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Abstract 19 

 20 

Most useful weather prediction for the public is near the surface. The processes that are most 21 

relevant for near-surface weather prediction are also those that are most interactive and 22 

exhibit positive feedback or have key roles in energy partitioning. Land surface models 23 

(LSMs) consider these processes together with surface heterogeneity and, when coupled with 24 

an atmospheric model, provide boundary and initial conditions. They forecast water, carbon 25 

and energy fluxes, which are an integral component of coupled atmospheric models. This 26 

numerical parametrization of atmospheric boundaries is computationally expensive and 27 

statistical surrogate models are increasingly used to accelerate experimental research. We 28 

evaluated the efficiency of three surrogate models in simulating land surface processes for 29 

speeding up experimental research. Specifically, we compared the performance of a Long-30 

Short Term Memory (LSTM) encoder-decoder network, extreme gradient boosting, and a 31 

feed-forward neural network within a physics-informed multi-objective framework. This 32 

framework emulates key prognostic states of the ECMWF's Integrated Forecasting System 33 

(IFS) land surface scheme, ECLand, across continental and global scales. Our findings 34 

indicate that while all models on average demonstrate high accuracy over the forecast period, 35 

the LSTM network excels in continental long-range predictions when carefully tuned, XGB 36 

scores consistently high across tasks and the MLP provides an excellent implementation-37 

time-accuracy trade-off. While their reliability is context dependent, the runtime reductions 38 

achieved by the emulators in comparison to the full numerical models are significant, offering 39 

a faster alternative for conducting experiments on land surfaces.  40 
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 3 

1 Introduction 58 

 59 

While forecasting of climate and weather system processes has long been a task for numerical 60 

models, recent developments in deep learning have introduced competitive machine-learning 61 

(ML) systems for numerical weather prediction (NWP) (Bi et al., 2022; Lam et al., 2023; 62 

Lang et al., 2024). Land surface models (LSMs), even though being an integral part of 63 

numerical weather prediction, have not yet caught the attention of the ML-community. LSMs 64 

forecast water, carbon and energy fluxes and, in coupling with an atmospheric model, provide 65 

the lower boundary and initial conditions (Boussetta et al., 2021; De Rosnay et al., 66 

2014). The parametrization of land surface states does not only affect predictability of earth 67 

and climate systems on sub-seasonal scales (Muñoz-Sabater et al., 2021), but also the short- 68 

and medium-range skill of NWP forecasts (De Rosnay et al., 2014). Beyond their online 69 

integration with NWPs, offline versions of LSMs provide research tools for experiments on 70 

the land surface (Boussetta et al., 2021), the diversity of which, however, are limited by 71 

substantial computational resources requirements and often moderate runtime efficiencies 72 

(Reichstein et al., 2019).  73 

Emulators constitute statistical surrogates for numerical simulation models that, by 74 

approximating the latter, aim for increasing computational efficiency (Machac et al., 2016). 75 

While the construction of emulators can itself require substantial computational resources, 76 

their subsequent evaluation usually runs orders of magnitude faster than the original 77 

numerical model (Fer et al., 2018). For this reason, emulators have found application for 78 

example in modular parametrization of online weather forecasting systems (Chantry et al., 79 

2021), in replacing the MCMC-sampling procedure in Bayesian calibration of ecosystem 80 

models (Fer et al., 2018), or in generating forecast ensembles of atmospheric states for 81 

uncertainty quantification (Li et al., 2023). Beyond their computational efficiency, surrogate 82 

models with high parametric flexibility have the potential to correct process mis-specification 83 

in a physical model when fine-tuned to observations (Wesselkamp et al., 2022).  84 

Modelling approaches used for emulation range from low parametrized, auto-regressive 85 

linear models to highly non-linear and flexible neural networks (Baker et al., 2022; Chantry 86 

et al., 2021; Meyer et al., 2022; Nath et al., 2022). In the global land surface system M-87 

MESMER, a set of simple AR1 regression models is used to initialize the numerical LSM, 88 

resulting in a modularized emulator (Nath et al., 2022). Numerical forecasts of gross primary 89 

productivity and hydrological targets were successfully approximated by Gaussian processes 90 

