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 2 

Abstract 19 

 20 

Most useful weather prediction for the public is near the surface. The processes that are most 21 

relevant for near-surface weather prediction are also those that are most interactive and 22 

exhibit positive feedback or have key role in energy partitioning. Land surface models 23 

(LSMs) consider these processes together with surface heterogeneity and forecast water, 24 

carbon and energy fluxes, and coupled with an atmospheric model provide boundary and 25 

initial conditions. This numerical parametrization of atmospheric boundaries being 26 

computationally expensive, statistical surrogate models are increasingly used to accelerated 27 

progress in experimental research. We evaluated the efficiency of three surrogate models in 28 

speeding up experimental research by simulating land surface processes, which are integral to 29 

forecasting water, carbon, and energy fluxes in coupled atmospheric models. Specifically, we 30 

compared the performance of a Long-Short Term Memory (LSTM) encoder-decoder 31 

network, extreme gradient boosting, and a feed-forward neural network within a physics-32 

informed multi-objective framework. This framework emulates key states of the ECMWF's 33 

Integrated Forecasting System (IFS) land surface scheme, ECLand, across continental and 34 

global scales. Our findings indicate that while all models on average demonstrate high 35 

accuracy over the forecast period, the LSTM network excels in continental long-range 36 

predictions when carefully tuned, the XGB scores consistently high across tasks and the MLP 37 

provides an excellent implementation-time-accuracy trade-off. The runtime reduction 38 

achieved by the emulators in comparison to the full numerical models are significant, offering 39 

a faster, yet reliable alternative for conducting numerical experiments on land surfaces. 40 

  41 
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1 Introduction 42 

 43 

While forecasting of climate and weather system processes has long been a task for numerical 44 

models, the recent development in deep learning has introduced competitive machine-45 

learning (ML) systems for numerical weather prediction (NWP) (Bi et al., 2022; Lam et al., 46 

2023), (Lang et al., 2024). Land surface models (LSMs), even though being an integral 47 

part of numerical weather prediction, have not yet caught the attention of the ML-48 

community. LSMs forecast water, carbon and energy fluxes, and in coupling with 49 

an atmospheric model, provide the lower boundary and initial conditions [3], [4]. The 50 

parametrization of land surface states thus does not only affect predictability of earth and 51 

climate systems on sub-seasonal scales (Muñoz-Sabater et al., 2021), but also the short- and 52 

medium-range skill of NWP forecasts (De Rosnay et al., 2014). Beyond the online integration 53 

with NWPs, offline versions of LSMs provide research tools for experiments on the land 54 

surface (Boussetta et al., 2021), the diversity of which are however limited by the required 55 

substantial computational resources and often moderate runtime efficiencies (Reichstein et 56 

al., 2019).  57 

Emulators constitute statistical surrogates for numerical simulation models that, by 58 

approximating the latter, aim at increasing computational efficiency (Machac et al., 2016). 59 

While for construction  emulators can themselves require substantial computational 60 

resources, their subsequent evaluation usually runs orders of magnitude faster than the 61 

original numerical model (Fer et al., 2018). For this reason, emulators  have found application 62 

for example in modular parametrization of online weather forecasting systems (Chantry et al., 63 

2021), in replacing the MCMC-sampling procedure in Bayesian calibration of ecosystem 64 

models (Fer et al., 2018), or in generating ensembles of atmospheric states for forecast 65 

uncertainty quantification (Li et al., 2023). Beyond their computational efficiency, surrogate 66 

models with high parametric flexibility have the potential to correct for process mis-67 

specification and improve predictions towards a physical model (Wesselkamp et al., 2022).  68 

Modelling approaches used for emulation range from low parametrized, auto-regressive 69 

linear models to highly non-linear and flexible neural networks (Nath et al., 2022), (Baker et 70 

al., 2022), (Chantry et al., 2021), (Meyer et al., 2022). In the global land surface system M-71 

MESMER, a set of simple AR1 regression models is used to initialize the numerical LSM, 72 

resulting in a modularized emulator (Nath et al., 2022). Numerical forecasts of gross primary 73 

productivity and hydrological targets were successfully approximated by Gaussian processes 74 
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(Baker et al., 2022)(Machac et al., 2016), the advantage of which is their direct quantification 75 

of prediction uncertainty. When it comes to highly diverse or structured data, neural networks 76 

have shown to deliver accurate approximations for variables from gravity wave drags to 77 

urban surface temperature (Chantry et al., 2021)(Meyer et al., 2022). In most fields of 78 

machine learning, specific types of neural networks are now the best approach to representing 79 

fit and prediction. One exception is so-called tabular data, i.e. data without spatial or temporal 80 

interdependencies (as opposed to vision and sound), where extreme gradient boosting is still 81 

the go-to approach (Grinsztajn et al., 2022; Shwartz-Ziv & Armon, 2021).  82 

ECLand is the land surface scheme that provides boundary and initial conditions for the 83 

Integrated Forecasting System (IFS) of the European Centre for Medium-range Weather 84 

Forecasts (ECMWF) (Boussetta et al., 2021). Driven by meteorological forcing and spatial 85 

climate fields, it has a strong influence on the NWP [5] and also constitutes a standalone 86 

framework for offline forecasting of land surface processes, the advantage of which for the 87 

online framework is the temporal consistency of prognostic state variables (Muñoz-Sabater et 88 

al., 2021). The modular construction of ECLand offers potential for element-wise 89 

improvement of process representation and thus a stepwise development towards increased 90 

computational efficiency. Within the IFS, ECLand also forms the basis of the land surface 91 

data assimilation system, updating the land surface state with synoptic data and satellite 92 

observations of soil moisture and snow. Emulators of physical systems have been shown to 93 

be beneficial in data assimilation routines, allowing for a quick and low maintenance 94 

estimation of the tangent linear model (Hatfield et al., 2021). Together with the potential to 95 

run large ensembles of land surface states at a much-reduced cost, this would be a potential 96 

application of the surrogate models introduced here. 97 

Long-short term memory networks (LSTMs) have gained popularity in hydrological 98 

forecasting as rainfall-runoff models, for predicting stream flow temperature and also soil 99 

moisture [e.g. (Kratzert, Klotz, et al., 2019),  (Lees et al., 2022),  (Zwart et al., 2023), (Bassi 100 

et al., 2024)]. Research on the interpretability of LSTMs has found correlations between the 101 

model cell states and spatially or thematically similar hydrological units (Lees et al., 2022), 102 

suggesting the specific usefulness of LSTM for representing variables with dynamic storages 103 

and reservoirs (Kratzert, Herrnegger, et al., 2019). As emulators, LSTMs have been shown 104 

useful for sea surface level projection in a variational manner with Monte Carlo dropout (Van 105 

