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Abstract. Breeding climate-robust crops is one of the needed pathways for adaptation to the changing climate. To speed up the

breeding process, it is important to understand how plants react to extreme weather events such as drought or waterlogging in their

production environment, i.e. under field conditions in real soils. Whereas a number of techniques exist for above-ground field

phenotyping, simultaneous non-invasive belowground phenotyping remains difficult. In this paper, we present the first dataset of5

the new HYDRAS open access field phenotyping infrastructure, bringing electrical resistivity tomography, alongside drone

imagery and environmental monitoring, to a technology readiness level closer to what breeders and researchers need. This paper

investigates whether electrical resistivity tomography (ERT) provides sufficient precision and accuracy to distinguish between

belowground plant traits of different genotypes of the same crop species. The proof-of-concept experiment was conducted

in 2023 with three distinct soybean genotypes known for their contrasting reactions to drought stress. We illustrate how this10

new infrastructure addresses the issues of depth resolution, automated data processing, and phenotyping indicator extraction.

The work shows that electrical resistivity tomography is ready to complement drone-based field phenotyping techniques to

accomplish whole plant high-throughput field phenotyping.

1 Introduction

Alongside actions to mitigate climate change, the agricultural sector needs solutions to adapt to the increased occurrence of15

weather extremes such as drought or waterlogging. In this sense, breeding climate-robust crops is one of the needed pathways

for adaptation to climate change (Snowdon et al., 2020). In a typical breeding program, the selection of a new variety ready for

the market takes more than a decade (Voss-Fels et al., 2019). To speed up this process and breed climate-robust crops more

efficiently, it is important to understand how plants respond to extreme weather events such as drought or waterlogging, and to

identify which traits should be targeted in selection programs. Recent advances in phenotyping have resulted in powerful tools20

to screen plant traits in large collections of plants in different settings and under differing
::::::
various conditions.

While methods for evaluation under controlled conditions in growth chambers or greenhouses remain important in plant

phenotyping, a weak correlation has often been reported between responses in a controlled environment and a production
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environment (Langstroff et al., 2021). Consequently, on-field evaluation in combination with remote sensing techniques

is increasingly being deployed (Araus and Cairns, 2014). Nevertheless, few options are currently available to phenotype25

belowground in field conditions
::
in

::::::::::
undisturbed

:::
and

:::::
living

:::::
soils. Most techniques for soil-root investigation in the field are

invasive and destructive (Das et al., 2015; Trachsel et al., 2010). These techniques cannot monitor a given plant, or plot,

throughout its entire growth period. Installation of minirhizotron tubes with cameras offers a less invasive approach (Svane et al.,

2019), but delivers only local information on the (partly disturbed) zone surrounding the tubes (Rajurkar et al., 2022; Vamerali

et al., 2011).
::::::::::
Geophysical

:::::::
imaging

:::::::::
techniques

:::::
allow

:::::::::
monitoring

:
a
::::::
bigger

:::
soil

:::::::
volume

::
in

:
a
:::::::::
minimally

:::::::
invasive

::::
way.

:
30

Electrical Resisitivity Tomography (ERT) is a
::::
(also

:::::::
denoted

::
as

::::::::
Electrical

::::::::
resistivity

:::::::
imaging

:::::
(ERI)

::
or

:::::
direct

:::::::
current

::::::::
resistivity

::::::
(DCR))

::
is
::
a
:::::::::
commonly

::::
used

:::::::::::
geophysical technique injecting current in a pair of electrodes and measuring the voltage in

another pair. By repeating this procedure ,
::::::::
obtaining

:::
the

::::::::
electrical

::::::::
resistance

:::
of

::
the

:::::
bulk

:::
soil

::
in

:::
the

:::::::::::
measurement

:::::::
volume.

::::
The

:::::::::::
measurement

::::::
volume

:::::
varies

::::
with

:::
the

:::::::
distance

:::::::
between

:::
the

::::
four

:::::::::
electrodes.

::::
This

:::::::::
procedure

::
is

:::::::
repeated over many combinations

of electrodes along a transect , one can reconstruct the
::
or

:
a
::::
grid

::
or

:::::
even

:::::
using

:::::::
borehole

::::::::::
electrodes.

::::
This

::::::
results

::
in

::
a

:::::
series35

::
of

:::::::
apparent

::::::::
electrical

::::::::::
resistivities

::
of

::::::::
different

:::::::
volumes

:::
of

::::
bulk

::::
soil.

::::
The

::::
data

::
set

::
is
:::

of
::::::::
measured

:::::::::
resistances

::
is
:::::

then
:::::::
inverted

::
to

:::::::::
reconstruct

::
a

:::::::
plausible

:
distribution of electrical resistivity in the subsurface below the transect .

::
or

::::
grid

::::
(i.e.

::
to

:::::
create

:::
an

:::::
image

::
of

:::
the

:::::::::::
subsurface).

:::::
Since

:::
the

::::::::
inversion

::::::::
problem

::
is

::::::::
ill-posed,

:::
the

::::::::
obtained

::::::::::
distribution

::
of

::::::::
electrical

:::::::::
resistivity

::::::
should

::::::
always

::
be

:::::::::
considered

::
as

::
an

:::::::::
estimation

::
to

::::::
which

:::::::::
uncertainty

::
is

:::::::::
associated.

::::
The

:::::::
electrical

:::::::::
resistivity

::
of

::::
bulk

:::
soil

::
is

:::::::::
determined

:::
by

:::
soil

::::::::
variables

::::
(e.g.

::::
soil

::::::::
moisture,

:::::::::::
temperature,

:::::::
salinity,

::::
. . . )

:::
and

:::::::::
properties

:::::
(clay

:::::::
content,

::::::::
porosity,

:::
. . . )

::::::
which

::::
may

:::::::
change40

::::::::::::
simultaneously.

:::
To

::::::::
monitor

:
a
:::::::

variable
:::

of
:::::::
interest

::::
such

:::
as

:::
soil

:::::::::
moisture,

:::::
other

::::::::::::::::
variables/properties

:::
are

::::::::
typically

:::::::::
measured

::::
with

::::::::::
independent

::::::::
methods,

::
so

::::
that

::::
their

::::::
effect

::
on

:::::::::
resistivity

:::
can

:::
be

::::::::
predicted

:::
and

:::::::::
eliminated

:::::
using

::::::::::
calibration

:::::::::::
relationships.

:::
The

:::::::::::
experimental

:::::
setup

::::
can

::::
also

::::
keep

:::::
other

::::::::
variables

::
of

:::::::
interest

:::::::
constant

::
or

::::
one

::::
can

::::::
neglect

::::
their

::::::::
influence

::
if
:::

the
::::::

effect
::
is

::::
much

:::::::
smaller

::::
than

:::
the

:::
one

:::
of

:::
the

::::::
variable

:::
of

:::::::
interest.

::::::::
Timelapse

:::::
ERT

:::::
allows

:::::::::
removing

::
the

::::::
effect

::
of

:::::::
constant

:::::::::
properties

::
of

:::
the

:::::::::
subsurface,

:::::
since

::::
only

:::::::
changes

::
in

::::::::
electrical

::::::::
resistivity

::::
over

::::
time

::::
can

::
be

::::::::::
considered.

:::::
More

::::::::::
information

::
on

:::
the

:::::::::
theoretical

:::::
basis45

::
of

::::
ERT,

::::::::
inversion

:::
and

:::
its

::::::::::
applications

:::
can

:::
be

:::::
found

::
in

::::::::::::::::::::
Binley and Slater (2020)

:
.

ERT integrates the entire soil volume under a plant, row, or plot and is sensitive to changes in soil moisture**. **
:::::::
moisture.

This makes the technique suitable to monitor the impact of crop root system on soil water depletion, which is related to static or

dynamic root system traits (McGrail et al., 2020; Atkinson et al., 2019; Ehosioke et al., 2020).Wasson et al. (2020) highlighted

the potential of non-invasive root phenotyping techniques and indicated several advantages
::::
This

::::::
makes

:::
the

::::::::
technique

:::::::
suitable50

::
to

:::::::
monitor

:::
the

::::::
impact

::
of

:::::
crop

:::
root

:::::::
system

::
on

::::
soil

:::::
water

:::::::::
depletion,

:::::
which

::
is
:::::::

related
::
to

:::::
static

::
or

::::::::
dynamic

::::
root

::::::
system

:::::
traits

:::::::::::::::::::::::::::::::::::::::::::::::::::::
(McGrail et al., 2020; Atkinson et al., 2019; Ehosioke et al., 2020). The most important advantage is that ERT does not disturb

root system structures, architecture, and functions within the rhizosphere and bulk soil environments, so that the rhizosphere can

be monitored as a ‘
:
’holistic phenotype’. This could lead as far as the discovery of new traits to be targetted by breeders .

