C ​ρ g ∣u∣f
2 2

∣τ ​∣ =b n ρ g ​

2

h1/3.

∣u∣2

∣τ ∣ = μ p + ​ ∣u∣
ξ

ρ g 2

2

https://en.wikipedia.org/wiki/Darcy%E2%80%93Weisbach_equation
https://arxiv.org/abs/1802.05229
https://en.wikipedia.org/wiki/Manning_formula
https://stackedit.io/dx.doi.org/10.5169/seals-61891
https://doi.org/10.5194/gmd-11-2923-2018
https://www.nat-hazards-earth-syst-sci.net/16/2325/2016/

Parameters:

frictionModel kt;
ktCoeffs

{

 mu mu [0 0 0 0 0 0 0] 0.25; //dry friction coefficient

 chi chi [0 -1 -2 0 0 0 0] 10000; //turbulent friction coefficient

}

mu(I)

muI

Popular mu(I) following Jop et al. (2006) (see also wikipedia.org)

Shear rate at the base following Bagnold Profile:

Inertia number:

Friction coefficient depending on inertia number:

Basal friction:

Parameters (see also tutorial simpleslope):

frictionModel MuI;
MuICoeffs

{

 d d [0 1 0 0 0 0 0] 0.005; //particle diameter

 rho_p rho_p [1 -3 0 0 0 0 0] 2500.; //particle density

 mu_s mu_s [0 0 0 0 0 0 0] 0.38; //friction coefficient (low limit)

 mu_2 mu_2 [0 0 0 0 0 0 0] 0.65; //friction coefficient (high limit)

 I_0 I_0 [0 0 0 0 0 0 0] 0.30; //reference inertia number

}

Poliquen Forterre (2008)

PoliquenForterre

First mu(I)-rheology following Pouliquen & Forterre (2002). Similar to muI , however with the parameterisation of Pouliquen & Forterre (2002).

See also Johnson and Gray, (2011).

∣τ ∣ = μ p + ​ ​

χ

ρ g

h2

∣u∣2

​ =γ̇ ​ ​

2
5
h

∣u∣

I = ​

​p/ρ ​p

​dγ̇

μ = μ ​ +s ​

I ​/I + 10

μ ​ + μ ​2 s

∣τ ∣ = μ(I) p

Fr = ​

​h g ​n

∣u∣

h ​ =s h ​

Fr

β

μ ​ =stop tan(ζ ​) +1 ​

1 + h ​/Ls

tan(ζ ​) − tan(ζ ​)2 1

μ ​ =start tan(ζ ​) +3 (tan(ζ ​) −2 tan(ζ ​)) exp(−h ​/L)1 s

μ = ​ (μ ​ −(
β

Fr
)
γ

stop μ ​) +start μ ​start

https://stackedit.io/dx.doi.org/10.1038/nature04801
https://en.wikipedia.org/wiki/%CE%9C%28I%29_rheology
https://stackedit.io/dx.doi.org/10.1017/S0022112001006796
https://stackedit.io/dx.doi.org/10.1017/S0022112001006796
http://www.maths.manchester.ac.uk/~ngray/Papers/JFM_675_2011.pdf

Parameters:

frictionModel PoliquenForterre;
PoliquenForterreCoeffs

{

 L L [0 1 0 0 0 0 0] 0.010;

 zeta1 zeta1 [0 0 0 0 0 0 0] 21;

 zeta2 zeta2 [0 0 0 0 0 0 0] 30.7;

 zeta3 zeta3 [0 0 0 0 0 0 0] 22.2;

 beta beta [0 0 0 0 0 0 0] 0.136;

 gamma gamma [0 0 0 0 0 0 0] 1e-3;
}

Suspension friction models (suspensionFrictionModels)

The friction model describes the friction between flowing mass (turbidity current) and the bottom. The direction of the friction vector always aligns with

the velocity vector . These models are used in the solvers:

faParkerFukushima
faTwoLayerAvalancheFoam

The friction model has to be set in the file constant/transportProperties (see below).

