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Abstract 19 

 20 

Most useful weather prediction for the public is near the surface. The processes that are most 21 

relevant for near-surface weather prediction are also those that are most interactive and 22 

exhibit positive feedback or have key roles in energy partitioning. Land surface models 23 

(LSMs) consider these processes together with surface heterogeneity and, when coupled with 24 

an atmospheric model, provide boundary and initial conditions. They forecast water, carbon 25 

and energy fluxes, which are an integral component of coupled atmospheric models. This 26 

numerical parametrization of atmospheric boundaries is computationally expensive and 27 

statistical surrogate models are increasingly used to accelerate experimental research. We 28 

evaluated the efficiency of three surrogate models in simulating land surface processes for 29 

speeding up experimental research. Specifically, we compared the performance of a Long-30 

Short Term Memory (LSTM) encoder-decoder network, extreme gradient boosting, and a 31 

feed-forward neural network within a physics-informed multi-objective framework. This 32 

framework emulates key prognostic states of the ECMWF's Integrated Forecasting System 33 

(IFS) land surface scheme, ECLand, across continental and global scales. Our findings 34 

indicate that while all models on average demonstrate high accuracy over the forecast period, 35 

the LSTM network excels in continental long-range predictions when carefully tuned, XGB 36 

scores consistently high across tasks and the MLP provides an excellent implementation-37 

time-accuracy trade-off. While their reliability is context dependent, the runtime reductions 38 

achieved by the emulators in comparison to the full numerical models are significant, offering 39 

a faster alternative for conducting experiments on land surfaces.  40 

  41 
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1 Introduction 42 

 43 

While forecasting of climate and weather system processes has long been a task for numerical 44 

models, recent developments in deep learning have introduced competitive machine-learning 45 

(ML) systems for numerical weather prediction (NWP) (Bi et al., 2022; Lam et al., 2023; 46 

Lang et al., 2024). Land surface models (LSMs), even though being an integral part of 47 

numerical weather prediction, have not yet caught the attention of the ML-community. LSMs 48 

forecast water, carbon and energy fluxes and, in coupling with an atmospheric model, provide 49 

the lower boundary and initial conditions (Boussetta et al., 2021; De Rosnay et al., 50 

2014). The parametrization of land surface states does not only affect predictability of earth 51 

and climate systems on sub-seasonal scales (Muñoz-Sabater et al., 2021), but also the short- 52 

and medium-range skill of NWP forecasts (De Rosnay et al., 2014). Beyond their online 53 

integration with NWPs, offline versions of LSMs provide research tools for experiments on 54 

the land surface (Boussetta et al., 2021), the diversity of which, however, are limited by 55 

substantial computational resources requirements and often moderate runtime efficiencies 56 

(Reichstein et al., 2019).  57 

Emulators constitute statistical surrogates for numerical simulation models that, by 58 

approximating the latter, aim for increasing computational efficiency (Machac et al., 2016). 59 

While the construction of emulators can itself require substantial computational resources, 60 

their subsequent evaluation usually runs orders of magnitude faster than the original 61 

numerical model (Fer et al., 2018). For this reason, emulators have found application for 62 

example in modular parametrization of online weather forecasting systems (Chantry et al., 63 

2021), in replacing the MCMC-sampling procedure in Bayesian calibration of ecosystem 64 

models (Fer et al., 2018), or in generating forecast ensembles of atmospheric states for 65 

uncertainty quantification (Li et al., 2023). Beyond their computational efficiency, surrogate 66 

models with high parametric flexibility have the potential to correct process mis-specification 67 

in a physical model when fine-tuned to observations (Wesselkamp et al., 2022).  68 

Modelling approaches used for emulation range from low parametrized, auto-regressive 69 

linear models to highly non-linear and flexible neural networks (Baker et al., 2022; Chantry 70 

et al., 2021; Meyer et al., 2022; Nath et al., 2022). In the global land surface system M-71 

MESMER, a set of simple AR1 regression models is used to initialize the numerical LSM, 72 

resulting in a modularized emulator (Nath et al., 2022). Numerical forecasts of gross primary 73 

productivity and hydrological targets were successfully approximated by Gaussian processes 74 

(Baker et al., 2022; Machac et al., 2016), the advantage of which is their direct quantification 75 
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of prediction uncertainty. When it comes to highly diverse or structured data, neural networks 76 

have shown to deliver accurate approximations, for example for gravity wave drags and 77 

urban surface temperature (Chantry et al., 2021; Meyer et al., 2022). In most fields of 78 

machine learning, specific types of neural networks are now the best approach to representing 79 

fit and prediction. One exception is so-called tabular data, i.e. data without spatial or temporal 80 

interdependencies (as opposed to vision and sound), where extreme gradient boosting is still 81 

the go-to approach (Grinsztajn et al., 2022; Shwartz-Ziv and Armon, 2021).  82 

ECLand is the land surface scheme that provides boundary and initial conditions for the 83 

Integrated Forecasting System (IFS) of the European Centre for Medium-range Weather 84 

Forecasts (ECMWF) (Boussetta et al., 2021). Driven by meteorological forcing and spatial 85 

climate fields, it has a strong influence on the NWP (De Rosnay et al., 2014) and also 86 

constitutes a standalone framework for offline forecasting of land surface processes (Muñoz-87 

Sabater et al., 2021). The modular construction of ECLand offers potential for element-wise 88 

improvement of process representation and thus a stepwise development towards increased 89 

computational efficiency. Within the IFS, ECLand also forms the basis of the land surface 90 

data assimilation system, updating the land surface state with synoptic data and satellite 91 

observations of soil moisture and snow. Emulators of physical systems have been shown to 92 

be beneficial in data assimilation routines, allowing for a quick estimation and low 93 

maintenance of the tangent linear model (Hatfield et al., 2021). Together with the potential to 94 

run large ensembles of land surface states at a much-reduced cost, this would be a potential 95 

application of the surrogate models introduced here. 96 

Long-short term memory networks (LSTMs) have gained popularity in hydrological 97 

forecasting as rainfall-runoff models, for predicting stream flow temperature and also soil 98 

moisture (Bassi et al., 2024; Kratzert et al., 2019b; Lees et al., 2022; Zwart et al., 2023). 99 

Research on the interpretability of LSTMs has found correlations between the model cell 100 

states and spatially or thematically similar hydrological units (Lees et al., 2022), suggesting 101 

the specific usefulness of LSTM for representing variables with dynamic storages and 102 

reservoirs (Kratzert et al., 2019a). As emulators, LSTMs have been shown useful for sea 103 

surface level projection in a variational manner with Monte Carlo dropout (Van Katwyk et al., 104 

