1 S Supplementary Material

3 S1 Data base

4

6

2

5 S2.1 European subregions for horizons computation

A northern European subset was selected on Southern Scandinavia with a grid box on
minimum and maximum latitudes of 55 and 71 degree respectively and a minimum and
maximum longitude of 5 and 20 degree respectively. This resulted in a subset of 755 grid
cells. For the southern European region, a grid box was created over France with minimum
and maximum latitudes of 41.5 and 51.1 degree respectively and a minimum and maximum
longitude of -5.1 and 6 degree respectively. Summary statics for the prognostic state variables
in these regions are listed in table S1.

14

15 Table S1: Exemplary summary statistics of the seven prognostic target variables over two European training data

16 subsets, northern and southern. Mean, standard deviation and their ratio (Signal-to-noise ratio, SNR) are aggregated

17 over times and grid cells.

	Northern			Southern				
	Europe			Europe	Europe			
	Mean	Standard	SNR	Mean	Standard	SNR		
		dev.			dev.			
SWVL1	0.2858	0.0465	6.399	0.2929	0.0905	3.3495		
SWVL2	0.2802	0.0433	6.7156	0.2949	0.0807	3.7471		
SWVL3	0.2685	0.0449	6.1867	0.2905	0.0688	4.3294		
STL1	278.1943	6.2549	45.6081	285.026	6.9303	41.67		
STL2	278.0838	5.6185	50.9871	284.9675	6.007	48.0569		
STL3	277.8869	4.4763	65.1102	284.847	4.8378	59.6688		
SNOWC	36.5848	37.9657	0.889	2.7402	9.5118	0.1722		

- 18
- 19

20

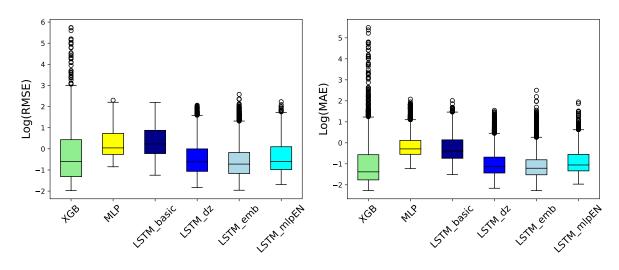
- 22 S2 Model development
- 23

24 S2.1 LSTM

25

26 S2.1.1 Architecture and Hyperparameter selection

- 27
- 28



29

30 Figure S1: LSTM architecture development. LSTM_basic considers prognostic state variables in the encoder as input,

31 LSTM_dz adds and incremental term in the loss function, LSTM_emb encodes prognostic state variables to inform

32 encoder hidden and cell states and LSTM_mlpEN uses an MLP encoder to inform the hidden states of the LSTM

33 decoder.

The coarse architectural modules of the LSTM were manually selected. In a seeded 34 experiment, we (1) added the first differences to the loss function, (2) added an embedding 35 36 layer that transfers prognostic states to the initial hidden states of an LSTM encoder, (3) tested an MLP as encoder to the LSTM decoder (see figure S1). While we accepted the 37 38 methodology of (1) and (2), we rejected (3) and continued with an LSTM encoder network. Detaild architectural choices were made with the Bayesian hyperparameter tuning framework 39 40 Optuna (Akiba et al., 2019). The best performance was reached with equal parametric 41 capacities in the encoder and decoder part. The final LSTM thus has a hidden size of 200 and 42 in each layer with a depth of 3 in the encoder and decoder part. The parts are connected by a hidden and a cell adapter that consist each of a single linear layer that transfers the hidden 43 44 and cell state from the encoder to the decoder, performing width. 45 The hyperparameters for training were a dropout of 0.1265, a learning rate of 0.0005 and

46 weight decay of 0.0001.