(Baker et al., 2022; Machac et al., 2016), the advantage of which is their direct quantification 91 
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of prediction uncertainty. When it comes to highly diverse or structured data, neural networks 115 

have shown to deliver accurate approximations, for example for gravity wave drags and 116 

urban surface temperature (Chantry et al., 2021; Meyer et al., 2022). In most fields of 117 

machine learning, specific types of neural networks are now the best approach to representing 118 

fit and prediction. One exception is so-called tabular data, i.e. data without spatial or temporal 119 

interdependencies (as opposed to vision and sound), where extreme gradient boosting is still 120 

the go-to approach (Grinsztajn et al., 2022; Shwartz-Ziv & Armon, 2021).  121 

ECLand is the land surface scheme that provides boundary and initial conditions for the 122 

Integrated Forecasting System (IFS) of the European Centre for Medium-range Weather 123 

Forecasts (ECMWF) (Boussetta et al., 2021). Driven by meteorological forcing and spatial 124 

climate fields, it has a strong influence on the NWP (De Rosnay et al., 2014) and also 125 

constitutes a standalone framework for offline forecasting of land surface processes (Muñoz-126 

Sabater et al., 2021). The modular construction of ECLand offers potential for element-wise 127 

improvement of process representation and thus a stepwise development towards increased 128 

computational efficiency. Within the IFS, ECLand also forms the basis of the land surface 129 

data assimilation system, updating the land surface state with synoptic data and satellite 130 

observations of soil moisture and snow. Emulators of physical systems have been shown to 131 

be beneficial in data assimilation routines, allowing for a quick estimation and low 132 

maintenance of the tangent linear model (Hatfield et al., 2021). Together with the potential to 133 

run large ensembles of land surface states at a much-reduced cost, this would be a potential 134 

application of the surrogate models introduced here. 135 

Long-short term memory networks (LSTMs) have gained popularity in hydrological 136 

forecasting as rainfall-runoff models, for predicting stream flow temperature and also soil 137 

moisture (Bassi et al., 2024; Kratzert, Klotz, et al., 2019; Lees et al., 2022; Zwart et al., 138 

2023). Research on the interpretability of LSTMs has found correlations between the model 139 

cell states and spatially or thematically similar hydrological units (Lees et al., 2022), 140 

suggesting the specific usefulness of LSTM for representing variables with dynamic storages 141 

and reservoirs (Kratzert, Herrnegger, et al., 2019). As emulators, LSTMs have been shown 142 

useful for sea surface level projection in a variational manner with Monte Carlo dropout (Van 143 

Katwyk et al., 2023).  144 

While most of these studies trained their models on observations or reanalysis data, our 145 

emulator learns the representation from ECLand simulations directly. To our knowledge, a 146 

comparison of models without memory mechanisms to an LSTM-based neural network for 147 

global land surface emulation has not been conducted before.  148 
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 5 

We emulate seven prognostic state variables of ECLand, which represent core land surface 162 

processes: soil water volume and soil temperature, each at three depth layers, and snow cover 163 

fraction at the surface layer. The represented variables would allow their coupling to the IFS, 164 

yet the emulators do not replace ECLand in its full capabilities. Yet, these three state variables 165 

represent the core of the current configuration of ECLand. We specifically focus on the utility 166 

of memory mechanisms, highlighting the development of a single LSTM-based encoder-167 

decoder model compared to an extreme gradient boosting approach (XGB) and a multilayer 168 

perceptron (MLP), which all perform the same tasks. The LSTM architecture builds on an 169 

encoder-decoder network design introduced for flood forecasting (Nearing et al., 2024). To 170 

compare forecast skill systematically, the three emulators were compared in long-range 171 

forecasting against climatology (Pappenberger et al., 2015). In this work, the emulators are 172 

evaluated on ECLand simulations only, i.e. on purely synthetic data, while we anticipate their 173 

validation and fine-tuning on observations for future work. 174 

 175 

2 Methods 176 

 177 

2.1 The Land Surface Model: ECLand 178 

 179 

ECLand is a tiled ECMWF Scheme for surface exchanges over land that represents surface 180 

heterogeneity and incorporates land surface hydrology (Balsamo et al., 2011; ECMWF, 181 