ERT (also denoted as Electrical resistivity imaging (ERI) or direct current resistivity (DCR))
:::
and

::
is

:::::::
essential

:::
for

::::::::::
researchers55

::::::::::
investigating

:::
the

::::::::::
functioning

::
of

:::
the

::::::::
soil-plant

:::::::
system.

::::
ERT has been used before to assess static and dynamics properties of the

root zone in the context of agronomical, ecological and engineering studies. In the agronomic context, Michot et al. (2003) were

amongst the first to use ERT to observe root water uptake patterns of maize in the field. In the following years, the potential of
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ERT to monitor soil water depletion in the root zone was further demonstrated by various authors on a range of crops, soils, and

climates (amongst others by Amato et al. (2009), Srayeddin and Doussan (2009), Cassiani et al. (2012), Garré et al. (2013),60

Blanchy et al. (2020c), . . . ). Whalley et al. (2017) were the first to bring the technique explicitly to the breedo,g
:::::::
breeding context

by testing it to discriminate the soil moisture profile under 13 wheat varieties during 3 years. Amongst the tested techniques,

ERT provided the best discrimination among wheat lines. They found inter-genotype differences in depth of water uptake and

in the extent of surface drying, paving the way for ERT as a technique for belowground plant phenotyping complementing

aboveground High-Throughput Field Phenotyping (HTFP).65

Despite its clear potential, past studies highlighted a few remaining challenges to use
::
in

:::::
using

:
ERT as a fully-fledged

belowground phenotyping technique. In agronomic applications, ERT is mostly implemented as a surface transect or grid. To

maximize the
::::::::
maximise resolution in the root zone, small electrode spacings (0.2-0.5 m) need to

::::::
should be adopted. Nevertheless,

the resolution and sensitivity of the imaging declines with depth. Achieving
::::::::
Obtaining

:
high spatial resolution in the entire

:::::::::
throughout

:::
the root zone while attaining sufficient depth penetration is a significant challenge (Zhao et al., 2019). The resolution70

of ERT is typically limited to the decimeter range in the field, especially when targeting (the effects of) roots at greater depths.

The effect of small uncertainties in electrode positions quickly inflates when electrode spacings are reduced and when surface

electrodes are combined with buried or borehole electrodes
::::::::::::::::::::::::::::::::::
(Wilkinson et al., 2008; Ochs et al., 2022). In addition, the choice

of electrode configuration significantly influences the quality of ERT data and the sensitivity distribution (Garre et al., 2021).

Optimizing electrode layouts and measurement arrays for specific phenotyping objectives (balancing space and time resolution)75

is therefore key to get robust and accurate phenotyping datasets (Uhlemann et al., 2018).

Another challenge is that the apparent resistivity measurements need to be converted to resistivity distributions by an inversion

process if spatially explicit information is required. The classical geophysical inversion is ill-posed and choosing the most

appropriate inversion parameters still requires significant expert knowledge. In addition, the quality of the inversion results is

sensitive to several factors, which may sometimes change during the growing season (e.g. changing contact resistances due80

to drought).Developing robust inversion algorithms and improving the
::::
with

::::
clear

::::::::::
descriptions

::
of

::::
used

::::::::::
approaches

:::
and

:::::::
applied

:::::::::::
regularization

::::::::
strengths

:::::::
remains

:::::::::
important.

::::::::
Improving

:::
the

:::::::::::
transparancy

::::
and accuracy of the inversion process is necessary to

develop standardized processing pipelines and resulting indicators for breeders. This might come from different
::::::::
Different

types of inversion strategies
:::::
should

:::
be

:::::::
explored, such as joint or coupled inversion, machine learning, or other types of hybrid

algorithms
:::::::::::::::::::::::::
(Wagner and Uhlemann, 2021). As a geophysical inversion is ill-posed, ERT data inversion results are inevitably85

associated with uncertainties. Understanding and quantifying these uncertainties (Tso et al., 2021; Linde et al., 2017) and

developing strategies to manage and communicate them are important for
:::
the reliable interpretation of resistivity distributions

and derived phenotyping indicators.

Finally, establishing standardized (meta-)data formats, procedures for ERT measurement for phenotyping and calibration

and data processing is crucial for ensuring consistency, comparability, and interoperability of data across different studies and90

locations. Currently, typically very little information about the exact settings of the measurement device, electrode array and

data processing is shared in research publications. Some initiatives, such as REDA try to address this, but are currently not

widely adopted. Well-documented, open access ERT datasets for agriculture, and especially phenotyping are rare (CAGS).
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There are some efforts for unified data models in the phenotyping community (e.g. MIAPPE), environmental monitoring (e.g

:::
e.g. eLTER, ENVRI-FAIR, Wohner et al. (2022)) and in geoscience (e.g. ODM2, ODMX), but those remain limited to certain95

subcommunities or projects. In addition, there is no clear, broadly accepted standard for the ERT data storage, processing and

sharing in the framework of belowground phenotyping. This hampers the wide use and application of the technique and/or

resulting data sets.

HYDRAS (HYdrology Drones and RAinout Shelter) is an open access field phenotyping infrastructure, located nearby Ghent

in Belgium. It was designed to address these challenges and bring electrical resistivity tomography, alongside drone imagery and100

environmental monitoring, to a technology readiness level closer to what breeders and researchers
::
of

:::
the

::::::::::::::::::
soil-plant-atmosphere

::::::
system need. The objective of this research paper is to showcase how this innovative infrastructure addresses the

::::
work

::::
was

::
to

:::::::::
investigate

:::::::
whether

:::::::
electrical

:::::::::
resistivity

::::::::::
tomography

::::::
(ERT)

:::::::
provides

::::::::
sufficient

::::::::
precision

:::
and

::::::::
accuracy

::
to

:::::::::
distinguish

::::::::
between

:::::::::::
belowground

::::
plant

:::::
traits

::
of

:::::::
different

:::::::::
genotypes

::
of

:::
the

::::
same

::::
crop

:::::::
species.

:::
We

:::::::
address

:::
the issues of depth resolution, automated

data processingup till
:
, phenotyping indicator extraction , and open, interoperable data sets. Using the data of a proof-of-concept105

(POC) experiment conducted in 2023, we illustrate steps towards addressing these challenges and highlight potential further

developments.

2 Methodology

The HYDRAS open field phenotyping infrastructure comprises fields with mobile rain-out
::::::
rainout shelters to generate precise

drought periods and neighbouring control fields. Regular drone flights with RGB and multispectral cameras generate high-110

throughput phenotyping indicators characterizing the above-ground part of the plant at key phenological stages. Continuous

electrical resistivity tomography (ERT) monitoring provides indicators representing the plant below the ground. Measurement

methods are calibrated and validated with independent soil and plant sensors. In this work, we present the results of the

belowground phenotyping activities during the proof-of-concept (POC) experiment conducted in 2023 with three distinct

soybean genotypes known for their contrasting reactions to drought stress: Glycine max (L.) Merr. cv. Lenka, Glycine max (L.)115

Merr. cv. Hermes and Glycine max (L.) Merr. cv. Pro-1. The Lenka genotype is known
:
to
:
be more resistant to drought thanks to

the slow canopy drought trait (Ye et al., 2019). Pro-1 en
:::
and

:
Hermes do not have this trait

:
, but the Pro-1 genotype has a more

compact habitus that can potentially make it more drought tolerant.

2.1 Site description

HYDRAS is located in Melle, Belgium (50.99281N, 3.78602E) on a sandy soil classified as a Eutric Stagnic Glossic Retisol120

according the WRB (2022) or Sbc according to the Belgian soil classification system. Each drought and control block consists

of three fields undergoing a 3-year crop rotation, with 6 blocks in total (see Figure 1). The size of each field is 30 m x 10 m.