Friction models can be found in the folder src/avalanche/friction .

To implement a new friction model, copy an existing one, rename it and modify it.

Currently there are the following friction models available:

laminar (Parker et al. (1986) 3-Equations model)

turbulent (Parker et al. (1986) 4-Equations model)

laminarSuspension

laminarSuspension

Parker et al. (1986).

This friction model can be used to get the 3-Equation model of Parker et al. (1986).

suspensionFrictionModel laminarSuspension;

laminarSuspensionCoeffs

{
 cd cd [0 0 0 0 0 0 0] 0.0006;

}

turbulentSuspension

turbulentSuspension

Parker et al. (1986).

This friction model can be used to get the 4-Equation model of Parker et al. (1986). Note that this model is only compatible with faParkerFukushimaFoam.

Note: This model does not work with faTwoLayerAvalanceFoam due to the relative velocity (between dense flow and suspension layer) that is delivered to

the friction model of the suspension layer.

with the depth-averaged kinetic energy , calculated with the PDE

with

∣τ ∣ = μ(I) p

τ ​b

u

∣τ ​∣ =b c ​ ∣ ∣D u u

∣τ ​∣ =b αk

k

​ +
∂t

∂ hk
∇ ⋅ h =(k u) τ ​ ⋅b +u ​∣ ∣ S ​ −

2
1
u 2

e
(w)

ϵ h − Rg ​ v ​ h −n s c ​Rg ​h S ​ − S ​

2
1

n (e
(s)

d

(s))

/

https://doi.org/10.1017/S0022112086001404
https://doi.org/10.1017/S0022112086001404
https://doi.org/10.1017/S0022112086001404
https://doi.org/10.1017/S0022112086001404

 is an optional parameter. If not given, it will be calculated as

suspensionFrictionModel turbulentSuspension;

turbulentSuspensionCoeffs
{

 cd cd [0 0 0 0 0 0 0] 0.01;

 alpha alpha [0 0 0 0 0 0 0] 0.1;

 beta beta [0 0 0 0 0 0 0] 0.7;

 R R [0 0 0 0 0 0 0] 1.65;

 Ds Ds [0 1 0 0 0 0 0] 0.00005;

 kmin kmin [0 2 -2 0 0 0 0] 1e-7;

 nu nu [0 2 -1 0 0 0 0] 1e-6;

}

Entrainment models

Dense flow entrainment models (entrainmentModel)

Entrainment describes the erosion of the intact snow cover and intake of the respective material into the avalanche. It is assumed that the snow

cover has the same density as the avalanche.

The entrainment model has to be set in the file constant/transportProperties (see below).

Entrainment models can be found in the folder src/avalanche/entrainment . Currently there are the following available:

entrainmentOff
Front

Erosionenergy

Medina

Ramms

No entrainment

entrainmentOff

Choose to turn off entrainment (), no parameters.

Front

Front

Simple front entrainment. Entrainment of the total mountain snow cover within a cell is triggered when .

Parameters:

entrainmentModel Front;

FrontCoeffs

{
 htrigger htrigger [0 1 0 0 0 0 0] 0.01;

}

Erosionenergy

ϵ = β ​

h

k
3/2

Ri = ​

∣ ∣u 2

Rg ​ hn c

β

β = ​

​(
α

c ​D)
3/2

2 ​ 1 − Ri − 2 ​ + c ​

u
S ​e

(w)

(
α

c ​D) D

S ​ (m/s)e

S ​ =e 0

h > h ​trigger

Erosionenergy

Entrainment model following SamosAT, see e.g., Rauter et al. (2016).

The entrainment rate is calculated as

Parameters:

entrainmentModel Erosionenergy;

ErosionenergyCoeffs

{
 eb eb [0 2 -2 0 0 0 0] 11500; //specific erosion energy

}

Medina

Medina

Entrainment model following the approach of Medina et al. (2008).