2023).  105 

While most of these studies trained their models on observations or reanalysis data, our 106 

emulator learns the representation from ECLand simulations directly. To our knowledge, a 107 

comparison of models without memory mechanisms to an LSTM-based neural network for 108 

global land surface emulation has not been conducted before.  109 
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We emulate seven prognostic state variables of ECLand, which represent core land surface 110 

processes: soil water volume and soil temperature, each at three depth layers, and snow cover 111 

fraction at the surface layer. The represented variables would allow their coupling to the IFS, 112 

yet the emulators do not replace ECLand in its full capabilities. Yet, these three state variables 113 

represent the core of the current configuration of ECLand. We specifically focus on the utility 114 

of memory mechanisms, highlighting the development of a single LSTM-based encoder-115 

decoder model compared to an extreme gradient boosting approach (XGB) and a multilayer 116 

perceptron (MLP), which all perform the same tasks. The LSTM architecture builds on an 117 

encoder-decoder network design introduced for flood forecasting (Nearing et al., 2024). To 118 

compare forecast skill systematically, the three emulators were compared in long-range 119 

forecasting against climatology (Pappenberger et al., 2015). In this work, the emulators are 120 

evaluated on ECLand simulations only, i.e. on purely synthetic data, while we anticipate their 121 

validation and fine-tuning on observations for future work. 122 

 123 

2 Methods 124 

 125 

2.1 The Land Surface Model: ECLand 126 

 127 

ECLand is a tiled ECMWF Scheme for surface exchanges over land that represents surface 128 

heterogeneity and incorporates land surface hydrology (Balsamo et al., 2011; ECMWF, 129 

2017). ECLand computes surface turbulent fluxes of heat, moisture and momentum and skin 130 

temperature over different tiles (vegetation, bare soil, snow, interception and water) and then 131 

calculates an area-weighted average for the grid-box to couple with the atmosphere 132 

(Boussetta et al., 2021). For the overall accuracy of the model, accurate land surface 133 

parameterizations are essential (Kimpson et al., 2023) as they e.g. determine the sensible and 134 

latent heat fluxes, and provide the lower boundary conditions for enthalpy and moisture 135 

equations in the atmosphere (Viterbo, 2002). We emulate three prognostic state variables of 136 

ECLand that represent core land surface processes: soil water volume (m!m"!)	and soil 137 

temperature (K) at each three depth layers (each at 0 – 7 cm, 7 – 21 cm and 21 – 72 cm) and 138 

snow cover fraction (%), aggregated at the surface layer. 139 

 140 

2.2 Data sources 141 

 142 
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As training data base, global simulation and reanalysis time series from 2010 to 2022 were 143 

compiled to zarr format at an aggregated 6-hourly temporal resolution. Simulations and 144 

climate fields were generated from ECMWFs development cycle CY49R2, ECLand forced 145 

by ERA-5 meteorological reanalysis data (Hersbach et al., 2020).  146 

There are three main sources of data used for creation of the data base: The first is a selection 147 

of surface physiographic fields from ERA5 (Hersbach et al., 2020) and their updated versions 148 

(Boussetta et al., 2021; Choulga et al., 2019; Muñoz-Sabater et al., 2021), used as static 149 

model input features (X). The second is a selection of atmospheric and surface model fields 150 

from ERA5, used as static and dynamic model input features (Y). The third are ECLand 151 

simulations, constituting the model’s dynamic prognostic state variables (z) and hence 152 

emulator input and target features. A total of 41 static, seasonal and dynamical features were 153 

used to create the emulators, see table 1 for an overview of input variables and details on the 154 

surface physiographic and atmospheric fields below. 155 

 156 
2.2.1 Surface physiographic fields  157 

 158 

Surface physiographic fields have gridded information of the Earth’s surface properties (e.g. 159 

land use, vegetation type, and distribution) and represent surface heterogeneity in the ECLand 160 

of the IFS (Kimpson et al., 2023). They are used to compute surface turbulent fluxes (of heat, 161 

moisture, and momentum) and skin temperature over different surfaces (vegetation, bare soil, 162 

snow, interception, and water) and to calculate an area-weighted average for the grid box for 163 

coupling with the atmosphere. To trigger all different parametrization schemes, the ECMWF 164 

model uses a set of physiographic fields that do not depend on initial condition of each 165 

forecast run or the forecast step. Most fields are constant; surface albedo is specified for 12 166 

months to describe the seasonal cycle. Depending on the origin, initial data come at different 167 

resolutions and different projections and are then first converted to a regular latitude–168 

longitude grid (EPSG:4326) at ∼ 1 km at Equator resolution and secondly to a required grid 169 

and resolution. Surface physiographic fields used in this work consist of orographic, land, 170 

water, vegetation, soil, albedo fields, see Table 1 for the full list of surface physiographic 171 

fields; for more details, see IFS documentation (ECMWF, 2023).  172 

 173 

2.2.2 ERA5  174 

 175 
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Climate reanalyses combine observations and modelling to provide calculated values of a 176 

range of climactic variables over time. ERA5 is the fifth-generation reanalysis from 177 

ECMWF. It is produced via 4D-Var data assimilation of the IFS cycle 41R2 coupled to a land 178 

surface model (ECLand, (Boussetta et al., 2021)), which includes lake parametrization by 179 

Flake (Mironov and Helmert, n.d.) and an ocean wave model (WAM). The resulting data 180 

product provides hourly values of climatic variables across the atmosphere, land, and ocean 181 

at a resolution of approximately 31 km with 137 vertical sigma levels up to a height of 80 km. 182 

Additionally, ERA5 provides associated uncertainties of the variables at a reduced 63 km 183 

resolution via a 10-member ensemble of data assimilations. In this work, ERA5 hourly 184 

surface fields at ∼ 31 km resolution on the cubic octahedral reduced Gaussian grid (i.e. 185 

Tco399) are used. The Gaussian grid’s spacing between latitude lines is not regular, but lines 186 

are symmetrical along the Equator; the number of points along each latitude line defines 187 

longitude lines, which start at longitude 0 and are equally spaced along the latitude line. In a 188 

reduced Gaussian grid, the number of points on each latitude line is chosen so that the local 189 

east–west grid length remains approximately constant for all latitudes (here, the Gaussian 190 

grid is N320, where N is the number of latitude lines between a pole and the Equator).  191 

 192 

Table 1 Input and target features to all emulators from the data sources. The left column 193 

shows the observation-derived static physiographic fields, the middle column ERA5 dynamic 194 

physiographic and meteorological fields and the rightmost column ECLand generated 195 

dynamic prognostic state variables. 196 

Climate fields Units Atmospheric 

forcing  

Units Prognostic states Units 

Vegetation cover 

(low, high) 

 Total precipitation 

fraction (convective 

+ stratiform) 

 Soil water 

volume (Layers 

1-3) 

m!m"! 