47 48 49 1 | hidden encoder | Linear | 5.8 K 2 | cell encoder | Linear | 5.8 K 50 51 3 | 1stm encoder | LSTM | 824 K 4 | hidden adapter 52 | Linear | 40.2 K 53 5 | cell adapter | Linear | 40.2 K 6 | lstm decoder 54 | LSTM | 824 K 55 7 | mlp decoder | Linear | 1.4 K 56 57 1.7 M Trainable params Non-trainable params 58 0 59 1.7 M Total params Total estimated model params size (MB) 60 6.942 61 62 **S2.1.2 Training Leadtime** 63 64 The forget gate mechanism allows LSTMs to store information over long time sequences without the loss old information (e.g. (Nearing et al., 2024)). We conducted a seeded 65 66 experiment on the effect of the training lead time in the decoder part on the LSTMs predictive 67 accuracy within the capacity of our computational resources. At the exact same 68 hyperparameter setting, the model was trained at six different lead times for 220 epochs. Note that lead times are reported in time steps on the 6-hourly resolution, i.e. a lead time of ten is 69 70 equivalent to a 2.5 days forecast, a lead time of 20 to 5 days, etc. All models converged in the 71 training period. While predictive accuracy increases at longer training lead times, so does the 72 training runtime (see table S1 and figure S3). The training lead time for results we show in 73 the main manuscript was 40 on the European and 60 on the continental scale. 74

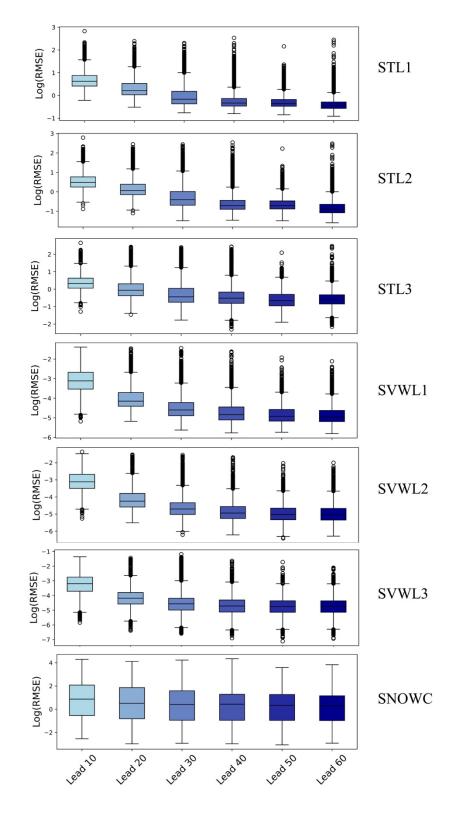
76 Table S2: Summary of runtimes and total mean predictive scores at different training lead times. Training was

	Training	Training	Evaluation	Total RMSE	Total MAE	Total R2
	Leadtime	Runtime	Runtime			
_	10	420.72	0.016	1.6520	0.9929	0.9991
	20	664.27	0.009	1.3992	0.8012	0.9991
	30	905.47	0.009	1.1084	0.5958	0.9992
	40	1289.27	0.008	0.9138	0.4983	0.9994
	50	1954.62	0.009	0.7411	0.3691	0.9997
_	60	2338.86	0.009	0.6918	0.3459	0.9998

77 conducted on 2 GPUs, Evaluation on 1 GPU. Runtimes are reported in minutes.

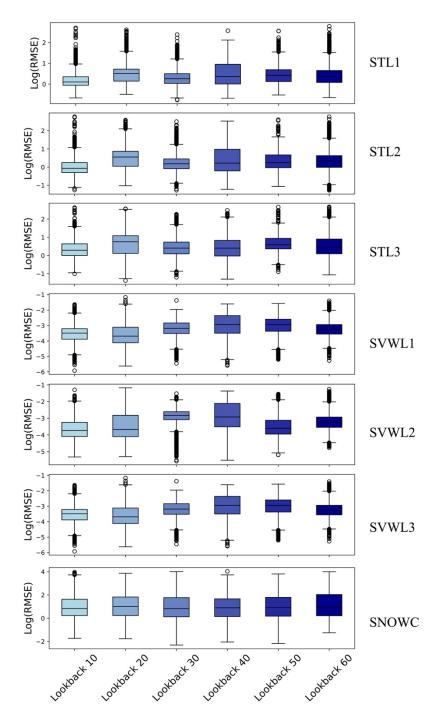
78

79



82 Figure S2: Targetwise predictive accuracy by training at different lead times.

- 85
- 86 Like the experiment on the training lead time, we conducted a seeded experiment on the
- 87 effect of encoder sequence length on predictive accuracies at a training lead time of 40.
- 88 However, in contrast to varying the training lead time, changing the encoder sequence will
- 89 change the model structure(Hochreiter & Schmidhuber, 1997). The effect not being as clear
- 90 as for training lead time, we may hypothesise an advantage of shorter sequence length for the
- s oil related variables (see figure S3). Models that produced results in the main manuscript
- 92 were trained with encoder sequence lengths of 24.



