
Characterization of Brown Carbon absorption in different
European environments through source contribution analysis
Hector Navarro-Barboza1, Jordi Rovira2, Vincenzo Obiso1, Andrea Pozzer3,4, Marta Via2,
Andres Alastuey2, Xavier Querol2, Noemi Perez2, Marjan Savadkoohi2,21, Gang Chen5, Jesus Yus-Díez6,
Matic Ivancic7, Martin Rigler7, Konstantinos Eleftheriadis8, Stergios Vratolis8, Olga Zografou8,
Maria Gini8, Benjamin Chazeau9,20, Nicolas Marchand9, Andre S.H. Prevot9, Kaspar Dallenbach9,
Mikael Ehn10, Krista Luoma10,11, Tuukka Petäjä10, Anna Tobler12, Jaroslaw Necki13, Minna Aurela14,
Hilkka Timonen14, Jarkko Niemi13, Olivier Favez15, Jean-Eudes Petit16, Jean-Philippe Putaud17,
Christoph Hueglin18, Nicolas Pascal19, Aurélien Chauvigné19, Sébastien Conil22, Marco Pandolfi2, and
Oriol Jorba1

1Barcelona Supercomputing Center, Plaça Eusebi Güell 1-3, Barcelona, 08034, Spain.
2Institute of Environmental Assessment and Water Research, c/Jordi-Girona 18-26, Barcelona, 08034, Spain.
3Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany.
4Climate and Atmosphere Research Center, The Cyprus Institute, Nicosia, Cyprus.
5MRC Centre for Environ. and Health, Environ. Research Group, Imperial College London, London, U.K.
6Centre for Atmospheric Research, University of Nova Gorica, Vipavska 11c, SI-5270 Ajdovščina, Slovenia.
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Abstract.
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Brown carbon (BrC) is a fraction of Organic Aerosols (OA) that absorbs radiation in the ultraviolet and short visible wave-

lengths. Its contribution to radiative forcing is uncertain due to limited knowledge of its imaginary refractive index (k). This

study investigates the variability of k for OA from wildfires, residential, shipping, and traffic emission sources over Europe.

The MONARCH atmospheric chemistry model simulated OA concentrations and source contributions, feeding an offline op-5

tical tool to constrain k values at 370 nm. The model was evaluated against OA mass concentrations from Aerosol Chemical

Speciation Monitors (ACSM) and filter sample measurements, and aerosol light absorption measurements at 370 nm derived

from AethalometerTM from 12 sites across Europe. Results show that MONARCH captures the OA temporal variability across

environments (regional, suburban and urban background). Residential emissions are a major OA source in colder months,

while secondary organic aerosols (SOA) dominate in warmer periods. Traffic is a minor primary OA contributor. Biomass10

and coal combustion significantly influence OA absorption, with shipping emissions also notable near harbors. Optimizing k

values at 370 nm revealed significant variability in OA light absorption, influenced by emission sources and environmental

conditions. Derived k values for biomass burning (0.03 to 0.13), residential (0.008 to 0.13), shipping (0.005 to 0.08), and traffic

(0.005 to 0.07) sources improved model representation of OA absorption compared to a constant k. Introducing such emission

source-specific constraints is an innovative approach to enhance OA absorption in atmospheric models.15

Brown carbon (BrC) is the fraction of Organic Aerosols (OA) which absorbs radiation in the ultraviolet and short visible

wavelengths. The contribution of BrC aerosols to radiative forcing is currently subject to considerable uncertainty. Notably due

to the limited knowledge of its imaginary refractive index (k), which is not constant and varies with the composition of these

aerosols and the wavelength of the absorbed light.

In this work, we investigate the variability of k for OA from various sources such as wild fires, residential, shipping,20

traffic, and others. We used data from 12 sites across Europe (regional, suburban and urban background). A combination

of modeling and observational techniques were employed to constrain the OA light absorption over a year-long simulations

for the year 2018. The Multiscale Online Nonhydrostatic Atmosphere Chemistry model (MONARCH) was used to simulate

OA concentrations (both primary and secondary) and the OA source contribution that fed an offline optical tool to constrain

k values at 370 nm. We evaluated the model against OA mass concentrations obtained from Aerosol Chemical Speciation25

Monitors (ACSM) and filter sample measurements, as well as aerosol light absorption measurements at 370 nm derived from

AethalometerTM data. The results show that the MONARCH model performs well in simulating OA mass concentrations

capturing the temporal variability of OA levels across different environments when compared against observations (correlation

coefficient >0.7 at multiple sites and seasons).

The model identifies residential emissions as a major OA source during colder months, while secondary organic aerosols30

(SOA) were dominant during warmer periods. Traffic appears to be a minor contributor to primary OA. The absorption of OA is

predominantly influenced by sources of biomass and coal combustion, such as wildfires and residential emissions. Nonetheless,

shipping emissions arose as the second major source of absorbing particles in stations close to harbor areas.

The optimization of k values at 370 nm revealed significant variability in OA light absorption across Europe, influenced by

emission sources and environmental conditions. We derived k values for biomass burning (0.03 to 0.13), residential (0.008 to35

0.13), shipping (0.005 to 0.08), and traffic (0.005 to 0.07) OA sources (accounting for both primary and secondary components).
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These source-specific k values improved the model representation of OA absorption compared to using a constant k. Our results

highlight the complexity of BrC light absorption, influenced by emission sources and therefore composition, atmospheric

processes, and local environments in Europe.

Introducing such emission source-specific constraints in OA optical properties is an innovative approach to enhance the40

representation of OA absorption in atmospheric models, hopefully advancing our understanding of aerosol-climate interactions

also at global scales.

1 Introduction

Brown carbon (BrC) is the fraction of organic aerosols (OA) which exhibits light-absorbing properties, particularly in the

ultraviolet and visible spectrum (Andreae and Gelencsér, 2006; Laskin et al., 2015). The role of BrC in atmospheric radiative45

forcing, while possibly significant, remains incompletely quantified (Brown et al., 2018; Zhang et al., 2020a; Sand et al.,

2021). This is in part due to the historical treatment of OA in atmospheric models as mostly scattering solar radiation (Feng

et al., 2013). BrC emissions originate from a variety of sources, significantly influenced by regional factors, including biomass,

biofuel, and fossil fuel (Lu et al., 2015) combustion. Global estimates of BrC emissions reveal distinct regional patterns (Xiong

et al., 2022). In Africa and South America, more than 70% of the primary BrC emissions are attributed to natural sources,50

such as wildfires. However, East Asia’s BrC emissions are primarily anthropogenic, with residential solid fuel combustion

accounting for more than 80% of the emissions. Europe presents a more mixed source profile, where natural sources are

currently considered to be responsible for approximately 36% of BrC emissions, while residential activities (e.g., coal and

solid biomass combustion for domestic heating) contribute approximately 48%. Furthermore, BrC is originating
::::::::
originates not

only through primary emissions
:
, but also through secondary formation processes in the atmosphere, such as darkening (Kumar55

et al., 2018; Li et al., 2023). However, as BrC ages in the atmosphere, it can undergo photochemical and oxidative processes that

lead to a reduction in its absorption capabilities, a phenomenon known as photobleaching (Hems et al., 2021). The complexity

of BrC lies in its changing absorption characteristics and diverse composition. In fact, factors like burning conditions, solar

exposure, and chemical composition determine BrC optical properties such as imaginary refractive index (k) and Absorption

Angstrom Exponent (AAE). The optical properties of BrC present a high variability that arises from the formation of different60

chromophores and molecular structures, thus complicating the representation of BrC in climate models and our understanding

of its atmospheric impact (Laskin et al., 2015; Brege et al., 2021; Washenfelder et al., 2022).

Several processes that alter BrC absorptive characteristics have recently been identified. Photobleaching stands out as a key

process in this context. It describes the phenomenon in which BrC loses its absorptive capacity, particularly under conditions of

high OH oxidation. For instance, a laboratory study conducted by Wong et al. (2019) observed that high-molecular weight BrC65

undergoes initial photoenhancement and subsequent gradual photobleaching, a phenomenon supported by observations from

ambient BrC samples collected during fire seasons in Heraklion, Crete, Greece. Both primary and secondary BrC are subject

to photobleaching, as shown in various studies, e.g. Forrister et al. (2015); Wang et al. (2018b). Contrasting photobleaching,

Kodros et al. (2020) introduced the concept of “dark aging” or darkening, a novel BrC secondary organic aerosol (SOA)
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formation pathway from biomass burning emissions. This process, which occurs under low or no light conditions and takes70

hours, involves OA oxidation initiated by the NO3 radical with phenol, cresol, and furanoic compounds as primary reactants,

and is influenced by relative humidity. Another process that has so far been less understood and is currently not treated in

modeling studies is the lensing effect of BrC, as explored e.g. by Basnet et al. (2023); Cappa et al. (2012). This process can

enhance the absorption of BrC. It is based on the mixing state of BrC, typically assuming a core-shell structure. In this structure,

the core is composed of black carbon (BC), while the shell, which can consist of BrC or a purely scattering material, acts like a75

lens. This lens effect focuses and intensifies the light absorption of the entire particle, thereby potentially altering its radiative

impact.

Understanding the optical properties of BrC is of fundamental importance, especially its k because is a key parameter used

to quantify the light-absorbing properties of BrC. However, this parameter is not well constrained, and it exhibits significant

uncertainty and variability. Research indicates that the imaginary refractive index of BrC can vary by 30-50%, highlighting the80

complex and diverse nature of its light-absorbing properties (Wang et al., 2013). Further studies, such as by Cheng et al. (2021),

suggest that light-absorption properties of BrC vary depending on the source of emission, as demonstrated in comparisons

of BrC generated from different fuels. Saleh (2020) introduced a classification for BrC based on its imaginary refractive

index at k550 into four categories ranging from very weakly (10−4 to 10−3) to strongly absorbing (> 10−1) BrC, with a

noted correlation between BrC’s source and its absorption category. This categorization highlights a gradient in absorption85

capabilities and associates more absorptive BrC, primarily resulting from high-temperature biomass combustion, with flatter

absorption spectra. The classification underscores the complex and variable optical properties of BrC. It should be noted that

the absorption categories for OA proposed by Saleh (2020) were based on 20 chamber experiments, which might
:::
may

:
not fully

reflect the conditions found in the field.

A seminal work on modeling the effects of BrC in the atmosphere using 3D atmospheric models was the characterization of90

OA as absorbing with a k550 assigned of 0.27 by Park et al. (2010). Feng et al. (2013) extended this by modeling the absorbing

fraction of OA separated into two categories: moderately absorbing, characterized by a k550 value of 0.003, and strongly

absorbing, with a k550 value of 0.03. Lin et al. (2014) continued this approach and classified into two groups: low (k550: 0.001)

and high (k550:0.03). This classification, particularly distinguishing primary organic aerosol (POA) from SOA, was based on

the understanding that POA generally exhibits greater absorption potential than SOA which is chemically very different. Saleh95

et al. (2014) advanced the field by deriving equations based on experimental data to parameterize the absorption of OA from

the ratio of emitted BC and OA. Such parameterization was subsequently utilized
:::::::::::
Subsequently,

:::
this

::::::::::::::
parameterization

::::
was

::::
used

in the GEOS-Chem model by Saleh et al. (2015) and Wang et al. (2018b), and in the CAM5 model by Brown et al. (2018) to

represent OA absorption.

At a global scale, studies have highlighted the significant warming effect of BrC alongside BC and greenhouse gases (GHGs).100

Feng et al. (2013) estimated that BrC’s warming effect could be approximately one-fourth that of BC, identifying BrC, mainly

emitted from fuel combustion and open vegetation burning, as a substantial component contributing to global warming. Zhang

et al. (2020a) suggested that BrC might be a larger heating source in the tropical free troposphere than BC. A recent study by

Liu et al. (2023) found that a decrease in single scattering albedo (SSA) at near-ultraviolet wavelengths significantly reduces
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the efficiency of the direct radiative forcing (DRF) due to strong absorption capabilities of BrC, which impacts both local and105

global radiation budgets. This is further supported by Wang et al. (2014), who utilized the GEOS-Chem model to demonstrate

that incorporating BrC significantly improves the accuracy of absorption aerosol optical depth (AAOD) predictions by over

50% at AERONET stations, contributing an estimated +0.11 Wm−2 to DRF.

Regional studies complement global models by offering detailed insights into BrC formation processes and its effects at a

local scale, highlighting the importance of focusing on specific geographical areas to understand local and regional atmospheric110

phenomena. For example, research conducted in Northwestern and Southeastern Europe and northern peninsular Southeast

Asia have revealed significant seasonal variations in BrC concentrations, which are particularly impactful in urban settings

often due to residential wood burning (Zhang et al., 2020b; Paraskevopoulou et al., 2023; Methymaki et al., 2023; Pani et al.,

2021). These variations not only affect air quality but also complicate the broader understanding of regional climate impacts.

Moreover
:
In
::::::::
addition, research conducted in the northwestern United States have examined the emissions of BrC

:::
has

::::::::
examined115

::
the

:::::
BrC

::::::::
emissions

:
from wildfires. These studies indicate that the inclusion of SOA formation and photobleaching effects

in atmospheric models can enhance the simulation of aerosol optical properties. For example, incorporating these processes

improves the representation of aerosol optical depth (AOD) and single scattering albedo (SSA)
::::
SSA, making the model outputs

more consistent with observed data (Neyestani and Saleh, 2022). These regional studies underscore the value of localized

research in enhancing our understanding of BrC aerosols. They not only provide insights into
:::
offer

::::::::
valuable

::::::::::::
understanding

::
of120

the specific sources and behaviors of BrC in different environments but also help in refining global models that are used to

predict atmospheric conditions. Unlike these studies, which often focus on specific events or short time periods, the current

research extends over an entire year, providing a comprehensive analysis of seasonal trends and identifying diverse BrC sources.

This approach not only broadens the scope of understanding BrC dynamics,
:
but also enhances the predictive capabilities of

climate models concerning BrC’s environmental impacts.125

In this research, we aim to investigate the light absorption properties of OA at different environments in Europe. We employ

both modeling techniques and experimental approaches to constrain specific k indexes for OA originating from different emis-

sion sources,
:
such as fires, residential, shipping, traffic, and others. We use the Multiscale Online Nonhydrostatic Atmosphere

Chemistry model (MONARCH; Badia and Jorba, 2015; Badia et al., 2017; Klose et al., 2021; Navarro-Barboza et al., 2024) to

simulate the light absorption of OA in Europe during 2018. Our results provide an estimate of OA light absorbing properties130

in Europe. This comprehensive approach allows us to provide a first attempt to constrain OA optical properties representative

of field conditions based on the current knowledge on emission sources and transport modeling. While
:::::::
Although

:
previous

extensive studies in laboratory conditions such as Saleh (2020) are highly valuable for modeling purposes, they may not fully

represent
::
the

:
actual ambient conditions.

In Section 2, we detail the experimental framework and the methodologies employed in this research. The observational135

dataset is introduced and the modeling tools and optimization method to derive k values described. Section 3 presents our

results, starting with an evaluation of the modeled OA mass against observational data and providing an in-depth analysis of

source contributions. We discuss then
:::
then

:::::::
discuss the optimization of k values under different assumptions for OA emission

sources. Finally, Section 4 summarizes our key conclusions and outlines the recommendations arising from this study.
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2 Materials and Methods140

2.1 Observational dataset

The OA/Organic Carbon (OC) mass concentrations and multi-wavelengths absorption measurements used in this study were

collected at 12 sites in Europe covering urban, suburban, and regional background environments. Figure 1 and Table 1 show

the geographical locations of these atmospheric research stations. Figure 1 also shows the relative contribution of black carbon

(BC) and BrC to the total absorption measured at 370 nm that was obtained applying the procedure detailed in Section 2.1.1.145

Figure 1. Annual average contributions [%] of BrC (orange
::::
brown) and BC (gray

::::
black) to the total absorption at 370 nm, measured at

twelve different monitoring stations across Europe in 2018. The location of each station is indicated
:::::
Station

:::::::
locations

:::
are

::::::
marked by a

colored dot, categorized by the station classification
:::
dots: urban background (yellow), suburban background (blue), and regional background

(red)environments. The
:::::
Station

:
acronyms used for the stations in the figure are explained

::::
listed

:
in the Table 1.

Data from these measurement sites were collected from different infrastructures/projects as EBAS (https://ebas.nilu.no/),

RI-URBANS Project (Savadkoohi et al., 2023, https://riurbans.eu/), COLOSSAL COST Action (Chen et al., 2022, https:

//www.cost.eu/actions/CA16109/), and the FOCI Project (https://www.project-foci.eu/wp/). At some sites (Table 1), OA mass

concentrations were directly provided by Aerosol Chemical Speciation Monitor (ACSM) instruments with 30 minute time res-
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olution (Chen et al., 2022), while OC mass concentrations were obtained from the analysis of 24h filters by means of thermal-150

optical off line technique (SUNSET Instruments) following the EUSAAR II Protocol (Cavalli et al., 2010). Details about ACSM

instruments used for OA determination, measurement principleand accuracy of these instruments ,
::::::::
accuracy

:::
and

::::::::
treatment

:::
of

::::::
sources

::
of

:::::
error

::
as

:::::::::
collection

::::::::
efficiency

:
can be found in Chen et al. (2022)

::::::::::::
Ng et al. (2011)

:
,
:::::::::::::::::::::
Middlebrook et al. (2012), Fröh-

lich et al. (2013), and Ng et al. (2011)
::::::::::::::::
Freney et al. (2019)

:::
and

:::::::::::::::
Chen et al. (2022). At sites where OC mass concentrations from

24h filters were available (Table 1), specific organic-aerosol-to-organic-carbon (OA/OC) ratios were applied depending on the155

characteristic of the measurement sites. A factor of 1.4 is traditionally used, although some studies support larger values (e.g.,

Zhang et al., 2005). Here, we applied OA/OC ratios of 1.8 at urban sites and 2.1 at regional/remote sites. These values agreed

with some estimations reported in literature. For example, Minguillón et al. (2011) reported OA/OC ratios of 2.0 and 1.6 for

the regional background, MSY, and urban background BCN sites, respectively. Similarly, Daellenbach et al. (2016) and Favez

et al. (2010) documented OA/OC ratios of 1.84 and 1.8 at two urban background sites in Switzerland and France, respectively.160

Aerosol particles light absorption coefficients was derived at 7 different wavelengths (370, 470, 520, 590, 660, 880, and 950

nm) with 1h time resolution using AE33/AE31 Aethalometers (Magee Scientific) instruments. An extensive description of the

AE33 and AE31 instruments is provided for example by Drinovec et al. (2015, 2017) and Backman et al. (2017), respectively.

Briefly, the Aethalometers measure the attenuation of light by aerosol particles collected onto a fiber filter tape converting the

measured attenuation into absorption.165
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Table 1. Monitoring stations used in this study

Station Acronym Country
Station

Type

Variable/

Instrument

Cut-off size

Mass/Abs

Time/

Resolution
Latitude Longitude

SMEAR II Hyytiala* HYY Finland RB
OA/ACSMa

Abs/AE33b

PM10/

PM10

30 min,

1h
61°51’0.00” N 24°17’0.00” E

Helsinki* HEL Finland UB
OA/ACSMa

Abs/AE33b

PM1/

PM1

30 min,

1h
60°11’47.11”N 24°57’1.31”E

Krakow* KRA Poland SUB
OA/ACSMa

Abs/AE33b

PM1/

PM2.5

30 min,

1h
50°3’56.00” N 19°54’56.00” E

Sirta*** SIR France SUB
OA/ACSMa

Abs/AE33b

PM2.5/

PM1

30 min,

1h
48°42’36.00” N 2°9’36.00” E

Observatoire Perenne de l’Environnement** OPE France RB
OC/SUNSETc

Abs/AE31d

PM2.5/

PM10

24h,

1h
48°33’44.00” N 5°30’20.00” E

Rigi** RIG Switzerland RB
OC/SUNSETc

Abs/AE33b

PM2.5/

PM2.5

24h,

1h
47°4’3.00” N 8°27’50.00” E

Payerne** PAY Switzerland RB
OC/SUNSETc

Abs/AE33b

PM2.5/

PM10

24h,

1h
46°48’47.00” N 6°56’41.00” E

Ispra** IPR Italy RB
OC/SUNSETc

Abs/AE31d

PM2.5/

PM10

24h,

1h
45°49’N 8°38’E

Marseille* MAR France UB
OA/ACSMa

Abs/AE33b

PM1/

PM2.5

30 min,

1h
43°18’19.1"N 43°18’19.1"E

Montseny** MSY Spain RB
OC/SUNSETc

Abs/AE33b

PM10/

PM10

24h,

1h
41°46’45.63” N 02°21’28.92” E

Barcelona* BCN Spain UB
OA/ACSMa

Abs/AE33b

PM10/

PM10

30 min,

1h
41º 23’ 14” N 2º 06’ 56”E

Demokritos Athens* DEM Greece SUB
OA/ACSMa

Abs/AE33b

PM2.5/

PM10

30 min,

1h
37°59’24.00” N 23°49’12.00” E

* Project/Source: RI-URBANS/FOCI/COLOSSAL (Savadkoohi et al., 2023; Chen et al., 2022)
** EBAS (https://ebas.nilu.no/)
*** RI-URBANS/FOCI/EBAS (Savadkoohi et al. (2023); https://ebas.nilu.no/)
a OA/ACSM: Organic aerosol/Aerosol Chemical Speciation Monitor
b Abs/AE33: Total absorption (370-950 nm)/Aethalometer AE33 model
c OC/SUNSET: Organic Carbon/OCEC Carbon Aerosol Analyzer
d Abs/AE31: Total absorption (370-950 nm)/Aethalometer AE31 model

2.1.1 BrC absorption from aethalometer data

Most of the filter-based absorption techniques that determine the absorption coefficients from the measurements of light passing

through an aerosol-laden filter (as the aethalometers), suffer from various systematic errors that need to be corrected. These

artifacts include the enhancement of the measured attenuation due to multiple scattering of light by the filter fibers, a further

enhancement of light attenuation due to the scattering of aerosols embedded in the filter and a progressive saturation of the170

instrumental response due to the accumulation of the sample in the filter matrix (e.g., Bond et al., 1999; Weingartner et al., 2003;

Moosmüller et al., 2009; Drinovec et al., 2015, 2017; Müller and Fiebig, 2018; Yus-Díez et al., 2021). Thus, absorption data

8
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from aethalometer instruments need to be harmonized to take into account for these artifacts. All AE33 data were harmonized

as described in Savadkoohi et al. (2023). AE31 data were taken from EBAS Level 2 quality assured/quality checked (QA/QC)

dataset and were directly downloaded from the EBAS database (EBAS, https://ebas-data.nilu.no/). These data were processed175

following the ACTRIS recommendations for the reporting of absorption (Müller and Fiebig, 2018), ensuring the comparability

of absorption measurements across the sites by employing harmonized measurement protocols.