Type of vegetation 

(low, high) 

 Downward 

radiation (long, 

short) 

W/m# Soil temperature 

(Layers 1-3) 

K 

Minimum stomatal 

resistance (low, 

high) 

 Seasonal LAI (high, 

low) 

 Snow cover 

fraction 

% 
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Roughness length 

(low, high) 

 Wind speed (v, u) 

 

m/s   

Urban cover  Surface pressure Pa   

Lake cover 

Lake depth 

 Skin temperature K   

Orography (+ std, + 

filtered) 

m#/s"# Specific humidity kg/kg   

Photosynthesis 

pathways 

 Rainfall rate (total) kg/m#s   

Soil type  Snowfall rate (total) kg/m#s   

Glacier mask 

Permanent wilting 

point 

Field capacity 

     

Cell area      

 197 

2.3 Emulators 198 

 199 

We compare a long-short term memory neural network (LSTM), extreme gradient boosting 200 

regression trees (XGB) and a feedforward neural network (that we here refer to as multilayer 201 

perceptron, MLP). To motivate this setup and pave the way for discussing effects of (hyper-202 

)parameter choices, a short overview of all approaches is given. All analyses were conducted 203 

in Python. XGB was developed in dmlc’s XGBoost python package1. The MLP and LSTM 204 

were developed in the PyTorch lightning framework for deep learning2. Neural networks 205 

were trained with the Adam algorithm for stochastic optimization (Kingma and Ba, 2017). 206 

Model architectures and algorithmic hyperparameters were selected through combined 207 

Bayesian hyperparameter optimization with the Optuna framework (Akiba et al., 2019) and 208 

additional manual tuning. The Bayesian optimization minimizes the neural network 209 

validation accuracy, specified here as mean absolute error (MAE), over a predefined search 210 

space for free hyperparameters with the Tree-structured Parzen Estimator (Ozaki et al., 2022). 211 

 
1 https://xgboost.readthedocs.io/en/stable/python/index.html 
2 https://lightning.ai/docs/pytorch/stable/ 



 9 

The resulting hyperparameter and architecture choices which were used for the different 212 

approaches are listed in the Supplementary Material. 213 

 214 

2.3.1 MLP 215 

 216 

For creation of the MLP emulator we work with a feed-forward neural network architecture 217 

of connected hidden layers with ReLU activations and dropout layers, model components 218 

which are given in detail in the Supplementary Material or in (Goodfellow et al., 2016). The 219 

MLP was trained with a learning rate scheduler. L2-regularization was added to the training 220 

objective via weight decay. Sizes and width of hidden layers as well as hyperparameters were 221 

selected together in the hyperparameter optimization procedure. Instead of forecasting 222 

absolute prognostic state variables 𝒛𝒕, the MLP predicts the 6-hourly increment, %𝒛
'

%(
. It is 223 

trained on a stepwise rollout prediction of future state variables at a pre-defined lead time at 224 

given forcing conditions, see details in the section on optimization. 225 

 226 

2.3.2 LSTM 227 

 228 

LSTMs are recurrent networks that consider long-term dependencies in time series through 229 

gated units with input and forget mechanisms (Hochreiter and Schmidhuber, 1997). In 230 

explicitly providing time-varying forcing and state variables, LSTM cell states serve as long-231 

term memory while LSTM hidden states are the cells’ output and pass on stepwise short-term 232 

representations stepwise. In short notation (Lees et al., 2022), a one-step ahead forward pass 233 

followed by a linear transformation can be formulated as 234 

𝒉( , 𝒄( = 𝑓(𝒙( , 𝒉("), 𝒄("), 𝜽) 235 

	𝒛/( =	𝑨𝒉( + 𝑏 236 

where 𝒉(") denotes the hidden state, i.e. output estimates from the previous time step, 𝒄(") 237 

the cell state from the previous time step, and 𝜽 the time-invariant model weights. We stacked 238 

multiple LSTM cells to an encoder-decoder model with transfer layers for hidden and cell 239 

state initialization and for transfer to the context vector (see figure 1) (Nearing et al., 2024). 240 

A lookback 𝑙 of the previous static and dynamic feature states are passed sequentially to the 241 

first LSTM cells in the encoder layer, while the 𝑙 prognostic state variables 𝒛 initialize the 242 

hidden state 𝒉* after a linear embedding. The output of the first LSTM layer cells become the 243 

input to the deeper LSTM layer cells and the last hidden state estimates are the final output 244 
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from the encoder. Followed by a non-linear transformation with hyperbolic tangent 245 

activation, the hidden cell states are transformed into a weighted context vector 𝒔. Together 246 

with the encoder the cell state (𝒄(, 𝒔) initializes the hidden and cell states of the decoder. The 247 

decoder LSTM cells take as input again static and dynamic features sequentially at lead times 248 

𝑡 = 1,… , 𝜏, but not the prognostic states variables. These are estimated from the sequential 249 

hidden states of the last LSTM layer cells, transformed to target size with a linear forecast 250 

head before prediction. LSTM predicts absolute state variables 𝒛( while being optimized on 251 

𝒛( and 𝑑𝒛/( simultaneously, see section on optimization. 252 

 253 
Figure 1: LSTM architecture. Blue shaded area indicates the encoder part, where the model 254 
is driven by a lookback 𝜆 of meteorological forcing and state variables. The light-blue shaded 255 
area indicates the decoder part that is initialized from the encoding to unroll LSTM forecasts 256 
from the initial time step t up to a flexibly long lead time of  𝜏. 257 

2.3.3 XGB 258 

 259 

Extreme gradient boosting (XGB) is a regression tree ensemble method that uses an 260 

approximate algorithm for best split finding. It computes first and second order gradient 261 

statistics in the cost function, performing a similar to gradient descent optimization (Chen and 262 

Guestrin, 2016), where each new learner is trained on the residuals of the previous ones. 263 

Regularization and column sampling aim for preventing overfitting internally. XGB is known 264 

to provide a powerful benchmark for time series forecasting and tabular data (Chen and 265 

Guestrin, 2016; Chen et al., 2020; Shwartz-Ziv and Armon, 2021). Like the MLP, it is trained 266 
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to predict the increment 	𝑑𝒛;(,, of prognostic state variables, but only for a one-step ahead 267 

prediction. 268 

 269 

2.4 Experimental setup 270 

 271 

We distinguish the experimental analysis into three parts that vary in the usage of the training 272 

database: (1) model development, (2) model testing, and (3) global model transfer.  273 

The models were developed and for the first time evaluated on a low state resolution 274 

(ECMWF’s TCO199 reduced gaussian grid, see section on data sources) and temporal subset 275 

from the training data base, i.e. on a bounding box of 7715 grid cells over Europe with time 276 

series of six years from 2016 to 2022. For details on the development data base, model 277 

selection and model performances, see Supplementary Material S3.  278 

The selected models were recreated on a high state resolution (TCO399) continental scale 279 

European subset with 10 051 grid cells. Models were trained on five years 2015-2020 with 280 

the year 2020 as validation split and evaluated on the year 2021 for the scores we report in 281 

the main part. Note that for computation of forecast horizons, the two test years 2021 and 282 