The drought blocks have an additional parking for the shelters, which is not used for experiments. 2023 was the first year of

operation of the infrastructure. Two weather stations are present: one underneath a shelter and one in open air. HYDRAS is

equipped with a calibration pit. In this pit, soil moisture, soil temperature and electrical resistivity sensors monitor the soil status125
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continuously in each horizon (see below for details). This allows us to establish a robust field-specific pedophysical relationship

and
::
by

:::::::::::
curve-fitting

::
to

:::
the

::::
soil

:::::::::::::::
moisture-electrical

:::::::::::
conductivity

::::
data

::::
from

:::
the

:::
pit.

::::
The

:::
pit

::::
also provide continuous validation

data characterizing the field status. In addition, soil moisture and water potential sensors are installed at
:::
near

:
the soil surface in

the experimental fields to validate the ERT measurements during the growing season.

Figure 1. Lay-out of the HYDRAS field phenotyping infrastructure during the POC2023 experiment. The control and drought field equipped

with ERT in 2023 are indicated in shaded green. Black lines indicate the location of an ERT transect constituted of surface electrodes and

electrodes buried at 0.5 m depth. The polygons inside the fields represent the plots sown with soybean.

2.2 Data acquisition130

2.2.1 Electrical resistivity tomography

In HYDRAS, Electrical Resistivity Tomography (ERT) is used to identify differences in root system functioning of a panel

of plant genotypes by monitoring the impact of each genotype on soil water depletion patterns. Dryer soil , where roots

are extracting water , has a larger resistivity (lower electrical conductivity) than wetter soil around the root zone.
:::
We

::::
start

::
the

::::::::
growing

::::::
season

::::
with

:::::::::::
well-watered

::::
soil

::
all

:::::
along

::::
the

::::
ERT

:::::::
transect.

::::
The

::::::::
electrical

:::::::::
resistivity

::
of

:::
the

::::
soil

::::::::
increases

:::
(or

:::
the135
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::::::::::
conductivity

:::::::::
decreases)

:::::
where

:::::
water

:::::::::
disappears

:::::::
through

::::
root

:::::
water

::::::
uptake,

:::::::
amongst

::::::
others.

:::
In

:::
the

::::::::
electrical

::::::::
resistivity

::::::
profile

:::
this

::::::
appears

:::
as

:
a
:::::
series

::
of

::::
root

:::::
water

:::::
uptake

:::::
bulbs

::
or

::
as

::
a
:::::
drying

:::::
front

:::::
along

:::
the

::::::
transect

::
if

:::
the

::::
plant

:::::
rows

::
are

:::::
close

::
to

::::
each

:::::
other.

::::
Upon

::
a
::
or

::::::::
irrigation

:::::
event,

::::
new

:::::
water

::::::::
infiltrates

::
in

:::
the

::::::
profile,

::::::::
affecting

:::
the

::::::
drying

:::::::
patterns.

::::
The

:::
root

:::::
water

::::::
uptake

::
is

::::::::
therefore

::::
most

::::::
visible

::
in

:::
the

::::::::
timelapse

::::
ERT

::::
data

::::
over

::
a
:::
dry

::::::
period.

::::
The

:::::
effect

::
of

:::::::::::
root-induced

:::
soil

::::::::
moisture

:::::::
changes

::
is

::::::::
generally

:::::
much

:::::
larger

::::
than

:::::
other,

:::::
direct

:::::
effects

:::
of

:::
the

:::::::
growing

:::
root

:::::::
biomass

:::::::::::::::::::
(Ehosioke et al., 2020)

:
.140

ERT quantifies the bulk electrical resistivity of the soil between a series of electrodes. The bulk electrical resistivity corresponds

to the combined resistivity of soil particles, pore water and air. A basic measurement system consists of four electrodes (A, B,

M, N), often referred to as a “quadrupole”
::::::::::
’quadrupole’. A direct current of known intensity (I) is sent between electrodes A

and B, while a potential difference (V ) is measured between electrodes M and N. The resistivity meter switches the polarity of

the current using a square wave to avoid polarisation of the injection electrodes. It then computes a transfer resistance (R, Ohm)145

for each combination of four electrodes, based on Ohm’s law R = V/I. Based on the distances between the four electrodes, a

geometric factor K can be computed to transform this transfer resistance into a bulk apparent electrical resistivity (ρa, Ohm.m):

ρa =K ×R. This resistivity is “apparent”
::::::::
’apparent’ because it represents the resistivity of a homogeneous isotropic ground

with the same transfer resistance. Electrical conductivity (EC, mS/m) is the inverse of the resistivity.

During
:::
For

:
the POC experiment, we

::::
have

:::::
sown

:::
the

:::::
three

:::::::
soybean

::::::::
genotypes

:::
on

::::::::::
2023-05-24

:::::
(more

::::::::::
information

:::
on

::::::
timing150

::
of

:::::::
different

:::::::::
agronomic

:::
and

:::::::::::
experimental

::::::
events,

:::
see

:::::::::
Appendix

:::
A).

:::
We

::::
then

:
equipped one field in the control block and one in

the drought block with three ERT transects crossing the soybean genotype plots (the green shaded fields in Figure ??
:
1). Each

transect was 26.4 m long (excluding the borders of the field) and consisted of a surface cable and a cable buried at 0.50 m depth.

The buried cable increases the resolution in the bottom part of the root zone. The surface electrode spacing was 0.30 m, whereas

the electrode spacing along the buried cable was 0.60 m (see Figure 2a and b). This resulted in a total of 426 electrodes per field155

connected to the ERT base unit. The surface electrodes had a diameter of 0.01 m and a length of 0.1 m and were connected to

the multicore cables. The cable take-outs of the buried cables served directly as electrodes. In the HYDRAS installation, the

buried cables stay in place permanently, since they are installed under the plough depth. The surface cables are put in place after

sowing, stay there the entire growth period and are removed at harvest.

We performed the ERT measurements with a custom-made, single channel, multi-electrode resistivity meter developed160

::::::::::
autonomous

::::::::
resistivity

::::::
system

:::::::::
developed

:::
and

::::
sold

:
by Subsurface Insights (Hannover

:::::::
Hanover, NH, United States) and Metinco

(Wapenveld, The Netherlands). One system
:::::
These

:::::::
systems can support thousands of electrodesin groups of 32. The system

is .
::::
The

::::
two

::::::
systems

::::::::
installed

::
in

:::::::::
HYDRAS

::::
have

::::
420

::::::::
electrodes

:::::
each.

:::::
These

:::::::
systems

:::
are

::::::::::
specifically

:::::::
designed

:::
for

::::::::::
unattended

::::::::
long-term

:::::::::
monitoring

::::::
efforts

:::
and

:::::
apart

::::
from

:::::::
needing

:::::::
external

:::::
power

:::
are

::::
fully

:
self-contained: it has an .

:::
An

:
internal single board

computer which controls the data acquisition and communicates with a cloud server for data storage and further processing.165

:::::
Users

:::
can

::::::
control

::::::::::
acquisition

:::
and

::::::
access

::::::::
collected

::::
data

:::::::
through

:
a
::::
web

::::::::
interface

:::
and

::
a
::::::::
software

::::
API.

:
The system can inject

currents up to 12
:::
120

:
mA or, alternatively, apply a fixed transmitter (Tx

:::
Tx, between electrodes A and B) voltage between 0

and 150 V. In the POC experiment, we applied a Tx voltage of 20 V. This Tx voltage was found adequate to have a good

signal to noise
::::::::::::
signal-to-noise ratio for our electrode spacing and soil type. The measurement sequence for the POC experiment

contained dipole-dipole and gradient quadrupoles on the same line and between surface and buried lines (full sequence170
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Figure 2. a) Top view scheme of the ERT equipped fields in HYDRAS during the POC2023 experiment. Colours represent genotypes. Small

dots represent electrodes of the three ERT transects: TA, TB and TC; (b) Side view scheme of the ERT equipped fields
:::::::::
highlighting

:::::::
electrode

::::::::
numbering; (c) Calibration pit with sensor, electrode locations and soil profile.

available as appendix). We collected reciprocals of all quadrupoles for error assessment. One ERT measurement sequence of

2118 quadrupoles took about 1.5 h and was repeated continuously from 2023-06-21 (just after sowing) to 2023-09-30 (just

before harvest).
::::
There

::
is

::
an

:::::::
obvious

::::::::
trade-off

:::::::
between

:::::::::
acquisition

::::::
(slower

:::
for

:::::
single

:::::::
channel

::::
than

:::
for

:::::::::::
multi-channel

::::::
device)

::::
and

:::::::::
instrument

::::
price

::::::::
(cheaper

:::
for

:::::
single

:::::::
channel

::::
than

:::
for

:::::::::::
multi-channel

::::::::
devices).