The contribution of brown carbon (BrC; babs,BrC(λ)) to the total measured absorption (babs(λ)) at different wavelengths

from 370 nm to 660 nm was estimated by subtracting the absorption due to BC (BC;babs,BC(λ) to the measured (babs(λ)):

babs,BC(λ) = babs(880nm) ·
(

λ

880nm

)−AAEBC

(1)180

babs,BrC(λ) = babs(λ)− babs,BC(λ) (2)

where AAEBC is the Absorption Angstrom Exponent (AAE) of BC, which allows for the calculation of babs,BC(λ) (in

units of Mm−1) from the measurements of babs,BC(λ) at 880 nm assuming that BrC does not absorb at 880 nm (e.g.,

Qin et al., 2018). The main
:
It
::::::

should
:::

be
::::::
noted,

:::::::
however,

::::
that

::::::
recent

::::::
studies

::::
have

::::::
shown

:::
the

::::::::
existence

:::
of

::::::
specific

:::::
dark

::::
BrC

::::::::::
components

::
in

::::::::::::::
biomass-burning

:::::
(BB)

::::::
smoke

:::
(tar

:::::
balls

::
or

:::
tar

:::::
BrC)

:::
that

::::
can

::::::
absorb

::::::::
radiation

::::
also

::
in

:::
the

:::::::::::
near-infrared

:::::
(e.g.185

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Chakrabarty et al. (2010); Hoffer et al. (2016, 2017); Chakrabarty et al. (2023); Mathai et al. (2023)

:
).

:::::
Thus,

::
a
::::::::::
contribution

:::
to

::::::
near-IR

:::::::::
absorption

:::::
from

:::::::
possible

::::::::
presence

::
of

:::::
dark

::::
BrC

::::::
cannot

::
be

:::::
ruled

::::
and

:::::
would

:::::
lead

::
to

::
an

::::::::::::::
underestimation

::
of
::::

the
::::
BrC

::::::::
absorption

:::::::
reported

:::::
here.

::::::::
However,

:::
the

::::
dark

:::
BrC

::::::::::
contribution

::
to
:::::::::
absorption

::
at

:::
880

:::
nm

::
is
::::::::
expected

::
to

::
be

::::::
smaller

::::::::
compared

::
to

::::
that

::
of

:::
BC.

:::
For

::::::::
example,

::::::::::::::::
Hoffer et al. (2017)

:::::::
reported

::::
that

::
the

:::::::::
absorption

:::::::::
coefficient

::
at

:::
880

:::
nm

::
of

::::
dark

::::
BrC

::::::::
produced

::
in

:
a
:::::::::
laboratory

:::
was

::::
10%

::
of

::::
that

:
at
::::
470

:::
nm

::::
and,

:::::::::::
consequently,

::::
even

:::::
lower

::::::::
compared

::
to

::::
that

:
at
::::
370

:::
nm.

::::::::
Similarly,

::::::::::::::::::::::::::
Cuesta-Mosquera et al. (2023)190

::::::::
estimated

:
a
::::::::::
contribution

::
of

::::
BrC

::
to

:::::::::
absorption

::
at

::::
880

:::
nm

::
of

:::
3%

::
in

:
a
:::::
rural

:::
area

::
in
::::::
central

:::::::
Europe

:::::::
strongly

::::::
affected

:::
by

:::::::::
residential

::::
wood

:::::::
burning

::::::::
emissions

:::
in

::::::
Winter.

:::::
Given

:::
the

::::::::::
complexity

::
of

::::
these

:::::::
specific

::::
BrC

::::::::::
components,

:::
the

:::::::::
imaginary

::::::::
refractive

:::::
index

:
(
:
k
:
)

::
of

::
tar

:::::
balls

::::::::
generated

::
in

:::::::::
laboratory

::::::::::
experiments

::::
vary

::::
over

:
a
::::
wide

:::::
range

::
of
::::::
values

:::::::::
depending

::
on

:::
the

:::::::
specific

::::
type

::
of

:::
fuel

:::::::
(wood)

::::::
burned

:::
and

:::
the

:::::::
different

::::::::
analytical

:::::::
method

::::::::
employed.

::::
For

:::::::
example,

:::::::::::::::::
Mathai et al. (2023)

:::::::
reported

:
k

:::::
values

:
at
::::
550

:::
nm

::
of

:::
tar

::::
balls

::::::::
measured

::
in

:::::::
ambient

:::
BB

:::::::
plumes

:::
10

:::::
times

:::::
lower

::::
than

:::
the

::::::
values

:::::::
reported

:::
by

::::::::::::::::
Hoffer et al. (2016),

::::::::::::::::::::::
Chakrabarty et al. (2010)195

::
or

:::::::::::::::::::::::::::
Saleh et al. (2018); Saleh (2020)

::
for

:::::::::
laboratory

::::::::
generated

::::::::
particles.

:::::
Also,

:::::::::::::::::
Mathai et al. (2023)

:::::::::
highlighted

:::
that

:::::
even

::::::
though

::::::::::::::::
Hoffer et al. (2016)

:::
and

:::::::::::::::::::::
Chakrabarty et al. (2010)

::::
used

::::::
similar

:::::::::
methods,

::::
their

::
k

:::
was

::
at

::::
least

:::
10

:::::
times

:::::::::
different.

:::::
Thus,

::::
due

::
to

::::::
poorly

:::::::::::
characterized

::::::
optical

:::::::::
properties,

::::
the

::::::
impact

::
of

:::
tar

::::
BrC

:::
on

:::
IR

:::::::::
absorption

::
at

:::::::
ambient

:::::::::
conditions

::
is
::::

still
:::::::::
uncertain.

:::::::::::
Consequently,

:::
we

::::::
follow

:::::
here

:::
the

:::::::
common

::::::::
practice

::
of

::::::::::
considering

:::::::
ambient

::::
BC

::
as

:::
the

:::::::::
dominant

:::::::
absorber

::
at
::::

880
:::
nm

:::::
(e.g.

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Kirchstetter et al. (2004); Massabò et al. (2015); Liakakou et al. (2020); Zhang et al. (2020b); Yus-Díez et al. (2022)

:
).
:

200

:::
One

:::::::::
important source of uncertainty in equations 1 and 2 is the AAE assumed for BC. In many studies a value of 1 was used

(Liakakou et al., 2020; Tian et al., 2023; Cuesta-Mosquera et al., 2023, e.g.,). However, theoretical simulations have shown

that the AAEBC can reasonably vary between 0.9 and 1.1 depending on the size and internal mixing of BC particles (Bond

et al., 2013; Lu et al., 2015, e.g.,). Here we estimated the site dependent AAEBC as the first percentile of the AAE frequency

distribution. The AAE can be calculated from multi-wavelengths (370, 470, 520, 590, 660, 880, and 950 nm) total absorption205
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measurements as the linear fit in a log-log
:::
plot

:
of the total absorption versus the measuring wavelengths. The effect of BrC

absorption is to increase the AAE and, consequently, the first percentile of AAE represents conditions where the absorption is

dominated by BC. In order to reduce the noise, the 1st percentile at each site was calculated from AAE values obtained from

fit with R2 > 0.99 (Tobler et al., 2021)
::::::::::::::::::::::::::::::::
(Tobler et al., 2021; Glojek et al., 2024)

:
.
:::::
Other

:::::::::
approaches

:::::
used

:
a
:::::::::::
combination

::
of

::::
Mie

:::::
theory

:::
and

:::::::::::
experimental

::::
data

::
to

::::::
explore

:::
the

::::::::::
wavelength

:::::::::
dependence

:::
of

::::::
AAEBC:::

and
::::::::
proposed

::
an

:::::::::
estimation

::
of

::::::::::
babs,BrC(λ) :::::

based210

::
on

:::
the

::::
ratio

::::::::
between

:::
the

:::::
AAE

::::::::
calculated

:::::
from

:::
370

:::
to

:::
520

:::
nm

::::
and

::::
from

::::
520

::
to

::::
880

:::
nm

:::::::::::::::::::::::::::::
(Wang et al., 2018a; Li et al., 2019)

:
.

::::::::
However,

:::
this

:::::::::::
methodology

:::::::
assumed

::::
that

:::
BrC

::::::::
particles

::
do

:::
not

::::::
absorb

::
at

:::
520

:::
nm

:::::::
whereas

:
it
::::
has

::::
been

:::::
shown

::::
that

:::
the

::::::::::
contribution

::
of

:::
BrC

::
to
:::::::::
absorption

::
at
::::
this

:::::::::
wavelength

::::
can

::
be

::::
high

::::
(e.g.

:::::::::::::::::::::::::
Cuesta-Mosquera et al. (2023)

:
).

:::
As

:
a
:::::::::::
consequence,

:::::
other

::::::
studies

::::
(e.g.

::::::::::::::::::::::::::::::
Zhang et al. (2019); Luo et al. (2022))

:::::
used

:::
the

:::::
AAE

::::::::
calculated

:::::
from

::::
880

::
to

:::
950

::::
nm

::
to

:::::::
calculate

::::
the

:::::::
AAEBC::::::::

assuming
::::
that

:::
BrC

::::::::
particles

:::
do

:::
not

::::::
absorb

::
in

::::
the

::::
near

:::
IR.

:::::::::::
Nevertheless,

::::
the

::::
latter

::::::::::::
methodology

::::
may

:::::
suffer

:::::
from

:::::::::
additional

:::::::::::
uncertainties215

:::::
related

:::
to

:::
the

:::::::
possible

:::
low

:::::::::::
aethalometer

::::::
signal

::
at

:::
950

::::
nm,

:::::::::
frequently

::::::::
observed

::::::::
especially

:::
at

::::::
remote

::::
sites.

::::::
Thus,

:
it
::::::
should

:::
be

:::::::::
considered

:::
that

:::
the

::::::::::::
methodologies

::::::::
proposed

::
to

:::::::
estimate

::::::::
AAEBC ,

::::::::
including

:::
the

:::
use

::
of

:::
the

:::
1st

::::::::
percentile

::::::
applied

:::::
here,

:::
are

:::::
prone

::
to

:::::::::::
uncertainties.

:::
On

:::
the

::::
other

:::::
hand,

::::::::::::::::::
Zhang et al. (2020b)

:::
have

:::::::
reported

:::
an

:::::::::
uncertainty

:::
of

::::::::::::
approximately

::::
11%

::
in

:::
the

:::::::::
estimation

::
of

:::
the

::::::::::::
bAbs,BrC(370) ::::::::::

contribution
::
to

:::::::
bAbs,370:::::

when
:::::
using

::::::::
different

::::
AAE

::::::
values

:::::::
ranging

::::
from

::::
0.9

:::
and

:::
1.1. For sites included

here, the 1st percentile method provide AAEBC values ranging from 0.928 to 1.088 confirming that this experimental method220

can provide reasonable estimations of the AAEBC . It should be noted that mineral dust particles from North African deserts

can absorb at 880 nm even if much less efficiently compared to BC. We assumed that the effect of dust at the surface was

present mostly in Mediterranean sites (as BCN, MSY and DEM) due to their proximity to dust source emission (as North

African deserts). The measurements possibly affected by dust absorption were removed from the datasets of the above three

sites. In the case of BCN and MSY, dusty days were detected using the methodology that has been officially accepted by225

the European Commission for reporting on natural contributions to ambient PM levels over Europe (European Commission,

2011). At DEM, dusty days were detected and removed using the scattering Angstrom exponent (SAE) from in-situ surface

nephelometer measurements available in the EBAS database (www.ebas.nilu.no) assuming that SAE values lower than one

indicate the presence of dust particles in the atmosphere (e.g. Valenzuela et al. (2015)).

Figure 1 shows the average annual contributions of BC and BrC to the total absorption measured at 370 nm at twelve Eu-230

ropean stations, identified by color-coded markers indicating their background settings: yellow for urban, blue for suburban ,

and red for regional areas. Urban sites, which are BCN, HEL and MAR, report a contribution rangefrom
:::
Here

:::
we

::::::
report

:::
the

:::
BrC

:::::::::
absorption

::
at
::::
370

:::
nm

:::::
given

:::
that

:::
the

::::
BrC

:::::::::
absorption

:::::::::
efficiency

::
is

:::
the

::::::
highest

::
in

:::
the

::::
UV

::::::
spectral

::::::
range,

:::
and

::::::::::::
consequently,

::
the

::::::::
observed

::::
BrC

:::::::::
absorption

::
is
::::

less
::::::::
uncertain

:::::::::
compared

::
to

:::
the

::::::
visible

::::::
range.

::
A

::::
low

::::
BrC

:::::::::::
contribution,

::::::
around

:
14%to

:
,
::::
was

:::::::
observed

::
at

:::
the

:::::
urban

:::::
sites

::
of

:::::
BCN

:::
and

:::::
HEL,

::::
both

:::::::
affected

:::
by

:::::
direct

:::::
traffic

:::::::::
emissions,

:::::::
making

:::
BC

:::
the

::::::::
dominant

::::::::
absorber

::
at235

::::
these

::::
sites

:::::::::::::::::::::::::::::::
(Okuljar et al., 2023; Via et al., 2021).

:::::
MAR

::::::
urban

:::
site

::::::::
registered

::::::
higher

::::
BrC

::::::::::
contribution

:
(30% of BrC, reflecting

the significant influence of combustion processes within the cities, with MAR showing a notably high BrC percentage, most

probably due to industrial activities and emissions from the port
:::
%)

:::::
likely

::::::::
reflecting

::::
the

:::::::::::
accumulation

::
of
::::::::

biomass
:::::::
burning

::::::::
emissions

::
in

::::::
winter

:::
and

:::
the

::::::::
presence

::
of

::::
BrC

::::::
sources

::
as

::::::::
shipping

::::::::
emissions

::::::::::::::::::::::::::::::::::
(Corbin et al., 2018; Chazeau et al., 2022). Subur-
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ban stations, including SIR, KRA, and DEM, exhibit BrC proportions
:::::::::::
contributions

:
from 22% to 30%, reflecting a blend of240

local urban emissions and regional influences such as biomass burning .

:::
and

::::
coal

::::::::::
combustion.

:::::
KRA

:
is
::::::::::
considered

:
a
::::::::
pollution

::::::
hotspot

::
in

::::::
Europe

::::
(e.g.

:::::::::::::::::
Casotto et al. (2023)

:
)
::::
with

::::
high

:::::::::::
consumption

::
of

:::
coal

::::
and

:::::
wood

:::::
(both

::::::::
important

::::::
sources

:::
of

::::
BrC)

:::
for

::::::
energy

:::::::::
production

::::
and

:::::::::
residential

:::::::
heating,

::::::
making

:::
the

::::
OA

::::::::::::
concentrations

::::::::
measured

::
in

::::
KRA

:::
the

::::::
highest

::::::
among

:::
the

::::::::
European

:::::::::
measuring

::::
sites

:::::::
included

::
in

:::::::::::::::
Chen et al. (2022).

:::::
DEM

:::
and

::::
SIR

:::
are

::::::
affected

:::
by

:::::::
biomass

::::::
burning

:::::::::
emissions

::::::::
especially

::
in

::::::
winter,

:::::
which

::::::
causes

:
a
:::::::::::
considerable

:::::::::::
accumulation

::
of

::::
BrC

::::::
during

:::
the

::::
cold

::::::
season

::::
(see,245

:::
e.g.,

::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Liakakou et al. (2020); Zhang et al. (2020a); Savadkoohi et al. (2023)

::
). Regional stations, represented by HYY, OPE, RIG,

PAY, IPR, and MSY, display BrC levels
::::::::::
contributions

:
from 21% to 41%. These percentages indicate a mix

::::::
mixture

:
of biogenic

sources, local emissions, agricultural activities, and trans-boundary pollution affecting
::::::::::::
transboundary

::::::::
pollution

:::
that

::::::
affects the

regional atmosphere. IPR stands out with the highest contribution , suggesting
:::::::
(around

:::::
40%),

:::::::::
suggesting

:
a
:
significant contribu-

tion of low temperature combustion processes
:::::::::::::
low-temperature

::::::::::
combustion

::::::::
processes

::
as

:::::::::
residential

:::::::
sources (e.g. , residential250

sources).

::::::::::::::::
Putaud et al. (2018)

:
).

:
Overall, although BC typically represents the most absorbing aerosols component at these stations

(usually > 70%), it is noteworthy that BrC could contribute comparably to absorption in some instances.

2.2 Model description

2.2.1 The MONARCH atmospheric chemistry model255

The MONARCH model (Jorba et al., 2012; Badia and Jorba, 2015; Badia et al., 2017; Klose et al., 2021) consists of advanced

chemistry and aerosol packages coupled online with the Nonhydrostatic Multiscale Model on the B-grid (NMMB; Janjic et al.,

2001; Janjic and Gall, 2012). The model allows running both global and regional simulations with telescoping nests. Multiple

choices of gas- and aerosol chemistry schemes can be selected in the model. Here, we briefly describe the configuration adopted

in this work.260

The gas-phase chemistry solves the Carbon Bond 2005 chemical mechanism (CB05; Yarwood et al., 2005) extended with

chlorine chemistry (Sarwar et al., 2012). The CB05 is well formulated for urban to remote tropospheric conditions, and it uses

photolysis rates computed with the Fast-J scheme (Wild et al., 2000) considering the physics of each model layer (e.g., clouds,

absorbers such as ozone). A mass-based aerosol module describes the life cycle of dust, sea salt, BC, OA (both primary and

secondary), sulfate, ammonium and nitrate aerosol components (Spada, 2015). A sectional approach is used for dust and sea265

salt, while the other aerosol species are represented by a fine mode, except nitrate which is extended with a coarse mode to

consider the condensation of nitric acid on coarse particles. Sulfate production considers the gas-phase oxidation of both sulfur

dioxide (SO2) and dimethyl sulfide, and the aqueous chemistry of SO2. The heterogeneous hydrolysis of N2O5 contributes to

the production of nitric acid using the parameterization of Riemer et al. (2003). A thermodynamic equilibrium model (Metzger

et al., 2002) solves the partitioning of semivolatile inorganic aerosol components in the fine mode, and an irreversible uptake270

reaction accounts for the production of coarse nitrate in dust and sea salt (Hanisch and Crowley, 2001; Tolocka et al., 2004).

Different meteorology-driven emissions are computed online in MONARCH (i.e., mineral dust, sea salt, and biogenic gas
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species). The mineral dust scheme of the model is described in detail in Pérez et al. (2011) and Klose et al. (2021). Sea salt

emissions are calculated following the source function of Jaeglé et al. (2011) as described in Spada et al. (2013), while biogenic

Non-Methane Volatile Organic Compounds (NMVOC) and soil NO emissions are estimated with the Model of Emissions of275

Gases and Aerosols from Nature (MEGAN) v2.04 model (Guenther et al., 2006).

Black carbon is represented in MONARCH following Chin et al. (2002). Two primary hydrophobic/hydrophilic modes are

defined with an aging process converting mass from the hydrophobic to the hydrophilic mode with a lifetime of 1.2 days.

Primary emissions are assumed to be emitted as 80% hydrophobic.

The simple scheme proposed in Pai et al. (2020) is adopted to model OA. It is computationally efficient and reproduces280

well the organic mass assuming fixed SOA yields adjusted to match results from the more complex volatility-based scheme

approach. Here, we briefly describe the scheme. Primary
::::::
organic

::::::
carbon

:::::
(OC) emissions are emitted as 50% hydrophobic

species with an
:::
and

::::
50%

::::::::::
hydrophilic

:::::::
species.

:::
An

:
OA/OC ratio of 1.4

::
is

:::::::
adopted

:::
for

:::
the

:::::::::::
hydrophobic

:::::::::
component, while the

hydrophilic oxygenated component
:::
one assumes an OA/OC ratio of 2.1

::
to

::::::
convert

::::
OC

::
to

:::
OA

:::::
mass

::::::::::
transported

::
in

:::
the

:::::
model.

Similarly to BC, an atmospheric aging of hydrophobic to hydrophilic primary species is simulated with a conversion lifetime285

of 1.15 days. In our implementation, no marine primary organic aerosol is considered. The scheme includes sources of SOA

precursors from biogenic, pyrogenic, and anthropogenic origin with fixed SOA yields. Biogenic sources of SOA uses a 3%

yield for isoprene and 10% yield for both monoterpenes and sesquiterpenes. A 50% of biogenic SOA is emitted directly to

account for the near-field formation of SOA. On the other hand, precursors from combustion emissions are scaled from CO

emissions as a proxy, of which 1.3% come from fires and biofuels (combustion sources) and 6.9% from fossil fuels. The290

gas-phase SOA products converts to the aerosol phase based on a first-order rate constant with a lifetime of 1 day.

2.2.2 Integration of Brown Carbon in MONARCH

We have advanced the MONARCH code by implementing a representation of BrC and emission sources derived from biomass

burning (BB) and Biofuel (BF) emissions following Saleh et al. (2014). The absorptivity of OA in BB and BF emissions can

be effectively parameterized as a function of the ratio of BC-to-OA. Based on this, the imaginary refractive index of OA295

(effective absorptivity; kOA) (eq. ??) is parameterized across various fuel types and burn conditions using the BC-to-OA ratio

of emissions.

kOA,550 = 0.016log10

(
EBC

EOA

)
+0.03925,

where kOA,550 denotes the OA absorptivity at the wavelength of 550 nm. Here, EBC and EOA are the emission rates of

BC and OA, respectively, in gm−2 s−1. This formulation allows for the computation of kOA,550 as an intermediate step in300

calculating BrC emissions. Then, the methodology of Liu et al. (2013) is adopted to scale the BrC emissions in the model:

EBrC =
4πkOA,550 ·EOA

ρ · 550nm ·MAEBrC(550nm)
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where ρ represents the density of the particle in gm−3, EBrC indicates the BrC emission rate in gm−2 s−1, and MAEBrC(550nm)

is the mass absorption efficiency of BrC.