94 Figure S3: Targetwise predictive accuracy by training with different lookback times, i.e. encoder sequence lengths.

95 S2.2 MLP

96

97 S2.2.1 Methodology

- 99 The multilayer perceptron is a neural network regression-type model that approximates a
- 100 non-linear function $f: x \rightarrow y$, where x in this study is a vector of static, dynamic and

101 prognostic state variables, and y the vector of prognostic state variables. The optimal function 102 f representing this mapping is unknown and its best possible approximation f * (x) is found 103 in a stochastic gradient-based optimization procedure. In practice, n non-linear functions are 104 chained to a feed-forward neural network to create a hierarchically structured latent space 105 with so-called hidden layers, whereby each j-th hidden layer of the network can be expressed 106 as

107

$$y_j = \varphi_j (\sum_i x_i A_{j,i} + b_j).$$

Here, $A_{j,i}$ constitutes the weight matrix, i.e. the networks parameter, b_j the bias vector, i.e. an estimated intercept, and φ_j a non-linear activation function. The activation function is here the Rectified-Linear Unit (ReLU) that is defined as

111 $\varphi := max(y, 0).$

112 In a hidden layer, the input x_i is mapped to a predetermined number of hidden nodes, i.e. the 113 layers' size, determined by the second dimension in $A_{j,i}$. The transformation with φ_i returns a weighted version of the node. When weighted to zero, a node is dead unless regularized by 114 115 the bias. The MLP in trained with dropout, referring to an additional regularization technique 116 that applies a random binary mask to all input and hidden nodes of the network at each 117 training step, where a node with the zero at the mask is dead in this training step. The 118 probability of ones in the mask is defined as a hyperparameter (see below) (Goodfellow et al., 119 2016).

120

121 S2.2.2 Architecture and Hyperparameters

122

The MLP has four hidden layers of sizes 122, 47, 103 and 117. It is trained with a learning rate of 0.00093, dropout of 0.18526 and a weight decay of 0.00013. The batch size and training rollout were determined by GPU memory and are 4 and 4 respectively. The total numbers of trainable parameters in the MLP is 28.8K.

127

128 **S2.2 XGB**

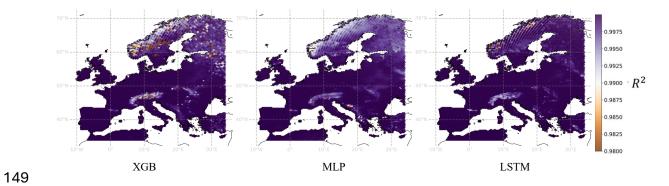
129

130 XGB was trained with a learning rate of 0.3, a maximum depth of ten and 256 trees. In

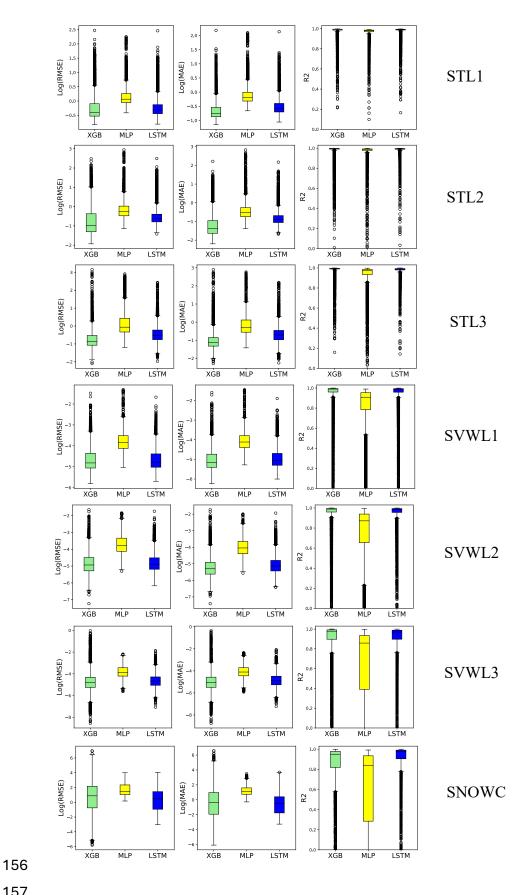
131 contrast to neural network hyperparameter optimization, only a manual exploration on tuning