2017). ECLand computes surface turbulent fluxes of heat, moisture and momentum and skin 182 

temperature over different tiles (vegetation, bare soil, snow, interception and water) and then 183 

calculates an area-weighted average for the grid-box to couple with the atmosphere 184 

(Boussetta et al., 2021). For the overall accuracy of the model, accurate land surface 185 

parameterizations are essential (Kimpson et al., 2023) as they e.g. determine the sensible and 186 

latent heat fluxes, and provide the lower boundary conditions for enthalpy and moisture 187 

equations in the atmosphere (Viterbo, 2002). We emulate three prognostic state variables of 188 

ECLand that represent core land surface processes: soil water volume (m!m"!)	and soil 189 

temperature (K) at each three depth layers (each at 0 – 7 cm, 7 – 21 cm and 21 – 72 cm) and 190 

snow cover fraction (%), aggregated at the surface layer. 191 

 192 

2.2 Data sources 193 

 194 
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As training data base, global simulation and reanalysis time series from 2010 to 2022 were 213 

compiled to zarr format at an aggregated 6-hourly temporal resolution. Simulations and 214 

climate fields were generated from ECMWFs development cycle CY49R2, ECLand forced 215 

by ERA-5 meteorological reanalysis data (Hersbach et al., 2020).  216 

There are three main sources of data used for creation of the data base: The first is a selection 217 

of surface physiographic fields from ERA5 (Hersbach et al., 2020) and their updated versions 218 

(Boussetta et al., 2021; Choulga et al., 2019; Muñoz-Sabater et al., 2021), used as static 219 

model input features (X). The second is a selection of atmospheric and surface model fields 220 

from ERA5, used as static and dynamic model input features (Y). The third are ECLand 221 

simulations, constituting the model’s dynamic prognostic state variables (z) and hence 222 

emulator input and target features. A total of 41 static, seasonal and dynamical features were 223 

used to create the emulators, see table 1 for an overview of input variables and details on the 224 

surface physiographic and atmospheric fields below. 225 

 226 

2.2.1 Surface physiographic fields  227 

 228 

Surface physiographic fields have gridded information of the Earth’s surface properties (e.g. 229 

land use, vegetation type, and distribution) and represent surface heterogeneity in the ECLand 230 

of the IFS (Kimpson et al., 2023). They are used to compute surface turbulent fluxes (of heat, 231 

moisture, and momentum) and skin temperature over different surfaces (vegetation, bare soil, 232 

snow, interception, and water) and to calculate an area-weighted average for the grid box for 233 

coupling with the atmosphere. To trigger all different parametrization schemes, the ECMWF 234 

model uses a set of physiographic fields that do not depend on initial condition of each 235 

forecast run or the forecast step. Most fields are constant; surface albedo is specified for 12 236 

months to describe the seasonal cycle. Depending on the origin, initial data come at different 237 

resolutions and different projections and are then first converted to a regular latitude–238 

longitude grid (EPSG:4326) at ∼ 1 km at Equator resolution and secondly to a required grid 239 

and resolution. Surface physiographic fields used in this work consist of orographic, land, 240 

water, vegetation, soil, albedo fields, see Table 1 for the full list of surface physiographic 241 

fields; for more details, see IFS documentation (ECMWF, 2023).  242 

 243 

2.2.2 ERA5  244 

 245 
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 7 

Climate reanalyses combine observations and modelling to provide calculated values of a 255 

range of climactic variables over time. ERA5 is the fifth-generation reanalysis from 256 

ECMWF. It is produced via 4D-Var data assimilation of the IFS cycle 41R2 coupled to a land 257 

surface model (ECLand, (Boussetta et al., 2021)), which includes lake parametrization by 258 

Flake (Mironov & Helmert, n.d.) and an ocean wave model (WAM). The resulting data 259 

product provides hourly values of climatic variables across the atmosphere, land, and ocean 260 

at a resolution of approximately 31 km with 137 vertical sigma levels up to a height of 80 km. 261 