Entrainment is calculated from stability considerations of the basal layer.

The entrainment rate is calculated as

,

with the resisting shear strength

.

The cohesion and the friction coefficient of the basal layer are input parameters.
To improve stability, entrainment can be relaxed:

.

Parameters:

entrainmentModel Medina;
MedinaCoeffs

{

 tauc tauc [1 -1 -2 0 0 0 0] 100;

 mu mu [0 0 0 0 0 0 0] 0.45;

 relax 0.1;

}

Ramms

Ramms

Entrainment model following the approach from RAMMS, see e.g., Christen et al. (2016).

The entrainment rate is calculated as

.

Parameters:

entrainmentModel Ramms;

RammsCoeffs
{

 kappa kappa [0 0 0 0 0 0 0] 0.001;

}

Suspension entrainment models (suspensionEntrainmentModel)

The entrainment model has to be set in the file constant/transportProperties (see below).

Entrainment models can be found in the folder src/avalanche/entrainment . Currently there are the following available:

S ​e

S ​ =e ​

ρ e ​b

τ ⋅ u

S ​e

S ​ =e ​

ρ (∣g ​∣ − μ∣g ​∣)n s

∣τ ​∣ − τ ​b r

τ ​ =r τ ​ +c μ p ​b

τ ​c μ

S ​ =e relaxation Factor ⋅ S ​m,trial

S ​e

S ​ =e κ ∣ ∣u

https://www.nat-hazards-earth-syst-sci.net/16/2325/2016/
https://doi.org/10.1007/s10346-007-0102-3
http://dx.doi.org/10.1016/j.coldregions.2010.04.005

ParkerFukushimaEntrainment

ParkerFukushimaEntrainment

ParkerFukushimaEntrainment

Parker et al. (1986).

This model implements the standard entrainment model as used by Parker et al. (1986).

with

suspensionEntrainmentModel ParkerFukushimaEntrainment;

ParkerFukushimaEntrainmentCoeffs

{
 R R [0 0 0 0 0 0 0] 1.65;

 Ds Ds [0 1 0 0 0 0 0] 0.00005;

 Zc Zc [0 0 0 0 0 0 0] 0.5;

 Zm Zm [0 0 0 0 0 0 0] 13.2;

 nu nu [0 2 -1 0 0 0 0] 1e-6;
}

Ambient fluid entrainment model (ambientEntrainmentModel)

The ambient fluid entrainment model controls the entrainment of ambient fluid (air for powder snow avalanches, water for turbidity currents) into the

suspension flow. Ambient fluid entrainment models can be found in the folder src/avalanche/entrainment .

They have all in common that they depend on the Richardson Number:

The following models are available:

ParkerFukushima
Ancey

Turner

ParkerFukushima

This is the standard model from Parker et al. (1986).

Parameters:

ambientEntrainmentModel ParkerFukushimaEntrainment;

ParkerFukushimaEntrainmentCoeffs

{
ewf ewf [0 0 0 0 0 0 0] 0.00153;

S ​
=e

(s)
v ​ ​ ​ ​s

⎩

⎨

⎧0.3

3 ⋅ 10 Z 1 − ​

−12 10 (
Z

Z ​c)

0

for Z > Z ​,m

for Z ​ < Z < Z ​,c m

for Z < Z ​,c

Z = ​μR ​s

R =s ​

ν

​Rg ​d ​n s
3

μ = ​

v ​s

​∣τ ​∣b

v ​ =s ​

18 ν
R g ​d ​n s

Ri = ​

u2

Rg ​ c hn

S =(w)
​∣ ∣

Ri ​ + Ri0

ewf
u

https://doi.org/10.1017/S0022112086001404
https://doi.org/10.1017/S0022112086001404

Ri0 Ri0 [0 0 0 0 0 0 0] 0.0204;