132 the learning rate and depth was conducted.

135	S3 Model performances
136	
137	S3.1 Model development: Europe
138	
139	S3.1.1 Objective forecast accuracies
140	
141	All emulators approximated the numerical model with high total scores on average, i.e.
142	R^2 values larger than 0.99, MAEs smaller than 1 and RMSE smaller than approximately 1.60. The
143	LSTM scored highest across all metrics, followed by XGB and then MLP, even though the
144	latter got second place in RMSE. LSTM improved in MAE by 50% towards XGB (see table
145	S2). These results differentiate for individual target variables. LSTM shows specifically
146	strong performance across scores in forecasting soil water volume.
147	
148	



- 150 Figure S4: Mean R-squared aggregated per grid cells over 6-hourly lead times on the European subset for model
- 151 development.
- 152
- 153
- 154
- 155



- 158 Figure S5: Total distribution of mean scores, aggregated over 6-hourly lead times by grid cell, variability here thus
- 159 refers to performance differences among grid cells.

Variable	Model	RMSE	MAE	R ²
All variables	XGB	1.6035	0.8091	0.9960
	MLP	1.6013	0.9611	0.9991
	LSTM	0.8507	0.4361	0.9996

160 Table S3: Emulator total mean scores, aggregated over variables, time and space.

161 Table S4: Emulator mean scores on soil water volume forecasts for the European subset, aggregated over space and
162 time.

Variable	Layer	Model	RMSE	MAE	<i>R</i> ²
Soil water volume	1	XGB	0.0122	0.0084	0.84420
		MLP	0.0249	0.0192	0.7340
		LSTM	0.0114	0.0083	0.8655
	2	XGB	0.0104	0.0070	0.8512
		MLP	0.0280	0.0216	0.5781
		LSTM	0.0097	0.0073	0.8543
	3	XGB	0.0149	0.0112	0.6426
		MLP	0.0252	0.0197	0.2380
		LSTM	0.0114	0.0092	0.7379

163 Table S5: Emulator mean scores on soil temperature forecasts for the European subset, aggregated over space and

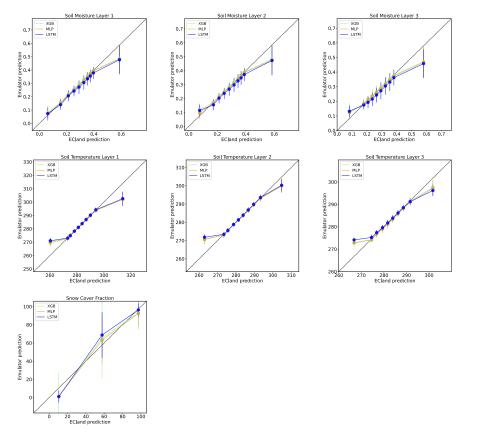
164 *time*.

Variable	Layer	Model	RMSE	MAE	R ²
Soil temperature	1	XGB	0.8730	0.5735	0.9750
		MLP	1.2629	0.9601	0.9352
		LSTM	0.8450	0.6347	0.9642
	2	XGB	0.6449	0.3843	0.9721
		MLP	0.9984	0.7580	0.3130
		LSTM	0.6563	0.4852	0.9480
	3	XGB	0.6221	0.4368	0.9126
		MLP	1.3464	1.0020	-0.5478
		LSTM	0.7530	0.5884	-0.5807
	3	XGB MLP	0.6221 1.3464	0.4368 1.0020	0.9126 -0.5478