In addition, we implemented the “photobleaching effect” to account for the aging process of BrC particles, as photobleaching305

significantly changes their absorption properties. Forrister et al. (2015) has shown that 6% of the emitted BrC of BB and BF

resist bleaching, while in Wang et al. (2018b); Neyestani and Saleh (2022) 25% of all BrC emissions are considered unchanged.

Wong et al. (2019) found that up to 20% of BrC does not lose its light-absorbing properties, suggesting a minimum threshold

for BrC light absorption that could be attributed to refractory and relatively inert BrC associated with macromolecules. In our

simulation, we assume an intermediate value where 8% of BrC retains its hydrophobic properties, while the rest transitions to310

a hydrophilic state and possibly loses its absorption properties.

The modeling strategy applied by Zhang et al. (2020a) considers different photobleaching effects for BrC based on its

sources. For BB and BF BrC sources, the model adopts the framework used by Forrister et al. (2015), while photobleaching

of aromatic SOA is represented according to the method described by Liu et al. (2016). These approaches are based on the

principle that BrC absorption decreases with increasing concentration of hydroxyl radicals (OH), as shown in the following315

equation:

kBrC t+∆t = kBrC t · exp
(
− [OH] ·∆t

5× 105

)

where kBrC t and kBrC,t+∆t denote the absorption at the model integration time t and t+∆t. The constant 5× 105

molcm−3 is used to represent the typical OH concentration in the atmosphere during the day, based on the study by Wang et al. (2016)

. In our model, this photobleaching equation is applied to 92% of the BrC emissions, as stated above, reflecting the proportion320

that is susceptible to this process. We only account for BrC sources from BB and BF, neglecting secondary production of BrC

as it is currently a highly uncertain process.

2.2.2 Optical properties

We use an offline optical package (Obiso, 2018) to calculate the absorption by OA using the mass concentration simulated

by the model. The package allows calculating intensive optical properties of a size-distributed particle ensemble, including325

the absorption efficiency (Qa) as the difference between extinction and scattering efficiencies (Mishchenko et al., 2002). The

required input physical properties of the aerosols are the size distribution, the complex refractive index, the particle shape and

the hygroscopicity. Our package only uses the log-normal size distribution, that is defined by two parameters: the geometric

radius (rg) and the standard deviation (σg). The real (n) and imaginary (k) parts of the complex refractive index determine

the scattering and absorption properties of the particles, respectively, and primarily depend on their internal composition. The330

spherical shape is assumed by default in the package while the water uptake of the hydrophilic modes is taken into account

through a grid of hygroscopic growth factors (α) defined for specific values of relative humidity (RH). The assumption of

external mixture is adopted in the calculation of the absorption by OA.
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The package is built on a data set of monodisperse single-wavelength optical properties, pre-calculated using the Mie-theory

code by Mishchenko et al. (2002), whose structure allows computational efficiency while preserving application flexibility.335

In general, the optical properties of a single particle depend on the ratio of its size to the incident wavelength, rather than on

those two quantities separately (Mishchenko et al., 2002). For this reason, the data set is calculated on a grid of size parameters

(x= 2πr/λ, where r and λ are the particle radius and the incident wavelength, respectively) ranging from 0.011 to ∼ 1000.

Following Gasteiger and Wiegner (2018), we apply an increment of 1% to each grid value xi to obtain the next one; moreover,

we store the optical properties integrated in very narrow size bins centered in each xi and ranging from xi/
√
1.01 to xi

√
1.01.340

The entire set of size parameters is then considered for a grid of real indexes (ranging from 1.3 to 2, with a step of 0.05) and

imaginary indexes (from 0 to 1, with varying resolution across different orders of magnitudes).

The physical properties of OA used in this work, that align with the model aerosol representation, are presented in Table

2. Size distribution and standard refractive indexes are taken from the Optical Properties of Aerosols and Clouds (OPAC)

database (Hess et al., 1998). The hygroscopic growth factors for seven prescribed RH values are from Chin et al. (2002).345

Once defined the working wavelength of 370 nm, which allows mapping the size parameters onto particle radii, the needed

pre-calculated optical efficiencies are integrated over the input size distribution. Then, the actual extinction and scattering

efficiencies corresponding to the input refractive index are obtained by means of bilinear interpolation from the integrated

values at the four closest gridded refractive indexes. The water uptake affects both the input size distribution and refractive

index of the hydrophilic modes of OA. Once read a specific RH level calculated by the model, the corresponding hygroscopic350

growth factor is set by linearly interpolating between the closest gridded values and subsequently applied to the geometric

radius of the size distribution (as well as to the extremes of the size integration): rg,w = αrg. The refractive index of the wet

particles is obtained as the volume-weighted mean of the refractive index of the dry particles and that of water (the latter taken

from Segelstein, 1981).

Once obtained the size-integrated absorption efficiency, the absorption coefficient of OA is calculated as follows:355

ba =
3Qa,wα

3

4ρre,w
M (3)

where Qa,w is the wet absorption efficiency, α3 is the wet-to-dry mean volume ratio, ρ is the mass density of the dry

particles (Table 2), re,w is the wet effective radius (defined as the projected-surface-weighted mean radius) and M is the mass

concentration of OA from the model. Note that the wet quantities only refer to the hydrophilic OA modes and tend towards the

corresponding dry quantities for the hydrophobic mode (for which α= 1).360

14



Table 2. Physical
::::::::::
Microphysical

:
properties of the organic aerosol

::
OA

:
species implemented in the MONARCH model and used in this work

for optical calculations
::::::::::::::::::::::::::::::::::::
(Spada, 2015; Chin et al., 2002; Hess et al., 1998): geometric radius (rg), standard deviation (σg) and effective radius

(re) of the size distribution, real (n) and imaginary (k) refractive indexes, mass density (ρ) and hygroscopic growth factor (α). In the second

column, phob stands for “hydrophobic mode” and phil for “hydrophilic mode”. The range extremes used for size integration (r1–r2) are

reported within parentheses close to the corresponding re values. The seven values for α apply to the hydrophilic modes and are relative to

RH levels of 0%, 50%, 70%, 80%, 90%, 95% and 99%. The refractive indexes reported are relative to a wavelength of 550 nm.

Parameters Modes Organic Aerosol

rg (µm) phob-phil 2.12 · 10−2

σg phob-phil 2.2

re (µm) phob-phil 1.003 · 10−1 (0.005–20)

n phob-phil 1.53

k phob-phil 6.0 · 10−3 to > 0.1

ρ (gcm−3) phob-phil 1.8

α
phob

phil

1.0

(1.0, 1.2, 1.4, 1.5, 1.6, 1.8, 2.2)

2.2.3 Emissions

The High-Elective Resolution Modelling Emission System version 3 (HERMESv3; Guevara et al., 2019, 2020) is used to

provide anthropogenic, biomass burning, and ocean emissions to be used as input in the MONARCH model. In this study, we

employ the global-regional module (HERMESv3_GR; Guevara et al., 2019), which allows users to flexibly combine gridded

global and regional emission inventories. In addition, this module facilitates the application of country-specific scaling factors365

and masks. HERMESv3 disaggregates the original datasets both spatially and temporally, and applies user-defined speciated

emissions.

In this study, we used the European-scale emission inventory CAMS-REG-AP_v4.2 (Kuenen et al., 2022), developed under

the Copernicus Atmosphere Monitoring Service (CAMS). Within this framework, the CAMS-REG-AP_v4.2_REF2 represents

a specific dataset or version of the CAMS-REG-AP_v4.2 inventory, which adopts a harmonized approach for consistently370

including the condensable fraction for the residential wood combustion (RWC) particulate matter emissions. This is important

to address the previously identified inconsistencies across European inventories, as highlighted by Denier Van Der Gon et al.

(2015), which mainly stem from variable emission factors used by different countries accounting or not for condensables

impacting modeling results (e.g., Navarro-Barboza et al., 2024). To accurately quantify biomass burning (BB) emissions, our

study utilized data from the Global Fire Assimilation System version 1.2 (GFASv1.2) analysis. This dataset provides detailed375

emission fluxes derived from satellite information for various sources such as forest, grassland, and agricultural waste fires

(Kaiser et al., 2012). Additionally, for oceanic dimethyl sulfide (DMS) emissions, we relied on the CAMS Global Ocean

dataset (Lana et al., 2011; Granier et al., 2019)
::::::::::::::::::::::::::::::::
(Lana et al., 2011; Granier et al., 2019).

2.3 Model simulations
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In this study, we
:::
We

:
used the MONARCH model with a domain that covers the European continent and part of North Africa at380

a horizontal resolution of ∼ 20 km, as shown in Figure 2. Perturbation runs (commonly know as the brute force method) were

conducted to apportion the contribution from fires, traffic, shipping, residential, and other sources. Biomass burning emissions

derived from the GFASv1.2 product are tagged (GFAS) as one of the main contributors to OA absorption. Traffic emissions

(TRAF) categorized under sectors GNFR_F1, F2, F3, and F4 account for exhaust and non-exhaust emissions of gasoline,

diesel and liquefied petroleum gas vehicles. Shipping emissions (SHIP) are derived from GNFR_D sector. The emissions from385

commercial, institutional and residential sources (RESI) consider a wide range of sources related to buildings and facilities and

are categorized under sector GNFR_C. RESI includes activities of combustion in different types of devices, including boilers,

turbines, engines, and chimneys, for different fuel types (i.e., natural gas, wood, fuel oil, LPG, coal). In this sector, only

combustion activities related to space heating, cooking, and water heating are included (cleaning activities are not considered).

Furthermore, the rest of sources are tagged together as other sources (OTHR) including public power, industry, fugitives,390

solvents, aviation, offroad, waste, agriculture, and biogenic emissions.

Figure 2. Model domain at ∼ 20 km of horizontal resolution.

The model ran with 24 vertical layers and a top of the atmosphere set at 50 hPa. Meteorology initial and boundary conditions

were obtained from the ECMWF global model at 0.125◦, and the chemical boundary conditions from the CAMS global system

at 0.45◦ (Flemming et al., 2015). Emissions
:::
The

:::::::::
emissions were processed as described in Section 2.2.3. The atmospheric

meteorological variables are initialized every 24h to keep the modeled circulation close to observations, while the chemistry395

initial conditions are those prognostically estimated by MONARCH (i.e., every day the model uses as an initial state for these

variables their modeled value at 24 UTC of the day before). A spin-up period of 15 days is used to derive the chemistry initial

conditions for 2018.

For efficient execution of the MONARCH modeling chain, we utilized the autosubmit workflow manager, a tool proven

effective in such complex modeling simulations (Manubens-Gil et al., 2016).400
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2.4 Off-line Refractive index optimization

Since k is a highly uncertain parameter with a strong dependence on the sources of OA, we employed a method to derive an

optimized k for each OA component (aggregating both primary and secondary contribution) that combines the results of the

perturbation runs, which provides source apportionment of OA mass, and observations described in Section 2.1.

Based on the aerosol mass calculated by the model, we use the offline optical tool described in Section 2.2.2 to derive k405

values that minimize the error with the absorption measured at the 12 monitoring stations across Europe (see Figure 1
:::::
Figure

::
S1

::::::::
illustrates

:::
the

:::::
steps

::
of

:::
the

::::::::::
optimization

:::::::
process). The optimized k values are derived using the SLSQP algorithm (Sequential

Least Squares Programming), which is particularly well-suited for nonlinear objective functions and constraints to minimize

a cost function. This process handles the task of minimizing the error between the modeled and the observed absorption. The

cost function calculated here evaluates this error at each time step, guided by predefined boundary conditions
::::::
bounds

:
for k410

values obtained
::::::
derived

:
from Saleh (2020). These conditions categorize OA absorption into four optical classes: very weakly

absorptive OA (VW-OA), weakly absorptive OA (W-OA), moderately absorptive OA (M-OA), and strongly absorptive OA

(S-OA). The relation between OA absorbing categories and OA sources is described in Section 2.5
::::
Note

:::
that

::::::::::::
Saleh (2020)

::::::::
categories

:::
for

:::
OA

:::::::::
absorption

::::
were

:::::::
derived

::::
from

:::
20

:::::::
chamber

::::::::::
experiments

::::
that

:::
may

:::
not

:::
be

:::::::::
completely

::::::::::::
representative

::
of

:::::::
ambient

::::::::
conditions

::
in

:::
the

:::::
field.

::::::::
Regarding

:::
the

:::::::::
constraints

::::
used

::
in

:::
the

:::::::
SLSQP

::::::::
algorithm,

:::
we

::::
have

::::::
applied

:::
the

::::::::
condition

::::::
which

:
is
:::::
based

:::
on415

:::::::
extensive

::::::::::::
experimental

:::
and

::::::::
modeling

:::::::
results,

::::
e.g.,

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Andreae et al., 1998; Bond et al., 2013; Laskin et al., 2015; Saleh, 2020)

:
,

:::::::::
suggesting

:::
that

::::
OA

::::
from

::::
fires

::::::
exhibit

:::
the

:::::::
highest

:
k

:::::
values.

::::
The

::::::::
resulting

:
k

:::::
values

:::
are

::::::::::::
representative

::
of

:::
OA

:::
in

::::::::::::
environmental

:::::::::
conditions,

:::::
which

::::
may

::::::
include

::::::::::
interactions

::::
with

:::::
other

::::::
species,

:::::::::
providing

::
an

::::::::
empirical

:::::
range

::
of

:
k

:::::
values

:::
that

:::::::
account

::
for

:::::::
various

:::
OA

::::::
sources

::::
and

:::::::
potential

::::::::::
interference.

For the computation of k at 370 nm within the optimization module, we adopt the equation described in Saleh (2020), which420

describes the wavelength dependency of k for BrC:

k(λ) = k550 ×
(
550

λ

)w

(4)

where k550 represents the imaginary refractive index (k) at 550 nm, λ is the wavelength in nm, and w denotes the wavelength

dependence. The values of w and k550 for each OA class (VW-OA, W-OA, M-OA, and S-OA) were determined based on Table

1 in Saleh (2020).425

Regarding the constraints used in the SLSQP algorithm, we have applied the condition which is based on extensive experimental

and modeling results e.g., (Andreae et al., 1998; Bond et al., 2013; Laskin et al., 2015; Saleh, 2020), suggesting that OA from

fires exhibit the highest k values.

Figure ?? illustrates the steps of the optimization process. The procedure starts with the tagging of OA per source derived

from MONARCH runs, followed by the application of a priori k values imposed based on Saleh (2020). Note that Saleh (2020)430

categories for OA absorption were derived from 20 chamber experiments that may not be completely representative of ambient

conditions in the field. The subsequent steps include calculating absorption and determining k values for each source with the
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SLSQP algorithm. The process concludes with the resulting optimization of k values at 370 nm for each component and the

calculation of the final OA absorption.

Steps to derive optimized imaginary refractive index k for total or tagged OA.435

The resulting k are representative of OA in environmental conditions, which may include interactions with other species,

providing an empirical range of k values that account for various OA sources and potential interference.

The optical calculation relies on the external mixing assumption. Attempting to constrain k of OA by assuming internal

mixing or core-shell configurations with other species would be complex and unlikely to yield results with less uncertainty.

The internal mixing approach would introduce additional modeling uncertainties, such as mixing rules, refractive indices of440

other species, and OA fractions relative to these species. Therefore, assuming externally mixed OA is considered a simpler

approximation and more suited to constrain source specific contributions, despite its inherent limitations.

2.5 Scenario-Based Approach for k Optimization

To investigate the absorption characteristics of different OA sources
::::::
sources

::
of

::::
OA,

:
we have defined six distinct optimization

cases, labeled Case 1 through Case 5, as detailed in Table 3. In particular, each case provides the
::::::
imposes

:::::::
different

:
boundaries445

for the optimization method described above that are used to find the optimal k value for a specific OA source. Note that the

boundaries limit the range where the SLSQP algorithm employed searches for an optimized solution.

Cases 1 to 4 were confined within specific k range boundaries at 370 nm, as recommended by Saleh (2020). These recommended

:::
The

:
ranges, originally specified at 550 nm based on chamber experiments

:::::::::::
(Saleh, 2020), were adapted to 370 nm using the

wavelength dependence (w values) provided in Table 1 of Saleh (2020). It is important to note that while the k ranges at 370450

nm are broader and may overlap between categories, this is attributed to the greater wavelength dependence observed.
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Table 3. Scenarios and ranges of k used in the optimization process.

Case Source Absorption Category k range boundaries at 370 nm

Case 1
Fires, Residential, Shipping Weakly 0.0049 to 0.1604

Traffic, Others Very Weakly 0.0011 to 0.0354

Case 2
Fires, Residential, Shipping Moderately 0.0181 to 0.4883

Traffic, Others Very Weakly 0.0011 to 0.0354

Case 3

Fires Strongly 0.1219 to 0.6887

Residential, Shipping Moderately 0.0181 to 0.4883

Traffic, Others Very Weakly 0.0011 to 0.0354

Case 4

Fires Moderately 0.0181 to 0.4883

Traffic, Shipping, Residential Weakly 0.0049 to 0.1604

Others Very Weakly 0.0011 to 0.0354

Case 5 Total OA N/A N/A

To enhance our methodology, we introduced two additional
:::
We

:::::::
followed

::::
two strategies to optimize k. The first approach in-

volves optimizing k individually at each monitoring station, allowing for a tailored assessment that accounts for local variations

in the properties of OA. The second strategy consolidates data from all stations to derive a single unified k value, providing a

broader and more generalized perspective on OA absorption characteristics. Both methods were applied separately for specific455

sources of OA and for the total OA observed, enabling a comprehensive analysis of the influence of source-specific and aggre-

gate OA contributions on absorption properties. This dual approach ensures a robust optimization process that accommodates

both localized and generalized environmental conditions.

As detailed in Table 3, Case 1 categorizes OA from fires (GFAS), residential (RESI), and shipping sources (SHIP) as weakly

absorbing, with k values ranging from 0.0049 to 0.1604. In contrast, traffic (TRAF) and other sources (OTHR) are considered460

very weakly absorbing, with k values from 0.0011 to 0.0354. Case 2 adjusts the absorption levels for OA from GFAS, RESI

and SHIP to moderately absorbing, with k values from 0.0181 to 0.4883, while maintaining the same very weak absorption for

TRAF and OTHR sources as observed in Case 1. In Case 3, OA from GFAS are assigned strong absorption properties with k

values from 0.1219 to 0.6887, whereas RESI and SHIP are treated as having moderate absorption, similar to the k values in

Case 2, and
:::
the TRAF and OTHR sources continue to be categorized as very weak absorbers. Case 4 adjusts the absorption465

categorization, treating fires with moderate absorption, while TRAF, SHIP, and RESI are considered weakly absorbing, and

OTHR remains very weakly absorbing.
::::::
Finally, Case 5 involves calculating the optimized k by integrating all OA components

(ALL) without predefined boundaries, facilitating a comprehensive exploration of k values. Note that contribution from both

primary and secondary aerosols is accounted within each OA categorization.
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Scenarios and ranges of k used in the optimization process. Case Source Absorption Category k range boundaries at470

370 nm Fires, Residential, Shipping Weakly 0.0049 to 0.1604 Traffic, Others Very Weakly 0.0011 to 0.0354 Fires, Residential,

Shipping Moderately 0.0181 to 0.4883 Traffic, Others Very Weakly 0.0011 to 0.0354 Fires Strongly 0.1219 to 0.6887 Residential,

Shipping Moderately 0.0181 to 0.4883 Traffic, Others Very Weakly 0.0011 to 0.0354 Fires Moderately 0.0181 to 0.4883 Traffic,

Shipping, Residential Weakly 0.0049 to 0.1604 Others Very Weakly 0.0011 to 0.0354 Case 5 Total OA N/A N/A

3 Results475

3.1 OA mass and source contribution

Our study focuses on understanding the light absorption properties of OA across different European environments. Since the

light absorption of OA (ba) is intrinsically linked
::::::
related to its mass concentration, a

::
the

:
first step is to evaluate the accuracy

and reliability of our model in simulating the mass concentrations. In this section, we examine the model’s ability to describe

the variability of OA mass concentration at the 12 monitoring stations presented in Table 1.480

Figure 3 shows the time series of the measured and modeled OA mass concentrations for 2018 (note the varying y-axis scales

in different panels). For a detailed comparison of modeled versus observed OA concentrations across the same stations, refer

to the scatter plots provided in the supplementary material (see Figure S2). Observational data (OBS), depicted by red dots,

show the actual OA concentrations measurements at each station. These values provide a baseline against which the model’s

performance can be evaluated. The modeled concentrations of OA, derived from the source-tagged simulation, are represented485

by filled colors, where each color shows the contribution from different emission sources. Specifically, SHIP is marked in

purple, RESI emissions in light blue, GFAS in orange, TRAF in black, and OTHR in brown (only primary contribution shown).

Additionally, Secondary Organic Aerosols (SOA) contribution is depicted in green.

As reported in Figure 3 and Table ??, overall
::::::
Overall,

:
a good agreement was

:
is
:

observed between measured and mod-

eled OA concentrationsin terms of statistics metrics (see below). This indicates the model ability to capture the pronounced490

seasonal trends and the peak concentrations at the majority of the monitoring stations studied. For example, one episode

of increased concentration in Marselle site (MAR)in February, when the observed concentrations reached 9.1 µgm−3, was

closely approximated by the model which reported 7.4 µgm−3. Similarly, a significant event in Ispra (IPR)towards the end

of December with observed OA concentration of 27.8 µgm−3 was closely simulated by the model with a value of 27.4

µgm−3.
:
.
:::
We

::::::::
followed

:::
the

:::::::::::
performance

:::::::::
assessment

::::::::
approach

::::::::::::
recommended

:::
by

::::::::::::::::
Emery et al. (2017)

:::
for

::::::::
statistical

:::::::::
evaluation495

::
of

::::::::::::
photochemical

:::::::
models.