::::
The

:::::::
cheaper

:::::::::
instrument

:::::
price

::
of

:::
the

:::
SSI

::::::
single

::::::
channel

::::::
device

::::::
allows

::
for

::::::::
multiple

::::::
devices

::
in

:::
the

::::
field

:::
and

::::::::::::
simultaneous

:::
data

::::::::::
acquisition

::
of

:::::::
multiple

:::::
fields.

:
175

As Figure 2a shows, we adopted two types of plant row orientation in this POC experiment (along and perpendicular to the

ERT transects) to assess whether this orientation influences the measurements. The orientation did not affect the ERT-derived

indicators considerably, confirming that the 2.5D assumption (homogeneity in the Y direction) holds for both row orientations in

this trial. Analysis of the yield data of the trial revealed that the yield in the plots with rows perpendicular to the ERT transects

was systematically lower than in the plots with rows established along the ERT transects. This was most likely due to more edge180

effects and impact of tractor wheel tracks (data not shown).
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2.2.2 Environmental monitoring

Four soil water potential (TEROS21, Meter group) and nine soil moisture sensors (CS616, Campbell scientific) were installed

vertically in the soil surface. Figure 2a shows the location of those sensors in the field. They are all maximum two plant rows

away from the ERT transects. The site has a calibration pit equipped with soil moisture, soil water potential, soil temperature185

sensors (T107, Campbell Scientific) and four electrodes in each of the four soil horizons up till 1 m depth (see Figure 2c).

Sensors and electrical resistivity measurements are continuously logged throughout the year to establish the field-scale soil

hydraulic functions, thermal characteristics and pedophysical calibration functions. Figure 3b shows significant variability near

the soil surface, but at 0.6 and 0.9 m depth the soil moisture remained rather constant throughout the season.
:::
As

:::
the

:::
soil

:::
pit

:::
was

:::::
bare,

:::
and

:::
the

:::::
fields

::::
were

:::::
sown

::::
with

:::::::
soybean,

:::
the

:::::::::::::::
evapotranspiration

::::
was

:::::
higher

:::
on

:::
the

:::::
fields

::::
than

::
in

::
the

::::
pit,

:::::
which

:::::::
resulted190

::
in

:::::
lower

:::
soil

::::::::
moisture

:::::::
contents

::
in

:::
the

::::
field

::::
than

::
in

:::
the

:::
pit.

::::
The

::
pit

::::::
should

::::::::
therefore

:::
not

::
be

:::::
used

::
to

:::::
assess

:::
the

::::
field

:::::
status

::
of

::::
soil

::::::::
variables,

:::
but

:::::
rather

::
as

:
a
:::::::::
field-scale

::::::
source

::
of

::::
data

::
on

::::
soil

::::::::
hydraulic,

:::::::
thermal

:::
and

:::::::::::
pedophysical

:::::::::
functions.

Meteorological variables (solar radiation, precipitation, wind direction, wind speed, air temperature, water vapour pressure,

atmospheric pressure) were measured using a ATMOS41 weather station (Meter group). One station was mounted in open air

and the other under the rainout shelter when drought was applied to assess the impact of the shelter on the microclimate.195

2.2.3 Above-ground phenotyping using drone imaging

Drone-based high-throughput field phenotyping was executed in analogy with Borra-Serrano et al. (2020) and Pranga et al.

(2021). In total 14 flights were performed using a UAV DJI Matrice 600 Pro (DJI, Shenzhen, China) equipped with an RGB

camera (a6400, Sony Corporation, Tokyo, Japan), a 10-band multispectral camera (M Dual Camera System, MicaSense, Seattle,

USA), and a thermal camera (WIRIS Pro, Workswell, Czech Republic). For this manuscript
:
, only multispectral data was used.200

Flight speed and flight altitude were 2.7 m/s and 30 m for the multispectral sensor. This resulted in a ground sampling distance

of 2.0 cm/pixel. All flights were conducted within 2 h of solar noon and with 80-80% side and front overlap. Multispectral

images were processed and geo-referenced orthophotos were created using PIX4Dmapper 4.7.5 (Pix4D S.A., Switzerland).

Several plant indices were calculated, but here we only show the Soil-Adjusted Vegetation Index (SAVI). This index minimizes

the influence of soil brightness using a correction factor. NIR represents the pixel values from the near infrared band, Red the205

pixel values from the near red band and L the amount of green vegetation cover.

SAV I =
(NIR−Red)

(NIR+Red+L)
∗ (1+L) (1)

Generally, in areas with no green vegetation cover, L=1; in areas of moderate green vegetative cover, L=0.5; and in areas with

very high vegetation cover, L=0 (which is equivalent to the NDVI method). This index outputs values between -1.0 and 1.0.
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Figure 3. Overview of environmental conditions in the calibration pit, drought, and control fields. (a) Precipitation and cumulative precipitation

deficit (= Σ(ET0 −P )) under drought and control treatments. Th
:::
The

:
cyan irrigation event was only applied on the control plots. The yellow

band indicates the length of the applied drought treatment with the rainout shelter. (b) Soil moisture in the calibration pit at four depths (grey

hues) and in the drought (orange hues) and control fields (blue hues) at 0.15 m depths
::::
depth (different hues = different locations in the field).

(c) Soil water potential in the calibration pit at 4 depths (grey hues) and the drought (0-0.10 m depth) and control fields (vertical installation

depth: 0-0.10 m). (d) Soil temperature in the calibration pit at 4 depths (grey hues) and in the control treatment (vertical installation depth:

0-0.10 m).
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2.3 Processing and quality control210

Figure 4 shows an overview of the data processing workflow. The workflow is divided into four different steps: preprocessing,

quality assessment, inversion and computing indicators. More explanations on some of these steps are given below.

Figure 4. Overview of the HYDRAS below-ground
:::::::::
belowground

:
phenotyping data processing pipeline

2.3.1 Quality assessment

From the field ERT unit, the data is continuously uploaded to a server, where a basic quality assessment at the level of the

quadrupoles is executed. Users are alerted when the server does not receive data or for defined thresholds in raw data (e.g. very215

low injection current). Figure 5 shows the evolution of the raw metrics for each measured quadrupole over the entire monitoring

period: current (I), measured voltage (Vmn), contact resistance (cR
::
cR, estimated resistance between the electrode and the soil),

apparent resistivity (ρa), standard deviation from stacking (dev) and relative difference in apparent resistivity to the reference

background image (∆ρa/ρa0) from the first survey (ρa0).
:::
cR

::
is

::::::::
calculated

:::::
from

:::
the

:::::
same

:::::::::::
measurement

::::
data

:::
that

::
is

:::::
taken

:::
for

::::::::
resistivity.

::
It

::
is

:::::
given

:::
for

::
an

::::::::
electrode

:::
pair

:::
by

:::::::
dividing

:::
the

::::::
voltage

:::::::
applied

:::::
across

:::
the

:::::::::
electrodes

:::
by

:::
the

::::::
current,

:::::::
divided

::
by

::::
two220

::
to

::::::::
determine

:::::::::::
approximate

::::::::
resistance

:::
per

::::::::
electrode.

:
This overview enables us to spot any irregularities in the system or sudden
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environmental changes, such as heavy rainfall after a dry period (e.g. end of August), allowing for real-time alerting during the

monitoring period.

Figure 5. Evolution of raw metrics at quadrupole level (Quads) measured by the ERT system featuring injected current (I), measured voltage

(Vmn), contact resistances (cR), apparent resistivity (ρa), standard stacking deviation (dev), relative change in apparent resistivity from the

first survey (∆ρa/ρa0). White vertical bands show no-data time. The data are shown here for the transect A of the ERT field on which the

drought treatment was applied (see Figure 2 for transect location within the field).

Quadrupoles with electrodes often associated with high contact resistances (>50 kOhms) were removed from the datasets.