165 Table S6: Emulator mean scores on snow cover forecasts for the European subset, aggregated over space and time.

Variable	Layer	Model	RMSE	MAE	<i>R</i> ²
Snow cover	top	XGB	9.0471	4.2423	0.5325

			MLP	7.5232	3.9469	0.4383
			LSTM	3.6676	1.3196	0.4345
166						
167						
168						
169						
170	S3.1 Model testing: I	Europe				
171						
172	S3.2.1 Quantile Corr	elations				
173						
174	We visualised quantile	e correlati	ons for each p	rognostic state v	ariable. The mea	an and standard
175	deviation of quantiles	were com	puted in 10%	steps for emulat	or and ECland f	orecasts and
176	plotted against each o	ther. The 1	results highlig	ht the state value	es where model p	oredictions
177	align perfectly, i.e. qu	antiles are	e found on the	correlation line,	and where the e	mulator
178	overestimate (quantile	es above r	egression line) or underestimat	te (quantiles belo	ow regression
179	line) ECland prognost	tic states (see figure S6)			



181 Figure S6: Quantile correlations for all prognostic target variables and all emulators. Emulator quantile predictions are
182 on the y-axis, ECland predictions on the x-axis. The dashed black line indicates their perfect correlation.

184 S4 Evaluation

185

186 S4.1 Forecast horizons: climatology

187

188 Below we show examples of forecast horizons computed for three single prognostic state

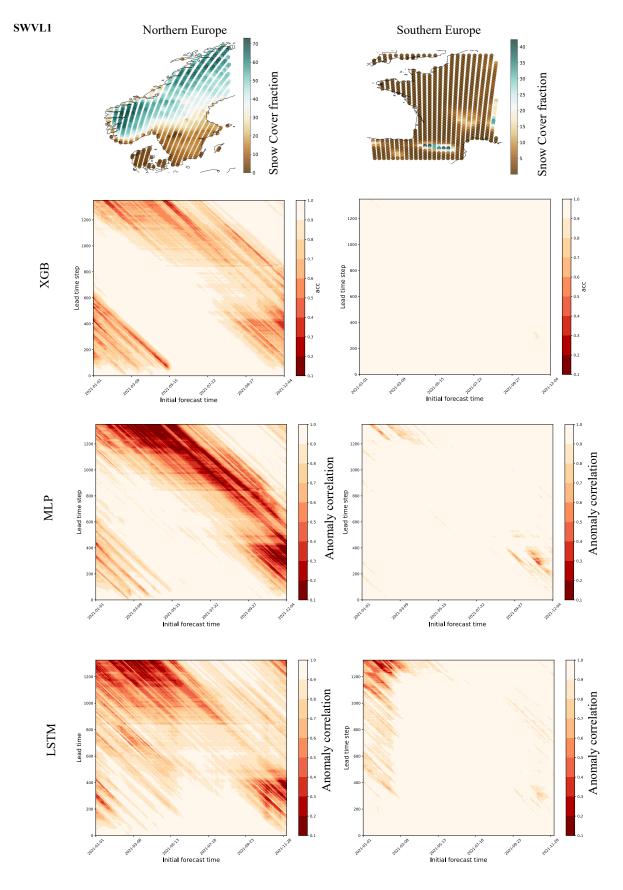
189 variables, soil water volume and temperature at layer one and snow cover (figures S7-9).