}

Ancey

ambientEntrainmentModel AnceyEntrainment;

AnceyEntrainmentCoeffs
{

 alpha1 alpha1 [0 0 0 0 0 0 0] 1.6;

 alpha2 alpha2 [0 0 0 0 0 0 0] 0.05;
}

Turner

Parameters:

ambientEntrainmentModel AnceyEntrainment;

AnceyEntrainmentCoeffs
{

 alpha1 alpha1 [0 0 0 0 0 0 0] 10;

 alpha2 alpha2 [0 0 0 0 0 0 0] 50;

Ri0 Ri0 [0 0 0 0 0 0 0] 0.8;
}

Deposition models

Dense flow deposition models (depositionModel)

Deposition takes into account that mass is gradually lost in the avalanche during deceleration. The deposition model has to be set in the file
constant/transportProperties (see below).

Deposition models can be found in the folder src/avalanche/deposition . The following models are available:

depositionOff

StoppingProfile

No deposition

depositionOff

Choose to turn off deposition.

Stoppingprofile

Stoppingprofile

A deposition model derived from a decelerating velocity profile.

Rauter and Köhler (2019), “Constraints on entrainment and deposition models in avalanche simulations from high-resolution radar data”, Geosciences, 2019

Deposition model based on a decelerating Bagnold profile.

with

S =(w) ∣ ∣α ​ ​ ​u 2 {
exp −α ​Ri(1

2)

exp −α ​ /Ri(1)
for Ri < 1,
for Ri ≥ 1.

S =(w) ∣ ∣ ​ ​ ​u
⎩
⎨
⎧

​

α ​ + α ​Ri1 2

Ri ​ − Ri0

0

for Ri < Ri ​,0

for Ri ≥ Ri ​.0

S ​ =d ​ ​

∣ ∣u
a

dt
d (h∣ ∣)u

a = ​ ​ ​ ​

⎩
⎨
⎧

​(
u ​dep

u ​ − ∣ ∣dep u
)
a ​dep

0

for

else

∣ ∣ ≤ u ​ ∧ ​ < 0u dep dt
d∣ ∣u

and the parameter and .

Parameters:

depositionModel Stoppingprofile;
StoppingprofileCoeffs

{

 ud ud [0 1 -1 0 0 0 0] 1.5;

 ad ad [0 0 0 0 0 0 0] 1.0;

}

Suspension deposition models (suspensionDepositionModel)

The supsension deposition model controls the settling of particles from the suspension. The suspension deposition model has to be set in the file

constant/transportProperties (see below).

Suspension deposition models can be found in the folder src/avalanche/deposition . The following models are available:

ParkerFukushima

ParkerFukushima

This is the standard deposition model from Parker et al. (1986). It is based on the settling velocity of grains in fluid.

with

Parameters:

suspensionDepositionModel ParkerFukushimaDeposition;

ParkerFukushimaDepositionCoeffs
{

nu nu [0 2 -1 0 0 0 0] 1e-6;

Ds Ds [0 1 0 0 0 0 0] 0.00005;

}

Coupling models (couplingModel)

These models describe the sediment flux from the dense core to the powder cloud . These models are required in

faTwoLayerAvalancheFoam

Inertial (couplingInertial)

This model represents on the simplest methods to couple the dense core with the powder cloud. The flux depends solely on flow parameters of the dense

flow.

with

Parameters:

couplingModel couplingInertial;

couplingInertialCoeffs

{

 I0 I0 [0 0 0 0 0 0 0] 0.5;

u ​dep a ​dep

S ​ =d

(s)
v ​ r ​s 0 c

r ​ =0 1 + 31.5μ ,−1.46

μ = ​

v ​s

​∣τ ​∣b

v ​ =s ​

18 ν
R g ​d ​n s

S ​f

S ​ =f max I ​ − I ​, 0 s ​(1 0) f

I ​ =1 ​

​p ​/ρ ​1 s

​d ​γ ​1̇ 1

​ =γ ​1̇ ​ ​

2
5

h ​1

∣u ​∣1

https://doi.org/10.1017/S0022112086001404

 u0 u0 [0 0 0 0 0 0 0] 1e-5;

 d d [0 1 0 0 0 0 0] 0.01;

 rhos rhos [1 -3 0 0 0 0 0] 800;