Negative apparent resistivity as well as quadrupoles with large (>50%) standard deviation were also removed before further225
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processing. In addition, quadrupoles with injection electrode pair buried and voltage electrode pair at the surface (or the opposite)

were removed from the dataset. After preliminary inspection of the raw data, we noticed that these quadrupoles lead to significant

artefacts around the electrodes, possibly caused by small inaccuracies in the position of the surface cable with respect to the

buried cable. From synthetic studies, we found that 2 cm misplacement of electrodes (longitudinal or lateral to the transect) can

reproduce the artefacts we observed if all data are used to invert the dataset (data not shown). Given the relatively small electrode230

spacing of the survey and the difficulty to position the surface electrode right on top of the buried ones with centimetric precision,

we decided to remove these quadrupoles from the inversion.
::::
More

::::::::::
background

:::
on

:::
the

:::::
effect

::
of

::::::::
electrode

:::::::::::
misplacement

:::
on

::::
ERT

:::::::
accuracy

:::
can

:::
be

:::::
found

::
in

:::::::
amongst

::::::
others

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Wilkinson et al. (2010); Uhlemann et al. (2018); Oldenborger et al. (2005).

:

The pipeline computes reciprocal errors and Figure 6 shows the evolution of their distribution as a function of time for each

transect. The reciprocal errors tend to increase as the soil dries out, because this also increases the contact resistance of the235

electrodes at the surface (see Figure 5). The
::
In

:::
this

:::::
study,

:::
the

:
reciprocal errors were not used for filtering , but as a weight

during the inversion.
::
as

::::
most

::::::
outliers

:::::
were

::::::
already

:::::::
removed

:::
by

:::
the

:::::::
previous

::::::
filters.

::::::::
However,

::::::
filtering

:::
on

::::::::
reciprocal

:::::
error

:::::
might

::
be

::::::
needed

:::
for

::::::
noisier

::::::
survey. We fitted a power-law error model for each survey on a transect using the binned reciprocal errors

(Koestel et al., 2008). This approach ensures a sufficient number of data points to obtain a robust error model, while allowing the

error model to vary throughout the season. Further details on
:::
The

:::::::::::::
implementation

::
of

:
the data processing can be found in the240

accompanying Jupyter notebook.

2.3.2 Data inversion

The ERT data were processed using the ResIPy software v3.5.1 (Blanchy et al., 2020a) that makes use of the Occam’s based R2

inversion code (Binley, 2015). Each survey was inverted and compared to the first recorded survey following the difference

inversion method (LaBrecque and Yang, 2001) (reg_mode = 2 in ResIPy). The difference inversion consists in first inverting a245

reference survey (in our case, the first survey collected on 2023-06-21), and then computing, for each subsequent survey, the

difference with respect to this reference survey. For a given survey, the response (i.e. transfer resistances for each quadrupole)

from the inverted model of the reference survey is computed and added to the difference between the measured transfer

resistances of the reference and the given survey. This new dataset of transfer resistances is then inverted. This approach

highlights differences between survey dates and suppresses the systematic errors that might arise due to electrode placement. It250

is well suited when electrodes are kept in place between surveys, as was the case in this study. The inversion procedure was done

using a triangular mesh. The objective function to be minimized consisted of a data misfit (weighted by the errors computed

from the fitted error model) and model misfit (smooth L2 regularization). Inversions typically converged within 5 iterations and

reached a final weighted root-mean-square error close to 1. More details on the inversion can be found in Binley and Slater

(2020). Appendix C shows several of these inversion quality indicators as a function of time for all transects.255

2.3.3 Temperature correction and conversion to soil moisture

After inversion, resistivity data were temperature-corrected and converted to soil moisture using a site-specific pedophysical

relationship, established using multi-sensor data in the HYDRAS calibration pit (see Figure 3d). The resistivity data of this
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Figure 6. Evolution of the distribution of reciprocal errors ( |RN−RR|
RN+RR

2

× 100) during the growing season of the POC23 experiment for all

ERT transects (TA, TB and TC) in CONTROL (subplots a,b,c) and SHELTER (subplots d,e,f). Reciprocal errors are distributed in classes

for easier visualisation. The percentage of quadrupoles in each class is indicated on the vertical axis.
:
)
:::::
during

:::
the

::::::
growing

::::::
season

::
of

:::
the

:::::
POC23

:::::::::
experiment

::
for

:::
all

:::
ERT

:::::::
transects

::::
(TA,

::
TB

::::
and

:::
TC)

::
in

::::::::
CONTROL

:::::::
(subplots

:::::
a,b,c)

:::
and

:::::::::
DROUGHT

:::::::
(subplots

:::::
d,e,f).

::::::::
Reciprocal

:::::
errors

::
are

:::::::::
distributed

:
in
::::::
classes

::
for

:::::
easier

::::::::::
visualisation.

::::
The

::::::::
percentage

::
of

:::::::::
quadrupoles

::
in

::::
each

::::
class

::
is

:::::::
indicated

::
on

:::
the

::::::
vertical

:::
axis.

study are corrected for temperature using the following relationship (Ma et al., 2010; Campbell et al., 1949) with α = 0.02
:
:

::::::::::::::::::
ECb,20 =

ECb

[1+α(T−20)] . The soil temperature profile during the measurements was assumed to be equal to the temperature260

measured in the different soil horizons of the calibration pit, which is a simplification of reality.

ECb,20 =
ECb

[1+α(T − 20)]

Figure 7 shows the sensor data from the calibration pit for the four soil horizons. As the deepest layers never reached dry

conditions, the in-field pedophysical relationship for those horizons cannot be established in the dry range at the moment. Further

monitoring in coming years will improve the amount of data in the dryer range. For illustration, we fit the simplified Waxman and265

Smits model to the data of each soil horizon.
:::
The

::::
data

::::::
largely

:::::::
follows

:::
the

:::::::
expected

:::::
trend,

:::
but

::::
also

:::::::
exhibits

:::::::::
significant

::::::
scatter.
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::::
Since

:::
we

:::::
want

::
to

:::::::::
investigate

:::
the

::::::::::::
pedophysical

::::::::::
relationship

::::::
further

::
in

::::::
future

::::::::::
experiments,

:::
we

:::::
have

:::
not

::::
used

::
it
::
in

:::
the

:::::::
current

:::::::::
manuscript

::
to

:::::::
compute

:::::::::
indicators

:::::
based

::
on

::::::::
estimated

::::
soil

:::::::
moisture

::::
yet.

Figure 7. Evolution of volumetric soil moisture θ with respect to the bulk temperature-corrected electrical conductivity (ECb,20) based on the

data collected at the different depth in the control pit. For illustration, the simplified Waxman and Smits model was fit to the data of each soil

horizon as shown in Garré et al. (2013) (black line on top of the data points).

2.3.4 Data dissemination: from geophysicists to plant scientists and breeders

While profiles of inverted electrical conductivity are certainly interesting to geophysicists, they have less meaning for plant270

scientists or breeders who use the HYDRAS open access infrastructure. As such, we translated the geophysical results into

phenotyping indicators that are more interpretable for crop breeders and researchers. Table 1 shows four of those indicators with

potential. We computed indicators along the inverted profile and the profile of difference compared to background. Figure 8

illustrates how these indicators are computed in EC or ∆EC profiles. The shape of the inverted EC profile often takes the

form of a sigmoid (Shanahan et al., 2015):
:::::::::::::::::::
EC = a+ b

1+e−(c+d∗z) . The parameters of the sigmoid summarize information about275

the shape of the soil moisture profile. Fitting parameters a
::::::::
parameter

::
a defines an offset from 0 soil moisture and b

:
b controls

the width of the sigmoid (magnitude of the drying), d controls the steepness of the curve, and c defines the depth of inflection

in the soil profile. Parameters c and d influence the drying depth. The integration of the negative difference in EC with depth

(green shaded zone in Figure 8b) gives an estimation of the extent of the water depletion caused primarily by root water uptake.
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Table 1. Description of the proposed phenotyping indicators derived from the average electrical conductivity profiles.

Indicator Meaning Formula

Fitting parameters sigmoid

(subplot a)

Shape of the soil moisture profile at a spe-

cific date

EC = a+
b

1+ e−(c+d∗z)

a,b offset & asymptote of the sigmoid, control magnitude of the drying

c depth of inflection of the profile

d steepness of the sigmoid around the inflection point

Drying area (DA)

(green area subplot b)

Integrative total water uptake from the soil

profile since the start of the experiment and

a specific date

∫ 1.5

0
∆EC
EC0

dz where ∆EC
EC0

< 0%

Drying depth (DD)

(orange line subplot b)

Percentile 20% of all depths in the soil pro-

file where a -20% change as compared to the

first survey has occurred at a specific date.

q10(z) where ∆EC
EC0

<−20%

Similarly, the percentile 10% of the depths at which a negative difference larger than a threshold of 20% change occurs (dashed280

vertical line in Figure 8b) is an indicator for the advancement of the drying depth in the soil profile (orange horizontal line). The

pedophysical relationship shown above allows to translate EC to soil moisture (not done here).