190 Disentangling these highlights at the example of snow cover that in aggregating the anomaly

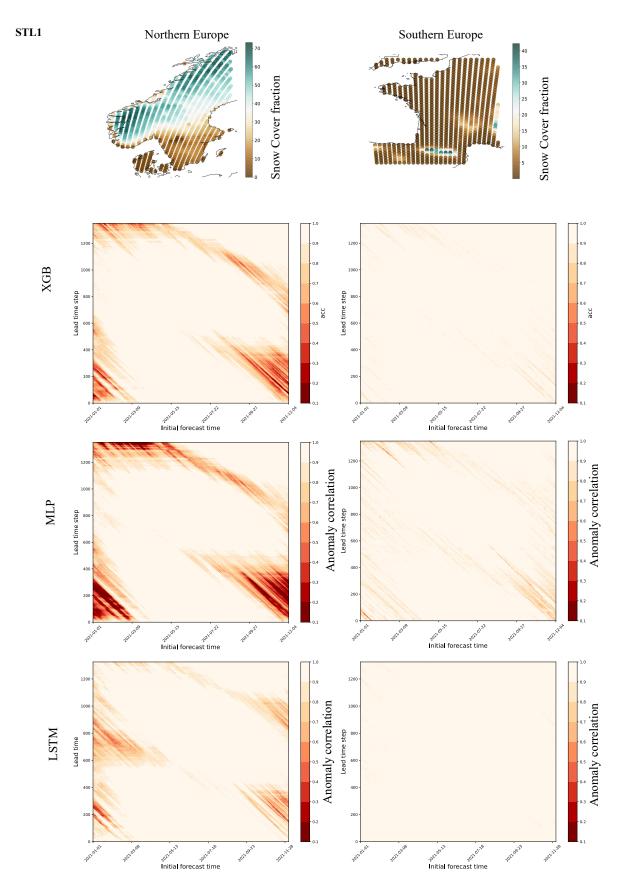
191 correlation over prognostic state variables, negative and positive effects may cancel each

192 other out: the snow cover limitation in the southern European subregion for the MLP

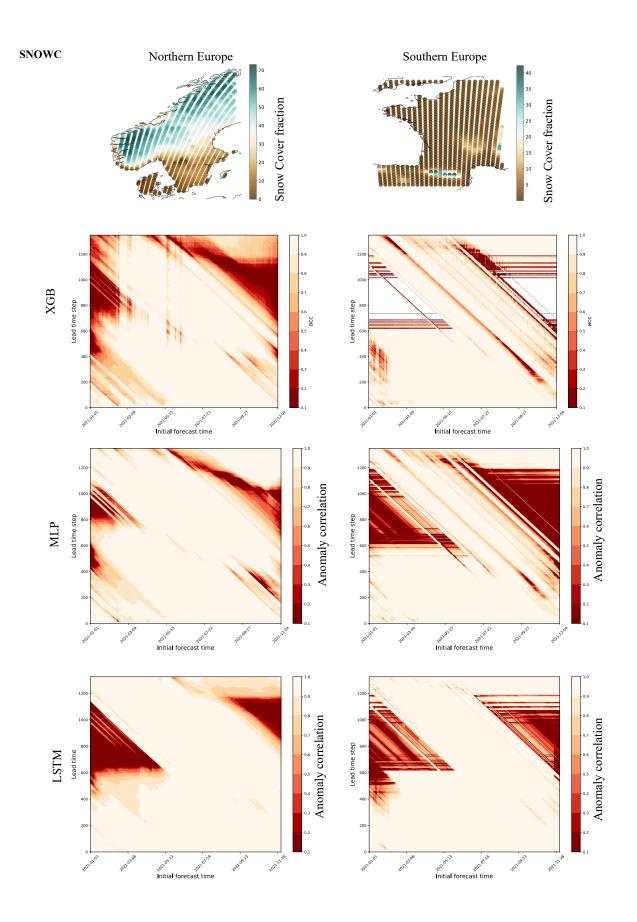
193 forecasts is not as visible in the total horizons (see main manuscript).