2022 were used, see details in section on forecast horizons. With this same data splitting 283 

setup, the analysis was repeated in transferring the candidates to the low resolution (TCO199) 284 

global data set with a total of 47892 grid cells. The low global resolution on one hand 285 

allowed a systematic comparison of the three models, because high resolution training with 286 

XGB was prohibited by the required working memory. On the other hand, this extrapolation 287 

scenario created an unseen problem for the models that were selected on a continental and 288 

high-resolution scale which is reflected in the resulting scores.  289 

 290 

2.5 Optimization 291 

 292 

2.5.1 Loss functions 293 

 294 

The basis of the loss function ℒ for the neural network optimization was PyTorch’s 295 

SmoothL1Loss3, a robust loss function that combines L1-norm and L2-norm and is less 296 

sensitive to outliers than pure L1-norm (Girshick, 2015). Based on a pre-defined threshold 297 

parameter 𝛽, smooth L1 transitions from L2-norm to L1-norm above the threshold.  298 

 
3 https://pytorch.org/docs/stable/generated/torch.nn.SmoothL1Loss.html 
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SmoothL1Loss ℒ is defined as 299 

ℒ(𝑧̂, 𝑧) = 	0.5(𝑧̂ − 	𝑧)# )
-

  if |𝑧̂ − 	𝑧| < 	𝛽	and 300 

ℒ(𝑧̂, 𝑧) = 	 |𝑧̂ − 	𝑧| − 	0.5	𝛽  otherwise, 301 

here with 𝛽 = 1. All models were trained to minimize the incremental loss ℒ. that is the 302 

differences between the estimates of the seven prognostic states increments  𝑑𝒛;(	and the full 303 

model’s prognostic states increments 𝑑𝒛(	simultaneously as the sum of losses over all states. 304 

We opted for a loss function equally weighted by variables to share inductive biases among 305 

the non-independent prognostic states (Sener and Koltun, 2018). When aggregating over all 306 

training lead times 𝑡 = 1,… , 𝜏, ℒ. and grid cells 𝑖 = 1,… , 𝑝 is  307 

ℒ.(	𝑑𝒛;, 𝑑𝒛) = 	HHℒ((	𝑑𝒛;(,, , 𝑑𝒛(,,)
/

,

0

(

, 308 

Whereas when computing a rollout loss ℒ1 stepwise,  309 

 310 

ℒ1(	𝑑𝒛;, 𝒛) = 	
1
𝜏	HHℒ((𝑧("),, +	𝑑𝒛;(,, , 𝑧(,,)

/

,

0

(

 311 

 312 

Prognostic state increments are essentially the first differences from one to the next timestep 313 

that are normalized again by the global standard deviation of the model’s states increments, 314 

𝑠	!𝒛 before computation of the loss (Keisler, 2022). Due to the forecast models’ structural 315 

differences, loss functions were individually adapted: 316 

MLP The combined loss function for the MLP is the sum of the incremental loss ℒ. and the 317 

rollout loss ℒ1. For the rollout loss ℒ1, ℒ was aggregated over grid cells 𝑝 and accumulated 318 

after an auto-regressive rollout over lead times 𝜏, before being averaged out by division by 𝜏 319 

(Keisler, 2022).  320 

LSTM The combined loss function for the LSTM is the sum of the incremental loss 321 

ℒ.,	where the 𝑑𝒛/( were derived from 𝒛/( after the forward pass, and the loss ℒ computed on 322 

decoder estimates of prognostic states variables, a functionality that leverages the potential of 323 

our LSTM structure.  324 

XGB Trained only from one to the next time step, i.e. at a lead time of 𝜏 = 1, the incremental 325 

loss ℒ. =	ℒ1. Without a SmoothL1Loss implementation provided in dmlc’s XGBoost, we 326 

trained XGB with both the Huber-Loss and the default L2-loss. The latter initially providing 327 
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better results, we chose the default L2-norm as loss function for XGB with the regularization 328 

parameter 𝜆 = 1. 329 

 330 

2.5.1 Normalization 331 

As prognostic target variables are all lower bounded by zero, we tested both z-scoring and 332 

max-scoring. The latter yielded no significant improvement; thus we show our results with z-333 

scored target variables. For neural network training but not for fitting XGB, static, dynamic 334 

and prognostic state variables were all normalized with z-scoring towards the continental or 335 

global mean 𝑧̅ and unit standard deviation 𝑠3 as 336 

𝑧(,4 =	
3#,%"	3̅
.&

. 337 

Prognostic target state increments were normalized again by the global standard deviation of 338 

increments computing the loss (see section 2.5.1) to smooth magnitudes of increments 339 

(Keisler, 2022). State variables were back transformed to original scale before evaluation. 340 

 341 

2.5.3 Spatial and temporal sampling 342 

Sequences were sampled randomly from the training data set, while validation happened 343 

sequentially. MLP and XGB were trained on all grid cells simultaneously in both the 344 

continental and global setting, while LSTM was trained on the full continental data set but 345 

was limited by GPU memory in the global task. We overcame this limitation by randomly 346 

subsetting grid cells in the training data into largest possible, equally sized subsets which 347 

were then loaded along with the temporal sequences during the batch sampling.  348 

 349 

2.6 Evaluation 350 

 351 

Three scores are used for model validation during the model development phase and in 352 

validating architecture and hyperparameter selection, being the root mean squared error 353 

(𝑅𝑀𝑆𝐸), the mean absolute error (𝑀𝐴𝐸) and the anomaly correlation coefficient (𝐴𝐶𝐶). 354 

First, scores were assessed objectively in quantifying forecast accuracy of the emulators 355 

against ECLand simulations directly with RMSE and MAE. Doing so, scores were 356 

aggregated over lead times, grid cells or both. The total RMSE was computed as  357 

RMSE = 	U
∑ (𝑧 −	 𝑧̂)#0,/

𝑛 , 358 
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As the mean absolute error in prognostic state variable prediction over the total of 𝑛 grid cells 359 

𝑝 times lead times 𝜏. Equivalently, MAE was computed as 360 

MAE = 	
∑ |𝑧 −	 𝑧̂|(,/

𝑛 , 361 

Beyond accuracy, the forecast skill of emulators was assessed using a benchmark model: the 362 

ACC (see below) as index of the long-term naïve climatology 𝑐 of ECLand, forced by ERA5 363 

(see section 2.2). More specifically, this is the 6-hourly mean of prognostic state variables 364 

over the last 10 years preceding the test year, i.e. the years 2010 to 2020. While climatology 365 

is a hard-to-beat benchmark specifically in long-term forecasting, the persistence is a 366 

benchmark for short-term forecasting (Pappenberger et al., 2015). For verification against 367 

climatology, we compute the anomaly correlation coefficient (ACC) over lead times as  368 