:::::
These

:::::::::::::::
recommendations

:::
are

::::::
based

::
on

:::::::::
statistical

::::::
metrics

::::
that

::::::
should

::::
meet

:::
the

::::::
“goal”

:::
or

::::::::
“criteria”

:::::::
proposed

:::
by

::::::::::::::::::::::
Boylan and Russell (2006)

:
,
:::::
where

::::
the

::::::
“goal”

:::::::
signifies

:::
the

:::::
peak

:::::::::::
performance

:::::::
expected

:::::
from

::
a

::::::
model,

::::
and

:::
the

:::::::
“criteria”

::::::::
represent

:
a
:::::
level

::
of

::::::::::
performance

::::
that

:::::
should

::
be

:::::::::
achievable

:::
by

::::
most

::::::
models

::::
(see

:::::
Table

::
S1

::
in

::::
Sect.

:::
S2

::
in

:::
the

:::::::::::
Supplement).

:
A
:::::::
detailed

::::::::
statistical

:::::::::
evaluation

::
is

:::::::
included

::
in

::::
Sect.

:::
S3

::
in

:::
the

::::::::::
Supplement.

:::
In

::::::
general,

:::
the

::::::::
“criteria”

:::
are

:::
met

::
in
:::::
most

::::::
stations

::::
and

:::::::
seasons,

:::::::
although

:::::
some

::::
sites

:::
fall

::::
short

::
of

:::
the

:::::
more

:::::::
stringent

::::::
“goal”

:::::
(Table

::::
S2).

::
A

:::
key

:::::
trend

::::::::
observed

:
is
::::
that

:::
the

:::::
model

::::::::
performs500

::::
most

:::::::
robustly

::::::
during

:::
the

:::::
spring

::::::
season

:::::::
(MAM),

::::
with

:::::
many

:::::::
stations

:::::::
reaching

:::
the

::::::
“goal”

:::
and

::::::::
“criteria”.

:::
In

:::::::
contrast,

:::
the

:::::::
summer

::::
(JJA)

::::
and

:::::
winter

:::::
(DJF)

:::::::
seasons

::::::
exhibit

::::::
greater

:::::::::
variability.

:
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Notably, the residential component (in blue)

:::
The

:::::::::
residential

:::::::::
component

::::::::::
consistently

:
emerges as the predominant source across all monitoring sites. A consistent seasonal

pattern is evident, particularly during the colder months, which is likely associated with the increase in residential heating505

::::::
demand

:
during these months. It is important to note that Navarro-Barboza et al. (2024) highlighted notable inaccuracies in the

::::::::
However,

:::::::::::::::::::::::::
Navarro-Barboza et al. (2024)

:::::::
identified

:::::::::::
inaccuracies

::
in

:
carbonaceous aerosol emissions attributed to the residen-

tial sector within the CAMS_REGv4.2 emission inventory for some stations in the western Mediterranean (namely
::::::
western

::::::::::::
Mediterranean

::::::
stations

::
(Barcelona (BCN) and Montseny (MSY)sites), suggesting an overestimation of its contribution which

was particularly relevant during winter. This issue is further detailed in the Supplemental Material Figure S1 where OA510

concentrations for BCN and MSY stations (January and July presented) were simulated
:::::
shown

:::
in

::::::
Figure

:::
S3

:::
and

:::::
Sect.

:::
S4

::
in

:::
the

::::::::::
Supplement,

::::::
where

:::::
results

:
using a local bottom-up emission inventory for Spain (Guevara et al., 2020) showing

:::::
reveal

that traffic emissions appear more significant compared to residential emissions in those
::
are

:::::
more

:::::::::
significant

::::
than

:::::::::
residential

::::::::
emissions

::
at

:::::
these sites. This represents a limitation of the dataset utilized in this study and underscores the need for ongoing

enhancements
:::::::::
continuous

:::::::::::
improvement

:
of continental-scale emission inventories like

:::
such

:::
as CAMS_REGv4.2, which are515

currently
::::::
remains

:
among the best resources for modeling studies in Europe.

The second most significant contributor to the mass of OA is attributed to secondary organic aerosols (SOA, highlighted in

green), which are especially important during the
::
OA

:::::
mass

::
is

:::::
SOA,

:::::::::
particularly

::::::
during summer months. SOA shows important

spatial and temporal variability. For instance, SOA mass formation becomes more significant
:
,
::::
with

::::
mass

:::::::::
formation

:::::::
peaking

during warm periods, especially .
::::
For

:::::::
example,

:
as observed in HYY, where the model tends to underestimate the high observed520

OA concentrations in July associated with high SOA mass formation (Heikkinen et al., 2021; Yli-Juuti et al., 2021). Similarly,

the model underestimates the high OA concentrations observed in MSY in summerthat
:
,
:::::
which

:
were also driven by the high

formation of SOA (e.g., In’t Veld et al., 2021). The SOA yields utilized in this model simulation for biogenic precursors, as

derived from Pai et al. (2020), might result in limited SOA production and could account for this negative bias.

Other contributions (OTHR) increase during the warm months in most stations, except KRA and IPR. The increase in525

activity could be related to the increased agricultural practices prevalent during the warmer months
:::::
period

:
(e.g., agricultural

waste burning). The less pronounced trend in KRA and IPR could be due to different agricultural practices, reduced agricultural

activity, or more effective waste management strategies during these months. The emissions of SHIP contribute significantly

to stations near ports, such as BCN, DEM , and MAR. Traffic-related emissions remain fairly constant and
::::::
Traffic

::::::::::
contribution

::::::
(TRAF)

:::::::
remains

:::::
fairly

:
low across all sites;

:::::::
although according to Chen et al. (2022), however, this component should not only530

be more pronounced at urban stations such as BCN, MAR and HEL, but the contribution should not be neglected
::::::::::
non-negible

at non-urban stations either. The underestimation of TRAF emissions may indicate
:::
low

::::::::::
contribution

::
of

::::::
TRAF

:::::::
suggests

:
a need

for refinement in the emission inventory as discussed aboveand illustrated in the Supplementary Material for BCN site (Figure

S1).

Specific events, such as forest fires or high pollution
::::::::::::
high-pollution episodes, are reflected in pronounced peaks in both535

modeled and observed concentrations, highlighting the model’s ability to respond to such episodes. Notably
:
In

:::::::::
particular, a

significant peak is observed towards the end of July in the MAR and DEM stations, potentially linked to
:
a specific forest fire
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event, as depicted by the model fires
:::
fire contribution (orange color in Fig. 3). This is corroborated by observations at DEM,

although , no observational data is available for MAR for that episodeto validate the output of the model. However, the model

does not appear to effectively capture high-pollution events in KRA during the winter, where peaks exceeding 60 µg/m3 were540

monitored. KRA is recognized as a major pollution hotspot in Europe (e.g., Casotto et al., 2023), largely
::::::
mainly

:
due to the

extensive use of coal and wood for energy production and residential heating. This likely accounts for the elevated OA levels

:::::::
explains

:::
the

:::::::
elevated

:::::
levels

::
of

:::
OA

:
monitored in KRA during the winter of 2018, given that

::::
since

:
the prohibition on solid fuels

(coal and wood) in boilers, stoves , or fireplaces was only implemented after September 2019. Additionally
::::::::::
Furthermore, KRA’s

location within a basin with poor ventilation makes it susceptible to air pollution buildup (Sekula et al., 2022). These factors545

indicate potential shortcomings in the emissions data and the model’s ability to accurately simulate strong inversion events.
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Figure 3. Time series of observed
:::::::
Observed and modeled daily mean OA mass concentrations [µgm−3] for the

::
at twelve European monitor-

ing stations. Contributions
::::::
Stacked

:::::
colors

:::::::
represent

:::::::::
contribution from various

::::::
different emission sourcesto primary organic aerosol including

:
: Shipping (SHIP), Residential (RESI), Fires (GFAS), and Other (OTHR)are presented. Secondary Organic Aerosol (SOA ) is shown as a

separate component. Observed data points are indicated with red points. Gray background indicates that the bias is within an acceptable

range (±1.5 µgm−3). Y-axis scales differ across panels.

Our analysis is further complemented by a statistical evaluation of OA mass concentrations using five metrics: Normalized

Mean Bias (NMB), Normalized Mean Error (NME), Pearson Correlation Coefficient (r), Fraction of Predictions within a Factor

of Two (FAC2) of observations, and Fractional Bias (FB). We followed the performance assessment approach recommended by

Emery et al. (2017) for photochemical models, particularly for pollutants such as Elemental Carbon (EC) and OC, focusing on550

metrics including FB, NME, and NMB. These recommendations are based on the “goal” and “criteria” benchmarks proposed

by Boylan and Russell (2006), where the “goal” signifies the peak performance expected from a model, and the “criteria”
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represents a level of performance that should be achievable by most models. The metrics are defined in supplementary material

Table S1.

Table ?? summarizes the statistical evaluation for the twelve stations (DJF December-January-February; MAM March-April-May;555

JJA June-July-August; SON September-October-November). Overall, the “criteria” is achieved in most of the stations and

seasons, while some sites do not meet the “goal”. We observe that the model exhibits its strongest performance during the

spring season (MAM), with many stations meeting the “goal” and “criteria” benchmarks. Conversely, the summer (JJA) and

winter (DJF) seasons show more variation in the model’s ability to accurately reproduce the observed OA concentrations.

During winter (DJF), for instance, the HYY station shows a strong correlation (r = 0.94) but a low FAC2 value (FAC2 = 23.53).560

This discrepancy suggests a tendency to overestimate concentrations, which could be attributed to an overrepresentation of

residential emissions in the model during this season. In contrast, during spring (MAM), the HEL station achieves a high

FAC2 value (93.59%) along with a good correlation (r = 0.72), which might be attributed to a balanced influence from various

sectors, particularly as fire emissions become more significant during this period (Urbieta et al., 2015; Turco et al., 2017). Most

stations have better performance in MAM compared to other seasons, with many achieving their “goal” achievements and565

benchmarks in NME and NMB, such as SIR with low fractional bias and normalized errors. Notably, a drop in correlation is

observed during summer (JJA) and autumn (SON) at some stations (e.g., KRA in SON with r = 0.34), but several maintain

high FAC2 values, like PAY in JJA (100%) and RIG in SON (100%). This suggests that the discrepancy could stem from

challenges in accurately modeling biogenic SOA contributions during the warmer months. The gray highlighting for stations

like SIR and OPE in these seasons indicates success in achieving targeted goals for NME and NMB, despite some challenges570

in FB. Unfortunately, data from stations such as, HEL and MAR is unavailable for the JJA and SON seasons.

Seasonal statistical evaluation of OA concentrations. Goal achievement (Gray) and criteria benchmarks (Bold) based on

Emery et al. (2017). NMB: Normalized Mean Bias, NME: Normalized Mean Error, and FAC2 expressed as percentages.

3.2 Imaginary refractive index (k) optimization

The optimization of the imaginary refractive index (k) at 370 nm for OA across the twelve measurement stations presents575

challenges, particularly
::::::::
presented

:::::::::
challenges,

::::::::
primarily due to limitations in data coverage. The data points used

::::
Data

:::::
points for

the optimization process were selected based on their consistency with observed OA concentrations. However, the availability

of data varied significantly between stations, imposing limitations on the optimization process. For instance, the HEL station

provided data only from January to May, and the MAR station had a similarly limited data range. The HYY station data

coverage spanned from the end of February to the end of October. Other stations, such as OPE, PAY, RIG, and MSY, contributed580

relatively few data points throughout the year. This gaps in data coverage could potentially impact
:::
This

::::
data

::::::::
coverage

:::
gap

:::::
could

:::::::::
potentially

:::::
affect the representativeness of the k optimization results.

The selection criteria for the data points to be used in the optimization process included
::::
The

::::::::::
optimization

:::::::
process

::::
used

:
a

bias threshold , where only days with bias
:::::::
selecting

::::
only

:::::
days

:::::
where

:::
the

:::::::::
simulation

:::
fell

:
within ±1.5 µgm−3 of the actual OA

measurements were considered (identified in
:::
OA

::::::::::::
measurements

:
(gray background in Figure 3). This approach aimed to ensure585

:::::::
improve the reliability of the optimization results despite limitations in data availability

:::::
results

::::::
despite

::::
data

:::::::::
limitations.
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Once the OA measurements had been selected as described above, the aim of the k optimization procedure applied was to

determine the most suitable k for the different sources considered that would optimize the comparison between the simulated

and observed OA absorption coefficient.

Table ?? presents the mean and standard deviation (std) of the optimization results for590

:
A
:::::::
detailed

:::::::::
discussion

::
of

:::
the

::::::::
optimized k across stations, classified by representative environments (Regional - REG, Suburban

- SUB, Urban - URB; see Table 1), and optimization
:::::
values

:::
for

:
cases 1 through 4 (Table 3). Each case corresponding to unique

assumptions discussed in Section 2.5. The mean k and std were analyzed for the five sources of study: GFAS, RESI, SHIP,

TRAF, and OTHR. The row labeled “ALL” indicates the average values for all stations in Case 4.

By comparing Table 3 and Table ??, the results of the performed k optimization process can be summarized as follow
::
is595

:::::::
provided

::
in

:::::
Sect.

::
S5

::
in

:::
the

::::::::::
Supplement. Overall, for all settings and Cases (1-4), and also for ALL, the highest k was obtained

for GFAS compared to the other sources with the highest k observed for URB sites , whereas similar k within the std were

obtained at REG and SUB sites. In each setting, small differences were observed between Case 1 (GFAS weakly) and Cases

2 and 4 (GFAS moderately) indicating a
::::
Case

:
4
::::
was

:::::::::
considered

:::
the

:::::
most

::::::::::
appropriate

:::::
result

::
to

:::::::
analyze

:::::::::
absorption

::
at

:::
the

:::
12

:::::::::::
measurement

::::
sites

:::::
based

:::
on

:::
the

::::::::
consistent

:::::::::::
convergence

::
of

:::
the

::::::::
different

:::::::
sources.

::
A

:
robust estimation of GFAS k in-between600

weakly and moderately absorbing OA particles. Interestingly, in Case 3 (GFAS strongly) k reached the lowest allowed limit (cf.

Table 3) with zero std (cf. Table ??)
:::
was

::::::
found, suggesting that GFAS OA particles cannot be treated as strongly absorbing.

RESI OA particles were considered as weakly absorbing (Cases 1 and 4) and moderately absorbing (Cases 2 and 3). Similarly

to GFAS, higher RESI k was obtained for URB sites even if for this source the obtained k were comparable, within the std,

among the three considered settings. This similarity could be associated to the fact that RESI emissions are mostly local,605

thus reducing the differences among the station settings. Moreover, for each setting small differences were observed for RESI

k among the 4 considered Cases suggesting a robust estimation of the RESI k that lied in-between weakly and moderately

absorbing OA particles. Note that for both GFAS and RESI the optimization process provided k values closer to the upper limit

of the weakly category rather than the upper limit of the category moderately.

Similarly to RESI, SHIP emissions were considered as weakly absorbing in Cases 1 and 4 and moderately absorbing in610

Cases 2 and 3. Overall, the optimization process provided rather similar k among the four Cases at URB sites with k values that

were higher compared to REG and SUB. At URB sites, the SHIP k lied in-between the categories weakly and moderately with k

values that, as for GFAS and RESI, were closer to the lower limit of the category moderately. At SUB sites, the SHIP k reached

the lowest limit allowed for the category weak (0.005; Cases 1 and 4) and moderately (0.02; Cases 2 and 3) suggesting very

low k of SHIP for this setting. At REG sites, SHIP k was higher than at SUB sites with low variability among Cases 1, 2 and615

4 and higher values and much higher std for Case 3. Also for REG sites the optimization process suggest that
::
A

::::::
similar

:::::
result

::::::
applies

::
for

::::::
RESI.

::
In

:::::::
contrast,

:
SHIP OA emissions were

:::::::
appeared

::
to

::
be

:
more weakly absorbing than moderately absorbing.

TRAF emissions were treated as very weakly absorbing in Cases 1, 2 and 3 and as weakly absorbing in Case 4. Interestingly,

the highest TRAF k were obtained for URB sites whereas much lower k were obtained at REG and SUB sites. At URB

sites, Cases 1, 2 and 3 provided k values in the upper range of the very weakly category (0.04; cf. Table 3) with very low620

std suggesting that TRAF emissions were
:::::::
whereas

:::::
TRAF

:::::::::
emissions

:::::
leaned

::::::
toward

:
weakly absorbing rather than very weakly
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absorbing. In fact, Case 4 provided a TRAF k value of 0.06 that lied in-between the lower and upper limit of the category

weakly absorbing. At both SUB and REG sites, the obtained TRAF
::::
Very

:::
low

:
k values were much lower compared to URB

sites. This result is consistent with recent evidences that OA from traffic at urban sites can be an important source of brown

OA (e.g., Ho et al., 2023). Moreover, traffic emissions are not expected to be primarily local at REG and SUB sites, thus likely625

contributing to the observed reduced TRAF k in these two settings due to physico-chemical OA processes as dilution and

photobleaching.

OTHR emissions were treated as very weakly absorbing for all the considered cases (1-4). The optimization process provided

very low k values confirming the
::::::
derived

:::
for

::::::
OTHR

:::::::
sources,

::::::::::
confirming

::::
their

:
very low absorption propertiesof OA particles

emitted by OTHR sources. Note that higher OTHR k values were obtained at URB sites compared to REG and SUB sites where630

the obtained k were very close to the lower k value in the category very weakly (cf. Table 3).

Finally, and consistently with what was commented above, for the ALL case
:
.
::
In

:::::::::
summary, the obtained k

:::::
values

:
followed

the following order: GFAS>RESI>TRAF>SHIP>OTHR.

Statistical summary of mean and standard deviation (std) values for the optimization of the imaginary refractive index across

the three settings (REG, SUB, URB) and the four cases (C1, C2, C3, C4). Each case corresponds to different assumptions635

detailed in Table 3, analyzed across five OA sources: GFAS, RESI, SHIP, TRAF, and OTHR. The row labeled “ALL” represents

the averaged values across all stations for scenario C4. Metric mean std mean std mean std mean std mean std Setting Case

Case 1 0.0619 0.0396 0.0458 0.0469 0.0196 0.0168 0.0093 0.0141 0.0015 0.0009 Case 2 0.0506 0.0434 0.0482 0.0448 0.0210

0.0071 0.0070 0.0139 0.0018 0.0010 Case 3 0.1241 0.0053 0.0476 0.0447 0.0527 0.0536 0.0068 0.0140 0.0014 0.0005 Case 4

0.0615 0.0387 0.0451 0.0462 0.0182 0.0150 0.0122 0.0132 0.0014 0.0008 Case 1 0.0409 0.0154 0.0409 0.0154 0.0049 0.0000640

0.0011 0.0000 0.0014 0.0005 Case 2 0.0403 0.0148 0.0403 0.0148 0.0191 0.0017 0.0011 0.0000 0.0013 0.0003 Case 3 0.1219

0.0000 0.0395 0.0135 0.0181 0.0000 0.0011 0.0000 0.0011 0.0000 Case 4 0.0398 0.0146 0.0398 0.0146 0.0049 0.0000 0.0049

0.0000 0.0012 0.0001 Case 1 0.0924 0.0354 0.0635 0.0535 0.0418 0.0481 0.0354 0.0000 0.0098 0.0109 Case 2 0.0998 0.0238

0.0635 0.0534 0.0445 0.0456 0.0354 0.0000 0.0092 0.0102 Case 3 0.1229 0.0017 0.0634 0.0535 0.0527 0.0599 0.0345 0.0015

0.0091 0.0110 Case 4 0.0934 0.0291 0.0625 0.0551 0.0314 0.0458 0.0579 0.0078 0.0081 0.0105 ALL Case 4 0.0640 0.0342645

0.0481 0.0388 0.0182 0.0231 0.0218 0.0229 0.0030 0.0052

Based on the aforementioned k optimization process, Case 4 was considered as the most appropriate to simulate absorption

at the twelve measurement sites.

Figure 4 shows the optimized
:::::::
resulting k at 370 nm for total and individual components of the OA at the different monitoring

sites. Two different approaches were used to obtain the results. We determined the optimal
:::
OA

::
in
:::
the

:::
12

:::::
sites.

::::::
Results

:::::
from650

:::
two

::::::::::
approaches

:::
are

::::::
shown:

::::::::::
optimizing k either by individual station (stn) or

:::
and by combining all data points from every

site (all). The figure illustrates the results for both
::::::::
compares

::::::
results

::::
from

:
Case 4(based on source contribution) ,

::::::
which

::::
uses

:::::::::::
source-tagged

::::::::::::
contributions, and Case 5(,

::::::
which

::::::
applies a single value for all )

::::::
sources

::::::
without

::::::
source

:::::::
tagging.

The optimization
::::::::::
Optimization

:
based on the total OA mass per station, Case 5 (by stn), results in k values ranging from

0.005 (MSY site) to 0.07 (PAY site), which are representative of a very weakly to weakly/moderately absorbing OA (Table655
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3). In fact, 0.07 also falls within the lower range of the moderately category. A result of the overlap of k ranges at 370 nm as

mentioned before.

For REG stations, the optimized k are notably low reflecting the importance of the contribution of biogenic SOA at these sites.

MSY stands out with the lowest k value of 0.005, which can be explained by the large contribution to OA from biogenic SOA

(over 50%) characterized by very low absorption properties (In’t Veld et al., 2023; Nakayama et al., 2010, 2012). Similarly,660

the low k value (0.01) derived for HYY also indicates a high presence of biogenic SOA (Chen et al., 2022). Among regional

stations, the highest OA k were obtained for IPR (0.03) and PAY (0.03) likely reflecting the influence of agricultural and

domestic biomass burning sources at these sites and the strong accumulation of absorbing POA in winter (see Figure 3) (Lanz

et al., 2010; Bozzetti et al., 2016; Daellenbach et al., 2017; Wolf et al., 2017).