Katwyk et al., 2023). While most of these studies trained their models on observations or 106 

reanalysis data, our emulator learns the representation from ECLand simulations directly. To 107 
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our knowledge, a comparison of models without memory mechanisms to an LSTM-based 108 

neural network for global land surface emulation has not been conducted before.  109 

We emulate seven prognostic state variables of ECLand, which represent core land surface 110 

processes: soil water volume and soil temperature, each at three depth layers, and snow cover 111 

fraction at the surface layer. These three state variables represent the core of the current 112 

configuration of ECLand We specifically focus on the utility of memory mechanisms, 113 

highlighting the development of a single LSTM-based encoder-decoder model compared to 114 

an extreme gradient boosting approach (XGB) and a multilayer perceptron (MLP), which all 115 

perform the same tasks. The LSTM architecture builds on an encoder-decoder network design 116 

introduced for flood forecasting (Nearing et al., 2024). To compare forecast skill 117 

systematically, the three emulators were compared in long-range forecasting against 118 

climatology (Pappenberger et al., 2015). In this work, evaluation is done on ECLand 119 

simulation only, i.e. on purely synthetic data, while future work will encompass transfer 120 

learning and validation on observations. 121 

 122 

2 Methods 123 

 124 

2.1 The Land Surface Model: ECLand 125 

 126 

ECLand is a tiled ECMWF Scheme for Surface Exchanges over Land that represents surface 127 

heterogeneity and incorporates land surface hydrology (ECLand) (Balsamo et al., 2011) 128 

(ECMWF, 2017). ECLand computes surface turbulent fluxes (of heat, moisture and 129 

momentum) and skin temperature over different tiles (vegetation, bare soil, snow, 130 

interception and water) and then calculates an area-weighted average for the grid-box to 131 

couple with the atmosphere (Boussetta et al., 2021). For the overall accuracy of the model, 132 

accurate parameterizations are essential (Kimpson et al., 2023) as e.g. the land surface 133 

parameterization determines the sensible and latent heat fluxes, and provide the lower 134 

boundary conditions for enthalpy and moisture equations in the atmosphere (Viterbo, 2002). 135 

We emulate three prognostic state variables of ECLand, that represent core land surface 136 

processes: soil water volume and soil temperature at each three depth layers (each at 0 – 7 137 

cm, 7 – 21 cm and 21 – 72 cm) and snow cover fraction, aggregated at the surface layer, so 138 

below are some more details on these parametrisations.  139 

 140 
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2.2 Data sources 141 

 142 

As training data base, global simulation and reanalysis time series from 2010 to 2022 were 143 

compiled to zarr format at an aggregated 6-hourly temporal resolution. Simulations and 144 

climate fields were generated from ECMWFs development cycle CY49R2, ECland forced by 145 

ERA-5 meteorological reanalysis data (Hersbach et al., 2020).  146 

There are three main sources of data used for creation of the data base: The first is a selection 147 

of surface physiographic fields from ERA5 (Hersbach et al., 2020) and their updated versions 148 

(Choulga et al., 2019), (Boussetta et al., 2021), (Muñoz-Sabater et al., 2021) used as static 149 

model input features (X). The second is a selection of atmospheric and surface model fields 150 

from ERA5, used as static and dynamic model input features (Y). The third is ECLand 151 

simulation results, constituting the model’s dynamic prognostic state variables (z) and hence 152 

model input and target features. A total of 41 static, seasonal and dynamical features were 153 

used to create the emulators, see table 1 for an overview of input variables and details on the 154 

surface physiographic and atmospheric fields below. 155 

 156 
2.2.1 Surface physiographic fields  157 
 158 
Surface physiographic fields have gridded information of the Earth’s surface properties (e.g. 159 

land use, vegetation type, and distribution) and represent surface heterogeneity in the ECLand 160 

of the IFS (Kimpson et al., 2023). They are used to compute surface turbulent fluxes (of heat, 161 

moisture, and momentum) and skin temperature over different surfaces (vegetation, bare soil, 162 

snow, interception, and water) and then to calculate an area-weighted average for the grid box 163 

to couple with the atmosphere. To trigger all different parametrization schemes, the ECMWF 164 

model uses a set of physiographic fields that do not depend on initial condition of each 165 

forecast run or the forecast step. Most fields are constant; surface albedo is specified for 12 166 

months to describe the seasonal cycle. Depending on the origin, initial data come at different 167 

resolutions and different projections and are then first converted to a regular latitude–168 

longitude grid (EPSG:4326) at ∼ 1 km at Equator resolution and secondly to a required grid 169 

and resolution. Surface physiographic fields used in this work consist of orographic, land, 170 

water, vegetation, soil, albedo fields, see Table 1 for the full list of surface physiographic 171 

fields; for more details, see IFS documentation (ECMWF, 2023).  172 

 173 

2.2.2 ERA5  174 
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 175 

Climate reanalyses combine observations and modelling to provide calculated values of a 176 

range of climactic variables over time. ERA5 is the fifth-generation reanalysis from 177 

ECMWF. It is produced via 4D-Var data assimilation of the IFS cycle 41R2 coupled to a land 178 

surface model (ECLand, (Boussetta et al., 2021)), which includes lake parametrization by 179 

Flake (Mironov & Helmert, n.d.) and an ocean wave model (WAM). The resulting data 180 

product provides hourly values of climatic variables across the atmosphere, land, and ocean 181 

at a resolution of approximately 31 km with 137 vertical sigma levels up to a height of 80 km. 182 

Additionally, ERA5 provides associated uncertainties of the variables at a reduced 63 km 183 

resolution via a 10-member ensemble of data assimilations. In this work, ERA5 hourly 184 

surface fields at ∼ 31 km resolution on the cubic octahedral reduced Gaussian grid (i.e. 185 

Tco399) are used. The Gaussian grid’s spacing between latitude lines is not regular, but lines 186 

are symmetrical along the Equator; the number of points along each latitude line defines 187 

longitude lines, which start at longitude 0 and are equally spaced along the latitude line. In a 188 

reduced Gaussian grid, the number of points on each latitude line is chosen so that the local 189 

east–west grid length remains approximately constant for all latitudes (here, the Gaussian 190 

grid is N320, where N is the number of latitude lines between a pole and the Equator).  191 