ACC(𝑡)	 =
(𝑧̂ − 𝑐)(	𝑧 − 𝑐)[[[[[[[[[[[[[[[[[[[

\(𝑧̂ − 𝑐)#[[[[[[[[[[[		(𝑧 − 𝑐)#[[[[[[[[[[[
 369 

at each t = 1, …, 𝜏 where the overbar denotes averaging over grid	cells	𝑝 = 𝑖, … , 𝑛. This way, 370 

the nominator represents the average spatial covariance of emulator and numerical forecasts 371 

with climatology as expected sample mean. Hence, it indicates the mean squared skill error 372 

towards climatology, and the denominator indicates its variability. The aggregated scores that 373 

are shown in tables 3-5 represent the temporally arithmetic mean of ACC(t). ACC is bounded 374 

between 1 and -1, and an ACC of 1 indicates perfect representation of forecast error 375 

variability, an ACC of 0.5 indicates a similar forecast error to that of the climatology, an ACC 376 

of 0 indicates that forecast error variability dominates and the forecast has no value and an 377 

ACC approaching -1 indicates that the forecast has been very unreliable (ECMWF, n.d.).  378 

ACC is undefined when the denominator is zero. This is the case either when mean squared 379 

emulator or ECLand anomaly, or both are zero because forecast and climatology perfectly 380 

align, or because they cancel out at summation to the mean. 381 

 382 

2.6.1 Forecast horizons  383 

 384 

Forecast horizons of the emulators are defined by the decomposition of the RMSE 385 

(Bengtsson et al., 2008) into the emulator’s variability around climatology (i.e. anomaly), 386 

ECLand’s variability around climatology and the covariance of both. The horizon is the point 387 

in time at which the forecast error reaches saturation level, that is when the covariance of 388 

emulator and ECLand anomalies approaches zero, as does the ACC. 389 
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We analysed predictive ability and predictability by computing the ACC for all lead times 390 

from 6 hours to approx. one year, i.e. lead times 𝑡 = 1,… , 𝜏, 𝜏 being 1350. As this confounds 391 

the seasonality with the lead time, we compute these for every starting point of the prediction, 392 

requiring two test years (2021 and 2022).  393 

Forecast horizons based on the emulators’ skill in standardized anomaly towards persistence 394 

were equivalently computed but with persistence as a benchmark for shorter time scales, this 395 

was only done for three months, from January to March 2021. 396 

The analysis was conducted on two exemplary regions in northern and southern Europe that 397 

represent very different conditions orography and in prognostic land surface states, 398 

specifically in snow cover. For details on the regions and on the horizons computed with 399 

standardized anomaly skill, see Appendices A1 and A4 respectively.   400 

 401 

3 Results 402 

 403 

The improvement in evaluation runtimes achieved by emulators toward the numerical 404 

ECLand were significant. Iterating the forecast over a full test year at 30 km spatial 405 

resolution, XGB evaluates in 5.4 minutes, LSTM in 3.09 minutes and MLP in 0.05 minutes 406 

(i.e. 3.2 seconds) on average. In contrast, ECLand integration over a full test year on 16 407 

CPUs at 30 km spatial resolution takes approximately 240 minutes (i.e. four hours). The slow 408 

runtime of the LSTM compared to the MLP emulator is caused by a spatial chunking 409 

procedure that was not optimise for this work but could be improved in the future. 410 

 411 

3.1 Aggregated performances 412 

 413 

Europe. All emulators approximated the numerical LSM with high average total accuracies 414 

(all RMSEs < 1.58 and MAEs < 0.84) and confident correlations (all ACC > 0.72) (see table 415 

2 and figure 2). The LSTM emulator achieved the best results across all total average scores 416 

on the European scale. It decreased the total average MAE by ~25% towards XGB and by 417 

~37% towards the MLP and the total average RMSE by ~42% towards XGB and ~38% 418 

towards the MLP.  In total average ACC, the LSTM scored 20% higher than the MLP and 419 

15% than XGB, also being the only emulator that achieved an ACC > 0.9. While the MLP 420 

outperforms XGB in total average RMSE by ~5%, XGB scores better than the MLP in MAE 421 

by ~27%. 422 
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At variable level, results differentiate into model specific strengths. In soil water volume, 423 

XGB outperforms the neural network emulators by up to 60%	(m!m"!) in the first and 424 

second layer MAEs towards the LSTM and up to over 40% (m!m"!) for towards the MLP 425 

(see table 3). While the representation of anomalies by specifically the LSTM decreases 426 

towards lower soil layers with an ACC of only 0.6214 at the third soil layer, it remains 427 

consistently higher for XGB with an ACC still > 0.789 at soil layer three.  428 

In soil temperature approximation, LSTM achieves best accuracies at higher soil levels with 429 

up to 7% (K) improvement in MAE towards XGB and ACCs > 0.92, but XGB outperforms 430 

LSTM at the third soil level with a close to 50% (K) improvement (see table 4). The MLP 431 

doesn’t stand out by high scores on the continental scale. However, in terms of accuracy we 432 

found an inverse ranking in the model development procedure during which LSTM outscored 433 

XGB in soil water volume but struggled with soil temperature approximations, for the 434 

interested reader we refer to the supplementary information. 435 

In snow cover approximation, the LSTM emulator enhances accuracies by over ~50% in 436 

MAE towards both the XGB and the MLP emulator and scores highest in anomaly 437 

representation with an ACC of ~0.87 compared to an ACC of ~0.66 for the MLP and only 438 

~0.74 for the XGB (see table 5). 439 

Globe. Score ranking on the global scale varies strongly from the continental scale (see table 440 

2). In total average accuracies, the MLP outperforms XGB by over 30% and LSTM by up 441 

~25% in RMSE and improves MAE more than 15% towards both. In anomaly correlation 442 

however it scores last, whereas XGB achieves the highest total average of over 0.75. 443 

Consistent with scores on the continental scale is XGBs high performance in soil temperature 444 

(see table 3). It significantly outperforms the LSTM by ~60% (K) in RMSE and nearly up to 445 

75% (K) in MAE in all layers and the MLP by up to 50% (K) in MAE at the top layer. 446 

Anomaly persistence for all models degrade visibly towards the lower soil layers, while that 447 

of the LSTM most relative to MLP and XGB. Like on the continental scale, XGB also 448 

outperforms the other candidates in soil temperature forecasts in all but the medium layer, 449 

where the MLP gets higher scores in MAE and RMSE but not in ACC (see table 4). LSTM 450 

doesn’t stand out with any scores on the global scale.  451 

 452 

3.2 Spatial and temporal performances 453 

 454 

Europe. When summarizing temporally aggregated scores as boxplots to a total distribution 455 

over space (see figure 2, A), the long tails of XGB scores become visible, whereas the MLP 456 
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indicates most robustness. This is reflected in the geographic distribution of scores at the 457 

example of ACC (see figure 2, bottom), where the area of low anomaly correlation is largest 458 

for XGB, ranging over nearly all northern Scandinavia, while MLP and LSTM have smaller 459 

and more segregated areas of clearly low anomaly correlation. The LSTM shows a 460 

homogenously high ACCs over most of central Europe but the Alps, while also seems to be 461 

challenged in areas of relative to the central Europe extreme weather conditions at the 462 