In suburban environments, represented by KRA, SIR, and DEM, the k values suggested a mix of urban influence and regional665

aerosol contributions. For KRA, a pollution hotspot, a k value of 0.02 was derived. A moderately absorbing environment likely

due to coal combustion, shipping activities from river cruise boats, and household heating emissions (Casotto et al., 2023;

Skiba et al., 2024). On the other hand, SIR and DEM present k values of 0.01 and 0.02, respectively, are representative of

environments that mix local urban emissions with regional air masses.

For urban stations,
:
such as HEL, MAR,

:
and BCN, weakly to moderately absorbing OA are derived, reflecting the diverse670

nature of urban emissions. Both HEL and BCN have similar k (0.0284 and 0.0262), while MAR presents a notably higher value

(0.0494). The latter attributed to the harbor activities and local industrial emissions at that site (e.g., Chazeau et al., 2022).

Comparing the results with the single k derived from Case 5 (all) (dark green bars in Fig. 4), which corresponds to k of 0.02,

suggests that OA particles across the different environments can be described on average as weakly absorbingparticles. This

result is attributed to the averaging effect of combining highly absorbing components with those that are very weakly absorbing675

into a single, undifferentiated category. Consequently, the optimization in this case likely masks the variability in absorption

strengths of individual OA components observed across Europe and may introduce biases in model absorption estimates.

Now, we analyze the results using the granular data provided by each individual station and emission source, Case 4 (by

stn), wherein the optimization is performed independently at each site (blue bars in Fig. 4) yielding different k values for each

source. The observed variability for each component is as follow
::::::
follows: GFAS ranges from 0.03 to 0.13, RESI from 0.008680

to 0.13, SHIP from 0.005 to 0.08, TRAF from 0.005 to 0.07, and OTHR from 0.001 to 0.02. These variations are associated

with the different environmental conditions of each station, within the limitations of our methodology to properly describe

each environment and the fact that sources that are negligible at a specific site introduces
:::::::
introduce

:
additional complexity in

deriving a robust estimate of k for them.

Among regional background stations, PAY stands out showing the highest k for GFAS (0.13) and RESI (0.13) components,685

suggesting the significant influence of sources such as residential heating, which was previously observed by Ciarelli et al.

(2016), or the strong impact of regional events such as wildfires or agricultural waste burning. In contrast, RIG shows the

lowest k for GFAS (0.03), while MSY presents the lowest value for RESI (0.008). As our optimization of k relies on comparing

absorption measurements with modeled OA source components (assuming ranges of k from different sources), there exists a
::
is

::
an inherent relationship between mass contribution and absorption. This implies that although k is independent of mass, sector690
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contribution could assign higher/lower k values depending on the model uncertainties. Therefore, at regional sites like MSY,

the lower k values for RESI may indicate reduced residential activity,
:
as shown by Pandolfi et al. (2014) and Navarro-Barboza

et al. (2024).

Suburban stations such as SIR, KRA, and DEM show consistent results across components, with k values for sources like

GFAS and RESI significantly higher than for SHIP, TRAF, and OTHR. The k values for RESI and GFAS in DEM are nearly695

twice as high as those derived in SIR and KRA, indicating a mix of urban influence and regional aerosol contributions.

Conversely, urban stations, including HEL, MAR, and BCN, present significant variability, reflecting the diverse nature of

urban emissions. MAR shows the highest k for GFAS and RESI (0.13), suggesting a strong contribution to absorption from

these sources. Notably, TRAF (0.06) is more significant in these urban stations compared to regional and suburban locations.

In HEL, k from shipping indicates a non-negligible contribution from this source, while in BCN, OTHR emerges as more700

significant (0.02), highlighting the complex and varied nature of urban aerosol sources.

Finally, Case 4 (all) represented by orange bars in Figure 4 involved the optimization by aggregating data from all stations

while still differentiating between sources. The resulting k values were 0.06 for GFAS, 0.04 for RESI, 0.06 for SHIP, 0.005 for

TRAF, and 0.0011 for OTHR. These results are consistent with those reported in the literature
:
,
:
for instance,Feng et al. (2013)

derived a k of 0.075 for moderately absorbing BrC from biomass burning at 350 nm, which is in agreement with our optimiza-705

tion results for GFAS. Similarly, the k value for SHIP is consistent with Corbin et al. (2018), who reported a comparable value

of 0.045 at 370 nm for this source. The optimized value for RESI is also consistent with literature, considering its association

with biofuel combustion. Our estimation for TRAF, however, appears to be more than two times higher than the value found

in the literature for this source (0.002 at 365 nm for octane combustion as reported by Hossen et al. (2023)). Nonetheless, we

have observed considerable variability among URB sites, highlighting the intricate nature of urban environments. OTHR is710

identified as the least absorbing source, which is a reasonable outcome given its categorization.
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Figure 4. Comparative optimization
::::::::::
Optimization of k at 370 nm for various OA sources, illustrating the results of

:::::::
comparing

:
two

optimization strategies: Case 4 , which optimize
:::::::::::
(source-tagged)

::::::::
optimizes

:
k values for five distinct OA sources including, fires (GFAS),

TRAF, SHIP, RESI, and OTHR
:
), and

::::
while Case 5 , which considers the total OA and

::::::::::::::
(non-source-tagged)

:
optimizes

:
a
:::::
single k by aggregating

data across all stations
::

for
:::
total

::::
OA. Both cases present two approaches - one with k values optimized for each station and another with a

single k value derived
::::
show

:::::
results

:
from all stations

:::::::::::
station-specific

:::
(‘by

::::
stn’)

:::
and

:::::::
all-station

:
combined

:::::
(‘all’)

::::::::
approaches.

In general, our findings agree well with values reported in the literature for specific sources. For instance, Pani et al. (2021)

identified a k of 0.12 at 370 nm for biomass burning closely aligned with the site most influenced by this source,
:
such as PAY.

Furthermore, the SHIP component in our study shows a significant k, approaching to Corbin et al. (2018) who derived a value
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of 0.045 at 370 nm. Conversely, our TRAF results show a variation of k from 0.005 to 0.07, falling in the upper range reported715

in the literature for specific sources
:
, such as 0.002 at 365 nm for BrC from octane combustion (Hossen et al., 2023), or 0.027

for propane, 0.006 for diesel, 0.00074 for gasoline combustion reported at 550 nm (Lu et al., 2015).

3.3 OA Absorption results

In this section, we build upon the k values obtained
:::::
derived

:
in the previous section to analyze the OA absorption derived from

model simulation and its annual variability. We explore the impact of using results obtained from aggregating all data (all) or720

:::::
versus

:
exploiting the full granularity of the model and the observational data set (by stn).

3.3.1 Absorption with optimized k by aggregating all data

:::
The

:::::
latter

:::::::
provides

:
a
:::::
closer

:::::::::
alignment

::
of

:::
the

:::::::
modeled

:::::::::
absorption

:::::::::
coefficients

::::
with

:::
the

::::::::::::
measurements

::
as

::::::::
expected.

::::::::::
Determining

::
a

::::::
specific

:
k

::
for

::::
each

::::
site

:::
and

:::::::
emission

::::::
source

:::::
gives

::::::
detailed

::::::::::
information

:::
on

:::
the

:::::::::
absorption

::::::::::::
characteristics

::
of

:::
the

:::
site

:::::::::::
environment.

:::::::::::
Nevertheless,

:::
this

:::::::
detailed

::::::::::
information

::
is
:::
too

::::::::::::::
location-specific

::
to

:::
be

::::::
utilized

:::
in

::::::::::
atmospheric

:::::::
models.

::::::::::
Regardless,

:::
the

:::::::
analysis725

:::::
offers

:::::::
valuable

::::::::::
information

::
on

:::
the

::::::::
strengths

:::
and

:::::::::
limitations

:::
of

:
k
::::::::
discussed

::
in

:::
the

:::::::
previous

:::::::
section

::
for

:::::::::
modeling

::::::::::
applications.

:

Figure ??
:
5
:
shows a scatter plot of the

:::::::
monthly

:::::
mean observed versus modeled OA absorption at each monitoring site. The

plot uses results from
::
for

::::::
source

::::::
tagged

:::::
(Case

::
4)

:::
and

::::::::::
non-source

::::::
tagged

:::::
(Case

::
5)

:::::
cases

::::::::::
considering

::::
‘all’

:::
and

::::
‘stn’

::::::::::
approaches

:::::::
(Figures

::
S4

::::
and

::
S5

::
in

:::
the

::::::::::
Supplement

::::::
present

::::::
similar

::::::::::
information

::
at
:::::
daily

:::::::::
resolution).

:::::
Note

:::
that

:::
all

:::::::::::
observational

::::
data

:::
are

::::
used

::
in

:::
this

::::::::::
comparison

::::::
beyond

:::
the

:::::::::::
observations

::::::::
employed

::
in

:::
the

::::::::::
optimization

:::::::
process

::::
(see

::::
Sect.

::::
3.2).

:::::::::::
Additionally,

::::::
Figure

:
6
::::::
shows730

::
the

:::::
time

:::::
series

::
of

:::
the

:::::::::
absorption

::
of

:::
OA

::
at

::::
370

:::
nm

::::::::
simulated

::
in

:
Case 4 (all) and Case 5 (all) , where k values were obtained by

using all the monitoring stations combined. To calculate total absorption
:::
and

:::
the

:::::::::::
observational

::::
data

:::
for

::::
each

:::::::::
monitoring

::::
site

:::
(by

::::
‘stn’

::
in

:::
Fig.

:::
S6

::
in

:::
the

:::::::::::
Supplement).

::::::::
Although

:::
the

:::::::::
absorption

:::::
values

:::::
could

:::::
seem

::::
low,

:::
the

:::::
annual

:::::
mean

:::
OA

:::::::::
absorption

::
at

::::
370

:::
nm

::::::::
calculated

:::::
from

::::::::::
observations

::::::::::
represented

::::::
around

::::::
2-20%

::
of

:::
the

::::
total

::::::::
measured

:::::::::
absorption

::
at

:::::
some

:::::::::::::
regional/remote

::::
sites

::::::
(MSY,

::::
OPE

:::
and

::::::
HYY)

:::::::
reaching

:::::::::::
contributions

::::::
around

:::::::
20-40%

::
at

:::
the

::::::::
remaining

:::::
sites.

::::
The

:::
OA

:::::::::
absorption

::
is

:::
the

:::::
lowest

::
in
:::::::
summer

::::
due735

::
to

:::
the

::::
lack

::
of
:::::::::
important

:::::::
primary

:::
BrC

:::::::
sources

::
as

::::::::
domestic

:::::::
biomass

:::::::
burning.

:

::
In

::::
both

::::::
figures, Case 4

:::
(all)

:
uses individual k values tailored to specific OA components :

:
(0.0571 for fires, 0.0403 for

RESI, 0.0571 for SHIP, 0.0049 for TRAF, and 0.0011 for OTHR
:
). Meanwhile, Case 5

:::
(all)

:
applies a single k value of 0.0187

across all sources. The key difference between the cases is that Case 4 includes a detailed source apportionment, discerning

five different OA sources, while Case 5 considers the total OA without source differentiation. Case 5 represents the com-740

mon approximation adopted by models in the literature (Takemura et al., 2005; Donner et al., 2011; Tegen et al., 2019) to

describe the optical properties of aerosol components, where a single refractive index
:
k is assigned to each aerosol com-

ponent. Conversely, Case 4 introduces the refinement at the source level to investigate the benefit of exploiting the source

contribution to describe absorption. Additionally, Figure 6 shows the time series of the absorption of OA at 370 nm simulated

in Case 4 (all) and
:::
The

::::::::::::
source-tagged

:::::::
method

::::::
allows

::::::
clearly

:::
the

::::::
model

::
to

:::::
better

:::::::
account

:::
for

:::
the

:::::::
specific

::::::::::::
characteristics

:::
of745

:::
OA

::::::
source

::::::::
emissions

::
at
::::::::

different
:::::
sites,

::::::::::
particularly

::
in

:::::
urban

:::::
areas

::::::
where

::::::
sources

:::
of

:::
OA

:::
are

:::::
more

::::::::
variable.

::
In

::::::::
contrast,

:::
the
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:::::::::::::::
non-source-tagged

::::::::
approach

:
(Case 5(all) and the observational data for each monitoring site

:
)
::::::
results

::
in

:
a
:::::::

broader
:::::
range

:::
of

:::::
errors,

:::::::::
especially

::
in

::::::::::::::
higher-absorption

::::::::::::
environments

::::
such

::
as

:::::
urban

:::
and

::::::::
suburban

:::::
areas.

Figure 5.
:::::::
Monthly

::::
mean

:::::::
observed

:::::
versus

:::::::
modeled

:::
OA

::::::::
absorption

:::
for

::::
Case

:
4
:::
and

::::
Case

::
5
:::::::
including

:::::::::
approaches

::
by

::::
‘stn’

:::
and

::::
‘all’.

:::::::
Symbols

::::::
indicate

:::::::
individual

::::::
stations

:::
and

:::::
colors

::::::
station

::::
type.

In Case 4 (dark green circles in Fig. ??
::
all), the correlation coefficients (r) range from 0.34 to 0.74 across all stations and

the fractional bias (FB) values vary widely from -70% to 107%
::::::
(yellow

::::::
circles

::
in

::::
Fig.

:::
S4). Regional stations (OPE, PAY,750

and IPR), generally exhibit high correlations (>0.6) and a tendency to overestimate. Specifically, in MSY, the overestimation

persists consistently
:::::
Similar

::::::::::
correlation

:::::
results

:::
are

::::::::
obtained

:::::
when

:::::::::
optimizing

:::
per

::::::
station

:::::
(Case

:
4
::::
(by

:::
stn)

::
in

::::
Fig.

::::
S5),

:::
but

::::
with

::::::::
significant

::::::::::::
improvements

::
in

:::
FB

::
at
:::
all

::::
sites

::::
(see

:::::
Table

::
S4

::
in
:::
the

::::::::::::
Supplement).

:::
The

:::
use

:::
of

::::::::::::
station-specific

::::
and

::::::::::::
source-specific

::
k

:::::
values

:::::::::::
substantially

::::::
reduces

:::
the

::::
bias

::
as

::::::::
expected.

:

::::::
Among

:::::::
regional

::::::::::
background

::::::::
stations,

:::::
MSY

:::::
stands

:::
out

:::
by

:::::::::
improving

::::::
results

::::
from

::
a
::::::
strong

::::::::::::
overestimation

:
throughout the755

year
::::
(FB:

:::::
107%,

::::::::
assuming

::
a

:::::::
constant

:
k

::
for

::::
each

:::
OA

::::::
source

::::
over

:::
all

:::::::::
aggregated

::::
data

::::
Case

:
4
:::::
(all))

::
to

:
a
:::::
slight

::::::::::::::
underestimation

::
in
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::::
Case

:
4
::::
(by

:::
stn), as shown in Figure 6 orange. Conversely, in

::
S6

::::
blue

::::
line.

::::
Both

::::::
winter

:::
and

:::::::
summer

::::::
periods

:::
are

:::::::
adjusted

::
at
::::
this

::::::
station,

:
a
:::::
good

:::::::
example

::
of

:::
the

:::::
added

:::::
value

::
of

:::::::
refining

:::
the

:::::::::::::
characterization

::
of

::::::
sources

:::
for

::
a

::::::
specific

:::::::::::
environment.

:::::
Other

:::::::
stations

::::
such

::
as

::::
PAY,

:::::
RIG,

::::
and

:::
IPR

::::
also

:::::
show

:::::::::
consistent

::::::::::::
improvements

::::::::
compared

:::::
with

::::
Case

::
4

::::
(all).

::
In
:

HYY, this overestimation is

predominantly observed during the initial months, while in RIG, it becomes noticeable towards
:::::
toward

:
the end of the year.760

This pattern might not necessarily reflect higher absorption but could be due to overrepresentation of absorbing sources in
::
at

these sites, that
:::::
which are characterized by

:::
the dominant contribution of biogenic SOA typically with little or no absorption.

This tendency could be attributed to the considerable influence of secondary aerosol contributions. For instance, SHIP k value

could be remarkably high, making it comparable to the values attributed to fires and potentially biasing the overall absorption

metric at some of these sites.765

Suburban stations such as SIR, KRA, and DEM show good r values
::
in

::::
Case

::
4
::::
(all), specifically 0.74, 0.57, and 0.67,

respectively. SIR stands out with a small FB of 3.8%, reflecting a very accurate representation of observed absorption. However,

the model tends to underestimate the OA absorption for KRA and DEM, a phenomenon that is particularly pronounced at KRA

::
(in

::::
both

:::
all

:::
and

:::
stn

:::::
cases), where absorption values exceed 50 Mm−1 at 370 nm. This underestimation is likely linked

::::::
related

to the increased emissions from
::
of households and the energy industry at KRA site, as reported by Zgłobicki and Baran-770

Zgłobicka (2024), and the limitations previously highlighted in Section 3.1. The underestimation is predominantly observed

during winter for KRA and DEM, whereas for SIR, the underestimation occurs mainly during warm months, as illustrated in

Figure 6. These seasonal discrepancies indicate that while the emission inventory (CAMS-REG-APv4.2) effectively captures

the emissions near the SIR station, it may not fully account for the increased emissions during winter at KRA and DEM.

The urban stations HEL, MAR, and BCN
:::::
urban

:::::::
stations show very different model performances. On the one hand, MAR is775

characterized by a substantial underestimation with low correlation value (0.49) and a notably
::::::
notable negative FB of -82.3%.

Conversely
::
In

::::::
contrast, BCN exhibits significant overestimation in the first months of the year, likely related to attribution issues

with residential, traffic, and shipping emissions (Navarro-Barboza et al., 2024) as discussed in Section 3.1
:::
and

:::::::
Section

:::
S4

::
in

::
the

:::::::::::
Supplement. On the other hand, HEL shows good agreement with

:::
the observations (r = 0.51, FB = -7.5%).

:::
The

::::::
urban

::::::
stations

:::::
show

:::::::
different

::::::::
responses

::
to
:::
the

:::::::
refined

::::::::::
optimization

:::
by

:::
stn.

::::::::
Modeled

:::::::::
absorption

:::::::
improves

:::::::::
compared

::
to

::::
Case

::
4
::::
(all)

::
in780

::::
BCN

::::
and

:::::
MAR,

:::::
while

::
in

:::::
HEL

:
a
:::::
slight

::::::::::
degradation

::::::
occurs

:::::
during

:::
the

::::::
colder

:::::::
months.

::::
The

:::
fire

:::::
event

::::::::
identified

::
by

:::
the

::::::
model

::
in

:::
July

::
in
::::::
MAR

:
is
:::::::::
simulated

::::
with

:
a
:::::::::
significant

:::::::::::::
overestimation.

::::
This

:::::
could

:::::::
indicate

:
a
:::::::::

limitation
::
in

:::
the

:::
fire

:::::::::
emissions

:::
data

:::
for

::::
this

::::::
specific

:::::
event.

:

In Case 5
:::
(all), where no source-specific components for OA are considered, correlation generally degrades compare

:::
the

:::::::::
correlation

::::::::
generally

::::::::
decreases

::::::::
compared

:
to Case 4, with r values ranging from 0.28 to 0.65 across stations. FB values show785

again
::::
again

:::::
show

:
a wide variability, extending

::::::
ranging

:
from a strong underestimation at a suburban site such as KRA (FB

= -113%), particularly observed during winter, to an overestimation at a regional site like
::::
such

::
as

:
OPE (FB = 42%), mainly

observed during summer and in MSY throughout the year.
::
As

::::
seen

:::::::
before,

::::::
results

::::::
derived

::::::
using

:
k

::
by

::::::
station

:::::
show

:::::
clear

:::::::::::
improvement

::
in

:::
FB

::
at

::
all

:::::
sites.

The differences between Case 4 and Case 5 highlight the benefit of using source specific k in simulating OA absorption.790

While
::::::::
Although Case 5 represents the common practice in atmospheric modeling of using a unique refractive index to describe

32



aerosol optical properties, Case 4 provides an additional refinement that even improves seasonality, as illustrated in Figure

6 where Case 4 (all) follows increased absorption during winter and lower values during warmer months, while Case 5 (all)

introduces important biases
::
in

:::::
some

::::
sites. Notably, OPE, SIR or HYY show substantial overestimation during

::
the

:
summertime

in Case 5 due to imposing an overly absorbing biogenic SOA, an issue that is effectively resolved in Case 4.795

Daily mean observed versus modeled OA absorption for Case 4 (all) and Case 5 (all) scenarios, with the imaginary refractive

index (k) values derived from aggregated data across all monitoring stations. Each panel includes the correlation coefficients

(r) and fractional bias (FB).

Figure 6. Time series of the OA
:::
light

:
absorption at (370 nmacross the

:
)
:::
time

:::::
series

:::
for 12 monitoring stations

:::
sites. Lines plot observed

absorption
:::::::
Observed (Obs) in red and modeled absorption for Case 4 (all) (orange line) and Case 5 (all) (dark green line). k values derived

by combining data from all stations.Each set of panels corresponds to one season of the year (DJF: December-January-February, MAM:

March-April-May), JJA: June-July-August), and SON: September-October-November).

In this regard
::::::
Finally, Figure 7 shows the mean seasonal

:::::
spatial

:
variations in OA absorption coefficient

::::
light

:::::::::
absorption at

370 nm simulated by MONARCH for
:
at
:

the surface level in Europe. Both the total absorption coefficient and the source con-
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tributions are shown. The results are calculated based on optimized k for each OA source derived from Case 4 (all)aggregating

data from all stations.

The total
::
OA

:
absorption shows the combined effect from all sources, with higher absorption observed in Central and Eastern800

Europe. Particularly relevant are the hot spots in the Po Valley (Italy), some regions in central and southern Poland and Romania

reaching absorption coefficient values above 20 Mm−1. RESI stands as the dominant contributor to total OA absorption,

especially during the colder seasons (DJF, SON). In winter, the mean total absorption in Europe is around 0.9 Mm−1, with

residential sources explaining 80% of this (0.7 Mm−1). Absorption shows a clear seasonality across Europe
:
, as seen in Figure

6. During summer, RESI contribution
::
the

::::::::::
contribution

::
of

:::::
RESI

:
to light absorption

:
(at 370 nm)

:
in Europe reaches its minimum805

value, with a mean absorption coefficient of 0.1 Mm−1, representing 28% of the summer OA absorption in Europe. Spring

and Autumn periods are characterized by still
:::
The

::::::
spring

:::
and

:::::::
autumn

::::::
periods

::::
are

:::
still

::::::::::::
characterized

::
by

:
significant levels of

absorption of 0.6 Mm−1 and 0.7 Mm−1 on average, respectively, dominated by RESI.