 192 
Table 1 Input and target features to all emulators from the data sources. The left column shows the observation-derived static 193 
physiographic fields, the middle column ERA5 dynamic physiographic and meteorological fields and the rightmost column 194 
ECLand generated dynamic prognostic state variables. 195 

Climate fields Units Atmospheric forcing  Units Prognostic states Units 

Vegetation cover (low, 

high) 

 Total precipitation 

fraction (convective + 

stratiform) 

 Soil water volume 

(Layers 1-3) 

m3 m-3 

Type of vegetation (low, 

high) 

 Downward radiation 

(long, short) 

W/m2 Soil temperature 

(Layers 1-3) 

K 

Minimum stomatal 

resistance (low, high) 

 Seasonal LAI (high, 

low) 

 Snow cover fraction  

Roughness length (low, 

high) 

 Wind speed (v, u) 

 

m/s   

Urban cover  Surface pressure Pa   

Lake cover 

Lake depth 

 Skin temperature K   
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Orography (+ std, + 

filtered) 

m2/s-

2 

Specific humidity kg/kg   

Photosynthesis 

pathways 

 Rainfall rate (total) kg/m2s   

Soil type  Snowfall rate (total) kg/m2s   

Glacier mask 

Permanent wilting point 

Field capacity 

     

Cell area      

 196 

2.3 Emulators 197 

 198 

We compare the utility of a long-short term memory neural network (LSTM), that of extreme 199 

gradient boosting regression trees (XGB) and that of a feedforward neural network (that we 200 

here refer to as multilayer perceptron, MLP). To motivate this setup and pave the way for 201 

discussing effects of (hyper-)parameter choices, a short overview of all approaches is given. 202 

All analyses were conducted in Python. XGB was developed in dmlc’s XGBoost python 203 

package1. The MLP and LSTM were developed in the PyTorch lightning framework for deep 204 

learning2. Neural networks were trained with the Adam algorithm for stochastic optimization 205 

(Kingma & Ba, 2017). Model architectures and algorithmic hyperparameters were selected 206 

through Bayesian hyperparameter optimization with the Optuna framework (Akiba et al., 207 

2019). The Bayesian optimization minimizes the neural network validation accuracy, 208 

specified here as mean absolute error (MAE), over a predefined search space for free 209 

hyperparameters with the Tree-structured Parzen Estimator (Ozaki et al., 2022). The resulting 210 

hyperparameter and architecture choices which were used for the different approaches are 211 

listed in the Supplementary Material. 212 

 213 

2.3.1 MLP 214 

 215 

For creation of the MLP emulator we work with a feed-forward neural network architecture 216 

of connected hidden layers with ReLU activations and dropout layers, model components 217 

which are given in detail in the Supplementary Material or in (Goodfellow et al., 2016). The 218 

 
1 https://xgboost.readthedocs.io/en/stable/python/index.html 
2 https://lightning.ai/docs/pytorch/stable/ 
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MLP was trained with a learning rate scheduler. L2-regularization was added to the training 219 

objective via weight decay. Sizes and width of hidden layers as well as hyperparameters were 220 

selected together in the hyperparameter optimization procedure. Instead of forecasting 221 

absolute prognostic state variables 𝒛𝒕, the MLP predicts the 6-hourly increment, "𝒛
$

"%
. It is 222 

trained on a stepwise rollout prediction of future state variables at a pre-defined lead time at 223 

given forcing conditions, see details in the section on optimization. 224 

 225 

2.3.2 LSTM 226 

 227 

LSTMs are recurrent networks that consider long-term dependencies in time series through 228 

gated units with input and forget mechanisms (Hochreiter & Schmidhuber, 1997). In 229 

explicitly providing time-varying forcing and state variables, LSTM cell states serve as long-230 

term memory while LSTM hidden states are the cells’ output and pass on stepwise short-term 231 

representations stepwise. In short notation (Lees et al., 2022), a one-step ahead forward pass 232 

followed by a linear transformation can be formulated as 233 

𝒉% , 𝒄% = 𝑓(𝒙% , 𝒉%&', 𝒄%&', 𝜽) 234 

	𝒛-% =	𝑨𝒉% + 𝑏 235 

where 𝒉%&' denotes the hidden state, i.e. output estimates from the previous time step, 𝒄%&' 236 

the cell state from the previous time step, and 𝜽 the time-invariant model weights. We stacked 237 

multiple LSTM cells to an encoder-decoder model with transfer layers for hidden and cell 238 

state initialization and for transfer to the context vector (see figure 1) (Nearing et al., 2024). A 239 

lookback 𝑙 of the previous static and dynamic feature states are passed sequentially to the first 240 

LSTM cells in the encoder layer, while the 𝑙 prognostic state variables 𝒛 initialize the hidden 241 

state 𝒉( after a linear embedding. The output of the first LSTM layer cells become the input 242 

to the deeper LSTM layer cells and the last hidden state estimates are the final output from 243 

the encoder. Followed by a non-linear transformation with hyperbolic tangent activation, the 244 

hidden cell states are transformed into a weighted context vector 𝒔. Together with the encoder 245 

the cell state (𝒄%, 𝒔) initializes the hidden and cell states of the decoder. The decoder LSTM 246 

cells take as input again static and dynamic features sequentially at lead times 𝑡 = 1,… , 𝜏, but 247 

not the prognostic states variables. These are estimated from the sequential hidden states of 248 

the last LSTM layer cells, transformed to target size with a linear forecast head before 249 

prediction. LSTM predicts absolute state variables 𝒛% while being optimized on 𝒛% and 𝑑𝒛-% 250 

simultaneously, see section on optimization. 251 
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 252 
Figure 1: LSTM architecture. Blue shaded area indicates the encoder part, where the model is driven by a lookback 𝜆 253 
of meteorological forcing and state variables. The light-blue shaded area indicates the decoder part that is initialized 254 
from the encoding to unroll LSTM forecasts from the initial time step t up to a flexibly long lead time of  𝜏. 255 

2.3.3 XGB 256 

 257 

Extreme gradient boosting (XGB) is a regression tree ensemble method that uses an 258 

approximate algorithm for best split finding. It computes first and second order gradient 259 

statistics in the cost function, performing a similar to gradient descent optimization (T. Chen 260 

& Guestrin, 2016), where each new learner is trained on the residuals of the previous ones. 261 

