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S1 Data base 3 

 4 

S2.1 European subregions for horizons computation  5 

 6 

A northern European subset was selected on Southern Scandinavia with a grid box on 7 

minimum and maximum latitudes of 55 and 71 degree respectively and a minimum and 8 

maximum longitude of 5 and 20 degree respectively. This resulted in a subset of 755 grid 9 

cells. For the southern European region, a grid box was created over France with minimum 10 

and maximum latitudes of 41.5 and 51.1 degree respectively and a minimum and maximum 11 

longitude of -5.1 and 6 degree respectively. Summary statics for the prognostic state variables 12 

in these regions are listed in table S1. 13 

 14 
Table S1: Exemplary summary statistics of the seven prognostic target variables over two European training data 15 
subsets, northern and southern. Mean, standard deviation and their ratio (Signal-to-noise ratio, SNR) are aggregated 16 
over times and grid cells. 17 

 Northern 

Europe 

  Southern 

Europe 

  

 Mean Standard 

dev. 

SNR Mean Standard 

dev. 

SNR 

SWVL1 0.2858 0.0465 6.399 0.2929 0.0905 3.3495 

SWVL2 0.2802 0.0433 6.7156 0.2949 0.0807 3.7471 

SWVL3 0.2685 0.0449 6.1867 0.2905 0.0688 4.3294 

STL1 278.1943 6.2549 45.6081 285.026 6.9303 41.67 

STL2 278.0838 5.6185 50.9871 284.9675 6.007 48.0569 

STL3 277.8869 4.4763 65.1102 284.847 4.8378 59.6688 

SNOWC 36.5848 37.9657 0.889 2.7402 9.5118 0.1722 

 18 

 19 

 20 

  21 



S2 Model development 22 

 23 

S2.1 LSTM 24 

 25 

S2.1.1 Architecture and Hyperparameter selection 26 

 27 

 28 

 29 
Figure S1: LSTM architecture development. LSTM_basic considers prognostic state variables in the encoder as input, 30 
LSTM_dz adds and incremental term in the loss function, LSTM_emb encodes prognostic state variables to inform 31 
encoder hidden and cell states and LSTM_mlpEN uses an MLP encoder to inform the hidden states of the LSTM 32 
decoder. 33 

The coarse architectural modules of the LSTM were manually selected. In a seeded 34 

experiment, we (1) added the first differences to the loss function, (2) added an embedding 35 

layer that transfers prognostic states to the initial hidden states of an LSTM encoder, (3) 36 

tested an MLP as encoder to the LSTM decoder (see figure S1). While we accepted the 37 

methodology of (1) and (2), we rejected (3) and continued with an LSTM encoder network. 38 

Detaild architectural choices were made with the Bayesian hyperparameter tuning framework 39 

Optuna (Akiba et al., 2019). The best performance was reached with equal parametric 40 

capacities in the encoder and decoder part. The final LSTM thus has a hidden size of 200 and 41 

in each layer with a depth of 3 in the encoder and decoder part. The parts are connected by a 42 

hidden and a cell adapter that consist each of a single linear layer that transfers the hidden 43 

and cell state from the encoder to the decoder, performing width.  44 

The hyperparameters for training were a dropout of 0.1265, a learning rate of  0.0005 and 45 

weight decay of 0.0001. 46 



 47 

 48 

1  | hidden_encoder    | Linear            | 5.8 K   49 

2  | cell_encoder    | Linear            | 5.8 K   50 

3  | lstm_encoder      | LSTM            | 824 K  51 

4  | hidden_adapter    | Linear            | 40.2 K 52 

5  | cell_adapter      | Linear            | 40.2 K 53 

6  | lstm_decoder      | LSTM            | 824 K  54 

7  | mlp_decoder       | Linear            | 1.4 K 55 

 56 

1.7 M     Trainable params 57 

0             Non-trainable params 58 

1.7 M     Total params 59 

6.942     Total estimated model params size (MB) 60 

 61 

S2.1.2 Training Leadtime 62 

 63 

The forget gate mechanism allows LSTMs to store information over long time sequences 64 

without the loss old information (e.g. (Nearing et al., 2024)). We conducted a seeded 65 

experiment on the effect of the training lead time in the decoder part on the LSTMs predictive 66 

accuracy within the capacity of our computational resources. At the exact same 67 

hyperparameter setting, the model was trained at six different lead times for 220 epochs. Note 68 

that lead times are reported in time steps on the 6-hourly resolution, i.e. a lead time of ten is 69 

equivalent to a 2.5 days forecast, a lead time of 20 to 5 days, etc. All models converged in the 70 

training period. While predictive accuracy increases at longer training lead times, so does the 71 

training runtime (see table S1 and figure S3). The training lead time for results we show in 72 

the main manuscript was 40 on the European and 60 on the continental scale. 73 
  74 