The second major source of absorption in our simulations is attributed to GFAS, particularly important during events in
:::
the

summer (0.15 Mm−1 on average and maximum mean values above 10 Mm−1). The mean absorption over Europe from fires810

is lower compared to residential sources
:
, but surface dominates in certain areas, especially in northern and southeast Europe,

where strong fires were detected by the satellite product. Notably, GFAS increases the background absorption in Europe with

absorption values around 0.1 to 1 Mm−1. Spring and Autumn are important wild fire
::
fall

::::
are

::::::::
important

:::::::
wildfire seasons in

eastern Europe, where large regions are affected by notably high GFAS absorption.

Another major contributor to absorption appears to be SHIP
::::
SHIP

:::::::
emerge

::
as

::::::
another

:::::::::
significant

:::::::::
contributor

::
to

::::
light

:::::::::
absorption,815

with high absorption levels reaching values close to 5 Mm−1 identified along major shipping routes, such as the English Chan-

nel,
:::
the North Sea, and

::
the

:
Mediterranean Sea. In this sense, coastal regions are affected by this source, and the Mediterranean

seas exhibit
::
sea

:::::::
exhibits

:
significant increases in absorption compared to inland areas. Some contributions

::
are

:
also visible along

river routes in eastern Europe. Shipping sources contribute relatively little to mean absorption in Europe, with the highest

values in spring (0.02 Mm−1).820

Traffic-related absorption coefficients at 370 nm are
::::
light

:::::::::
absorption

::
is relatively low compared to residential and shipping

sources. There is a slight increase in absorption in urban areas and major transportation corridors, with minor seasonal vari-

ability in this source. The traffic sources show their highest mean absorption coefficient in the surface layer in winter (0.04

Mm−1), dominant in central Europe. Absorption from other sources
::::::
OTHR

:::::::::
absorption is generally low across Europe, with

minor seasonal variations. The highest mean absorption from OTHR occurs in
:::::
OTHR

:::::::::
absorption

::::::
occurs

::
in
:::
the

:
autumn (0.08825

Mm−1).
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Figure 7. Seasonal source contribution to OA surface absorption at 370nm
::::
(370

:::
nm)

:::::
source

::::::::::
contributions

:
in Europefor the year ,

:
2018.

MONARCH simulation using the
:::
with

:
optimized k for each OA source derived

:::::
values from Case 4 (all) shown in

:::
(Fig.

::
4,
:
orange barsin

Figure 4
:
). The seasonal breakdown is as follows

:::::::
Columns: the first column represents December-January-February (DJF), the second

column represents March-April-May (MAM), the third column represents June-July-August (JJA), and the fourth column represents

September-October-November (SON). The rows indicate different sources, with the top row showing the
::::
Rows:

:
total, followed by resi-

dential, shipping, fires, traffic, and other sourcesin descending order.35



3.3.1 Absorption with optimized k by station

Ultimately, a closer alignment of modeled absorption coefficients with measurements can be achieved by optimizing k for

each individual monitoring site. Determining a specific k for each site and emission source gives detailed information on the

absorption characteristics of the site environments. Nevertheless, this detailed information is too location-specific to be utilized830

in atmospheric models. Regardless, the analysis offers valuable insights into the strengths and limitations of k discussed in the

previous section for modeling applications.

Figure ?? shows scatter plots of modeled vs observed data. Moreover, Figure ?? depicts the time series of absorption at 370

nm for the twelve monitoring stations for these new two cases, Case 4 (blue line) and Case 5 (light green line).

Looking at the results for Case 4 (by stn) (blue dots in Figure ??), and comparing them with those of Case 4 (all) in Figure835

?? (orange dots), we observe similar r values ranging from 0.36 to 0.74 in both figures. However, optimizing per station

significantly improves the FB values at all sites (see Table S2). The use of station-specific and category-specific k values

appears to substantially reduce bias, as expected. Among regional background stations, MSY stands out improving results

from a strong overestimation (FB: 107%, assuming a constant k for each OA source over all aggregated data, orange line in

Figure 6) to a slight underestimation, as shown in Figure ?? blue line. Both winter and summer periods are adjusted in this840

station, a good example of the added value of refining the characterization of sources for a specific environment. Other stations

such as PAY, RIG and IPR also show consistent improvements compared with Case 4 (all).

At suburban sites, the model reasonably captures the absorption at DEM, particularly noting the well-captured peaks during

winter. Interestingly, KRA persistently shows large underestimations during colder months (FB = -103%). This clearly indicates

the limitations in the way emissions are represented in the inventory used in this study.845

Urban stations show different responses to the refined optimization. Modeled absorption improves compared to Case 4 (all)

in BCN and MAR, while in HEL a slight degradation during the colder months occurs. In general, the model captures the peaks

throughout the year. The fire event identified by the model in July in MAR is simulated with a significant overestimation. This

could indicate a limitation in the fire emissions data for this specific event.

In Case 5 (by stn), a unique station-specific k value is employed without source differentiation. When comparing r values850

with the approach that utilizes a single k across all stations (as depicted in Figure ??), consistent results are found with a clear

improvement in the FB across all stations as also shown in Case 4. This tailored approach generally leads to underestimations

of the absorption coefficient at 370 nm in the surface layer at most of the twelve stations studied. In contrast, absorption is

notably overestimated at PAY (regional background station) from April to October. The limited number of observations used

in the optimization step at this site, mainly dominated by few winter measurements, could explain the overestimated k value.855

Overall, the insights gained from this analysis recommends adopting approaches towards refining k values used in models

to better represent the unique characteristics of each station and emission source
:::::::
different

::::::::::::
environments

:::
and

::::::::
emission

::::::
sources.

The tailored approach of Case 4
::::
(all), with its more granular differentiation of k values, contributes in the characterization of

the different sites investigated in this work.

Similar to Figure ??, but with k derived for each station.860
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Similar to Figure 6 but the k optimization process was done at each station.

4 Summary and conclusions

In this study, we explored the refractive imaginary
:::::
work,

:::
we

::::
have

::::::::
analyzed

::
the

:::::
light

::::::::
absorption

:::
of

:::
OA

::
in

::::::
Europe

:::
by

:::::::::
optimizing

::
the

:::::::::
imaginary

::::
part

:::
of

:::
the

::::
OA

::::::::
refractive

:
index (k) for OA components from different sources,

:
at

::::
370

::::
nm.

::::
Five

::::::::
different

::::::::::
components

::
of

::::
OA

::::
were

:::::::
studied

:
including fires (GFAS), residential (RESI), shipping (SHIP), traffic (TRAF), and others865

emissions
::::
other

::::::
sources

:
(OTHR). Our analysis relied on 12 distinct monitoring stationsthroughout Europe, representative of

regional, suburban, and background urban environments
:::::
urban

::::::::::
background

:::::::::::
environments,

:
to capture the diverse environmental

conditions prevalent at each site. Using a synergistic approach that combined both modeling and observational techniques, we

conducted
::
We

:::::
used

:::
the

::::::::::
MONARCH

::::::
model

::
to

:::::::
perform year-long simulations covering the year 2018. These simulations were

designed to evaluate the OA mass concentrations using the MONARCH chemical transport model and constrain the OA light870

absorbing properties.

::::::::
simulation

:::::
(year

:::::
2018)

:::
and

:::::::::
developed

::
an

::::::
offline

::::::
optical

::::
tool

::
to

:::::
derive

::::::::
optimized

::
k
:::::
values

::
to

::::::::::
characterize

::::
OA

::::
light

:::::::::
absorption

::
for

:::::
each

::::::
source

:::::
under

:::::
study.

:
We used OA mass concentrations derived from Aerosol Chemical Speciation Monitor

::::::
aerosol

:::::::
chemical

:::::::::
speciation

:::::::
monitor

:
(ACSM) and filter based

:::::::::
filter-based measurements, and BrC absorption coefficients data

:::
OA

::::::::
absorption

:
retrieved from aethalometer measurement at 370 nm as reference datasets.875

Furthermore, we developed an offline optical tool designed to estimate the OA absorption coefficient from the OA mass

concentrations calculated from the model. We used the optical tool to derive k values at 370 nm that minimize the error

with the absorption measured at the 12 monitoring stations in Europe using a Sequential Least Squares algorithm (SLSQP).

Bounding values based on Saleh (2020) were imposed to derive the optimized k for each station and emission source. The

analysis combined optimizations using all the observational data aggregated, exploring the granular information available880

(source contribution estimates at each monitoring site) and intermediate combinations
:::::::::::
measurements.

Overall the MONARCH model shows
::::::::::
MONARCH

:::::
model

:::::::
showed good performance in simulating OA mass concentrations,

with good agreement between measured and modeled concentrations for the majority of the stations. The statistical evaluation

indicates that most of the stationsmet the evaluation benchmark defined by Emery et al. (2017)
:::::::::::
concentrations

::
in

:::::
most

:::::::
stations,

::::::
meeting

::::
the

::::::::
evaluation

:::::::::
statistical

::::::::::
benchmarks

:
throughout the year. The model best performance is identified during spring .885

Notably, residential emissions (accounting
:
,
::::
with

::::
peak

:::::::::::
performance

::
in

:::
the

::::::
spring

::::::
season.

:::::
RESI

:::::::
sources

::::::
(which

::::::::
accounts for

domestic heating, cooking
:
, and water heating) emerge as a predominant source of OA mass concentrations during

:::::::::
dominated

:::
OA

::::::::::::
concentrations

::::::
during

:::
the

:
colder months. This share may be biased in some European regions by an overrepresentation

of residential heating emissions in the CAMS-REG-AP_v42 inventory, as was already highlighted by Navarro-Barboza et al.

(2024). The second most relevant contribution to OA mass concentrations comes from secondary organic aerosols (SOA ) in890

most of the stations, particularly
::::
SOA

::::::::
emerged

::
as

:::
the

::::::
second

::::
most

:::::::::
significant

::::::::::
contributor,

::::::::
especially

:
during warmer periods at

regional sites,
:
such as MSY, HYY, OPE, RIG, and PAY. SOA is ,

::::::
though

:
slightly underestimated in summer , probably due to

low
:::
due

::
to

:::::
likley

::::
low

:::::::
biogenic SOA yields used in the simulation for biogenic sources. Furthermore, shipping emissions (SHIP
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) play a significant role at near port stations
:::::
model.

:::::
SHIP

::::::::
emissions

:::::::
notably

:::::::
affected

::::::::
near-port

:::::::
stations,

:::::
while

:::::
TRAF

:::::::::
emissions

:::
had

:::::::
minimal

::::::::
influence. Despite the limitations identified, the model effectively captures

:::::::
captured

:
specific events like wild fires895

and high pollution
:::::::
wildfires

:::
and

::::::::::::
high-pollution

:
episodes, demonstrating its ability to reproduce episodic events. Traffic-related

emissions contributes to the lesser exent to OA mass concentrations.

The optimization of the imaginary part of OA refractive index
::::::::::
Optimization

::
of

:
k at the monitoring

:::::
across

:
stations has under-

scored the complexand ,
:

dynamic nature of OA optical properties, which are influenced
:::
light

:::::::::
absorbing

:::::::::
properties,

:::::::::
influenced

:::
not

::::
only by emission sources and

::
but

::::
also

::
by

:
environmental conditions. We derived

::::::
Derived

:
k values at 370 nm for total OA900

that ranged from 0.005 (weakly absorbing) to 0.068 (weakly to moderately absorbing), highlighting the significant variability

in OA absorption properties across
::::::::
indicating

:::::::::
significant

:::::::::
variability

:::::::::
throughout

:
Europe. This observation aligns with

:::::
aligns

::::
with

::
the

:
existing knowledge that OA properties are not static, but vary depending on

:::
vary

::::
with

:
composition, source, and atmo-

spheric age (Cappa et al., 2011). Regional background stations such as MSY and HYY exhibited
::::::
showed

:
the lowest k values,

consistent with the
::::
their

:
predominant biogenic SOA in these regions.905

The approach we used to optimize
:::::::::
Optimizing

:
k for various OA sources , such as fires (GFAS), residential (RESI), shipping

(SHIP), traffic (TRAF), and others (OTHR), highlights the added value
::
OA

:::::::
sources

:::::::::
highlighted

:::
the

::::::
benefit

:
of source apportion-

ment in precisely characterizing OA optical
:::::::::::
characterizing

:::
OA

:::::
light

::::::::
absorbing

:
properties. Our results revealed the significant

impact of local and regional emissions on k values. For example, at the PAYstation, which is characterized by a regional

background environment
::
In

::::
PAY, elevated k values were derived for wild fires and residential combustion

:::::
GFAS

::::
and

:::::
RESI910

sources (e.g., biomass, coal ), which aligns
::::::::::
combustion),

:::::::
aligned with the known strong absorption characteristics of biomass

burning aerosols (Zhang et al., 2020b; Pani et al., 2021). This is further supported by the evidence suggesting that BrC from

biomass burning can undergo significant dark chemical processing, affecting over
::::
more

::::
than

:
70% of OA from this source

(Kodros et al., 2020). Conversely, other
::::
Other

:
regional stations such as HYY, OPE, RIG, and MSY were characterized by a

::::::
showed

:::
the

:
dominance of SOA from biogenic emissions, reinforcing the role of biogenic sources in the

:::::
which

:::::::
explains

:::::
their915

low k values derived (Zhao et al., 2015). In urban environments, traffic
::::::
TRAF emissions emerged as a significant contributor to

light absorptionat 370 nm with a ,
::::
with

:::::::
derived k value

:::::
values (0.06) two times more than that reported for BrC from specific

traffic-related
:::::
twice

::::
those

:::::::
reported

:::
for

:::::::
specific

:::::
TRAF

:
emissions (e.g., propane, diesel, gasoline) (Hossen et al., 2023; Lu et al.,

2015), indicative of the complexity of
::::::::::
highlighting

:::
the

:::::::::
complexity

:::
in urban environments. Additionally, stations near ports

were found to have a
:::::::
Stations

:::
near

:::::
ports

:::::::::::
demonstrated

:::
the

:
relevant SHIP contribution to OA optical properties

:::
light

:::::::::
absorption,920

consistent with previous studies (Kapoor et al., 2023). In summary, we have derived specific ranges of k values at 370 nm for

various emission sources using all the granular information available in our study as follows:

– Biomass burning (GFAS): k values range from 0.03 to 0.13. This broad range reflects the variability between stations

close to and far from fire sources, highlighting the diverse impact of biomass burning on OA absorption and significance

of bleaching processes.925

– Residential sources (RESI): k values range from 0.008 to 0.13. Highlighting the variability in residential activities and

practices across different regions (e.g., extensive use of coal combustion in KRA).
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– Shipping sources (SHIP): Near port areas, k values range from 0.005 to 0.08. In some sites, the second most absorbing

source identified in our study in terms of k values.

– Traffic (TRAF): k values range from 0.005 to 0.07 i.e., larger than found for specific traffic emission sources in the930

literature. This result indicate possible unaccounted processes contributing to enhance absorption in urban environments.

– other sources (OTHR): k values range from 0.001 to 0.02. These sources include emissions from power generation, indus-

try,solvents, aviation, waste treatment and disposal, agriculture, etc. and exhibit lower absorption properties indicating

the varied influence of emissions on OA absorption.

The implementation of these source-specific k values significantly enhances the agreement between modeled and observational935

data, improving the
::::::::
improves model performance compared to the use of

::::
using a constant k value to characterize

::
for

:
OA ab-

sorption. This is actually a common practice in several atmospheric models adopting for instance
::::::::::
atmospheric

::::::
models

::::
that

:::::::
typically

:::::
adopt k value at 550 nm

::::::
ranging

:
from 0.005 to 0.006 (Matsui and Mahowald, 2017; Tegen et al., 2019; Bozzo et al.,

2020; Wang et al., 2013; Burgos et al., 2020).

This widespread modeling practice underscores the relevance of our findings, proposing a refined method for determining k940

values that could improve the accuracy of future estimates of BrC radiative forcing.

In this sense, we computed and presented the
:::
Our

:::::::
analysis

::
of source contribution to OA light absorption at the surface level

in Europebased on the
:
,
:::::
based

::
on

:
optimized k derived from our analysis. Total absorption is the highest

:::::
values,

::::::::
revealed

::::::
highest

::::
total

:::::::::
absorption

:
in Central and Eastern Europe, with notable hotspots in the Po Valley, Poland, and Romania. Residential

sources are the dominant contributors to
:::::
RESI

::::::
sources

:::::::::
dominante

:
OA absorption, especially during the

::
in colder seasons (DJF,945

SON). In winter, RESI accounts
:
,
:::::::::
accounting

:
for 80% of total absorption , a value that decreases to

::
in

::::::
winter

:::
and

:
28% in

summer. Fires (GFAS )
:::::
GFAS

:
are the second major source, particularly during

::
in summer, while shipping (SHIP ) contributes

to high absorption levels along major routes, impacting coastal regions . Traffic-related
::::
SHIP

:::::::::::
significantly

::::::
impacts

:::::::
coastal

::::::
regions

:::
and

:::::
major

::::::::
shipping

::::::
routes.

:::::
TRAF

:
absorption is relatively low , with minor seasonal variability, and presents its major

contribution during
:::::::
peaking

::
in winter in central Europe. Lastly, other sources (OTHR ) have the lowest contribution

::::::
OTHR950

::::::
sources

:::::::::
contribute

::::::::
minimally

:
to total absorption levels in Europe with reduced

::::
with

::::
little seasonal variation.

Our study also recognizes the limitations of
:::
This

:::::
study

::::::::::::
acknowledges

:::::::::
limitations

::
in current models and emission inventories ,

which may contribute to
:::
that

:::
may

:::::
cause

:
discrepancies between observed and modeled data. For instance, the underestimation of

light absorption by OA could result
:::::::::::::
Underestimation

::
of

::::
OA

::::
light

:::::::::
absorption

:::::
could

::::
stem

:
from underpredicted biomass burning

or biofuel emissions, as well as uncertainties in particle size and mixing state (Huang et al., 2013). Additionally, the role of BrC955

may be underestimated in the study, as fossil fuel OA could also be light-absorbing (Lee et al., 2014). Future enhancements

should aim at refining emission inventoriesand improving the representation of ,
:::::::::

improving
:

BrC and SOA
::::::::::::
representation in

atmospheric models. Moreover, this study underscores the need to increase observational measurements of ,
::::
and

:::::::::
increasing

BrC light absorption across Europe, which could help further constrain the effect of various sources on OA
::::::::::::
measurements

:::::
across

::::::
Europe

::
to

:::::
better

::::::::
constrain

::::::
source

::::::
effects

::
on

::::
OA

:::::
optical

:
properties.960
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By establishing a link between laboratory measurements, field observations and modeling experiments, our study offers

insights that could improve the representation
:
to

:::::::
advance

::
in

:::
the

:::::::::::::
characterization

:
of OA optical properties in global atmospheric

models , thereby advancing our understanding of
:::::
models

::::
and

::::::
reduce

:::
the

::::::::::
uncertainties

::
in
:
aerosol-climate interactions and their

broader environmental implications.
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Supplementary Material

OA concentrations and source contribution at BCN and MSY sites using a local bottom-up emission inventory

::::::::::::::::
Supplement

:::
of

::::::::::::::::::::::::::
Characterization

:::
of

:::::::::::
Brown

::::::::::::
Carbon

:::::::::::::::::
absorption

::::
in

:::::::::::::
different

:::::::::::::::
European

:::::::::::::::::::::
environments

::::::::::::
through

:::::::::::
source

:::::::::::::::::::
contribution

::::::::::::
analysis5

S1
:::::::::
Flowchart

::
of

:::
the

::
k

:::::::::::
optimization

:::::::
process

:::
The

:::::::::::
optimization

:::::::
process

::::::::
described

::
in

:::::::
Section

:::
2.4

::
is
:::::::::

illustrated
::
in
::::

the
::::::::
flowchart

::::::
shown

::
in

::::::
Figure

:::
S1.

::::
The

:::::::::
procedure

:::::
starts

::::
with

:::
the

::::::
tagging

:::
of

:::
OA

:::
per

::::::
source

:::::::
derived

::::
from

:::::::::::
MONARCH

::::
runs,

::::::::
followed

:::
by

:::
the

:::::::::
application

:::
of

:
a
:::::
priori

::
k

:::::
values

::::::::
imposed

:::::
based

::
on

:::::::::::
Saleh (2020).

::::
The

:::::::::
subsequent

:::::
steps

::::::
include

::::::::::
calculating

::::::::
absorption

::::
and

::::::::::
determining

:
k

:::::
values

:::
for

::::
each

::::::
source

::::
with

:::
the

::::::
SLSQP

::::::::::
(Sequential

::::
Least

:::::::
Squares

::::::::::::
Programming)

::::::::
algorithm

::::
that

:::::::::
minimizes

:::
the

::::
error

::::
with

:::
the

:::::::
observed

::::::::::
absorption.

:::
The

:::::::
process10

::::::::
concludes

::::
with

:::
the

:::::::
resulting

:::::::::
optimized

:
k

:::::
values

::
at

:::
370

:::
nm

:::
for

::::
each

::::::::::
component

:::
and

:::
the

:::::::::
calculation

::
of
:::
the

::::
final

::::
OA

:::::::::
absorption.

:

1



OA mass tagged per source

Initial k values and range boundaries
for each source, as proposed by Saleh (2020)

Compute absorption
Mie code

Optimizing step with SLSQP
perturb k

re-compute absorption
Compare with observations

Optimized k?

Final k values per source

Compute absorption
Mie code

Final OA abs

yes

no

Figure S1.
::::
Steps

::
to

:::::
derive

::::::::
optimized

:::::::
imaginary

::::::::
refractive

::::
index

:
k

::
for

:::
total

::
or
::::::
tagged

:::
OA.