Regularization and column sampling aim for preventing overfitting internally. XGB is known 262 

to provide a powerful benchmark for time series forecasting and tabular data [(T. Chen & 263 

Guestrin, 2016; Shwartz-Ziv & Armon, 2021), (X. Chen et al., 2020)]. Like the MLP, it is 264 

trained to predict the increment 	𝑑𝒛8%,* of prognostic state variables, but only for a one-step 265 

ahead prediction. 266 

 267 

2.4 Experimental setup 268 

 269 

We distinguish the experimental analysis into three parts that vary in the usage of the training 270 

database: (1) model development, (2) model testing, and (3) global model transfer.  271 

The models were developed and for the first time evaluated on a low state resolution 272 

(ECMWF’s TCO199 reduced gaussian grid, see section on data sources) and temporal subset 273 

from the training data base, i.e. on a bounding box of 7715 grid cells over Europe with time 274 
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series of six years from 2016 to 2022. For details on the development data base, model 275 

selection and model performances, see Supplementary Material S3.  276 

The selected models were recreated on a high state resolution (TCO399) continental scale 277 

European subset with 10 051 grid cells. Models were trained on five years 2015-2020 with 278 

the year 2020 as validation split and evaluated on the year 2021 for the scores we report in 279 

the main part. Note that for computation of forecast horizons, the two test years 2021 and 280 

2022 were used, see details in section on forecast horizons. With this same data splitting 281 

setup, the analysis was repeated in transferring the candidates to the low resolution (TCO199) 282 

global data set with a total of 47892 grid cells. The low global resolution on one hand allowed 283 

a systematic comparison of the three models, because high resolution training with XGB was 284 

prohibited by the required working memory. On the other hand, this extrapolation scenario 285 

created an unseen problem for the models that were selected on a continental and high-286 

resolution scale which is reflected in the resulting scores.  287 

 288 

2.5 Optimization 289 

 290 

2.5.1 Loss functions 291 

 292 

The basis of the loss function ℒ for the neural network optimization was PyTorch’s 293 

SmoothL1Loss3, a robust loss function that combines L1-norm and L2-norm and is less 294 

sensitive to outliers than pure L1-norm (Girshick, 2015). Based on a pre-defined threshold 295 

parameter 𝛽, smooth L1 transitions from L2-norm to L1-norm above the threshold.  296 

SmoothL1Loss ℒ is defined as 297 

ℒ(�̂�, 𝑧) = 	0.5(�̂� − 	𝑧)+ '
,

  if |�̂� − 	𝑧| < 	𝛽	and 298 

ℒ(�̂�, 𝑧) = 	 |�̂� − 	𝑧| − 	0.5	𝛽  otherwise, 299 

here with 𝛽 = 1. All models were trained to minimize the incremental loss ℒ- that is the 300 

differences between the estimates of the seven prognostic states increments  𝑑𝒛8%	and the full 301 

model’s prognostic states increments 𝑑𝒛%	simultaneously as the sum of losses over all states. 302 

We opted for a loss function equally weighted by variables to share inductive biases among 303 

the non-independent prognostic states (Sener & Koltun, 2018). When aggregating over all 304 

training lead times 𝑡 = 1,… , 𝜏, ℒ- and grid cells 𝑖 = 1,… , 𝑝 is  305 

 
3 https://pytorch.org/docs/stable/generated/torch.nn.SmoothL1Loss.html 
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ℒ-(	𝑑𝒛8, 𝑑𝒛) = 	EEℒ%(	𝑑𝒛8%,* , 𝑑𝒛%,*)
.

*

/

%

, 306 

Whereas when computing a rollout loss ℒ0 stepwise,  307 

 308 

ℒ0(	𝑑𝒛8, 𝒛) = 	
1
𝜏	EEℒ%(𝑧%&',* +	𝑑𝒛8%,* , 𝑧%,*)

.

*

/

%

 309 

 310 

Prognostic state increments are essentially the first differences from one to the next timestep 311 

that are normalized again by the global standard deviation of the model’s states increments, 312 

𝑠	!𝒛 before computation of the loss (Keisler, 2022). Due to the forecast models’ structural 313 

differences, loss functions were individually adapted: 314 

MLP The combined loss function for the MLP is the sum of the incremental loss ℒ- and the 315 

rollout loss ℒ0. For the rollout loss ℒ0, ℒ was aggregated over grid cells 𝑝 and accumulated 316 

after an auto-regressive rollout over lead times 𝜏, before being averaged out by division by 𝜏 317 

(Keisler, 2022).  318 

LSTM The combined loss function for the LSTM is the sum of the incremental loss 319 

ℒ-,	where the 𝑑𝒛-% were derived from 𝒛-% after the forward pass, and the loss ℒ computed on 320 

decoder estimates of prognostic states variables, a functionality that leverages the potential of 321 

our LSTM structure.  322 

XGB Trained only from one to the next time step, i.e. at a lead time of 𝜏 = 1, the incremental 323 

loss ℒ- =	ℒ0. Without a SmoothL1Loss implementation provided in dmlc’s XGBoost, we 324 

trained XGB with both the Huber-Loss and the default L2-loss. The latter initially providing 325 

better results, we chose the default L2-norm as loss function for XGB with the regularization 326 

parameter 𝜆 = 1. 327 

 328 

2.5.1 Normalization 329 

As prognostic target variables are all lower bounded by zero, we tested both z-scoring and 330 

max-scoring. The latter yielded no significant improvement, thus we show our results with z-331 

scored target variables. For neural network training but not for fitting XGB, static, dynamic 332 

and prognostic state variables were all normalized with z-scoring towards the continental or 333 

global mean 𝑧̅ and unit standard deviation 𝑠2 as 334 

𝑧%,3 =	
2#,%&	2̅
-&

. 335 
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Prognostic target state increments were normalized again by the global standard deviation of 336 

increments computing the loss (see section 2.5.1) to smooth magnitudes of increments 337 

(Keisler, 2022). State variables were backtransformed to original scale before evaluation. 338 

 339 

2.5.3 Spatial and temporal sampling 340 

Sequences were sampled randomly from the training data set, while validation happened 341 

sequentially. MLP and XGB were trained on all grid cells simultaneously in both the 342 

continental and global setting, while LSTM was trained on the full continental data set but 343 

was limited by GPU memory in the global task. We overcame this limitation by randomly 344 

subsetting grid cells in the training data into largest possible, equally sized subsets which 345 

were then loaded along with the temporal sequences during the batch sampling.  346 

 347 

2.6 Evaluation 348 

 349 

Three scores are used for model validation during the model development phase and in 350 

validating architecture and hyperparameter selection, being the root mean squared error 351 

(𝑅𝑀𝑆𝐸), the mean absolute error (𝑀𝐴𝐸) and the anomaly correlation coefficient (𝐴𝐶𝐶). 352 

First, scores were assessed objectively in quantifying forecast accuracy of the emulators 353 

against ECLand simulations directly with RMSE and MAE. Doing so, scores were 354 

aggregated over lead times, grid cells or both. The total RMSE was computed as  355 

RMSE = 	S
∑ (𝑧 −	 �̂�)+/,.