Norwegian and Spanish coasts. 463 

Globe. Like the results from the continental analysis, we find again long upper tails of 464 

outliers for XGB in total spatial distribution of accuracies, both in RMSE and MAE and only 465 

few outliers for MLP and LSTM. The anomaly correlation distribution changed towards 466 

longer lower tails for MLP and LSTM and a shorter lower tail for XGB. We should, however, 467 

take the results of total average ACC with care as it remains largely undefined in regions 468 

without much noise in snow cover or soil water volume and globally represents mainly 469 

patterns of soil temperature. 470 
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 471 
Figure 2: a: Total aggregated distributions of (log) scores averaged over lead times, i.e. 472 
displaying the variation among grid cells. b: The distribution of the anomaly correlation in 473 
space on the European subset (b.1: XGB, b.2: MLP, b.3: LSTM). c: Model forecasts over test 474 
year 2021 for grid cell with minimum and maximum RMSE values (LSTM). 475 

 476 
Table 2: Emulator total average scores (unitless), aggregated over variables, time and space 477 
from the European and Global model testing. 478 

Variable Model RMSE  MAE  ACC  

  Europe Globe Europe Globe Europe Globe 

All variables XGB 1.575 2.611 0.695 1.601 0.765 0.755 

 MLP 1.486 1.699 0.832 1.189 0.728 0.569 

 LSTM 0.918 2.252 0.526 1.787 0.925 0.647 
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Table 3: Emulator average scores (RMSE, MAE in 𝑚!𝑚"!)	on soil water volume forecasts 479 
for the European subset, aggregated over space and time from the European and Global 480 
model testing. 481 

Variabl

e 

Laye

r 

Model RMSE  MAE  ACC  

   Europe Globe Europe Globe Europe Globe 

Soil  1 XGB 0.013 0.015 0.01 0.01 0.908 0.92 

water  MLP 0.019 0.029 0.015 0.023 0.856 0.791 

volume  LSTM 0.029 0.048 0.023 0.04 0.847 0.729 

 2 XGB 0.011 0.012 0.008 0.009 0.901 0.884 

  MLP 0.019 0.023 0.014 0.018 0.789 0.77 

  LSTM 0.029 0.05 0.023 0.042 0.79 0.617 

 3 XGB 0.015 0.014 0.011 0.01 0.789 0.777 

  MLP 0.02 0.02 0.017 0.016 0.576 0.667 

  LSTM 0.033 0.051 0.027 0.043 0.621 0.475 

 482 

Table 4: Emulators’ average scores (RMSE, MAE in K) on soil temperature forecasts for the 483 
European subset, aggregated over space and time. 484 

Variable Layer Model RMSE  MAE  ACC  

   Europe Globe Europe Globe Europe Globe 

Soil  1 XGB 1.154 4.539 0.744 3.278 0.806 0.769 

temperature  MLP 1.628 2.606 1.188 2.072 0.674 0.581 

  LSTM 0.931 3.152 0.682 2.626 0.938 0.735 

 2 XGB 0.901 2.501 0.51 1.772 0.812 0.797 

  MLP 1.134 1.851 0.784 1.452 0.718 0.606 

  LSTM 0.734 2.87 0.541   2.4 0.928 0.699 

 3 XGB 0.714 1.287 0.482 0.933 0.722 0.711 

  MLP 1.128 1.375 0.821 1.071 0.416 0.514 

  LSTM 1.141 3.466 0.918 3.002 0.598 0.406 

 485 

Table 5: Emulators’ average scores (RMSE, MAE in %) on snow cover forecasts for the 486 
European subset, aggregated over space and time.  487 

Variable Layer Model RMSE  MAE  ACC  

   Europe Globe Europe Globe Europe Globe 
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Snow  top XGB 8.219 9.906 3.099 5.196 0.746 0.707 

cover  MLP 6.449 5.995 2.986 3.671 0.66 0.618 

  LSTM 3.526 6.127 1.47 4.357 0.877 0.698 

 488 

3.3 Forecast horizons 489 

Forecast horizons were computed for two European regions, of which the northern one 490 

represents the area of lowest emulators’ skill (see figure 2, B.1-3) and the southern one an 491 

area of stronger emulators’ skill. Being strongly correlated with soil water volume, these two 492 

regions differ specifically in their average snow cover fraction (see figure 3). The displayed 493 

horizons were computed over all prognostic state variables simultaneously, while their 494 

interpretation is related to horizons computed for prognostic state variables separately, for the 495 

figures of which we refer to the Supplementary Material.  496 

In the North, predictive skill depended on an interaction of how far ahead a prediction was 497 

made (the lead time) and the day of year to which the prediction was made. In the best case, 498 

the LSTM, summer predictions were poor (light patches in figure 3 heat maps), but only 499 

when initialised in winter. Or, in other words, one can make good predictions starting in 500 

winter, but not to summer. Vertical structures indicate a systematic model error that appears at 501 

specific initialisation times and that is independent of prediction date, for example in XGB 502 

forecasts that are initialized in May (see figure 3, northern region). Diagonal light structures 503 

in the heat maps indicate a temporally consistent error and can be interpreted as physical 504 

limits of system predictability, where the different initial forecast time doesn’t affect model 505 

scores. 506 

All models show stronger limits in predictability and predictive ability in the northern 507 

European region (see figure 3, left column). MLP and XGB struggled with representing 508 

seasonal variation towards climatology at long lead times, while LSTM is strongly limited by 509 

a systematic error in certain regions. Initializing the forecast the 1 January 2021, MLP drops 510 

below an ACC of 80% repeatedly from initialization on and then to an ACC below 10% at the 511 

beginning of May. LSTMs performance is more robust in the beginning of the year but 512 

depletes strongly later to less than 10% ACC in mid-May. On the one hand, this represents 513 

two different characteristics of model errors: MLP forecasts for snow cover fraction are less 514 

than zero for some grid cells while LSTM forecasts for snow cover fraction remain falsely at 515 

very high levels for some grid cells, not predicting the snowmelt in May (see Supplementary 516 