S2
:::::::::
Statistical

::::::
metrics

:::
The

:::::
model

::::::
results

::::::::
presented

::
in

::::::
Section

::
3
:::
are

::::::::
evaluated

::::
using

::::
five

::::::::
statistical

::::::
metrics:

::::::::::
Normalized

:::::
Mean

::::
Bias

:::::::
(NMB),

::::::::::
Normalized

:::::
Mean

::::
Error

:::::::
(NME),

::::::::
Pearson’s

:::::::::
correlation

:::::::::
coefficient

:::
(r),

:::::::
Fraction

::
of

:::::::::
Predictions

::::::
within

:
a
::::::
Factor

::
of

::::
Two

::::::
(FAC2)

::
of

:::::::::::
observations

:::
and

::::::::
Fractional

::::
Bias

:::::
(FB).

:::
We

:::::::
followed

:::
the

:::::::::::
performance

:::::::::
assessment

::::::::
approach

:::::::::::
recommended

:::
by

::::::::::::::::
Emery et al. (2017)

:::
for

::::::::::::
photochemical15

::::::
models,

::::::::::
particularly

:::
for

:::::::::
pollutants

::::
such

::
as

:::::::::
Elemental

::::::
Carbon

:::::
(EC)

:::
and

:::::::
Organic

:::::::
Carbon

:::::
(OC),

:::::::
focusing

:::
on

:::::::
metrics

::::::::
including

:::
FB,

:::::
NME,

::::
and

:::::
NMB.

::::::
These

:::::::::::::::
recommendations

:::
are

:::::
based

::
on

:::
the

::::::
“goal”

:::
and

::::::::
“criteria”

::::::::
proposed

:::
by

::::::::::::::::::::::
Boylan and Russell (2006)

:
,
:::::
where

:::
the

::::::
“goal”

:::::::
signifies

:::
the

::::
peak

:::::::::::
performance

::::::::
expected

::::
from

::
a

::::::
model,

:::
and

:::
the

::::::::
“criteria”

::::::::
represent

:
a
:::::

level
::
of

:::::::::::
performance

:::
that

::::::
should

::
be

:::::::::
achievable

:::
by

::::
most

:::::::
models.

:::
The

:::::::
metrics

:::
are

::::::
defined

::
in

:::::
Table

:::
S1.

:
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Table S1.
::::::::
Statistical

:::::
metrics

::::
used

:::
for

:::::
model

:::::::::
performance

::::::::
evaluation.

:::
m:

:::::
model,

::
o:

::::::::::
observations.

Metric Equation Goal Criteria
OC EC OC EC

Normalized mean bias (NMB)
∑

(mi−oi)∑
oi

× 100 <±15% <±20% <±50% <±40%

Normalized mean error (NME)
∑

|mi−oi|∑
oi

× 100 < 45% < 50% < 65% < 75%

Fractional bias (FB) 2
N

∑ (mi−oi)
(oi+oi)

<±30%a <±30%a <±60%a <±60%a

Factor two (FAC2) Fraction where 0.5<m/o < 2 – – ≥±50%b ≥±50%b

Pearson correlation coefficient (r)
∑

[(mi−m)×(oi−o)]√∑
(mi−m)2×

∑
(oi+o)2

– – – –

Bias
∑

(mi−oi)
N – – – –

Root mean square error (RMSE)
√

1
N

∑
(mi − oi)2 – – – –

a Recommended FB values for PM by Boylan and Russell (2006).
b Recommended metrics for air quality models by Chang and Hanna (2004) and Soni et al. (2021).

S3
:::::::::
Evaluation

:::
of

:::
OA

::::::::::::::
Concentrations

::::::
Across

:::::::
Europe20

:::::
Figure

:::
S2

::::::::
presents

::::::
scatter

::::
plots

::::::::::
comparing

:::::::
modeled

::::
and

::::::::
observed

::::
OA

::::::::::::
concentrations

:::
at

:::
the

:::
12

:::::::
stations.

::::
The

::::::::::
correlation

:::::::::
coefficients

:::
(r)

::::
vary

:::
by

::::
site,

:::::::
ranging

:::::
from

::::
0.21

::
at

:::::
MSY

:::
to

::::
0.77

::
at

:::::
PAY,

:::::::::
indicating

:::::::
different

::::::
levels

::
of

:::::::::
agreement

::::::::
between

::
the

::::::
model

:::
and

::::::::::::
observations.

::
At

:::
the

:::::
KRA

:::
and

:::::
DEM

:::::::
stations,

:::
the

::::::
model

:::::
tends

::
to

:::::::::::
overestimate

:::
OA

:::::::::::::
concentrations,

::
as

::::::::
indicated

::
by

:::::::
positive

::::::::
fractional

::::
bias

::::
(FB)

::::::
values

::
of

:::::
32.17

:::
and

::::::
34.57,

::::::::::
respectively.

::::::::::
Conversely,

::
at
:::
the

:::::
HEL

:::
and

:::::
MSY

:::::::
stations,

:::
the

::::::
model

::::::::::::
underestimates

:::
OA

:::::::::::::
concentrations,

::::
with

:::::::
negative

:::
FB

::::::
values

::
of

::::::
-19.31

:::
and

::::::
-37.90,

:::::::::::
respectively.

:::::::
Seasonal

::::::::
variations

:::
are

:::::::
evident25

::
in

::
the

::::::
scatter

:::::
plots.

::::::
Higher

::::::::::::
concentrations

:::
are

::::::::
observed

:::::
during

:::
the

::::
DJF

:::::
(blue)

::::
and

:::::
MAM

:::::::
(orange)

:::::::
seasons,

::::::::::
particularly

::
at

:::::
KRA

:::
and

::::
RIG,

:::::
while

:::::
lower

::::::::::::
concentrations

:::
are

::::
seen

::::::
during

:::
the

:::
JJA

::::::
(green)

::::
and

::::
SON

::::
(red)

::::::::
seasons.

::::
This

:::::::
seasonal

::::
trend

:::::::::
highlights

:::
the

:::::::::
importance

::
of

::::::::::
considering

::::::::
temporal

::::::::
variations

::
in

:::
OA

:::::::::
modeling.
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Figure S2.
:::::
Scatter

::::
plots

::::::::
comparing

:::::::
modeled

:::
and

:::::::
observed

::
OA

:::::::::::
concentrations

:::::
across

:::::
twelve

:::::::
different

:::::::
locations

:::::
(HYY,

::::
HEL,

:::::
KRA,

:::
SIR,

:::::
OPE,

::::
RIG,

::::
PAY,

:::
IPR,

:::::
MAR,

:::::
MSY,

:::::
BCN,

:::::
DEM).

::::
Each

::::
plot

::::::
includes

::::
data

::::
points

::::::::::
color-coded

::
by

::::::
season:

:::
DJF

:::::
(blue),

:::::
MAM

:::::::
(orange),

::::
JJA

::::::
(green),

:::
and

::::
SON

::::
(red).

::::
The

::::
plots

:::
also

::::::
display

:::
the

::::::::
correlation

:::::::::
coefficient

::
(r),

::::::::
fractional

:::
bias

:::::
(FB),

:::
and

:::
the

:::::
linear

::::::::
regression

::::::
equation

:::
(y)

:::
for

::::
each

::::::
location.

:::
The

::::::
dashed

:::
line

::::::::
represents

::
the

:::
1:1

::::
line,

:::::::
indicating

::::::
perfect

::::::::
agreement

::::::
between

:::::::
modeled

:::
and

:::::::
observed

:::::
values.

:::::::::::::
Complementary,

:::::
Table

:::
S2

::::::::::
summarizes

:::
the

::::::::
statistical

:::::::::
evaluation

::
of

:::
the

::
12

:::::::
stations

::::
(DJF

::::::::::::::::::::::::
December-January-February;

::::::
MAM

:::::::::::::::
March-April-May;

::::
JJA

:::::::::::::::
June-July-August;

:::::
SON

:::::::::::::::::::::::::::
September-October-November).

::
In

:::::::
general,

:::
the

:::::::::
“criteria”

:::
are

::::
met

::
in

:::::
most30

::::::
stations

::::
and

:::::::
seasons,

::::::::
although

:::::
some

::::
sites

::::
fall

::::
short

:::
of

:::
the

:::::
more

::::::::
stringent

::::::
“goal”.

::
A
::::

key
:::::
trend

::::::::
observed

::
is

::::
that

:::
the

::::::
model

:::::::
performs

:::::
most

:::::::
robustly

::::::
during

:::
the

:::::
spring

::::::
season

::::::::
(MAM),

::::
with

:::::
many

:::::::
stations

:::::::
reaching

:::
the

::::::
“goal”

:::
and

:::::::::
“criteria”.

::
In

::::::::
contrast,

::
the

:::::::
summer

:::::
(JJA)

:::
and

::::::
winter

:::::
(DJF)

:::::::
seasons

::::::
exhibit

::::::
greater

:::::::::
variability.

::::::
During

:::::
winter

::::::
(DJF),

::::::
several

:::::::
stations

:::::
show

::::::
strong

::::::::::
correlations,

::::
such

:::
as

:::::
HYY

::::::::
(r = 0.9),

:::
but

::::::::::::
discrepancies

::::
arise

::
in

:::::::
metrics

::::
such

::
as

:::::
FAC2

:::::
(e.g.,

:::::
HYY

::::
with

::
a
::::
low

:::::::::::::
FAC2 = 23.5),

:::::::::
indicating

:
a
::::::::

tendency
:::
to

::::::::::
overestimate

::::
OA

::::::::::::
concentrations

::::::
during

::::
this35
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::::::
period.

::::
This

::::::::::::
overestimation

::
is
:::::
likely

::::::
related

:::
to

:::
the

::::::::::::
representation

::
of

:::::::::
residential

:::::::::
emissions

::
in

:::
the

::::::
model,

:::::
which

::::
are

::::::::
dominant

:::::
during

:::
the

::::::
colder

:::::::
months.

:::
In

:::::::
contrast,

::::::
during

::::
the

:::::
spring

::::::
season

::::::::
(MAM)

:::::
shows

:::::::::
improved

:::::
model

::::::::::::
performance,

::::::::::
particularly

:
at
:::::::

stations
:::::
such

::
as

:::::
HEL,

:::::
were

::::
high

:::::
FAC2

:::::
value

:::::::
(93.6%)

::::
and

::::::
strong

:::::::::
correlation

::::::::
(r = 0.7)

:::::::
suggest

:
a
::::::

better
::::::
balance

::::::::
between

:::::::
emission

:::::::
sources

:::
and

:::::::::::
atmospheric

::::::::
processes

::::::
during

:::
this

::::::
period.

::::
Fire

:::::::::
emissions,

:::::
which

::::::::
increase

::
in

::::::::::
significance

::::::
during

::::::
spring,

:::
may

:::::::::
contribute

:::
to

::::::::
improved

::::::::
accuracy

:::::::::::::::::::::::::::::::::
(Urbieta et al., 2015; Turco et al., 2017).

:::::
Many

:::::::
stations

:::::
show

:::::
their

::::
best

:::::::::::
performance40

:::::
during

::::::
MAM,

::::::::
achieving

::::
low

:::
FB

:::
and

::::::
NME,

::::
such

::
as

::::
SIR,

::::::
which

:::::::::::
demonstrates

::::::::
consistent

::::::::
accuracy

:::::
across

:::::::
multiple

:::::::
metrics.

:

:::::::
Summer

:::::
(JJA)

:::
and

:::::::
autumn

::::::
(SON)

:::::::::
introduce

::::::
greater

:::::::::
variability

::
in
::::::

model
::::::::::::

performance.
:::::
Some

:::::::
stations,

:::::
such

::
as

:::::
KRA

:::
in

:::::
SON,

::::::
exhibit

:::
low

:::::::::::
correlations

::::::::
(r = 0.3),

:::
but

::::::
others

::::::::
maintain

::::
high

:::::
FAC2

::::::
values,

::::
like

::::
PAY

:::
in

:::
JJA

:::::::
(100%)

::::
and

::::
RIG

::
in

:::::
SON

::::::
(100%).

:::::
This

:::::::
suggests

::::
that,

:::::
while

:::
the

:::::
model

:::::::::
effectively

:::::::
captures

::::::
overall

::::::::::::
concentrations

:::
in

::::
some

:::::
cases,

::
it
:::::
faces

:::::::::
difficulties

::::
with

:::::::
temporal

:::::::::
dynamics,

::::::::::
particularly

:::
the

::::::::
biogenic

::::
SOA

:::::::::::
contributions

::::
that

:::::::
become

:::::
more

::::::::::
pronounced

::::::
during

:::
the

:::::::
warmer

:::::::
months.45

:::
The

:::::::::
challenges

::
of

:::::::::
modeling

:::::::
biogenic

:::::
SOA

:::::
during

::::
JJA

:::
are

::::::::::
particularly

::::::
evident

::
at
:::::::
stations

::::
such

:::
as

:::::
HYY

:::
and

:::::
MSY,

::::::
where

:::
the

:::::
model

::::::::::::
underestimates

:::
the

::::::::
observed

:::::
peaks

::
in

:::
OA

:::::::::::::
concentrations,

::::::
driven

::
by

:::::
SOA

::::::::
formation.

:::::::
Stations

::::
like

:::
SIR

::::
and

::::
OPE

:::::::
manage

::
to

::::
meet

:::::
NME

:::
and

:::::
NMB

::::::
targets

::
in

:::::
these

:::::::
seasons,

::::::
despite

:::::::::
challenges

::
in

::::
FB,

::
as

:::::::::
highlighted

::
in

::::
gray

::
in
:::::
Table

:::
S2.

:

::::
Data

:::::::::
availability

::::::
varies

:::::
across

:::::::
stations,

:::::
with

::::::
notable

::::
gaps

::
at
:::::
HEL

:::
and

:::::
MAR

::::::
during

::::
JJA

:::
and

:::::
SON,

::::::
which

:::::
limits

:::
the

::::::
ability

::
to

::::
fully

::::::
assess

:::::
model

:::::::::::
performance

::
at

:::::
these

::::::::
locations

:::
for

:::::
those

:::::::
periods.

:::::::
Overall,

:::
the

:::::::
analysis

::::::::
indicates

::::
that

:::::
while

:::
the

::::::
model50

:::::::
performs

::::
well

::::::
across

::::::::
seasons,

::::::::::
particularly

::
in

::::::
spring,

::
it
:::::

faces
:::::::::
challenges

::::::
during

::::::::
summer

:::
and

::::::
winter

:::
in

::::
fully

::::::::
capturing

::::
the

:::::::
complex

::::::::
processes

::::::
driving

:::
OA

:::::::::::::
concentrations.

:::::
These

:::::::::
limitations

:::
are

::::::::
especially

::::::
evident

::
in

::::::::
modeling

:::::::::
residential

::::::::
emissions

::::::
during

:::::
winter

:::
and

:::::
SOA

::::::::
formation

::
in
::::::::
summer.

Table S2.
:::::::
Seasonal

:::::::
statistical

:::::::::
evaluation

::
of

::::
OA

:::::::::::
concentrations.

:::::
Goal

::::::::::
achievement

:::::
(Gray)

::::
and

::::::
criteria

:::::::::
benchmarks

::::::
(Bold)

:::::
based

:::
on

::::::::::::::
Emery et al. (2017).

:::::
NMB:

:::::::::
Normalized

:::::
Mean

::::
Bias,

:::::
NME:

:::::::::
Normalized

:::::
Mean

::::
Error,

:::
and

:::::
FAC2

:::::::
expressed

::
as
::::::::::
percentages.

Metric r FAC2 FB NME NMB r FAC2 FB NME NMB r FAC2 FB NME NMB r FAC2 FB NME NMB
Season DJF DJF DJF DJF DJF MAM MAM MAM MAM MAM JJA JJA JJA JJA JJA SON SON SON SON SON
STN

HYY 0.94 23.53 84.43 146.11 146.11 0.64 79.17 -9.02 45.37 -8.63 0.84 73.56 -52.56 43.73 -41.62 0.83 72.13 -3.78 39.10 -3.71
HEL 0.65 66.10 45.89 70.61 59.55 0.72 93.59 -3.64 33.46 -3.58 nan nan nan nan nan nan nan nan nan nan
KRA 0.53 73.33 -26.97 44.80 -23.77 0.67 90.48 -20.53 32.72 -18.62 0.55 65.43 -55.38 44.73 -43.37 0.34 74.63 -32.54 41.06 -27.99
SIR 0.61 61.84 28.93 58.73 33.82 0.55 79.27 -3.06 37.00 -3.02 0.63 87.78 -12.93 38.48 -12.14 0.36 66.25 32.90 64.81 39.37
OPE 0.80 70.59 -4.48 45.92 -4.38 0.85 68.42 -52.85 43.28 -41.81 0.57 66.67 -51.30 43.48 -40.83 0.78 85.00 29.82 49.58 35.05
RIG 0.94 40.00 10.77 53.95 11.38 -0.06 71.43 -14.61 50.09 -13.62 0.77 75.00 -24.56 32.22 -21.88 0.61 100.00 3.16 26.98 3.21
PAY 0.84 76.47 -12.39 32.32 -11.67 0.09 85.71 -13.43 28.80 -12.58 0.86 100.00 -32.95 33.78 -28.29 0.51 87.50 -31.94 29.23 -27.54
IPR 0.62 61.54 -50.53 43.89 -40.34 0.33 49.32 17.31 70.19 18.95 0.26 75.28 17.77 45.24 19.50 0.52 71.43 21.84 52.85 24.51
MAR 0.61 80.77 -29.05 37.95 -25.36 0.49 77.78 38.48 63.81 47.64 0.48 96.00 15.29 33.37 16.56 nan nan nan nan nan
MSY 0.66 14.29 95.00 180.93 180.93 0.39 57.14 54.86 86.62 75.59 0.63 86.96 -31.59 29.38 -27.28 0.52 70.00 48.39 69.02 63.84
BCN 0.58 41.82 70.13 112.18 108.01 0.62 80.00 28.34 44.92 33.02 0.80 86.96 -37.33 32.21 -31.46 0.37 75.00 13.24 45.74 14.17
DEM 0.47 83.33 -0.40 36.28 -0.40 0.41 86.21 -38.31 35.59 -32.15 0.38 72.22 -50.43 42.66 -40.27 0.58 83.02 -32.00 30.10 -27.59

S4
:::
OA

:::::::::::::
concentrations

::::
and

::::::
source

:::::::::::
contribution

::
at

:::::
BCN

::::
and

:::::
MSY

::::
sites

:::::
using

:
a
:::::
local

:::::::::
bottom-up

::::::::
emission

:::::::::
inventory

Figure S3 shows the time series of OA concentrations and source contributions for BCN and MSY sites derived from a simula-55
tion of the MONARCH model using a local bottom-up emission inventory for Spain (HERMESV3_BU Guevara et al., 2020)

:::::::::::::::::::::::::::::::::
(HERMESV3_BU; Guevara et al., 2020). The simulation was conducted for the months of January and July with a spatial res-
olution of ∼ 5 km. Main

:::
The

::::
main

:
differences between HERMESv3_BU and CAMS-REG_v4.2 inventories are discussed in

Navarro-Barboza et al. (2024). In contrast to results using the CAMS inventory depicted in Figure 4
:
3, results with the HER-

MESv3_BU inventory closely align with observational data in BCN and MSY, particularly during winter. The comparison60
between the two inventories reveals marked differences in OA component contributions. For instance, with HERMESv3_BU,
the residential component is less dominant than with CAMS, and the traffic component becomes more significant. A similar
pattern is observed in MSY, where the CAMS inventory results tend to overestimate winter concentrations due to the resi-
dential component. These discrepancies highlight the existing constraints of European-scale emission inventories, even though

:::::::
although

:
they remain the most reliable information source at present.65
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(a) (b)

Figure S3. Daily average contributions of OA concentration in BCN (a) and MSY (b) for the year 2018, using the local bottom-up HER-
MESv3 emission inventory. Measurements are expressed in [µ gm−3], with each component distinguished by a specific color: Shipping
(SHIP) in purple, Fires (GFAS) in orange, Residential (RESI) in blue, Traffic (TRAF) in black, Other (OTHR) in brown, and Secondary OA
(SOA) in green. Observational data (OBS) are marked with red dots. Due to the limitations in simulation data availability, only the months
of January and July are depicted.

Seasonal Comparison of Modeled vs. Observed OA Concentrations Across Europe

Figure S2 presents scatter plots comparing modeled and observed OA concentrations across twelve stations. The correlation
coefficients (r)vary by site, ranging from 0.21 at MSY to 0.77 at PAY, indicating different levels of agreement between the
model and observations. At the KRA and DEM stations, the model tends to overestimate OA concentrations, as indicated by
positive fractional bias (FB) values of 32.17 and 34.57, respectively. Conversely, at the HEL and MSY stations, the model70
underestimates OA concentrations, with negative FB values of -19.31 and -37.90, respectively. Seasonal variations are evident
in the scatter plots. Higher concentrations are observed during the DJF (blue)

S5
:
k

::::::::::
optimization

:::::::
results

:::
The

::::::
results

:::
of

:::
the

:::::::::
performed

::
k

:::::::::::
optimization

::::::
process

::::
are

::::::::::
summarized

::
in
::::::

Table
:::
S3,

::::::
which

:::::::
presents

:::
the

:::::
mean

::::
and

::::::::
standard

:::::::
deviation

:::::
(std)

::
of

::::::::
obtained

:
k

:::::
values

::::::
across

:::::::
stations,

::::::::
classified

:::
by

::::::::::::
representative

:::::::::::
environments

:::::::::
(Regional

:
-
:::::
REG,

::::::::
Suburban

::
-75

::::
SUB,

::::::
Urban

:
-
:::::
URB;

:::
see

:::::
Table

::
1),

::::
and

::::::::::
optimization

:::::
cases

:
1
:::::::
through

:
4
::::::
(Table

::
3).

:::::
Each

::::
case

::::::::::::
corresponding

::
to

:::::
unique

:::::::::::
assumptions

::::::::
discussed

::
in

::::
Sect.

::::
2.5.

:::
The

:::::
mean

:
k

:::
and

:::
std

::::
were

::::::::
analyzed

::
for

:::
the

::::
five

::::::
sources

::
of

::::::
study:

::::::
GFAS,

:::::
RESI,

:::::
SHIP,

::::::
TRAF,

:::
and

:::::::
OTHR.