𝑛 , 356 

As the mean absolute error in prognostic state variable prediction over the total of 𝑛 grid cells 357 

𝑝 times lead times 𝜏. Equivalently, MAE was computed as 358 

MAE = 	
∑ |𝑧 −	 �̂�|%,.

𝑛 , 359 

Beyond accuracy, the forecast skill of emulators was assessed using a benchmark model: the 360 

ACC (see below) as index of the long-term naïve climatology 𝑐 of ECLand, forced by ERA5 361 

(see section 2.2). More specifically, this is the 6-hourly mean of prognostic state variables 362 

over the last 10 years preceding the test year, i.e. the years 2010 to 2020. While climatology 363 

is a hard-to-beat benchmark specifically in long-term forecasting, the persistence is a 364 

benchmark for short-term forecasting (Pappenberger et al., 2015). For verification against 365 

climatology, we compute the anomaly correlation coefficient (ACC) over lead times as  366 
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ACC(𝑡)	 =
(�̂� − 𝑐)(	𝑧 − 𝑐)YYYYYYYYYYYYYYYYYYY

Z(�̂� − 𝑐)+YYYYYYYYYYY		(𝑧 − 𝑐)+YYYYYYYYYYY
 367 

at each t = 1, …, 𝜏 where the overbar denotes averaging over grid	cells	𝑝 = 𝑖, … , 𝑛. The 368 

nominator now indicates the mean squared skill error towards climatology and the 369 

denominator its variability. ACC is bounded between 1 and -1, and an ACC of 1 indicates 370 

perfect representation of forecast error variability, an ACC of 0.5 indicates a similar forecast 371 

error to that of the climatology, an ACC of 0 indicates that forecast error variability 372 

dominates and the forecast has no value and an ACC approaching -1 indicates that the 373 

forecast has been very unreliable (ECMWF, n.d.).  ACC is undefined when the denominator 374 

is zero. This is the case either when mean squared emulator or ECLand anomaly, or both are 375 

zero because forecast and climatology perfectly align, or because they cancel out at 376 

summation to the mean. 377 

 378 

2.6.1 Forecast horizons  379 

 380 

Forecast horizons of the emulators are defined by the decomposition of the RMSE 381 

(Bengtsson et al., 2008) into the emulator’s variability around climatology (i.e. anomaly), 382 

ECLand’s variability around climatology and the covariance of both. The horizon is the point 383 

in time at which the forecast error reaches saturation level, that is when the covariance of 384 

emulator and ECLand anomalies approaches zero, as does the ACC. 385 

We analysed predictive ability and predictability by computing the ACC for all lead times 386 

from 6 hours to approx. one year, i.e. lead times 𝑡 = 1,… , 𝜏, 𝜏 being 1350. As this confounds 387 

the seasonality with the lead time, we compute these for every starting point of the prediction, 388 

requiring two test years (2021 and 2022).  389 

Forecast horizons based on the emulators’ skill in standardized anomaly towards persistence 390 

were equivalently computed but with persistence as a benchmark for shorter time scales, this 391 

was only done for three months, from January to March 2021. 392 

The analysis was conducted on two exemplary regions in northern and southern Europe that 393 

represent very different conditions orography and in prognostic land surface states, 394 

specifically in snow cover. For details on the regions and on the horizons computed with 395 

standardized anomaly skill, see Appendices A1 and A4 respectively.   396 

 397 

3 Results 398 
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3.1 Aggregated performances 399 

Europe. All emulators approximated the numerical LSM with high average total accuracies 400 

(all RMSEs < 1.58 and MAEs < 0.84) and confident correlations (all ACC > 0.72) (see table 401 

2 and figure 2). The LSTM emulator achieved the best results across all total average scores 402 

on the European scale. It decreased the total average MAE by ~25% towards XGB and by 403 

~37% towards the MLP and the total average RMSE by ~42% towards XGB and ~38% 404 

towards the MLP.  In total average ACC, the LSTM scored 20% higher than the MLP and 405 

15% than XGB, also being the only emulator that achieved an ACC > 0.9. While the MLP 406 

outperforms XGB in total average RMSE by ~5%, XGB scores better than the MLP in MAE 407 

by ~27%. 408 

At variable level, results differentiate into model specific strengths. In soil water volume, 409 

XGB outperforms the neural network emulators by up to 60% in the first and second layer 410 

MAEs towards the LSTM and up to over 40% for towards the MLP (see table 3). While the 411 

representation of anomalies by specifically the LSTM decreases towards lower soil layers 412 

with an ACC of only 0.6214 at the third soil layer, it remains consistently higher for XGB 413 

with an ACC still > 0.789 at soil layer three.  414 

In soil temperature approximation, LSTM achieves best accuracies at higher soil levels with 415 

up to 7% improvement in MAE towards XGB and ACCs > 0.92, but XGB outperforms 416 

LSTM at the third soil level with a close to 50% improvement (see table 4). The MLP doesn’t 417 

stand out by high scores on the continental scale. However, in terms of accuracy we found an 418 

inverse ranking in the model development procedure during which LSTM outscored XGB in 419 

soil water volume but struggled with soil temperature approximations, for the interested 420 

reader we refer to the supplementary information. 421 

In snow cover approximation, the LSTM emulator enhances accuracies by over ~50% in 422 

MAE towards both the XGB and the MLP emulator and scores highest in anomaly 423 

representation with an ACC of ~0.87 compared to an ACC of ~0.66 for the MLP and only 424 

~0.74 for the XGB (see table 5). 425 

Globe. Score ranking on the global scale varies strongly from the continental scale (see table 426 

2). In total average accuracies, the MLP outperforms XGB by over 30% and LSTM by up 427 

