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Text S1: The isomeric ratios of anhydrosugars 18 

The isomeric ratios of anhydrosugars are good indicators of biofuels. For instance, the ratio of 19 

levoglucosan to mannosan (L/M) tends to be higher for hardwood and crop residues than those 20 

for softwood (Engling et al., 2006; Sang et al., 2013; Schmidl et al., 2008; Zhu et al., 2015). 21 

Additionally, smoke particles emitted from crop straws, grasses, and biomass briquettes 22 

combustion were reported to contain higher amounts of galactosan than mannosan (Fu et al., 23 

2008; Oros et al., 2006; Sheesley et al., 2003). Therefore, the lower L/M and M/G ratios during 24 

the first episode (PM2.5 > 200 µg m-3) likely indicate mixed contributions from softwood and 25 

crop burning to heavy haze formation (Figure S9). In fact, the impact of softwood combustion 26 

becomes larger in winter according to the previous report by Cheng (2013). However, the 27 

contribution of hardwood burning could not be neglected either, especially in moderate haze 28 

events (Figure S8a and Figure S9). This is supported by the rising L/M values with decreasing 29 

PM2.5 levels as shown in Figure S8b.  30 

Text S2: Chloride in PM2.5 samples 31 

Chlorine plays a part in global tropospheric chemistry, affecting the atmospheric 32 

oxidation capacity and consequently affecting the formation of PM2.5 and O3, 33 

particularly in winter (Wang et al., 2019, 2020; Yi et al., 2023). In this study, the 34 

absolute abundance of particulate Cl- decreased with falling PM2.5 levels (1.88-10.2 µg 35 

m-3), while its relative contributions to total PM2.5 were on the rise (from 3.2% to 8.7%) 36 

(Figure 4). An early study concluded that low temperature and high RH facilitate the 37 

generation of PM2.5-bound Cl- (Wang et al., 2023), which can account for high Cl- 38 

concentrations in first episode. Based on the backward trajectories of air masses in 39 

Figure S1 and S2, roughly three sorts of trajectories were found in Nanjing during the 40 

whole sampling period, i.e., continental, marine, and mixed airmasses. Marine sources 41 

dominate the global tropospheric chlorine budget mainly through mobilization of 42 

chloride from sea-salt aerosols (Wang et al., 2019), as indicated by the obvious 43 

correlation between Cl- and Na+ (r = 0.64, p < 0.01). The rising Cl- proportion with 44 

decreasing PM2.5 level might be linked to growing influences of sea-salt aerosols via 45 

long-range atmospheric transport. In China, however, chlorine is mostly anthropogenic, 46 



including coal combustion, BB, waste incineration, and industrial processes (Fu et al., 47 

2018; Li et al., 2012; Yang et al., 2018). The positive relationship of Cl- with 48 

levoglucosan proves a possible source of BB over this site (r = 0.50, p < 0.05). The 49 

higher mass ratios of Cl-/Na+ (about 5.5-15.5) in these samples than sea water (1.81) 50 

also indicate a significant contribution of anthropogenic sources to Cl- in wintertime 51 

haze over Nanjing. The concentrations of Cl- measured in this study (average: 6.38 ± 52 

2.00 µg m-3) are comparable to those observed in winter in Beijing (Wang et al., 2005) 53 

but slightly higher than those in a coastal megacity of Shanghai, China (Wang et al., 54 

2006; Ye et al., 2003). 55 

Text S3: Unsaturated diacids 56 

Maleic (cis-isomer) and fumaric (trans-isomer) acid are two principal aliphatic unsaturated 57 

diacids found in this study, with concentration ranges of 0.86-41.9 ng m-3 and 1.61-27.6 ng m-58 

3, respectively. Significant correlation between fumaric and maleic acid (r = 0.81, p < 0.01) 59 

suggests they may share common sources. In fact, maleic acid, which is a probable product 60 

from photochemical oxidation of benzene, could be isomerized photochemically to trans 61 

configuration (fumaric acid) in the air with solar radiation, thus M/F ratios depend on the 62 

production of maleic acid and the subsequent transformation to fumaric acid. The M/F ratios 63 

were higher in second episode with high temperature and low RH (average: 1.38 ± 0.35), but 64 

lower in other two episodes (average: 0.71 ± 0.28 and 0.85 ± 0.44, respectively). Higher M/F 65 

values may be attributed to the superior photochemical generation of maleic acid over the cis-66 

to-trans isomerization at high ambient temperature and low RH, whereas lower ratios might be 67 

in part due to the depressed maleic acid production by low temperature (Kawamura and 68 