:::
The

::::
row

::::::
labeled

::::::
“ALL”

:::::::
indicates

:::
the

:::::::
average

::::::
values

::
for

:::
all

::::::
stations

:::
in

::::
Case

::
4.

::::::
Overall,

::::
for

::
all

:::::::
settings

::::
and

:::::
cases

:::::
(1-4),

:::
and

::::
also

:::
for

:::::
ALL,

::::
the

::::::
highest

::
k
::::
was

:::::::
obtained

:::
for

::::::
GFAS

::::::::
compared

:::
to

:::
the

:::::
other

::::::
sources

::::
with

:::
the

:::::::
highest

:
k

:::::::
observed

:::
for

:::::
URB

:::::
sites,

:::::::
whereas

::::::
similar

::
k

:::::
within

:::
the

:::
std

::::
were

::::::::
obtained

::
at

:::::
REG

:::
and

:::::
SUB

:::::
sites.80

::
In

::::
each

:::::::
setting,

:::::
small

:::::::::
differences

:::::
were

::::::::
observed

:::::::
between

:::::
Case

:
1
:::::::
(GFAS

:::::::
weakly)

:::
and

::::::
Cases

:
2
:

and MAM (orange)seasons,
particularly at KRA and RIG, while lower concentrations are seen during the JJA (green)

:
4
::::::
(GFAS

:::::::::::
moderately)

::::::::
indicating

::
a

:::::
robust

:::::::::
estimation

::
of

::::::
GFAS

::
k

:::::::::
in-between

:::::::
weakly

:::
and

::::::::::
moderately

::::::::
absorbing

::::
OA.

:::::::::::
Interestingly,

:::
in

::::
Case

::
3
::::::
(GFAS

::::::::
strongly)

::
k

::::::
reached

:::
the

::::::
lowest

:::::::
allowed

:::::
limit

:::
(cf.

:::::
Table

:::
3)

::::
with

::::
zero

:::
std

::::
(cf.

:::::
Table

:::
S3)

::::::::::
suggesting

:::
that

::::::
GFAS

::::
OA

::::::
cannot

::
be

::::::
treated

:::
as

:::::::
strongly

::::::::
absorbing.

:
85

::::
RESI

::::
OA

::::
were

:::::::::
considered

::
as

::::::
weakly

::::::::
absorbing

::::::
(Cases

:
1
:
and SON (red)seasons. This seasonal trend highlights the importance

of considering temporal variations in OA modeling
:
4)

::::
and

:::::::::
moderately

:::::::::
absorbing

::::::
(Cases

:
2
::::

and
:::
3).

::::::::
Similarly

::
to

::::::
GFAS,

::::::
higher

::::
RESI

::
k
::::
was

:::::::
obtained

:::
for

:::::
URB

::::
sites

::::
even

::
if
:::
for

::::
this

::::::
source

:::
the

:::::::
obtained

::
k

::::
were

:::::::::::
comparable,

:::::
within

:::
the

::::
std,

::::::
among

:::
the

:::::
three

:::::::::
considered

:::::::
settings.

::::
This

::::::::
similarity

:::::
could

:::
be

:::::::::
associated

::::
with

:::
the

:::
fact

::::
that

:::::
RESI

::::::::
emissions

:::
are

::::::
mostly

:::::
local,

::::
thus

::::::::
reducing

:::
the

:::::::::
differences

:::::::
between

:::
the

::::::
station

::::::::
settings.

:::::::::
Moreover,

:::
for

::::
each

::::::
setting

:::::
small

:::::::::
differences

:::::
were

::::::::
observed

:::
for

:::::
RESI

:
k

::::::
among

:::
the90

:
4
:::::::::
considered

::::::
Cases

:::::::::
suggesting

:
a
::::::
robust

:::::::::
estimation

::
of

:::
the

:::::
RESI

:
k

:::
that

:::
lied

::::::::::
in-between

::::::
weakly

::::
and

:::::::::
moderately

:::::::::
absorbing

::::
OA.

::::
Note

:::
that

:::
for

::::
both

::::::
GFAS

:::
and

:::::
RESI

:::
the

::::::::::
optimization

:::::::
process

::::::::
provided

:
k
:::::
values

::::::
closer

::
to

:::
the

:::::
upper

::::
limit

::
of

:::
the

::::::
weakly

::::::::
category

:::::
rather

::::
than

:::
the

:::::
upper

::::
limit

::
of

:::
the

:::::::
category

::::::::::
moderately.

:
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:::::::
Similarly

::
to
::::::
RESI,

:::::
SHIP

::::::::
emissions

::::
were

::::::::::
considered

::::::
weakly

::::::::
absorbing

::
in

:::::
Cases

::
1
:::
and

::
4,

::::
and

:::::::::
moderately

:::::::::
absorbing

::
in

:::::
Cases

:
2
:::
and

::
3.
:::::::
Overall,

:::
the

:::::::::::
optimization

::::::
process

::::::::
provided

:::::
rather

::::::
similar

:
k

:::::
among

:::
the

::::
four

:::::
Cases

::
at
:::::
URB

::::
sites

::::
with

:
k

:::::
values

:::
that

:::::
were95

:::::
higher

:::::::::
compared

::
to

::::
REG

::::
and

:::::
SUB.

:::
At

::::
URB

:::::
sites,

:::
the

:::::
SHIP

::
k

:::
lied

::::::::::
in-between

:::
the

::::::::
categories

:::::::
weakly

:::
and

::::::::::
moderately

::::
with

::
k

:::::
values

::::
that,

::
as

:::
for

:::::
GFAS

::::
and

:::::
RESI,

::::
were

::::::
closer

::
to

::
the

:::::
lower

:::::
limit

::
of

:::
the

:::::::
category

::::::::::
moderately.

::
At

:::::
SUB

::::
sites,

:::
the

:::::
SHIP

:
k

::::::
reached

::
the

::::::
lowest

:::::
limit

::::::
allowed

:::
for

:::
the

::::::::
category

:::::
weak

::::::
(0.005;

:::::
Cases

::
1

:::
and

:::
4)

:::
and

::::::::::
moderately

:::::
(0.02;

:::::
Cases

::
2

:::
and

::
3)
::::::::::

suggesting
::::
very

:::
low

:
k

:
of
:::::
SHIP

:::
for

::::
this

::::::
setting.

::
At

:::::
REG

::::
sites,

:::::
SHIP

::
k

:::
was

::::::
higher

::::
than

::
at

::::
SUB

::::
sites

::::
with

::::
low

::::::::
variability

::::::
among

:::::
Cases

::
1,
::
2
:::
and

::
4

:::
and

:::::
higher

::::::
values

:::
and

:::::
much

::::::
higher

:::
std

::
for

::::
case

::
3.

::::
Also

:::
for

:::::
REG

::::
sites

::
the

:::::::::::
optimization

::::::
process

:::::::
suggest

:::
that

:::::
SHIP

:::
OA

:::::::::
emissions100

::::
were

::::
more

:::::::
weakly

::::::::
absorbing

::::
than

::::::::::
moderately

::::::::
absorbing.

:

:::::
TRAF

::::::::
emissions

:::::
were

::::::
treated

::
as

::::
very

::::::
weakly

::::::::
absorbing

::
in

:::::
Cases

::
1,
::
2

:::
and

::
3

:::
and

::
as

::::::
weakly

:::::::::
absorbing

::
in

::::
Case

::
4.

:::::::::::
Interestingly,

::
the

:::::::
highest

:::::
TRAF

::
k
::::
were

::::::::
obtained

:::
for

::::
URB

::::
sites

::::::::
whereas

:::::
much

:::::
lower

:
k

:::
were

::::::::
obtained

::
at

::::
REG

::::
and

::::
SUB

:::::
sites.

::
At

:::::
URB

:::::
sites,

:::::
Cases

::
1,

::
2

:::
and

::
3
::::::::
provided

::
k

:::::
values

:::
in

:::
the

:::::
upper

:::::
range

:::
of

:::
the

::::
very

:::::::
weakly

:::::::
category

::::::
(0.04;

:::
cf.

:::::
Table

::
3)

:::::
with

::::
very

::::
low

:::
std

:::::::::
suggesting

:::
that

::::::
TRAF

::::::::
emissions

:::::
were

::::::
weakly

::::::::
absorbing

::::::
rather

::::
than

::::
very

::::::
weakly

:::::::::
absorbing.

::
In

::::
fact,

::::
Case

::
4
::::::::
provided

:
a
::::::
TRAF105

:
k
:::::
value

::
of

::::
0.06

:::
that

::::
lied

:::::::::
in-between

:::
the

:::::
lower

::::
and

:::::
upper

::::
limit

:::
of

::
the

::::::::
category

::::::
weakly

:::::::::
absorbing.

:::
At

::::
both

::::
SUB

::::
and

::::
REG

:::::
sites,

::
the

::::::::
obtained

::::::
TRAF

:
k

:::::
values

::::
were

:::::
much

:::::
lower

:::::::::
compared

::
to

::::
URB

:::::
sites.

::::
This

:::::
result

::
is

:::::::::
consistent

::::
with

:::::
recent

::::::::
evidence

:::
that

::::
OA

::::
from

:::::
traffic

::
in

:::::
urban

::::
sites

::::
can

::
be

:::
an

::::::::
important

::::::
source

::
of

::::::
brown

:::
OA

::::::::::::::::::
(e.g., Ho et al., 2023).

:::::::::
Moreover,

:::::
traffic

:::::::::
emissions

:::
are

:::
not

:::::::
expected

::
to

:::
be

::::::::
primarily

::::
local

::
at
:::::
REG

:::
and

:::::
SUB

:::::
sites,

::::
thus

:::::
likely

::::::::::
contributing

::
to

:::
the

::::::::
observed

:::::::
reduced

::::::
TRAF

:
k

:
in
:::::

these
::::
two

::::::
settings

:::
due

:::
to

::::::::::::::
physico-chemical

:::
OA

:::::::::
processes

::
as

:::::::
dilution

:::
and

:::::::::::::
photobleaching.

:
110

:::::
OTHR

:::::::::
emissions

::::
were

::::::
treated

::
as

::::
very

::::::
weakly

::::::::
absorbing

:::
for

::
all

:::
the

:::::::::
considered

:::::
cases

:::::
(1-4).

:::
The

:::::::::::
optimization

::::::
process

::::::::
provided

::::
very

:::
low

::
k

:::::
values

::::::::::
confirming

:::
the

::::
very

:::
low

:::::::::
absorption

:::::::::
properties

::
of

:::
OA

::::::::
particles

::::::
emitted

:::
by

::::::
OTHR

:::::::
sources.

::::
Note

::::
that

::::::
higher

:::::
OTHR

::
k
:::::
values

:::::
were

:::::::
obtained

::
at

::::
URB

::::
sites

:::::::::
compared

::
to

::::
REG

::::
and

::::
SUB

::::
sites

:::::
where

:::
the

::::::::
obtained

:
k
::::
were

::::
very

:::::
close

::
to

:::
the

:::::
lower

:
k
:::::
value

::
in

:::
the

:::::::
category

::::
very

::::::
weakly

::::
(cf.

::::
Table

:::
3).

:

Table S3.
:::::::
Statistical

:::::::
summary

::
of

::::
mean

:::
and

:::::::
standard

:::::::
deviation

::::
(std)

:::::
values

:::
for

::
the

::::::::::
optimization

::
of

::
the

::::::::
imaginary

::::::::
refractive

::::
index

:::::
across

:::
the

::::
three

:::::
settings

::::::
(REG,

::::
SUB,

:::::
URB)

:::
and

::
the

::::
four

::::
cases

::::
(Case

::
1,

::::
Case

::
2,

:::
Case

::
3,
::::
Case

::
4).

::::
Each

::::
case

:::::::::
corresponds

::
to

::::::
different

::::::::::
assumptions

::::::
detailed

:
in
:::::
Table

::
3,

:::::::
analyzed

::::
across

::::
five

:::
OA

::::::
sources:

:::::
GFAS,

:::::
RESI,

:::::
SHIP,

:::::
TRAF,

:::
and

::::::
OTHR.

:::
The

:::
row

::::::
labeled

:::::
“ALL”

::::::::
represents

:::
the

:::::::
averaged

:::::
values

::::
across

:::
all

::::::
stations

::
for

::::
Case

::
4.

GFAS RESI SHIP TRAF OTHR

::::::
Metric

:::::
mean

:::
std

:::::
mean

:::
std

:::::
mean

:::
std

:::::
mean

:::
std

:::::
mean

:::
std

::::::
Setting

::::
Case

:

REG
::::
Case

::
1

::::::
0.0619

::::::
0.0396

::::::
0.0458

::::::
0.0469

::::::
0.0196

::::::
0.0168

::::::
0.0093

::::::
0.0141

::::::
0.0015

::::::
0.0009

::::
Case

::
2

::::::
0.0506

::::::
0.0434

::::::
0.0482

::::::
0.0448

::::::
0.0210

::::::
0.0071

::::::
0.0070

::::::
0.0139

::::::
0.0018

::::::
0.0010

::::
Case

::
3

::::::
0.1241

::::::
0.0053

::::::
0.0476

::::::
0.0447

::::::
0.0527

::::::
0.0536

::::::
0.0068

::::::
0.0140

::::::
0.0014

::::::
0.0005

::::
Case

::
4

::::::
0.0615

::::::
0.0387

::::::
0.0451

::::::
0.0462

::::::
0.0182

::::::
0.0150

::::::
0.0122

::::::
0.0132

::::::
0.0014

::::::
0.0008

SUB
::::
Case

::
1

::::::
0.0409

::::::
0.0154

::::::
0.0409

::::::
0.0154

::::::
0.0049

::::::
0.0000

::::::
0.0011

::::::
0.0000

::::::
0.0014

::::::
0.0005

::::
Case

::
2

::::::
0.0403

::::::
0.0148

::::::
0.0403

::::::
0.0148

::::::
0.0191

::::::
0.0017

::::::
0.0011

::::::
0.0000

::::::
0.0013

::::::
0.0003

::::
Case

::
3

::::::
0.1219

::::::
0.0000

::::::
0.0395

::::::
0.0135

::::::
0.0181

::::::
0.0000

::::::
0.0011

::::::
0.0000

::::::
0.0011

::::::
0.0000

::::
Case

::
4

::::::
0.0398

::::::
0.0146

::::::
0.0398

::::::
0.0146

::::::
0.0049

::::::
0.0000

::::::
0.0049

::::::
0.0000

::::::
0.0012

::::::
0.0001

URB
::::
Case

::
1

::::::
0.0924

::::::
0.0354

::::::
0.0635

::::::
0.0535

::::::
0.0418

::::::
0.0481

::::::
0.0354

::::::
0.0000

::::::
0.0098

::::::
0.0109

::::
Case

::
2

::::::
0.0998

::::::
0.0238

::::::
0.0635

::::::
0.0534

::::::
0.0445

::::::
0.0456

::::::
0.0354

::::::
0.0000

::::::
0.0092

::::::
0.0102

::::
Case

::
3

::::::
0.1229

::::::
0.0017

::::::
0.0634

::::::
0.0535

::::::
0.0527

::::::
0.0599

::::::
0.0345

::::::
0.0015

::::::
0.0091

::::::
0.0110

::::
Case

::
4

::::::
0.0934

::::::
0.0291

::::::
0.0625

::::::
0.0551

::::::
0.0314

::::::
0.0458

::::::
0.0579

::::::
0.0078

::::::
0.0081

::::::
0.0105

::::
ALL

: ::::
Case

::
4

::::::
0.0640

::::::
0.0342

::::::
0.0481

::::::
0.0388

::::::
0.0182

::::::
0.0231

::::::
0.0218

::::::
0.0229

::::::
0.0030

::::::
0.0052

S6
:::::::::
Evaluation

:::
of

:::::::::
absorption

::::::
results

::::::::::
employing

::::::::
different

:::::::::
optimized

:
k

:::::
values115
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:::::
Figure

:::
S4

::::::
shows

:
a
::::::
scatter

::::
plot

::
of

:::
the

::::::::
observed

::::::
versus

:::::::
modeled

:::
OA

::::::::::
absorption

::
at

::::
each

:::::::::
monitoring

::::
site.

::::
The

::::
plot

::::
uses

::::::
results

::::
from

::::
Case

::
4

::::
(all)

:::
and

::::
Case

::
5
::::
(all),

::::::
where

:
k
::::::
values

::::
were

:::::::
obtained

:::::
using

:::
all

:::
the

:::::::::
monitoring

:::::::
stations

::::::::
combined.

:::
To

::::::::
calculate

::::
total

:::::::::
absorption,

::::
Case

::
4
::::
uses

:::::::::
individual

:
k
::::::
values

::::::
tailored

::
to

:::::::
specific

:::
OA

:::::::::::
components:

::::::
0.0571

:::
for

:::::
fires,

::::::
0.0403

::
for

::::::
RESI,

::::::
0.0571

:::
for

:::::
SHIP,

::::::
0.0049

:::
for

::::::
TRAF,

:::
and

::::::
0.0011

:::
for

::::::
OTHR.

::::::::::
Meanwhile,

:::::
Case

:
5
:::::::
applies

:
a
:::::
single

::
k
:::::
value

::
of

::::::
0.0187

:::::
across

:::
all

:::::::
sources.

::::
The

:::
key

::::::::
difference

::::::::
between

::
the

:::::
cases

::
is

:::
that

:::::
Case

:
4
:::::::
includes

::
a
:::::::
detailed

:::::
source

:::::::::::::
apportionment,

:::::::::
discerning

:::
five

:::::::
different

::::
OA

:::::::
sources,120

::::
while

:::::
Case

:
5
::::::::
considers

:::
the

::::
total

::::
OA

::::::
without

::::::
source

:::::::::::::
differentiation.

:::::::::::::
Complementary,

::::::
Figure

:::
S5

:::::
shows

::::::
similar

::::::
results

::
to

::::::
Figure

:::
S4,

:::
but

:::::
using

:
k

:::::
values

::::::::
optimized

:::
for

::::
each

:::::::::
individual

::::::::::
monitoring

:::
site

:::
(by

::::
stn).

::::
The

:::::::
statistics

::::
and

::::
time

:::::
series

:::
for

:::
the

:::::
latter

::::
case

::
are

:::::::::
presented

::
in

:::::
Table

::
S4

::::
and

:::::
Figure

:::
S6,

::::::::::
respectively.
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Figure S4. Scatter plots comparing modeled and
::::
Daily

::::
mean

:
observed

::::
versus

:::::::
modeled OA concentrations across twelve different locations

(HYY, HEL, KRA, SIR, OPE, RIG, PAY, IPR, MAR, MSY, BCN, DEM). Each plot includes data points color-coded by season: DJF (blue),
MAM

::::::::
absorption

::
for

::::
Case

::
4 (orange

::
all) , JJA

:::
and

::::
Case

:
5
:
(green

::
all)

:::::::
scenarios, and SON

:::
with

:::
the

::::::::
imaginary

:::::::
refractive

:::::
index (red

:
k)

:::::
values

:::::
derived

::::
from

::::::::
aggregated

::::
data

:::::
across

::
all

::::::::
monitoring

::::::
stations. The plots also display

::::
Each

::::
panel

::::::
includes

:
the correlation coefficient

:::::::::
coefficients

(r) ,
:::
and fractional bias (FB), and the linear regression equation (y) for each location. The dashed line represents the 1:1 line, indicating perfect

agreement between modeled and observed values.

Statistical metrics

Statistical metrics used for model performance evaluation. m: model, o: observations.125
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Statistical evaluation for all cases

Figure S5.
::::::
Similar

:
to
::::::

Figure
::
S4,

:::
but

::::
with

:
k
::::::
derived

::
for

::::
each

::::::
station.
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Table S4. Statistical evaluation of absorption results for Cases 1 to 5.
:
4

:::
and

:
5
::
by

:::
stn.

:::::
Cases Case 4 Case 5

::::::
Metric

:
r

::
FB

: :::::
FAC2

:
r

::
FB

: :::::
FAC2

:::::
HYY

::::
0.34

::::
16.65

: :::::
63.96

::::
0.28

::::
-6.66

: :::::
58.66

::::
HEL

: ::::
0.54

::::
11.56

: :::::
74.79

::::
0.48

::::
20.22

: :::::
78.08

::::
KRA

: ::::
0.57

::::::
-102.97

: :::::
48.92

::::
0.51

::::::
-103.73

: :::::
43.17

:::
SIR

: ::::
0.74

:::::
-17.59

: :::::
71.07

::::
0.62

:::::
-44.08

: :::::
56.75

::::
OPE

::::
0.72

::::
11.80

: :::::
80.58

::::
0.41

:::::
-27.71

: :::::
56.31

::::
RIG

::::
0.48

:::::
-35.53

: :::::
67.04

::::
0.48

:::::
-36.03

: :::::
67.32

::::
PAY

::::
0.63

::::
-9.77

: :::::
68.77

::::
0.33

::::
19.11

: :::::
44.11

:::
IPR

: ::::
0.72

:::::
-28.29

: :::::
54.40

::::
0.65

:::::
-65.44

: :::::
43.13

:::::
MAR

::::
0.55

:::::
-15.10

: :::::
79.32

::::
0.43

:::::
-18.21

: :::::
65.16

:::::
MSY

::::
0.54

:::::
-11.64

: :::::
78.63

::::
0.52

:::::
-29.95

: :::::
80.34

::::
BCN

: ::::
0.57

::::
29.28

: :::::
77.94

::::
0.57

::::
26.56

: :::::
80.88

:::::
DEM

::::
0.70

:::::
-24.71

: :::::
84.45

::::
0.49

:::::
-60.60

: :::::
62.54
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Figure S6.
:::
OA

::::
light

::::::::
absorption

::::
(370

:::
nm)

::::
time

:::::
series

::
for

::
12

:::::
sites.

:::::::
Observed

:::::
(Obs)

::
in

::
red

:::
and

:::::::
modeled

::::::::
absorption

:::
for

::::
Case

:
4
:::
(by

::::
stn)

::::
(blue

:::
line)

:::
and

::::
Case

::
5

::
(by

::::
stn)

:::::
(green

::::
line).

:
k

::::
values

::::::
derived

::
at

:::
eact

::::::
station.
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