~25% in RMSE and improves MAE more than 15% towards both. In anomaly correlation 428 

however it scores last, whereas XGB achieves the highest total average of over 0.75. 429 

Consistent with scores on the continental scale is XGBs high performance in soil temperature 430 

(see table 3). It significantly outperforms the LSTM by ~60% in RMSE and nearly up to 75% 431 

in MAE in all layers and the MLP by up to 50% in MAE at the top layer. Anomaly 432 
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persistence for all models degrade visibly towards the lower soil layers, while that of the 433 

LSTM most relative to MLP and XGB. Similar to the continental scale, XGB also 434 

outperforms the other candidates in soil temperature forecasts in all but the medium layer, 435 

where the MLP gets higher scores in MAE and RMSE but not in ACC (see table 4). LSTM 436 

doesn’t stand out with any scores on the global scale.  437 

 438 

3.2 Spatial and temporal performances 439 

 440 

Europe. When summarizing temporally aggregated scores as boxplots to a total distribution 441 

over space (see figure 2, A), the long tails of XGB scores become visible, whereas the MLP 442 

indicates most robustness. This is reflected in the geographic distribution of scores at the 443 

example of ACC (see figure 2, bottom), where the area of low anomaly correlation is largest 444 

for XGB, ranging over nearly all northern Scandinavia, while MLP and LSTM have smaller 445 

and more segregated areas of clearly low anomaly correlation. The LSTM shows a 446 

homogenously high ACCs over most of central Europe but the Alps, while also seems to be 447 

challenged in areas of relative to the central Europe extreme weather conditions at the 448 

Norwegian and Spanish coasts. 449 

Globe. Similar to the results from the continental analysis, we find again long upper tails of 450 

outliers for XGB in total spatial distribution of accuracies, both in RMSE and MAE and only 451 

few outliers for MLP and LSTM. The anomaly correlation distribution changed towards 452 

longer lower tails for MLP and LSTM and a shorter lower tail for XGB. We should, however, 453 

take the results of total average ACC with care as it remains largely undefined in regions 454 

without much noise in snow cover or soil water volume and globally represents mainly 455 
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patterns of soil temperature.456 

 457 
Figure 2: a: Total aggregated distributions of (log) scores averaged over lead times, i.e. displaying the variation among 458 
grid cells. b: The distribution of the anomaly correlation in space on the European subset (b.1: XGB, b.2: MLP, b.3: 459 
LSTM). c: Model forecasts over test year 2021 for grid cell with minimum and maximum RMSE values (LSTM). 460 

 461 
Table 2: Emulator total average scores, aggregated over variables, time and space from the European and Global 462 
model testing. 463 

Variable Model RMSE  MAE  ACC  

  Europe Globe Europe Globe Europe Globe 

All variables XGB 1.575 2.611 0.695 1.601 0.765 0.755 

 MLP 1.486 1.699 0.832 1.189 0.728 0.569 

 LSTM 0.918 2.252 0.526 1.787 0.925 0.647 

https://doi.org/10.5194/egusphere-2024-2081
Preprint. Discussion started: 12 August 2024
c© Author(s) 2024. CC BY 4.0 License.



 18 

Table 3: Emulator average scores on soil water volume forecasts for the European subset, aggregated over space and 464 
time from the European and Global model testing. 465 

Variable Layer Model RMSE  MAE  ACC  

   Europe Globe Europe Globe Europe Globe 

Soil  1 XGB 0.013 0.015 0.01 0.01 0.908 0.92 

water  MLP 0.019 0.029 0.015 0.023 0.856 0.791 

volume  LSTM 0.029 0.048 0.023 0.04 0.847 0.729 

 2 XGB 0.011 0.012 0.008 0.009 0.901 0.884 

  MLP 0.019 0.023 0.014 0.018 0.789 0.77 

  LSTM 0.029 0.05 0.023 0.042 0.79 0.617 

 3 XGB 0.015 0.014 0.011 0.01 0.789 0.777 

  MLP 0.02 0.02 0.017 0.016 0.576 0.667 

  LSTM 0.033 0.051 0.027 0.043 0.621 0.475 
 466 

Table 4: Emulators’ mean scores on soil temperature forecasts for the European subset, aggregated over space and 467 
time. 468 

Variable Layer Model RMSE  MAE  ACC  

   Europe Globe Europe Globe Europe Globe 

Soil  1 XGB 1.154 4.539 0.744 3.278 0.806 0.769 

temperature  MLP 1.628 2.606 1.188 2.072 0.674 0.581 

  LSTM 0.931 3.152 0.682 2.626 0.938 0.735 

 2 XGB 0.901 2.501 0.51 1.772 0.812 0.797 

  MLP 1.134 1.851 0.784 1.452 0.718 0.606 

  LSTM 0.734 2.87 0.541   2.4 0.928 0.699 

 3 XGB 0.714 1.287 0.482 0.933 0.722 0.711 

  MLP 1.128 1.375 0.821 1.071 0.416 0.514 

  LSTM 1.141 3.466 0.918 3.002 0.598 0.406 
 469 

Table 5: Emulators’ mean scores on snow cover forecasts for the European subset, aggregated over space and time.  470 

Variable Layer Model RMSE  MAE  ACC  

   Europe Globe Europe Globe Europe Globe 

Snow  top XGB 8.219 9.906 3.099 5.196 0.746 0.707 

cover  MLP 6.449 5.995 2.986 3.671 0.66 0.618 

  LSTM 3.526 6.127 1.47 4.357 0.877 0.698 

 471 

3.3 Forecast horizons 472 
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Forecast horizons were computed for two European regions, of which the northern one 473 

represents the area of lowest emulators’ skill (see figure 2, B.1-3) and the southern one an 474 

area of stronger emulators’ skill. Being strongly correlated with soil water volume, these two 475 

regions differ specifically in their average snow cover fraction (see figure 3). The displayed 476 

horizons were computed over all prognostic state variables simultaneously, while their 477 

interpretation is related to horizons computed for prognostic state variables separately, for the 478 

figures of which we refer to the Supplementary Material.  479 

In the North, predictive skill depended on an interaction of how far ahead a prediction was 480 

made (the lead time) and the day of year to which the prediction was made. In the best case, 481 

the LSTM, summer predictions were poor (light patches in figure 3 heat maps), but only 482 

when initialised in winter. Or, in other words, one can make good predictions starting in 483 

winter, but not to summer. Vertical structures indicate a systematic model error that appears at 484 

specific initialisation times and that is independent of prediction date, for example in XGB 485 

forecasts that are initialized in May (see figure 3, northern region). Diagonal light structures 486 

in the heat maps indicate a temporally consistent error and can be interpreted as physical 487 

limits of system predictability, where the different initial forecast time doesn’t affect model 488 

scores. 489 

All models show stronger limits in predictability and predictive ability in the northern 490 