 75 
Table S2: Summary of runtimes and total mean predictive scores at diKerent training lead times. Training was 76 
conducted on 2 GPUs, Evaluation on 1 GPU. Runtimes are reported in minutes. 77 

Training 

Leadtime 

Training 

Runtime 

Evaluation 

Runtime 

Total RMSE Total MAE Total R2 

10 420.72 0.016 1.6520 0.9929 0.9991 

20 664.27 0.009 1.3992 0.8012 0.9991 

30 905.47 0.009 1.1084 0.5958 0.9992 

40 1289.27 0.008 0.9138 0.4983 0.9994 

50 1954.62 0.009 0.7411 0.3691 0.9997 

60 2338.86 0.009 0.6918 0.3459 0.9998 

 78 

 79 



 80 
 81 
Figure S2: Targetwise predictive accuracy by training at diKerent lead times. 82 

 83 

S2.1.2 Encoder sequence length 84 



 85 

Like the experiment on the training lead time, we conducted a seeded experiment on the 86 

effect of encoder sequence length on predictive accuracies at a training lead time of 40. 87 

However, in contrast to varying the training lead time, changing the encoder sequence will 88 

change the model structure(Hochreiter & Schmidhuber, 1997). The effect not being as clear 89 

as for training lead time, we may hypothesise an advantage of shorter sequence length for the 90 

s oil related variables (see figure S3). Models that produced results in the main manuscript 91 

were trained with encoder sequence lengths of 24. 92 



 93 
Figure S3: Targetwise predictive accuracy by training with diKerent lookback times, i.e. encoder sequence lengths. 94 

S2.2 MLP 95 

 96 

S2.2.1 Methodology 97 

 98 

The multilayer perceptron is a neural network regression-type model that approximates a 99 

non-linear function 𝑓:	𝑥	 → 	𝑦, where x in this study is a vector of static, dynamic and 100 



prognostic state variables, and y the vector of prognostic state variables. The optimal function 101 

f representing this mapping is unknown and its best possible approximation 𝑓 ∗ (𝑥) is found 102 

in a stochastic gradient-based optimization procedure. In practice, n non-linear functions are 103 

chained to a feed-forward neural network to create a hierarchically structured latent space 104 

with so-called hidden layers, whereby each j-th hidden layer of the network can be expressed 105 

as  106 

𝑦! 	= 	𝜑!(,𝑥"
"

𝐴!," 	+ 𝑏!). 107 

Here, 𝐴!," constitutes the weight matrix, i.e. the networks parameter, 𝑏! the bias vector, i.e. an 108 

estimated intercept, and 𝜑! a non-linear activation function. The activation function is here 109 

the Rectified-Linear Unit (ReLU) that is defined as 110 

𝜑 ∶= 	𝑚𝑎𝑥(𝑦, 0).	 111 

In a hidden layer, the input 𝑥" is mapped to a predetermined number of hidden nodes, i.e. the 112 

layers’ size, determined by the second dimension in 𝐴!,". The transformation with 𝜑! returns a 113 

weighted version of the node. When weighted to zero, a node is dead unless regularized by 114 

the bias. The MLP in trained with dropout, referring to an additional regularization technique 115 

that applies a random binary mask to all input and hidden nodes of the network at each 116 

training step, where a node with the zero at the mask is dead in this training step. The 117 

probability of ones in the mask is defined as a hyperparameter (see below) (Goodfellow et al., 118 

2016).  119 

 120 

S2.2.2 Architecture and Hyperparameters 121 

 122 

The MLP has four hidden layers of sizes 122, 47, 103 and 117. It is trained with a learning 123 

rate of 0.00093, dropout of 0.18526 and a weight decay of 0.00013. The batch size and 124 

training rollout were determined by GPU memory and are 4 and 4 respectively. The total 125 

numbers of trainable parameters in the MLP is 28.8K.  126 

 127 

S2.2 XGB 128 

 129 

XGB was trained with a learning rate of 0.3, a maximum depth of ten and 256 trees. In 130 

contrast to neural network hyperparameter optimization, only a manual exploration on tuning 131 

the learning rate and depth was conducted. 132 



 133 

  134 



S3 Model performances 135 

 136 

S3.1 Model development: Europe 137 

 138 

S3.1.1 Objective forecast accuracies 139 

 140 

All emulators approximated the numerical model with high total scores on average, i.e. 	141 

𝑅!	values	larger	than	0.99,	MAEs	smaller	than	1	and	RMSE	smaller	than	approximately	1.60.	The 142 

LSTM scored highest across all metrics, followed by XGB and then MLP, even though the 143 

latter got second place in RMSE.	LSTM	improved	in	MAE	by	50%	towards	XGB	(see	table	144 

S2). These results differentiate for individual target variables. LSTM shows specifically 145 

strong performance across scores in forecasting soil water volume.  146 

 147 

 148 

 149 
Figure S4: Mean R-squared aggregated per grid cells over 6-hourly lead times on the European subset for model 150 
development.  151 