}

Example: wolfsgrube_mixed

functionObjects

Various functionObjects are available and can be added to the execution of a solver to extend its capabilities. They are added in the subDict functions in

system/controlDict :

functions

{

 gridfileWrite
 {

 type gridfileWrite;

 ...
 ...

 }

}

shapefileWrite

This functionObject writes one shapefile in each timestep that is marked for writing. The shapefile contains a selection of OpenFOAM fields and can be

openend in e.g. QGSI.

Parameters:

fields : A list of fields that will be added to the shapefile. Accepts regular expressions, e.g. “.*” to export all fields.

writeOption : autoWrite / anyWrite . Write only fields that are marked by the solver for writing or wirte any fields in the given list.
prefix : The first part of the filename. Will be extended with the time.

offset : Mapping back to world coordinates from simulation coordinates (see gridToSTL/releaseAreaMapping)

shapefileWrite

{
 type shapefileWrite;

 libs (faAvalanche);

 //fields (".*"); //All fields

 fields (h Us);

 writeOption autoWrite;

 //writeOption anyWrite;

 prefix "polys";

 offset (5000.0 -220000.0 0);
}

gridfileWrite

This functionObject generates gridfiles out of fields in each timestep that is marked for writing.

The parameters of the gridfile can be given in 3 ways:

standard parameters dx , dy , ncols , nrows , xllcorner , yllcorner .

grid-extends and cellsize xmin , xmax , ymin , ymax , dx , dy .
cellsize dx , dy and the extends will be calculated automatically from the mesh.

Parameters:

fields : A list of fields that will be written as grid file. Accepts regular expressions, e.g. “.*” to export all fields.

writeOption : autoWrite / anyWrite . Write only fields that are marked by the solver for writing or wirte any fields in the given list.

dx : Cell size of the gridfile - x-direction

dy : Cell size of the gridfile - y-direction

ncols : Number of columns in the gridfile (optional)
nrows : Number of rows in the gridfile (optional)

xllcorner : Position of lower left cell in gridfile (optional)

yllcorner : Position of lower left cell in gridfile (optional)

xmin : extend in x-direction (optional)
xmax : extend in x-direction (optional)

ymin : extend in y-direction (optional)

ymax : extend in y-direction (optional)
postfix : The postfix of the files.

offset : Mapping back to world coordinates from simulation coordinates (see gridToSTL/releaseAreaMapping). Note that grid2Stl can write a file with

the correct offset, that can be included into the file with "#include "../constant/offset";

gridfileWrite
{

 type gridfileWrite;

 libs (faAvalanche);

 fields (h Us);

 secondOrder on;

 writeOption autoWrite;

 //writeOption anyWrite;

 ncols 426;

 nrows 258;
 xllcorner -803;

 yllcorner -83;

 dx 10;
 dy 10;

 postfix ".asc";

 offset (5000.0 -220000.0 0); //or #include "../constant/offset";

}

isoLine

The isoSurface functioObject allows a direct export of isolines to GIS.

Parameters:

field : The name of the field to be processed and exported.

fileName : The filename where the isoline will be saved as a shapefile (*.shp)

values : List of values for isolines

offset : Mapping back to world coordinates from simulation coordinates (see gridToSTL/releaseAreaMapping). Note that grid2Stl can write a file with
the correct offset, that can be included into the file with "#include "../constant/offset";

h1iso

{
 type isoLine;

 libs (faAvalanche);

 field h;

 fileName "h";

 values (0.5 2 4 6 8 10 12 14 16);

 offset (5000.0 -220000.0 0); //or #include "../constant/offset";

}

// *** //

autoAreaToVolumeMapping

The native Paraview reader is not able to read areaFields. This functionObjects maps areaFields to volumeFields so Paraview can read them.