European region (see figure 3, left column). MLP and XGB struggled with representing 491 

seasonal variation towards climatology at long lead times, while LSTM is strongly limited by 492 

a systematic error in certain regions. Initializing the forecast the 1 January 2021, MLP drops 493 

below an ACC of 80% repeatedly from initialization on and then to an ACC below 10% at the 494 

beginning of May. LSTMs performance is more robust in the beginning of the year but 495 

depletes strongly later to less than 10% ACC in mid May. On the one hand, this represents 496 

two different characteristics of model errors: MLP forecasts for snow cover fraction are less 497 

than zero for some grid cells while LSTM forecasts for snow cover fraction remain falsely at 498 

very high levels for some grid cells, not predicting the snowmelt in May (see Supplementary 499 

Material, S4.1). On the other hand, this represents a characteristic error due to change in 500 

seasonality: the snowmelt in this region in May happens abruptly and all emulators 501 

repeatedly over- or underpredict the exact date.  502 

 503 
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 504 
Figure 3: Emulator forecast skill horizons in two European subregions, aggregated over prognostic state variables. 505 
Scores are computed with the anomaly correlation coeSicient (ACC) at 6-hourly lead times (y-axis) over approx. one 506 
year, displayed as a function of the initial forecast time (x-axis). As horizon we define the time at which the forecast 507 
has no value at all, i.e. when ACC is 0 (or below 10%). The diagonal dashed lines indicate the day of the test year 2021 508 
as labelled on the x-axis, the arrows indicate where forecasts reach the second test year 2022. 509 
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 510 

 511 
Figure 4: a) Total average scores, representing spatial variation among grid cells. B)  Total average ACC in space. Note 512 
that ACC remained undefined for regions of low signal in snow cover and soil water volume, see Supplementary 513 
Material. 514 
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4 Discussion 515 

 516 

In the comparative analysis of emulation approaches for land surface forecasting, three 517 

primary models—LSTM (Long Short-Term Memory networks), MLP (Multi-Layer 518 

Perceptrons), and XGB (Extreme Gradient Boosting)—have been evaluated to understand 519 

their effectiveness across different operational scenarios. While all emulators achieved high 520 

predictive scores, models differ in their demand of computational resources (Cui et al., 2021) 521 

and each one offers unique advantages and faces distinct challenges, impacting their 522 

suitability for various forecasting tasks. With this work we want to present the first steps 523 

towards enabling quick offline experimentation on the land surface with ECMWF’s land 524 

surface scheme ECLand and decreasing computational demands, i.e. in the coupled data 525 

assimilation.  526 

 527 

4.1 Approximation of prognostic land surface states 528 

 529 

The total evaluation scores of our emulators indicate good agreement with ECLand 530 

simulations. Among the seven individual prognostic land surface states, emulators achieve 531 

notably different scores and in the transfer from the high-resolution continental to the low-532 

resolution global scale, their performance ranking change. On average, neural network 533 

performances degrade towards the deeper soil layers, while XGB scores remain relatively 534 

stable. Also, the neural networks scores drop in the extrapolation from continental to global 535 

scale, while XGB scores also for this task remain constantly high. 536 

In a way, these findings are not surprising. It is known that neural networks are highly 537 

sensitive to selection bias (Grinsztajn et al., 2022) and tuning of hyper-parameters 538 

(Bouthillier et al., 2021), suboptimal choices of which may destabilise variance in predictive 539 

skill. Previous and systematic comparisons of XGB and deep neural networks have 540 

demonstrated that neural networks can hardly be transferred to new data sets without 541 

performance loss (Shwartz-Ziv & Armon, 2021). On tabular data, XGB still outperforms 542 

neural networks in most cases (Grinsztajn et al., 2022), unless these models are strongly 543 

regularized (Kadra et al., 2021). The disadvantage of neural networks might lay in the 544 

rotational invariance of MLP-like architectures, due to which information about the data 545 

orientation gets lost, as well as in their instability regarding uninformative input features 546 

(Grinsztajn et al., 2022).  547 
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Inversely to expectations and preceding experiments, on the European data set relative to the 548 

two other models the LSTM scored better in the upper layer soil temperatures than in 549 

forecasting soil water volume and decreased in scores towards lower layers with slower 550 

processes. For training on observations, the decreasing LSTM predictive accuracy for soil 551 

moisture with lead time is discussed (Datta & Faroughi, 2023), but reasons arising from the 552 

engineering side remain unclear. In an exemplary case of a single-objective, deterministic 553 

streamflow forecast, a decrease in recurrent neural network performance has been related 554 

with an increasing coefficient of variation (Guo et al., 2021). In our European subregions, the 555 

signal-to-noise ratio of the prognostic state variables (computed as the averaged ratio of mean 556 

and standard deviation) is up to ten times higher in soil temperature than in soil water volume 557 

states (see Supplementary Material, S2.1). While a small signal of the latter may induce 558 

instability in scores, it does not explain the decreasing performance towards deeper soil layers 559 

with slow processes, where we expected an advantage of the long-term memory. 560 

Stein’s paradox tells us that joint optimization may lead to better results if the target is multi-561 

objective, but not if we are interested in single targets (James & Stein, 1992)(Sener & Koltun, 562 

2018). While from a process perspective multi-objective scores are less meaningful than 563 

single ones, this is what we opted for due to efficiency. The unweighted linear loss 564 

combination might be suboptimal in finding effective parameters across all prognostic state 565 

variables (Z. Chen et al., 2017)(Sener & Koltun, 2018), yet being strongly correlated, we 566 

deemed their manual weighting inappropriate. An alternative to this provides adaptive loss 567 

weighting with gradient normalisation (Z. Chen et al., 2017). 568 

 569 

4.2 Evaluation in time and space 570 

We used aggerated MAE and RMSE accuracies as a first assessment tool to conduct model 571 

comparison, but score aggregation hides model specific spatio-temporal residual patterns. 572 

Further, both scores are variance dependent, favouring low variability in model forecasts 573 

even though this may not be representative of the system dynamic (Thorpe et al., 2013). 574 