Figure 8. Example of indicators computed either on (a) electrical conductivity (EC) profile or (b) its relative difference (∆EC/EC0) from

the reference survey (survey0). Subplot (c) shows how the sigmoid function change with respect to an increase of each of its parameters.
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To enable users to interact with the dataset, explore and compare profiles in space, depth and time, all processed data from

the ERT pipeline was summarized into an HTML report with interactive Bokeh (https://docs.bokeh.org, v3.4.0, last accessed

2024-03-25) figures (available in the Gitlab repository).285

3 Results

3.1 Apparent resistivities

The first question of the POC experiment was whether the electrical resistivity measurements are sensitive enough to detect

subtle differences in water depletion patterns and strategies between contrasting genotypes of the same crop species. Figure 9

shows the pseudo-section of the ERT transect B in the control field. Raw apparent resistivities reflect consistent patterns related290

to different root water uptake patterns of the three investigated genotypes in different plots along the transect. For instance,

Hermes and Pro_1 take up more water already earlier in the growing season than Lenka. We observe similar trends in the part of

the transect with plant rows longitudinal to the ERT transect as in the part with rows crossing the transect.

Figure 9. Evolution of pseudo-section for transect B in the CONTROL field. Note that the depth on the vertical axis is not the actual depth of

the reading, but rather an estimation of the depth above which most of the signal originate (a pseudo-depth) based on the electrode location

and measurement geometry*
:::::::
geometry.*

The
::
To

::::::
further

:::::
detect

:::
the

::::::
subtle

::::::::
difference

::::::::
between

::::::::
genotype,

:::
we

::::
take

:::::::::
advantage

::
of

:::
the

::::::::
statistical

::::::
design

::
of

:::
the

:::::
study

::::
and

::::
look

::
at

::
the

::::
ECa

:::::::::::
distributions.

:::
In

:::::
Figure

:::
10,

:::
the

:
impact of the drought treatment is clearly visible in the apparent conductivity295

values (see ECa distributionsFigure 10)
::::::::::
distributions. This confirms the capability of ERT to monitor the dynamic impact of both
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treatment and genotype on bulk soil electrical properties. This means that even without further inversion or other data processing,

a statistical test can be executed to discriminate between genotypes in terms of the impact of drought on belowground behaviour.

Figure 10 shows the distribution of the apparent conductivity values of each treatment x genotype combination. We performed

an ANOVA (analysis of variance) with the statsmodels Python package v0.14.0 (Seabold and Perktold, 2010) considering two300

factors: genotype (Hermes, Lenka, Pro-1) and treatment (drought, control). The effect of drought is significant (p-value <0.05)

for shallow pseudo-depths at all 4
::::
four timepoints and for the deepest pseudo-depth only in mid-July. The genotypes show

significant differences for shallow pseudo-depth, but not for the deeper depths. A root sampling campaign, just after harvest, has

shown that there are little roots present at depths below -0.5 m in any of treatment x genotype combinations, with Pro-1 showing

the most roots in the deepest layer, especially under drought (data not shown). This might explain why did not find a significant305

difference in ECa below that depth.

Figure 10. Kernel density function of all apparent conductivities for three different pseudo-depths (PD) along with ANOVA p-values for the

genotype factor (pgen) en for the drought/control factor (ptrt). All p-values are rounded to three decimal places. The interaction term was not

significant (>0.05) for all cases. The subplots at different depths do not share the same vertical axis.

Apparent conductivity data do not disclose information about specific depths of water depletion (but rather pseudo-depths).

:::
For

::::::::
example,

::::
large

::::::::::::
drying/wetting

:::
at

:::
the

::::::
surface

::::
will

::::::::::::::
decrease/increase

:::
the

::::::::
apparent

::::::::::
conductivity

::
in

:::
the

:::::::
surface

:::
but

::::
also,

::
to

::
a
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:::::
lesser

:::::
extent,

:::
for

:::::::::::
quadrupoles

::::
with

:::::
deeper

::::::::::::
measurement

:::::::
volumes.

:
This makes it difficult to relate the data to plant traits such as

rooting depth, root density, or depths of water uptake. To obtain depth-explicit information, a data inversion or other advanced310

data processing such as coupled modelling and/or machine learning is necessary. In addition, it is not possible to use the

pedophysical relationships from the control pit to convert apparent EC to depth-specific soil water content. Indeed, the apparent

resistivities are depth-weighted integrative measurement while soil water content from sensors is depth-specific. Only inverting

the apparent resistivities will enable us to obtain depth-specific EC values which can then be converted to soil moisture with a

pedo-physical
::::::::::
pedophysical

:
relationship.315

3.2 Inverted transects

Figure 11 shows the inverted transect B (CONTROL) at three moments in June during a period with little rain. Differences in

soil water depletion between genotypes are apparent. For instance, Lenka took up less water than Pro-1 and Hermes. The figure

also illustrates how the drying front tends to increase with time. Water depletion is mainly caused by the crop, as the bare plot in

the middle does not show the deep drying pattern.320

Figure 11. Evolution of the selected inverted transect B in the CONTROL field. Plot positions is
::
are

:
denoted with vertical dashed line and

horizontal coloured lines.
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3.3 Profile evolution

From the inverted section, we extracted average profiles for each plot and then merged per genotype by taking the average profile

of all plots
:::
(see

::::::
Figure

:::
12). By subtracting the average background profile from this, we can depict the %

::
%-change occurring

over the profile as compared to the background. Drying under the CONTROL is faster during the early natural drought, but more

limited in time than for the DROUGHT treatment in which an artificial drought was generated using the rainout shelter. After the325

rainfall events of July, the CONTROL field becomes wetter than at the start (blue band starting in August, Figure 12) and only

superficial drying was observed after. Zooming into the
::::
From

:::
the

::::::
colour

:::::::
gradient,

:
difference between genotypes in the same

treatment, we can seethat the amount of water of the rainfall in the beginning of august infiltrated less (deep) under Pro-1 than

under Lenka, which could be due to a different transpiration rate or depth of water uptake between the two genotypes
:::::::
remains

::::::
difficult

::
to

::::
see,

:::::
hence

::::
why

::::::::
indicators

:::::
were

::::::
derived.330

3.4 Indicators

Figure 13c-f shows the evolution of four selected indicators computed from the inverted electrical conductivity profile and

the profile of change in conductivity with respect to background for different genotypes. We present the indicators alongside

meteorological conditions (Figure 13a) and crop development as represented by the UAV based
:::::::::
UAV-based

:
phenotyping SAVI

vegetation index (Figure 13b). The indicators differ clearly between the CONTROL and the DROUGHT treatment. From August335

::
the

::::
end

::
of

::::
July onwards, genotypes submitted to the DROUGHT treatment exhibit larger drying patterns than in the CONTROL.

This is apparent from the Drying Area (DA) indicator
::::
(cfr.

:::::
Table

:
1
:::
for

:::::::::
definitions

::
of

:::::::::
indicators), which resides much longer

in a zone of big water depletion (large negative value) in DROUGHT than in CONTROL, and this for all genotypes. This is

because in the CONTROL, rainfall replenishes the soil moisture profile. The effect of crop water uptake is therefore partially

undone. The DA even becomes positive at some moments in time, which means that the soil was wetter then than at the start340

of the experiment. The difference between treatments decreases from September onwards. Since the shelters were removed,

both treatments were receiving rain again and the crop reached physiological maturity. Where DA is a robust indicator which

is smooth over time because it represents an integration of the whole profile, the other indicators are more noisy. The Drying

Depth (DD), for example, represents one specific point in the profile intersecting with the 20% threshold, which is much more

sensitive to slight changes in the profile. We performed ANOVA tests on all timesteps of all four indicators and indicated at345

which time during the year the genotype effect and/or the treatment effect is significant using grey dots at the top and bottom

edge of the subplots. Significant difference between genotypes (dark grey) are mostly observed in the beginning of the growing

season, which correlates with the pseudo-sections shown in Figure 9. Just like with vegetation indices, curves could be fitted to

the time evolution of these belowground indicators to assess rates of drying or similar properties.
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Figure 12. Evolution of profiles of inverted, temperature corrected electrical conductivity (EC) for the three genotypes under both treatment

(CONTROL and SHELTER
::::::::
DROUGHT) during the growth season. The rainfall deficit is shown in subplot a for both CONTROL (plain

black line) and SHELTER
:::::::::
DROUGHT field (dashed black line). The period of the drought application is indicated by the yellow shaded area.