196 Figure S7: Forecast horizons for Soil water volume layer 1.

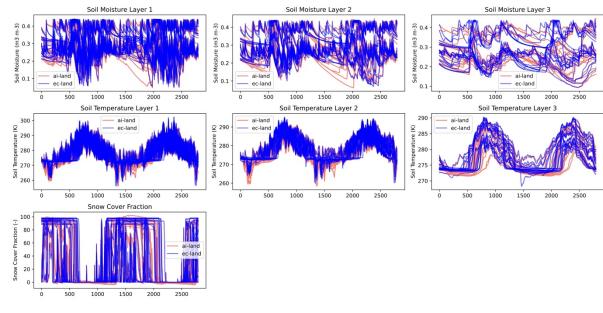


199 Figure S8: Forecast horizons soil temperature Layer 1.



203 Figure S9: Forecast horizons snow cover.

202

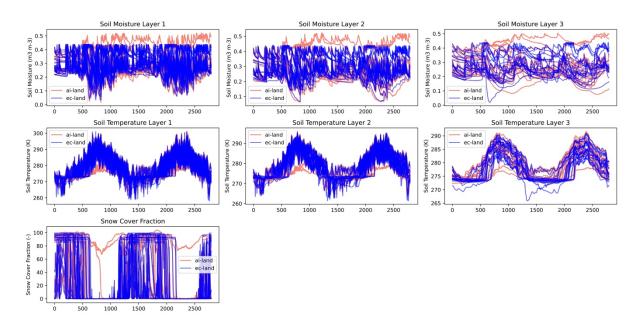


204 **S4.2** Time series sample: Northern Europe

206 Figure S10: MLP forecast on two test years 2021, 2022 for a random selection of grid cells from the northern

European region.

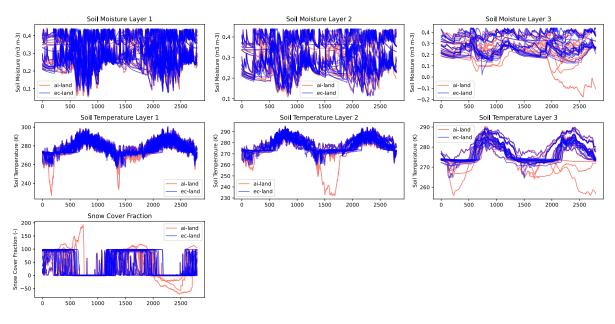
205



208

209 Figure S11: LSTM forecast on two test years 2021, 2022 for a random selection of grid cells from the northern

European region.



213 Figure S12: XGB forecast on two test years 2021, 2022 for a random selection of grid cells from the northern

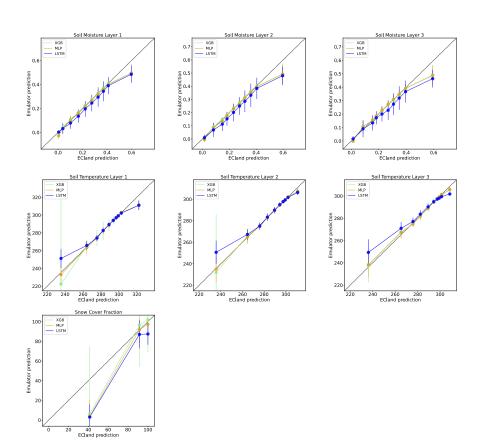
European region.

215

212

216 S4.1 Model extrapolation: Globe, low-resolution (TCO199)

217



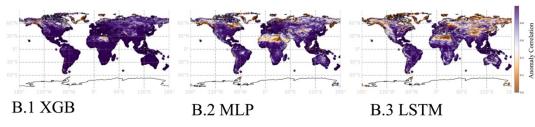
219 Figure S13: Quantile correlations, visualised as described in section 3.2.1 for continental model testing.

A. Soil temperature (L1)

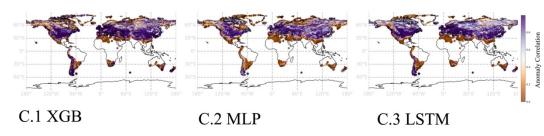
A.2 MLP

A.3 LSTM

B. Soil moisture (L1)



C. Snow Cover



220

221 Figure S14: Global distribution of Anomaly Correlation for three prognostic state variables. Uncoloured areas indicate

222 regions where the ACC is not defined

223

References

227	Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019). Optuna: A Next-generation
228	Hyperparameter Optimization Framework. Proceedings of the 25th ACM SIGKDD
229	International Conference on Knowledge Discovery & Data Mining, 2623–2631.
230	https://doi.org/10.1145/3292500.3330701
231	Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. The MIT Press.
232	Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural
233	Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
234	Nearing, G., Cohen, D., Dube, V., Gauch, M., Gilon, O., Harrigan, S., Hassidim, A., Klotz,
235	D., Kratzert, F., Metzger, A., Nevo, S., Pappenberger, F., Prudhomme, C., Shalev,
236	G., Shenzis, S., Tekalign, T. Y., Weitzner, D., & Matias, Y. (2024). Global prediction
237	of extreme floods in ungauged watersheds. <i>Nature</i> , 627(8004), 559–563.
238	https://doi.org/10.1038/s41586-024-07145-1