Assessing the forecast skill over time as the relative proximity to a subjectively chosen 575 

benchmark helps disentangling areas of strengths and weaknesses in forecasting with the 576 

emulators (Pappenberger et al., 2015). The naïve 6-hourly climatology as benchmark 577 

highlights periods where emulators long-range forecasts on the test year are externally limited 578 

by seasonality, i.e. system predictability, and where they are internally limited by model error, 579 

i.e. the model’s predictive ability. Applying this strategy in two exemplary European 580 

subregions showed that all emulators struggle most in forecasting the period from late 581 
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summer to autumn, unless they are initialized in summer (see figure 3). Because forecast 582 

quality is most strongly limited by snow cover (see Supplementary Material, A4.1), we 583 

interpret this as the unpredictable start of snow fall in autumn. External predictability 584 

limitations seem to affect the LSTM overall less than the two other models, and specifically 585 

XGB drifts at long lead times. 586 

From a geographical perspective inferred from the continental scale, emulators struggle in 587 

forecasting prognostic state variables in regions with complicated orography and strong 588 

environmental gradients. XGB scores vary seemingly random in space, while neural 589 

networks scores exhibit spatial autocorrelation. A meaningful inference about this, however, 590 

can only be conducted in assessing model sensitivities to physiographic and meteorological 591 

fields through gradients and partial dependencies. While the goal of this work is to introduce 592 

our approach to emulator development, we envision this for follow-up analyses.  593 

 594 

4.3 Emulation with memory mechanisms 595 

 596 

Without much tuning, XGB challenges both LSTM and MLP for nearly all variables (see 597 

tables 2-4). In training on observations for daily short-term and real-time rainfall-runoff 598 

prediction, XGB and LightXGB were shown before to equally performed as, or outperformed 599 

LSTMs (X. Chen et al., 2020)(Cui et al., 2021). Nevertheless, models with memory 600 

mechanism such as the encoder-decoder LSTM remain a promising approach for land surface 601 

forecasting regarding their differentiability (Hatfield et al., 2021), their flexible extension of 602 

lead times, for exploring the effect of long-term dependencies or for inference from the 603 

context vector that may help identifying the process relevant climate fields (Lees et al., 604 

2022).  605 

In our LSTM architecture, we assume that our model is well defined in that the context vector 606 

perfectly informs the hidden decoder states. If that assumption is violated, potential strategies 607 

are to create a skip-connection between context vector and forecast head, or to consider input 608 

of time-lagged variables or self-attention mechanisms (X. Chen et al., 2020). With attention, 609 

the context vector becomes a weighted sum of alignments that relates neighbouring positions 610 

of a sequence, a feature that could be leveraged for forecasting quick processes such as snow 611 

cover or top-level soil water volume.  612 

Comparing average predictive accuracies across different training lead times indicates that 613 

training at longer lead times may enhance short-term accuracy of the LSTM at the cost of 614 

training runtime (see Supplementary Material, S2). A superficial exploration of encoder 615 
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length indicates no visible improvement on target accuracies if not a positive tendency 616 

towards shorter sequences. This needs an extended analysis for understanding, yet without a 617 

significant improvement by increased sequence length, GRU cells might provide a simplified 618 

and less parameterized alternative to LSTM cells. They were found to perform equally well 619 

on streamflow forecast performance before, while reaching higher operational speed (Guo et 620 

al., 2021). 621 

 622 

4.4 Emulators in application 623 

 624 

LSTM networks with a decoder structure are valued for their flexible and fast lead time 625 

evaluation, which is crucial in applications where forecast intervals are not consistent. The 626 

structure of LSTM is well-suited for handling sequential data, allowing it to perform 627 

effectively over different temporal scales (Hochreiter & Schmidhuber, 1997). They provide 628 

access to gradients, which facilitates inference, optimization and usage for coupled data 629 

assimilation (Hatfield et al., 2021).  Nevertheless, the complexity of LSTMs introduces 630 

disadvantages: Despite their high evaluation speed and accuracy under certain conditions, 631 

they require significant computational resources and long training times. They are also highly 632 

sensitive to hyperparameters, making them challenging to tune and slow to train, especially 633 

with large datasets. 634 

MLP models stand out for their implementation, training and evaluation speed with yet 635 

rewarding accuracy, making them a favourable choice for scenarios that require rapid model 636 

deployment. They are tractable and easy to handle, with a straightforward setup that is less 637 

demanding computationally than more complex models. MLPs also allow for access to 638 

gradients, aiding in incremental improvements during training and quick inference (Hatfield 639 

et al., 2021). Despite these advantages, MLPs face challenges with memory scaling during 640 

training at fixed lead times, which can hinder their applicability in large-scale or high-641 

resolution forecasting tasks. 642 

XGB models are highly regarded for their robust performance with minimal tuning, 643 

achieving high accuracy not only in sample applications, but also in transfer to unseen 644 

problems (Shwartz-Ziv & Armon, 2021) (Grinsztajn et al., 2022). Their simplicity makes 645 

them easy to handle, even for users with limited technical expertise in machine learning. 646 

However, the slow evaluation speed of XGB becomes apparent as dataset complexity and 647 

size increase. Although generally more interpretable than deep machine learning tools, XGB 648 
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is not differentiable, limiting its application in coupled data assimilation (Hatfield et al., 649 

2021) even though research on differentiable trees is ongoing (Popov et al., 2019). 650 

 651 

5 Conclusion 652 

 653 

In conclusion, the choice between LSTM, MLP, and XGB models for land surface forecasting 654 

depends largely on the specific requirements of the application, including the need for speed, 655 

accuracy, and ease of use. Each model's computational demands, flexibility, and operational 656 

overhead must be carefully considered to optimize performance and applicability in diverse 657 

forecasting environments. When it comes to accuracy, combined model ensembles of XGB 658 

and neural networks have been shown to yield the best results (Shwartz-Ziv & Armon, 2021), 659 

but accuracy alone will not determine a single best approach (Bouthillier et al., 2021). Our 660 

comparative assessment underscores the importance of selecting the appropriate emulation 661 

approach based on a clear understanding of each model's strengths and limitations in relation 662 

to the forecasting tasks at hand. By developing the emulators for ECMWF’s numerical land 663 

surface scheme ECLand, we path the way towards a physics-informed ML-based land surface 664 

model that on the long run can be parametrized with observations and provide a pretrained 665 

model suite to improve land surface forecasts.  666 

 667 
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