Missing data are indicated by white bars at that date. The white line shows a -50% change while the dark blue line shows a 0% change.
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Figure 13. Example indicators and their evolution for the three genotypes as a function of the treatment applied (plain line: CONTROL, dashed

line: DROUGHT). a) Rainfall and precipitation deficit, b) SAVI = Soil-adjusted vegetation index and important growth stages (reproductive

stages r2, r5 and r8), c-d) parameters b and c of the sigmoid fitted on the electrical conductivity profile, d) Drying Area indicator f) Drying

Depth indicator. For the subplots with indicators (c-f), an ANOVA was performed. The grey and light grey dots show when the p-value for the

genotype factor and the DROUGHT/CONTROL factor was below 0.05, respectively.

In Figure 14, we zoom in on the genotype differences in our 4 selected indicators at 2 specific moments in the crop growth:350

flowering (r2), just before the DROUGHT application, and seed filling (r5), just after the DROUGHT application. CONTROL is
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shown in blue and DROUGHT in orange. In sigmoid c we see the clearest genotype effect at July 11th. This parameter reflects

the inflection point of the sigmoid, therefore related to the drying depth.

Figure 14. Violin plots showing the distribution of the indicators calculated from the electrical conductivity profiles for the 3 genotypes in

CONTROL and DROUGHT.

4 Discussion

The proof-of-concept experiment with the HYDRAS infrastructure in 2023 established a dataset at high spatial and temporal355

resolution. This dataset characterized differences in belowground behaviour between control/drought treatments and soybean

genotypes, under realistic field conditions
::
in

:
a
:::::

real,
:::::
living

:::
soil. We have shown that ERT is not only capable of detecting

differences between crops or treatments as previously done in literature, but also has sufficient precision to distinguish between

genotypes of the same crop. We highlighted the potential to automatically derive phenotyping indicators related to dynamic

belowground plant traits. To our knowledge, the only permanent infrastructure which is capable of monitoring water depletion360

and root system activity at the same spatio-temporal resolution is the sEIT installation at the Selhausen minirhizotron facility in

Selhausen, Germany (Weigand et al., 2022). The sEIT system there consisted of 40 electrodes (0.25 m electrode spacing) installed

across three agricultural test plots (each 3.75 m width). This site was not designed for high-throughput field phenotyping. It

does not have rainout shelters, but did allow testing and validating many of the available techniques over several years of

operation, yielding an impressive open subsoil data set (Lärm et al., 2023). In that installation, not only electrical resistivity,365
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but also chargeability properties are measured, which is a meaningful addition to the information which can be derived from

resistivity. Chargeability was shown to be more directly linked to root biomass, which opens up new possibilities (Weigand

and Kemna, 2017). However, accurately measuring these properties with sufficient data remains challenging.
::::
With

:::::::::
HYDRAS,

::
we

::::
take

:::::::::::
belowground

::::
field

:::::::::::
phenotyping

:::
one

::::
step

::::::
further

::::
with

:::
the

::::
fully

:::::::::
automated

:::::::
pipeline,

:::::::
derived

:::::::::::
phenotyping

::::::::
indicators

::::
and

:
a
::::
field

:::::
setup

::
for

::::::::
breeding

::::
trials

:::::::::
including

::::::
rainout

:::::::
shelters.370

Weigand et al. (2022) highlighted the need to further investigate innovative ways to assess uncertainties without compromising

measurement time and more importantly, ways to incorporate that information in the data processing and interpretation. This

is also the case for the current data set, which exhibits error levels which change over time. We do take them into account in

the inversion, letting the error model vary over time, but we did not yet assess how this affects the precision of our derived

indicators.
:::
This

::::::
would

::
be

:::
an

:::::::::
interesting

::::
topic

:::
for

:::::
future

::::::::
research. Nevertheless, the automated, online monitoring also directly375

allows the user to spot and resolve inevitable field issues instantaneously. The SSI system provides email alerts for the operators

using basic and more advanced warning thresholds based on system status (battery, temperature, connectivity) and measurement

metrics (contact resistance, plausible values, . . . ). This makes it possible to minimize error sources and data gaps.

The HYDRAS ERT setup has the advantage of having both a surface and a buried cable to enhance the sensitivity and

resolution in the root zone. Based on this configuration, quadrupole along the surface line, along the buried line and between380

the surface and buried line were added. However, the combination of cm-inaccuracies in the placement of the belowground

cable with small electrode spacings resulted in inversion difficulties. Quadrupoles with injection electrodes in the surface line

and potential electrode in the buried line (or inversely) led to inversion artefacts close to the electrodes when inverted. We

tested the approach of Wilkinson et al. (2015) to include electrode location as part of the inversion, but this resulted in too

many degrees of freedom in our case*. *
::::
case.

:
However, simulating the data with slight electrode displacements (longitudinal385

or lateral) resulted in similar artefacts, which confirms the hypothesis. Further investigation is necessary to fully exploit the

potential of the subsurface cable without compromising the inversion results.

The HYDRAS POC2023 dataset is not only one of the rare freely available datasets resulting in defined belowground

phenotyping indicators which can be related to crop traits, but also the first to develop the belowground phenotyping data

acquisition and processing pipeline in a fully automated way at field scale. This resulted in a standardized, reproducible and390

high-quality data set and associated processing scripts. Although several attempts exist to make geophysical data sets more

FAIR (Findable, Accessible, Interoperable and Reproducible), the agrogeophysical community is far from reaching a community

data model or reporting standard. Initiatives have been launched, such as the CAGS, but often become inactive or phase out

after project funding stops. Others, such as the REDA package, remain, but are not widely adopted. In addition, these existing

initiatives do not yet seek much compatibility with data standards from the research communities which seek to use the data,395

such as the phenotyping or precision agriculture communities. The POC2023 and following open data sets from HYDRAS seek

to bridge that gap and open up the discussion on the specific needs of users in distinct use cases. For the HYDRAS pipeline, we

explored several data models from different scientific communities and came up with a data model proposal largely compatible

with the eLTER and the MIAPPE standards*. *
::::::::
standards.

:
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:::
The

::::::::::::
infrastructure

::
is

:::
not

::::
only

::
a

::::::
crucial

::::
asset

:::
for

:::
the

:::::::::::
phenotyping

:::
and

::::::::
breeding

::::::::::
community.

::::
2-D

::::
and

::::
3-D,

::::
high

:::::::::
resolution400

::::::::
automated

::::::::::
monitoring

::
of

:::::
water

:::::
flow,

:::::
solute

:::
and

::::
heat

::::::::
transport

::::::::
processes

::
in
:::

the
:::::::::::

undisturbed
::::::::::::::::::
soil-plant-atmosphere

:::::::::
continuum

:::::
under

:::::::::
agricultural

::::
land

:::
use

::::::::
provides

::::::
several

:::::::
exciting

:::::::::::
opportunities,

:::::::::
especially

::::
since

:::
the

::::::
mobile

:::::::
shelters

:::::::
provide

::::::
crucial

::::::
control

::
on

:::
the

:::
top

:::::::::
boundary

::::::::
condition

::
of

:::
the

:::::
soil.

::::
One

::
of

:::
the

:::::::::::
opportunities

::
is
:::::::::

improving
:::

the
:::::::::::::

understanding
::
of

::::
how

::::
soil

:::::
health

::::
and

::
its

:::::::::::
management

:::::
drives

:::::
plant

::::::::::
performance

:::
in

:::::::::::::
agroecosystems.

:::
As

::::::::::::::::::::::::
Carminati and Javaux (2020)

:::
and

::::::::::::::::::
Abdalla et al. (2021)

::::
have

::::::::::
highlighted,

::::
soil,

:::
and

::::
more

::::::::::
particularly

:::
the

::::::::::
rhizosphere,

::
is
::
a
:::::
major

:::::
driver

::
of

:::
the

:::::
plants

::::::::
response

::
to

:::::::
drought.