Material, S4.1). On the other hand, this represents a characteristic error due to change in 517 
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seasonality: the snowmelt in this region in May happens abruptly and all emulators 518 

repeatedly over- or underpredict the exact date.  519 

 520 

 521 
Figure 3: Top row: European subregions for computations of forecast skill horizons and their 522 
yearly average snow cover fraction (%), predicted by ECLand. Rows 2-4: Emulator forecast 523 
skill horizons in the subregions, aggregated over prognostic state variables, computed with 524 
the anomaly correlation coefficient (ACC) at 6-hourly lead times (y-axis) over approx. one 525 
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year, displayed as a function of the initial forecast time (x-axis). The horizon is the time at 526 
which the forecast has no value at all, i.e. when ACC is 0 (or below 10%). The diagonal 527 
dashed lines indicate the day of the test year 2021 as labelled on the x-axis, the arrows 528 
indicate where forecasts reach the second test year 2022. 529 

 530 
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 531 
Figure 4: a) Total average scores, representing spatial variation among grid cells. B)  Total 532 
average ACC in space. Note that ACC remained undefined for regions of low signal in snow 533 
cover and soil water volume, see Supplementary Material. 534 
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4 Discussion 535 

 536 

In the comparative analysis of emulation approaches for land surface forecasting, three 537 

primary models—LSTM (Long Short-Term Memory networks), MLP (Multi-Layer 538 

Perceptrons), and XGB (Extreme Gradient Boosting)—have been evaluated to understand 539 

their effectiveness across different operational scenarios. Evaluating emulators over the test 540 

period yielded a significant runtime improvement toward the numerical model for all 541 

approaches (see section 3). While all models achieved high predictive scores, they differ in 542 

their demand of computational resources (Cui et al., 2021) and each one offers unique 543 

advantages and faces distinct challenges, impacting their suitability for various forecasting 544 

tasks. In this work we present the first steps towards enabling quick offline experimentation 545 

on the land surface with ECMWF’s land surface scheme ECLand and towards decreasing 546 

computational demands in, i.e. coupled data assimilation.  547 

 548 

4.1 Approximation of prognostic land surface states 549 

 550 

The total evaluation scores of our emulators indicate good agreement with ECLand 551 

simulations. Among the seven individual prognostic land surface states, emulators achieve 552 

notably different scores and in the transfer from the high-resolution continental to the low-553 

resolution global scale, their performance ranking change. On average, neural network 554 

performances degrade towards the deeper soil layers, while XGB scores remain relatively 555 

stable. Also, the neural networks scores drop in the extrapolation from continental to global 556 

scale, while XGB scores also for this task remain constantly high. 557 

In a way, these findings are not surprising. It is known that neural networks are highly 558 

sensitive to selection bias (Grinsztajn et al., 2022) and tuning of hyper-parameters 559 

(Bouthillier et al., 2021), suboptimal choices of which may destabilise variance in predictive 560 

skill. Previous and systematic comparisons of XGB and deep neural networks have 561 

demonstrated that neural networks can hardly be transferred to new data sets without 562 

performance loss (Shwartz-Ziv and Armon, 2021). On tabular data, XGB still outperforms 563 

neural networks in most cases (Grinsztajn et al., 2022), unless these models are strongly 564 

regularized (Kadra et al., 2021). The disadvantage of neural networks might lay in the 565 

rotational invariance of MLP-like architectures, due to which information about the data 566 

orientation gets lost, as well as in their instability regarding uninformative input features 567 

(Grinsztajn et al., 2022).  568 
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Inversely to expectations and preceding experiments, on the European data set relative to the 569 

two other models the LSTM scored better in the upper layer soil temperatures than in 570 

forecasting soil water volume and decreased in scores towards lower layers with slower 571 

processes. For training on observations, the decreasing LSTM predictive accuracy for soil 572 

moisture with lead time is discussed (Datta and Faroughi, 2023), but reasons arising from the 573 

engineering side remain unclear. In an exemplary case of a single-objective, deterministic 574 

streamflow forecast, a decrease in recurrent neural network performance has been related 575 

with an increasing coefficient of variation (Guo et al., 2021). In our European subregions, the 576 

signal-to-noise ratio of the prognostic state variables (computed as the averaged ratio of mean 577 

and standard deviation) is up to ten times higher in soil temperature than in soil water volume 578 

states (see Supplementary Material, S2.1). While a small signal of the latter may induce 579 

instability in scores, it does not explain the decreasing performance towards deeper soil layers 580 

with slow processes, where we expected an advantage of the long-term memory. 581 

Stein’s paradox tells us that joint optimization may lead to better results if the target is multi-582 

objective, but not if we are interested in single targets (James and Stein, 1992; Sener and 583 

Koltun, 2018). While from a process perspective multi-objective scores are less meaningful 584 

than single ones, this is what we opted for due to efficiency. The unweighted linear loss 585 

combination might be suboptimal in finding effective parameters across all prognostic state 586 

variables (Chen et al., 2017; Sener and Koltun, 2018), yet being strongly correlated, we 587 

deemed their manual weighting inappropriate. An alternative to this provides adaptive loss 588 

weighting with gradient normalisation (Chen et al., 2017). 589 

 590 

4.2 Evaluation in time and space 591 

 592 

We used aggerated MAE and RMSE accuracies as a first assessment tool to conduct model 593 

comparison, but score aggregation hides model specific spatio-temporal residual patterns. 594 

Further, both scores are variance dependent, favouring low variability in model forecasts 595 

even though this may not be representative of the system dynamic (Thorpe et al., 2013). 596 

Assessing the forecast skill over time as the relative proximity to a subjectively chosen 597 

benchmark helps disentangling areas of strengths and weaknesses in forecasting with the 598 

emulators (Pappenberger et al., 2015). The naïve 6-hourly climatology as benchmark 599 

highlights periods where emulators long-range forecasts on the test year are externally limited 600 

by seasonality, i.e. system predictability, and where they are internally limited by model error, 601 

i.e. the model’s predictive ability. Applying this strategy in two exemplary European 602 
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subregions showed that all emulators struggle most in forecasting the period from late 603 

summer to autumn, unless they are initialized in summer (see figure 3). Because forecast 604 

quality is most strongly limited by snow cover (see Supplementary Material, A4.1), we 605 

interpret this as the unpredictable start of snow fall in autumn. External predictability 606 

limitations seem to affect the LSTM overall less than the two other models, and specifically 607 

XGB drifts at long lead times. 608 

From a geographical perspective inferred from the continental scale, emulators struggle in 609 

forecasting prognostic state variables in regions with complicated orography and strong 610 

environmental gradients. XGB scores vary seemingly random in space, while neural 611 

networks scores exhibit spatial autocorrelation. A meaningful inference about this, however, 612 

can only be conducted in assessing model sensitivities to physiographic and meteorological 613 

fields through gradients and partial dependencies. While the goal of this work is to introduce 614 

our approach to emulator development, this can be investigated in future analyses.  615 

 616 

4.3 Emulation with memory mechanisms 617 

 618 

Without much tuning, XGB challenges both LSTM and MLP for nearly all variables (see 619 

tables 2-4). In training on observations for daily short-term and real-time rainfall-runoff 620 

prediction, XGB and LightXGB were shown before to equally performed as, or outperformed 621 