Ikushima, 1993). 69 

Text S4: Monocarboxylic acids 70 

Two monocarboxylic acids, formic and acetic acid, were determined too. Both formic and acetic 71 

acids showed a decreasing temporal trend with decreasing PM2.5 values, with the highest 72 

concentrations appearing in the heaviest haze events (average: 0.18 ± 0.05 µg m-3 for formic 73 

acid and 0.22 ± 0.11 µg m-3 for acetic acid, respectively). Lower temperature and higher RH in 74 



this episode favor gas to particle conversion leading to high particulate concentrations. A clear 75 

relationship between formic and acetic acid existed (r = 0.88, p < 0.01), suggesting similar 76 

sources. Furthermore, formic and acetic acid both correlated significantly with levoglucosan (r 77 

= 0.73, p < 0.01 and r = 0.61, p < 0.01, respectively), indicating BB is a significant source of 78 

these acids. Formic acid was associated with EC as well (r = 0.67, p < 0.01), demonstrating 79 

fossil fuel is another contributor. Actually, secondary sources are also important in the 80 

atmospheric budgets of formic and acetic acids (Paulot et al., 2011). The ratio of acetic to formic 81 

acid (A/F) can be used to estimate relative importance of primary emissions (> 1) and secondary 82 

photochemical transformations (< 1) to carboxylic acids (Wang et al., 2007). The average A/F 83 

ratio for three episodes was 1.15 ± 0.32, 1.30 ± 0.52, 1.1 ± 0.30, respectively, suggesting 84 

relatively larger contributions from primary sources, such as BB, vegetation, coal burning, 85 

vehicular exhausts, and soil emissions in heating season (Khare et al., 1999; Stavrakou et al., 86 

2012; Wang et al., 2007).    87 

Text S5: Other identified chemicals 88 

Methylglyoxal (MeGly) was also detected in these PM2.5 aerosols, which are oxidation products 89 

from biogenic (e.g., isoprene/monoterpenes) and anthropogenic precursors (e.g., benzene, 90 

toluene, and xylenes) (Kampf et al., 2012). Most carbonyls are present in gas phase in the 91 

atmosphere. Thus, the high levels of MeGly observed in highest-PM2.5 episode (20.4 ± 29.2 ng 92 

m-3) might be due to lower temperature that allows more gaseous carbonyls partitioning into 93 

aerosol phase (Meng et al., 2018). In addition, fresh plumes from high BB activities during that 94 

time may play a role as well (Kampf et al., 2012). The MeGly abundances in other two episodes 95 

(10.1 ± 4.93 ng m-3 and 6.43 ± 3.04 ng m-3, respectively) were comparable to those from Beijing 96 

PM2.5 samples (average: 8.3 ± 7.9 ng m-3) (Zhao et al., 2018). A significant correlation between 97 

MeGly and 14C-WSOC was obtained in this study (r = 0.74, p < 0.01), suggesting non-fossil 98 

sources such as BB may contribute to atmospheric MeGly.  99 

Methanesulfonic acid (MSA) is an oxidation product of dimethylsulfide (DMS) mainly released 100 

by marine phytoplankton. Thus MSA has long been regarded as a useful tracer for marine 101 

biogenic sulfur production (Chen et al., 2012; Legrand and Pasteur, 1998). Surprisingly, 102 

relatively abundant MSA was detected in this study, with higher levels occurring in the most 103 



polluted episode (0.09 ± 0.02 µg m-3) compared with other two episodes (0.04 ± 0.01 µg m-3 104 

and 0.02 ± 0.01 µg m-3, respectively). These values are similar to those reported from PM2.5 105 

aerosol in Beijing (Wang et al., 2005). Yuan et al. (2004) pointed out that anthropogenic sources, 106 

such as industrial emissions, could be additional sources for MSA in urban atmosphere. The 107 

ratio of MSA/nss-SO4
2- (non-sea-salt sulfate) can be used to evaluate the relative contribution 108 

of marine sulfur emissions to total sulfur budget in the atmosphere (Legrand and Pasteur, 1998). 109 

On average, MSA/nss-SO4
2- ratios for three episodes are 0.003 ± 0.001, 0.002 ± 0.00, 0.002 ± 110 