::::::::
However,

::::::::
studying405

:::
this

::
in

::::
field

:::::::::
conditions

:::::::
remains

::::::::::
challenging.

::::
The

:::::::::
HYDRAS

::::::::::::
infrastructure,

::::::::::::
complemented

::::
with

::::::::::::::
ground-truthing

::::
data

::
of

:::::
small

::::
scale

::::::::
processes

::
in
:::
the

::::::::::
rhizosphere

:::
or

::
at

:::
the

::::
level

::
of

:::::
plant

::::::
organs,

:::::
could

::::
help

::::::
better

:::::::::
understand

::::
how

::::::::::
agricultural

:::::::
practices

::::
can

:::::::
optimize

:::
the

::::::::
soil-plant

::::::::::
interactions.

:::::::
Without

:::::::
aspiring

::
to

:::
be

:::::::::
exhaustive,

::::::::
potential

::::
fields

:::
of

:::::::
research

::::::
tackled

::
in

:::
this

::::::::::::
infrastructure

::::
could

:::
be

:::
the

::::::::::::
investigation

::
of

:::::::::::
(preferential)

:::::
flow

:::
and

::::::::
transport

:::
of

::::::::::::::
agro-chemicals,

:::
the

::::::
impact

:::
of

::::::::::
agricultural

:::::::::::
management

:::::::
practices

:::
on

:::
soil

::::::
health

::
in

::
its

:::::::
various

:::::::::
dimensions

::::
and

:::
on

:::::
water

:::
use

::::::::
efficiency

::
of
::::::

crops,
:::
the

::::::
effects

::
of

::::::::
irrigation

::::
with

::::::::
different410

::::
types

:::
of

:::::
water

:::::::
sources

:::
on

:::
soil

:::::::::::
salinization,

::::
etc.

::
In

::::::::
addition,

::::
this

:::::::::::
infrastructure

:::::::
enables

::
to
:::::::

further
::::::
explore

::::
the

::::::
drivers

::::
and

::::::::
multiscale

::::::
nature

::
of

::
the

:::::::::::
pedophysical

::::::::::
relationship

:::
and

:::
the

:::::::::::
uncertainties

:::::::::
associated

:::
with

::
it.
::::::
Taking

::::
into

::::::
account

:::
the

:::::::::::::
heterogeneities

::
in

:::
the

:::::::::::
pedophysical

::::::::::
relationships

::::
can

:::::::
improve

:::
our

:::::
ability

:::
to

:::::
detect

:::::::::
differences

:::::::
between

:::::::::
genotypes.

::::
(e.g.

:::::::::::::::::::
Blanchy et al. (2020b)

:
).
::
A
::::
full

:::::::
analysis

::
of

:::
the

:::::::::::
uncertainties

:::::::::
associated

::::
with

::::
the

::::::::::
pedophysics

::
is
:::
out

:::
of

:::
the

:::::
scope

:::
of

:::
this

:::::
paper

:::
but

::::
will

:::
be

:::::::
actively

::::::::::
investigated

::
in

:::::
future

::::::
work.

::
In

:::::
short,

::::
this

:::::::::::
infrastructure

::::::::
provides

::::
new

::::
and

:::::::
exciting

:::::::::::
opportunities

:::
for

:::
the

:::::
broad

::::
soil

:::::::
science415

:::::::::
community.

:

5 Conclusion

The HYDRAS POC2023 experiment has shown that ERT monitoring at high spatio-temporal resolution offers unprecedented

capabilities for reproducible and accurate belowground field phenotyping. The raw apparent conductivity data clearly show

differences between treatments (drought/control) and soybean genotypes, highlighting the information content in the data.420

Inversion allows to further fine-tune the information to depth-specific data, which is then used to develop phenotyping indicators

related to specific plant traits of interest. Further improvement is desirable to quantify the uncertainties added in each step

and how these propagate through the entire acquisition and processing pipeline to the final indicators, since this influences the

interpretation of the data and the power of statistical tests. Various approaches are present in literature, including Bayesian

inversion techniques, joint inversion and coupled inversion using soil-plant models, which can now be tested on the big425

phenotyping dataset.

Code and data availability. The notebooks and data used to generate the figures in this paper can be found at https://gitlab.ilvo.be/hydras/ert-

paper (TODO ADD DOI upon publication). The dataset of POC2023 can be found here (ADD DOI from ZENODO upon publication
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Table A1. Field management activities

Date Action

2023-05-19 Seedbed preparation

2023-05-23 Sowing soybean (row spacing 25 cm, plant spacing 6.2 cm, sowing

depth 3.5 cm)

2023-05-24 Sowing soybean on ERT fields (parallel and perpendicular sowing

direction)

2023-05-25 Soil herbicide application

2023-05-26 Installation ERT cables and electrodes

2023-05-26 Netting

2023-05-30 First germination observed

2023-06-12 Removing net

2023-06-13 Weeding

2023-06-21 Spraying

2023-06-21 Start ERT monitoring

2023-07-12 DROUGHT START rainout shelters placed above 4 plots

(a1,b1,c1,d1)

2023-07-19 Control plots irrigated (8 mm.m−2)

2023-08-16 DROUGHT STOP rainout shelters removed from 4 plots

(a1,b1,c1,d1)

2023-08-29 Pesticide application: Acaricide floramite was sprayed on all fields

(dose: 0.4 l.ha−1)

2023-10-04 Harvest

Appendix A: A | Field management activities
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Appendix B: B | Measurement sequence430

The sequence of quadrupole used is composed of a “plot sequence”
::::
’plot

:::::::::
sequence’ that is moved along the surface and buried

line of a transect. The “plot sequence”
::::
’plot

::::::::
sequence’

:
includes 12 surface electrodes spaced 0.3 m (electrodes 1 to 12) and

6 buried electrodes spaced 0.6 m (electrodes 13 to 18). The ’plot sequence”
::::
’plot

::::::::
sequence’

:
contains one injection in the

surface electrodes with potential readings between the injection dipole (gradient), outside on the surface and the buried lines

(dipole-dipole). Another injection is done with a buried pair of electrodes and similar potentials are collected. The “plot sequence”435

::::
’plot

::::::::
sequence’

:
is repeated every 4th surface electrode (2 buried electrodes) along the transects to form the final sequence used.

This measurement sequence was chosen as compromise between spatial and temporal resolution. The sequence includes all

reciprocal quadrupoles.
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Table B1. Plot sequence repeated along each transect. A and B are injection electrodes, M and N are potential electrodes used to measure

voltage. Electrodes 1 to 12 are surface electrodes with 0.3 m spacing. Electrodes 13 to 16 are buried electrodes with 0.6 m spacing. Electrode 1

is on top of electrode 13.
::
K

:
is
:::
the

::::::::
geometric

::::
factor

::::::::
computed.

A B M N
:
K
:
[
::
m]

1 6 2 3

::
3.2

:

1 6 3 4

::
5.7

:

1 6 4 5

::
3.2

:

1 6 7 8

:::
-4.0

1 6 8 9

::::
-12.7

1 6 9 10

::::
-27.1

1 6 10 11

::::
-48.5

1 6 11 12

::::
-77.8

1 6 13 14

::
5.1

:

1 6 14 15

::
5.3

:

1 6 15 16

::::
-17.5

13 16 2 3

:::
12.4

:

13 16 3 4

:::
11.3

:

13 16 4 5

:::
12.6

:

13 16 6 7

:::
11.1

:

13 16 14 15

::
6.0

:

13 16 17 18

::::
-14.0

2 3 1 6

::
3.2

:

3 4 1 6

::
5.7

:

4 5 1 6

::
3.2

:

7 8 1 6

:::
-4.0

8 9 1 6

::::
-12.7

9 10 1 6

::::
-27.1

10 11 1 6

::::
-48.5

11 12 1 6

::::
-77.8

13 14 1 6

::
5.1

:

14 15 1 6

::
5.3

:

15 16 1 6

::::
-17.5

2 3 13 16

:::
12.4

:

3 4 13 16

:::
11.3

:

4 5 13 16

:::
12.6

:

6 7 13 16

:::
11.1

:

14 15 13 16

::
6.0

:

17 18 13 16

::::
-14.0
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Appendix C: C | Overview of inversion quality indicators

Figure C1. Overview of inversion quality indicators (a) number of iterations, (b) final root mean square (RMS) misfit and (c) number of data

read (i.e. number of data after filtering that are actually inverted).
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