Parameters:

fields : A list of fields that will be written as grid file. Accepts regular expressions, e.g. “.*” to export all fields.

writeOption : autoWrite / anyWrite . Write only fields that are marked by the solver for writing or wirte any fields in the given list.
prefix : prefix for filenames so they don’t overwrite the areaFields.

autoAreaToVolumeMapping

{

 type autoAreaToVolumeMapping;
 libs (faAvalanche);

 fields (".*");

 writeOption autoWrite;

 //writeOption anyWrite;

 prefix "fa_";

}

Utilities

slopeMesh

slopeMesh

This simple utility can be used to create simple slopes as used in many of the tutorials.

For an example see tutorials/simpleslope/ .

Parameters are set in constant/slopeMeshDict .
The source code can be found in applications/utilities/slopeMesh .

gridToSTL

This utility allows to generate STL-files from topography data (ESRI grid files). STL-files can then be used to generate the mesh required for simulations.

For an example see tutorials/wolfsgrube .

Parameters are set in system/gridToSTLDict .

The source code can be found in applications/utilities/slopeMesh .

Example reading topography from grid file (.asc) and boundary polygon from shape file (.shp, *.shx, *.dbf)

stlname "constant/surface.stl"; //output file

gridname "constant/gisdata/dem.asc"; //topography file

boundary fromShape; //read boundary of the meshed area from shapefile

shapeBoundary "constant/gisdata/aoi"; //shapefile containing the boundary polygon

divisions 300; //number of points a polygon side is divided into

domainHeight 500.0; //height of the volume mesh

offset (5000.0 -220000.0 0); //offset the final mesh by this value

Example reading topography from grid file (*.asc) and boundary polygon from dictionary

stlname "constant/surface.stl"; //output file

gridname "constant/gisdata/dem.asc"; //topography file

boundary fromPoints; //read boundary of the meshed area from list below

boundaryPoints //list with vertices describing the meshed area

(
 (-4666.57 221593 0)

 (-4259.78 222062 0)

 (-3749.64 221983 0)
 (-3020.48 220056 0)

 (-3642.49 220017 0)

);

divisions 300; //number of points a polygon side is divided into

domainHeight 500.0; //height of the volume mesh

offset (5000.0 -220000.0 0); //offset the final mesh by this value

autoOffset on; //automatically calculate a good offset value. Overwrites offset.

releaseAreaMapping

releaseAreaMapping

This utility can be used to set the initial condition (e.g. the initial release zone). This utility reads input from the file constant/releaseArea .

Usually the initial condition is set on 0/h and 0/hentrain .
The initial velocity 0/Us is usually set to constant (0,0,0) .

Three following forms of release areas can be created:

Sphere

Polygon
Shapefile

Sphere

sphere

Spherical release area, as often used for small scale experiments.

For an example see tutorials/releaseAreaMapping .
Setting a spherical mass on a slope:

fields

{
 h //name of the field

 {

 default 0; //default value outside the release area

 regions //regions can contain many release areas
 (

 sphereExample //name of the release area

 {
 type sphere; //type sphere for spherical release

 center (2.0 0.0 3.5); //centre of the sphere

 r 2.0; //radius of the sphere
 scale 1.0; //scale up/down the resulting field

 }

);
 }

}

Polygon

polygon

Classic slab release.

For an example see tutorials/releaseAreaMapping and tutorials/entrainment .