0.001, respectively. Such low values indicate the influences of marine biogenic sources from 111 

coastal and oceanic areas on urban haze formation are rather weak. The significant relationships 112 

between MSA and levoglucosan (r = 0.75, p < 0.01) imply BB could be an important source of 113 

MSA in addition to industrial emissions, which is also supported by the significant relationship 114 

of non-fossil WSOC with MSA (r = 0.79, p < 0.01). 115 
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Figure S1. HYSPLIT back trajectories initiated over Nanjing with the altitude of these 157 
trajectories remaining below 200 m in the 48 h of the runs in three episodes according 158 
to PM2.5 concentrations. The black star indicates the sampling site. 159 
 160 
 161 
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 165 
Figure S2. Three-day HYSPLIT back trajectories initiated over Nanjing with the 166 
altitude of these trajectories remaining below 500 m in the 72 h of the runs on the more 167 
polluted days in three episodes according to PM2.5 concentrations. The black star 168 
indicates the sampling site. 169 
 170 
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Figure S3.  Time series of meteorological parameters (i.e., relative humidity, 206 
temperature, and wind speed) during sampling period in urban Nanjing. 207 
 208 
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Figure S4. Based on the higher abundances of MSA and diacids in MBA together with 229 
nss-SO42- (0.3 to 10.4 µg m−3), we suggest that these water-soluble organics as well as 230 
nss-SO42- might enhance the hygroscopic growth of the ambient aerosols over the open 231 
ocean waters characterized by high biological activity, acting as CCN. GRL High 232 
abundances of oxalic, azelaic, and glyoxylic acids and methylglyoxal in the open ocean 233 
with high biological activity: Implication for secondary OA formation from isoprene 234 
 235 
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 237 

Figure S5. Temporal variations of fossil (ff) and non-fossil (nf) contribution to water-238 
soluble organic carbon (WSOC) in 2-hour PM2.5 samples in Nanjing. 239 
  240 
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Figure S6. Temporal variations of biomass burning tracers including anhydrosugars 265 
(levoglucosan, galactosan, and mannosan, ng m-3) and non-sea-salt K+ (μg m-³). 266 
  267 



 268 

 269 
Figure S7. Average concentrations of measured biomass burning tracers during three 270 
episodes with PM2.5 levels in the ranges of > 200, 100-200, and < 100 μg m-3, 271 
respectively.  272 
 273 
 274 
 275 

 276 
Figure S8. (a) Temporal variations of ratios of L/M, L/OC, and L/EC, and (b) the 277 
average ratios during three episodes (> 200, 100-200, and < 100 μg m-3). L refers to 278 
levoglucosan, M is mannosan, OC means organic carbon, EC is elemental carbon.  279 
 280 
 281 
 282 
 283 



 284 

 285 

Figure S9. Comparison of L/M and M/G ratios from source emissions (literature values) 286 
and ambient aerosols in this study. L/M=levoglucosan to mannosan; M/G=mannosan 287 
to galactosan. 288 
 289 
 290 
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Figure S10. Temporal variations of sugars and sugar alcohols (ng/m3).  294 
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Figure S11. Temporal variations of ratios of biogenic SOA tracers in PM2.5.  319 
  320 



 321 
Figure S12. Average concentrations of biogenic SOA tracers detected in three episodes 322 
according to PM2.5 concentration (i.e., > 200, 100-200, and < 100 μg/m3).  323 
 324 
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Figure S13. Average concentrations of isoprene, monoterpene, and β-caryophyllene  342 
SOA tracers detected in three episodes according to PM2.5 concentration (i.e., > 200, 343 
100-200, and < 100 μg/m3).  344 
 345 
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Figure S14. Temporal variations in the concentration ratios of isoprene oxidation 371 
products in PM2.5. 372 
 373 
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Figure S15. Temporal variations in the biogenic secondary organic carbon (SOC) 405 
derived from isoprene, monoterpene, and sesquiterpene in PM2.5. 406 
  407 



 408 
 409 
 410 
 411 
 412 
 413 
 414 
 415 
 416 
 417 
 418 
 419 
 420 
 421 
 422 
 423 
 424 
 425 
 426 
 427 
 428 
 429 
 430 
 431 
 432 
 433 
 434 
 435 
 436 
 437 
 438 
 439 
Figure S16. Temporal variations in biomass burning derived OC, fungal spores derived 440 
OC, and plant debris derived OC in PM2.5. 441 
 442 
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