 152 

 153 

 154 
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Figure S5: Total distribution of mean scores, aggregated over 6-hourly lead times by grid cell, variability here thus 158 
refers to performance diKerences among grid cells. 159 

Table S3: Emulator total mean scores, aggregated over variables, time and space. 160 

Variable Model 𝑹𝑴𝑺𝑬 𝑴𝑨𝑬 𝑹𝟐 

All variables XGB 1.6035 0.8091 0.9960 

 MLP 1.6013 0.9611 0.9991 

 LSTM 0.8507 0.4361 0.9996 
Table S4: Emulator mean scores on soil water volume forecasts for the European subset, aggregated over space and 161 
time. 162 

Variable Layer Model 𝑹𝑴𝑺𝑬 𝑴𝑨𝑬 𝑹𝟐 

Soil water volume 1 XGB 0.0122 0.0084   0.84420 

  MLP 0.0249 0.0192 0.7340 

  LSTM 0.0114 0.0083 0.8655 

 2 XGB 0.0104 0.0070 0.8512 

  MLP 0.0280 0.0216 0.5781 

  LSTM 0.0097 0.0073 0.8543 

 3 XGB 0.0149 0.0112 0.6426 

  MLP 0.0252 0.0197 0.2380 

  LSTM 0.0114 0.0092 0.7379 
Table S5: Emulator mean scores on soil temperature forecasts for the European subset, aggregated over space and 163 
time. 164 

Variable Layer Model 𝑹𝑴𝑺𝑬 𝑴𝑨𝑬 𝑹𝟐 

Soil temperature 1 XGB 0.8730 0.5735 0.9750 

  MLP 1.2629 0.9601 0.9352 

  LSTM 0.8450 0.6347 0.9642 

 2 XGB 0.6449 0.3843 0.9721 

  MLP 0.9984 0.7580 0.3130 

  LSTM 0.6563 0.4852 0.9480 

 3 XGB 0.6221 0.4368 0.9126 

  MLP 1.3464 1.0020 -0.5478 

  LSTM 0.7530 0.5884 -0.5807 
Table S6: Emulator mean scores on snow cover forecasts for the European subset, aggregated over space and time.  165 

Variable Layer Model 𝑹𝑴𝑺𝑬 𝑴𝑨𝑬 𝑹𝟐 

Snow cover top XGB 9.0471 4.2423 0.5325 



  MLP 7.5232 3.9469 0.4383 

  LSTM 3.6676 1.3196 0.4345 

 166 

 167 

 168 

 169 

S3.1 Model testing: Europe 170 

 171 

S3.2.1 Quantile Correlations 172 

 173 

We visualised quantile correlations for each prognostic state variable. The mean and standard 174 

deviation of quantiles were computed in 10% steps for emulator and ECland forecasts and 175 

plotted against each other. The results highlight the state values where model predictions 176 

align perfectly, i.e. quantiles are found on the correlation line, and where the emulator 177 

overestimate (quantiles above regression line) or underestimate (quantiles below regression 178 

line) ECland prognostic states (see figure S6). 179 

 180 
Figure S6: Quantile correlations for all prognostic target variables and all emulators. Emulator quantile predictions are 181 
on the y-axis, ECland predictions on the x-axis. The dashed black line indicates their perfect correlation. 182 



  183 



S4 Evaluation 184 

 185 

S4.1 Forecast horizons: climatology 186 

 187 

Below we show examples of forecast horizons computed for three single prognostic state 188 

variables, soil water volume and temperature at layer one and snow cover (figures S7-9). 189 

Disentangling these highlights at the example of snow cover that in aggregating the anomaly 190 

correlation over prognostic state variables, negative and positive effects may cancel each 191 

other out: the snow cover limitation in the southern European subregion for the MLP 192 

forecasts is not as visible in the total horizons (see main manuscript).  193 

 194 



 195 
Figure S7: Forecast horizons for Soil water volume layer 1. 196 
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 197 

 198 
Figure S8: Forecast horizons soil temperature Layer 1. 199 
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 202 
Figure S9: Forecast horizons snow cover. 203 

S4.2 Time series sample: Northern Europe 204 

 205 
Figure S10: MLP forecast on two  test years 2021, 2022  for a random selection of grid cells from the northern 206 
European region. 207 

 208 

Figure S11: LSTM  forecast on two test years 2021, 2022 for a random selection of grid cells from the northern 209 
European region. 210 

 211 



 212 
Figure S12: XGB  forecast on two test years 2021, 2022  for a random selection of grid cells from the northern 213 
European region. 214 

 215 

S4.1 Model extrapolation: Globe, low-resolution (TCO199) 216 

 217 

 218 
Figure S13: Quantile correlations, visualised as described in section 3.2.1 for continental model testing. 219 



 220 
Figure S14:Global distribution of Anomaly Correlation for three prognostic state variables. Uncoloured areas indicate 221 
regions where the ACC is not defined 222 

 223 
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