Setting a slab release on a slope:

fields

{

 h //name of the field

 {
 default 0; //default value outside the release area

 regions //regions can contain many release areas

 (
 PolygonWithConstantValue //name of the release area

 {

 type polygon; //type polygon for a simple slab
 filltype constant; //filltype: either constant or linear

 vertices //list of vertices defining the polygon

 (
 (0 0 0)

 (2 0 0)

 (2 2 0)

 (0 2 0)
);

 value 0.5; //value within the polygon (filltype constant)

 offset (5 13 0); //offset of the polygon
 projectToNormal no; //convert from vertical height to thickness

 }

 PolygonWithLinearValue //name of the release area
 {

 type polygon; //type polygon for a simple slab

 filltype linear; //filltype: either constant or linear
 vertices //list of vertices defining the polygon

 (

 (0 0 0)
 (2 0 0)

 (2 2 0)

 (0 2 0)
);

 valueAtZero 0.2; //value if field at (x0, y0, z0)

 x0 15.; //reference point x-coordinate
 y0 13.; //reference point y-coordinate

 z0 0.; //reference point z-coordinate

 dfdx 0.1; //change of field with x

 dfdy 0.1; //change of field with y
 dfdz 0.; //change of field with z

 offset (15 13 0); //offset of the polygon

 projectToNormal no; //convert from vertical height to thickness
 }

);

 }
}

Shapefile

shapefile

Classic slab release.
For an example see tutorials/releaseAreaMapping and tutorials/wolfsgrube .

Setting a slab release on a slope:

fields
{

 h //name of the field

 {
 default 0; //default value outside the release area

 regions //regions can contain many release areas

 (

 ShapefileWithEmbeddedValues //name of the release area
 {

 type shapefile; //type shapefile to read POLYGON from an ESRI shapefile

 filltype shapefile; //fill the polygon. filltype shapefile reads values from shapefile
 filename "data/h0"; //filename of the shapefile without filetype

 fieldname "h0"; //the name of the field in the shapefile which is used for filling

 offset (0 5 0); //offset of the polygon
 projectToNormal no; //convert from vertical height to thickness

 }

 ShapefileWithConstantValue //name of the release area

 {

 type shapefile; //type shapefile to read POLYGON from an ESRI shapefile
 filltype constant; //filltype constant fills the polygon with a constant value

 filename "data/h0"; //filename of the shapefile without filetype

 value 0.4; //constant value to fill the polygin

 offset (0 10 0); //offset of the polygon
 projectToNormal no; //convert from vertical height to thickness

 }

 ShapefileWithLinearValue //name of the release area

 {

 type shapefile; //type shapefile to read POLYGON from an ESRI shapefile
 filltype linear; //filltype constant fills the polygon with a linear value

 filename "data/h0"; //filename of the shapefile without filetype

 valueAtZero 0.1; //value if field at (x0, y0, z0)
 x0 7; //reference point x-coordinate, other coordinates are 0

 dfdx 0.05; //change of field with x, dfdy = dfdz = 0

 offset (10 5 0); //offset of the polygon
 projectToNormal no; //convert from vertical height to thickness

 }

);
 }

}

Rasterfile

rasterfile

Import of rasterfiles.

fields

{
 h

 {

 default default [0 1 0 0 0 0 0] 0;

 regions
 (

 RasterfileNN

 {
 type rasterfile;

 interpolation nearestneighbor;

 filename "data/h0.asc";
 offset (0 0 0);

 }

 }
}

The source code can be found in applications/utilities/releaseAreaMapping .

Solver Settings

Simulation Time, Timesteps

Simulation time and time stepping controls can be found in the file system/control . See OpenFOAM User Manual for details. Most important settings:

endTime : Time until the solver runs
writeInterval : Intervalls at which results are saved

maxCo : Maximum Courant-number. Recommended value is 1.

Initial and Boundary Conditions

Initial and boundary conditions can be set in the files 0/h , 0/Us and 0/hentrain , similar as in other OpenFOAM solver. The tool ReleaseAreaMapping can

be used to create appropriate initial conditions.