LSTMs (Chen et al., 2020; Cui et al., 2021). Nevertheless, models with memory mechanism 622 

such as the encoder-decoder LSTM remain a promising approach for land surface forecasting 623 

regarding their differentiability (Hatfield et al., 2021), their flexible extension of lead times, 624 

for exploring the effect of long-term dependencies or for inference from the context vector 625 

that may help identifying the process relevant climate fields (Lees et al., 2022).  626 

The LSTM architecture assumes that the model is well defined in that the context vector 627 

perfectly informs the hidden decoder states. If that assumption is violated, potential strategies 628 

are to create a skip-connection between context vector and forecast head, or to consider input 629 

of time-lagged variables or self-attention mechanisms (Chen et al., 2020). With attention, the 630 

context vector becomes a weighted sum of alignments that relates neighbouring positions of a 631 

sequence, a feature that could be leveraged for forecasting quick processes such as snow 632 

cover or top-level soil water volume.  633 

Comparing average predictive accuracies across different training lead times indicates that 634 

training at longer lead times may enhance short-term accuracy of the LSTM at the cost of 635 

training runtime (see Supplementary Material, S2). A superficial exploration of encoder 636 
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length indicates no visible improvement on target accuracies if not a positive tendency 637 

towards shorter sequences. This needs an extended analysis for understanding, yet without a 638 

significant improvement by increased sequence length, GRU cells might provide a simplified 639 

and less parameterized alternative to LSTM cells. They were found to perform equally well 640 

on streamflow forecast performance before, while reaching higher operational speed (Guo et 641 

al., 2021). 642 

 643 

4.4 Emulators in application 644 

 645 

LSTM networks with a decoder structure are valued for their flexible and fast lead time 646 

evaluation, which is crucial in applications where forecast intervals are not consistent. The 647 

structure of LSTM is well-suited for handling sequential data, allowing it to perform 648 

effectively over different temporal scales (Hochreiter and Schmidhuber, 1997). They provide 649 

access to gradients, which facilitates inference, optimization and usage for coupled data 650 

assimilation (Hatfield et al., 2021).  Nevertheless, the complexity of LSTMs introduces 651 

disadvantages: Despite their high evaluation speed and accuracy under certain conditions, 652 

they require significant computational resources and long training times. They are also highly 653 

sensitive to hyperparameters, making them challenging to tune and slow to train, especially 654 

with large datasets. 655 

MLP models stand out for their implementation, training and evaluation speed with yet 656 

rewarding accuracy, making them a favourable choice for scenarios that require rapid model 657 

deployment. They are tractable and easy to handle, with a straightforward setup that is less 658 

demanding computationally than more complex models. MLPs also allow for access to 659 

gradients, aiding in incremental improvements during training and quick inference (Hatfield 660 

et al., 2021). Despite these advantages, MLPs face challenges with memory scaling during 661 

training at fixed lead times, which can hinder their applicability in large-scale or high-662 

resolution forecasting tasks. 663 

XGB models are highly regarded for their robust performance with minimal tuning, 664 

achieving high accuracy not only in sample applications, but also in transfer to unseen 665 

problems (Grinsztajn et al., 2022; Shwartz-Ziv and Armon, 2021). Their simplicity makes 666 

them easy to handle, even for users with limited technical expertise in machine learning. 667 

However, the slow evaluation speed of XGB becomes apparent as dataset complexity and 668 

size increase. Although generally more interpretable than deep machine learning tools, XGB 669 
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is not differentiable, limiting its application in coupled data assimilation (Hatfield et al., 670 

2021) even though research on differentiable trees is ongoing (Popov et al., 2019). 671 

 672 

4.5 Experimentation with Emulators 673 

 674 

In the IFS, the land surface is coupled to the atmosphere via skin temperature (ECMWF, 675 

2023), the predictability of which is known to be influenced by specifically by soil moisture 676 

(Dunkl et al., 2021). This is the interface with the numerical model where a robust surrogate 677 

could act online to improve forward (i.e. parametrization (Brenowitz et al., 2020)) or 678 

backward (i.e. data assimilation (Hatfield et al., 2021)) procedures, and it motivates the 679 

experiment from the perspective of hybrid forecasting models (Irrgang et al., 2021; Slater et 680 

al., 2023). However, because an offline training ignores the interaction with the atmospheric 681 

model, emulator scores will not directly translate to the coupled performance and of course 682 

additional experiments would be necessary (Brenowitz et al., 2020). As the current stand-683 

alone models, emulators provide a pre-trained model-suite (Gelbrecht et al., 2023) and can be 684 

used for experimentation on the land surface. The computation of forecast horizons is an 685 

example for such an experiment, seen as a step toward a predictability analysis of land 686 

surface processes. Full predictability analyses are commonly conducted with model 687 

ensembles (Guo et al., 2011; Shukla, 1981), the simulation of which can quicker be 688 

done with emulators than with the numerical model (see evaluation runtimes, section 689 

3).  690 

We want to stress at this point that to avoid misleading statements, evaluation of the 691 

emulators on observations is required. In the context of surrogate models, two inherent 692 

sources of uncertainty are specifically relevant: First, the structural uncertainty by 693 

statistical approximation of the numerical model and second, the uncertainty arising by 694 

parameterization with synthetic (computer model generated) data (Brenowitz et al., 695 

2020; Gu et al., 2017). Both sources can cause instabilities in surrogate models that 696 

could translate when coupled with the IFS (Beucler et al., 2021), but that also should be 697 

quantified when drawing conclusions from the stand-alone models outside of the 698 

synthetic domain. Consequently, a reliable surrogate model for online or oUline 699 

experimentation requires validation, and enforcing additional constraints may be 700 

advantageous for physical consistency (Beucler et al., 2021). 701 

 702 
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5 Conclusion 703 

 704 

To conclude, the choice between LSTM, MLP, and XGB models for land surface forecasting 705 

depends largely on the specific requirements of the application, including the need for speed, 706 

accuracy, and ease of use. Each model's computational demands, flexibility, and operational 707 

overhead must be carefully considered to optimize performance and applicability in diverse 708 

forecasting environments. When it comes to accuracy, combined model ensembles of XGB 709 

and neural networks have been shown to yield the best results (Shwartz-Ziv and Armon, 710 

2021), but accuracy alone will not determine a single best approach (Bouthillier et al., 2021). 711 

Our comparative assessment underscores the importance of selecting the appropriate 712 

emulation approach based on a clear understanding of each model's strengths and limitations 713 

in relation to the forecasting tasks at hand. By developing the emulators for ECMWF’s 714 

numerical land surface scheme ECLand, we path the way towards a physics-informed ML-715 

based land surface model that on the long run can be parametrized with observations. We also 716 

provide a pretrained model suite to improve land surface forecasts and future land reanalyses. 717 
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