Transport Properties

Most physical constants can be found in constant/transportProperties . Example:

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: avalanche |

| \\ / A nd | https://develop.openfoam.com/Community/avalanche|

| \\/ M anipulation | |

---/
FoamFile

{

 version 2.0;
 format ascii;

 class dictionary;

 object transportProperties;
}

// * //

pressureFeedback off; //turn curvature and lateral pressure interaction on/off

https://cfd.direct/openfoam/user-guide/controldict/

explicitDryAreas on; //eliminate dry cells in the linear system

hmin hmin [0 1 0 0 0 0 0] 1e-5; //binding the height

rho rho [1 -3 0 0 0 0 0] 200.; //avalanche/snow cover density

u0 u0 [0 1 -1 0 0 0 0] 1e-4; //small value for the velocity used in divisions

h0 h0 [0 1 0 0 0 0 0] 1e-4; //small value for the flow height used in divisions

xi xi [0 0 0 0 0 0 0] 1; //shape factor for the velocity profile

frictionModel Voellmy; //define the friction model

entrainmentModel Erosionenergy; //define the entrainment model

depositionModel depositionOff; //define the deposition model

VoellmyCoeffs //parameter for the friciton model (Voellmy)

{
 mu mu [0 0 0 0 0 0 0] 0.26;

 xi xi [0 1 -2 0 0 0 0] 8650;

}

ErosionenergyCoeffs //parameter for the entrainment moidel (Eroisionenergy)

{
 eb eb [0 2 -2 0 0 0 0] 11500;

}

// *** //

Numerical Schemes

See system/faSchemes and the OpenFOAM User Manual. Note that this solver is based on the Finite Area Method. Therefore, the numerical schemes are

found in the file faSchemes (instead of fvSchemes).

Numerical Solver

See system/faSolution and the OpenFOAM User Manual. Note that this solver is based on the Finite Area Method. Therefore, the numerical solution
algorithms are found in the file faSolution (instead of fvSolution).

Post Processing

Sometimes it is required to rerun functionObjects, either after a distributed (parallel) case was reconstructed or simply because you forgot to add the

functionObject. For this usecase all solvers have a -postProcess flag. With this flag, only the postProcessing steps of the functionObjects will be executed.

The source for the postProcessing is read from existing files from the file system.

Example:

cd avalanche/tutorials/simpleslope // change into the directory
./Allrun // run the case

faSavageHutterFoam -postProcess // execute functionObjects again

Tutorials

All tutorials contain a Allrun script which will conduct all steps required to run a simulation.

simpleslope

Demonstrates:

faSavageHutterFoam

Example from Rauter and Tukovic (2018), section 6.3. This example demonstrates a popular shallow granular flow test case on a simply curved slope.

https://cfd.direct/openfoam/user-guide/fvSchemes/
https://cfd.direct/openfoam/user-guide/fvSolution/
https://arxiv.org/abs/1802.05229

wolfsgrube

Demonstrates:

faSavageHutterFoam

natural terrain

shapefile export

gridfile export
isoline export

Example from Rauter et al. (2018).

This tutorial shows the recalculation of a real scale avalanche in Tirol/Austria. Find out more about this avalanche in Fischer et al. (2015).

This tutorial applies the solver and some tools of this package. Moreover it is using some python scripts which can be found in the folder scripts .

montereycanyon

Demonstrates:

faParkerFukushimaFoam

natural terrain

Simplified example similar to Rauter et al. (2019) of a turbdity current in Monterey Canyon.

wolfsgrube_mixed

Demonstrated:

faTwoLayerAvalancheFoam

The same as the wolfsgruben tutorial, however, set up for faTwoLayerAvalancheFoam, simulating a mixed snow avalanche (dense flow + powder cloud).

https://doi.org/10.5194/gmd-11-2923-2018
https://www.researchgate.net/publication/286843194_Multivariate_parameter_optimization_for_computational_snow_avalanche_simulation
https://www.esi-group.com/sites/default/files/resource/other/8230/rauter_studentabstract_openfoam_2019.pdf