Additionally, ERA5 provides associated uncertainties of the variables at a reduced 63 km 262 

resolution via a 10-member ensemble of data assimilations. In this work, ERA5 hourly 263 

surface fields at ∼ 31 km resolution on the cubic octahedral reduced Gaussian grid (i.e. 264 

Tco399) are used. The Gaussian grid’s spacing between latitude lines is not regular, but lines 265 

are symmetrical along the Equator; the number of points along each latitude line defines 266 

longitude lines, which start at longitude 0 and are equally spaced along the latitude line. In a 267 

reduced Gaussian grid, the number of points on each latitude line is chosen so that the local 268 

east–west grid length remains approximately constant for all latitudes (here, the Gaussian 269 

grid is N320, where N is the number of latitude lines between a pole and the Equator).  270 

 271 

Table 1 Input and target features to all emulators from the data sources. The left column 272 

shows the observation-derived static physiographic fields, the middle column ERA5 dynamic 273 

physiographic and meteorological fields and the rightmost column ECLand generated 274 

dynamic prognostic state variables. 275 

Climate fields Units Atmospheric 

forcing  

Units Prognostic 

states 

Units 

Vegetation 

cover (low, 

high) 

 Total 

precipitation 

fraction 

(convective + 

stratiform) 

 Soil water 

volume 

(Layers 1-3) 

m!m"! 

Type of 

vegetation (low, 

high) 

 Downward 

radiation 

(long, short) 

W/m# Soil 

temperature 

(Layers 1-3) 

K 

Minimum 

stomatal 

 Seasonal LAI 

(high, low) 

 Snow cover 

fraction 

% 
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resistance (low, 

high) 

Roughness 

length (low, 

high) 

 Wind speed (v, 

u) 

 

m/s   

Urban cover  Surface 

pressure 

Pa   

Lake cover 

Lake depth 

 Skin 

temperature 

K   

Orography (+ 

std, + filtered) 

m#/s"# Specific 

humidity 

kg/kg   

Photosynthesis 

pathways 

 Rainfall rate 

(total) 

kg/m#s   

Soil type  Snowfall rate 

(total) 

kg/m#s   

Glacier mask 

Permanent 

wilting point 

Field capacity 

     

Cell area      

 278 

2.3 Emulators 279 

 280 

We compare a long-short term memory neural network (LSTM), extreme gradient boosting 281 

regression trees (XGB) and a feedforward neural network (that we here refer to as multilayer 282 

perceptron, MLP). To motivate this setup and pave the way for discussing effects of (hyper-283 

)parameter choices, a short overview of all approaches is given. All analyses were conducted 284 

in Python. XGB was developed in dmlc’s XGBoost python package1. The MLP and LSTM 285 

were developed in the PyTorch lightning framework for deep learning2. Neural networks 286 

were trained with the Adam algorithm for stochastic optimization (Kingma & Ba, 2017). 287 

Model architectures and algorithmic hyperparameters were selected through combined 288 

 
1 https://xgboost.readthedocs.io/en/stable/python/index.html 
2 https://lightning.ai/docs/pytorch/stable/ 
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Bayesian hyperparameter optimization with the Optuna framework (Akiba et al., 2019) and 296 

additional manual tuning. The Bayesian optimization minimizes the neural network 297 

validation accuracy, specified here as mean absolute error (MAE), over a predefined search 298 

space for free hyperparameters with the Tree-structured Parzen Estimator (Ozaki et al., 2022). 299 

The resulting hyperparameter and architecture choices which were used for the different 300 

approaches are listed in the Supplementary Material. 301 

 302 

2.3.1 MLP 303 

 304 

For creation of the MLP emulator we work with a feed-forward neural network architecture 305 

of connected hidden layers with ReLU activations and dropout layers, model components 306 

which are given in detail in the Supplementary Material or in (Goodfellow et al., 2016). The 307 

MLP was trained with a learning rate scheduler. L2-regularization was added to the training 308 

objective via weight decay. Sizes and width of hidden layers as well as hyperparameters were 309 

selected together in the hyperparameter optimization procedure. Instead of forecasting 310 

absolute prognostic state variables &$, the MLP predicts the 6-hourly increment, %&'%(. It is 311 

trained on a stepwise rollout prediction of future state variables at a pre-defined lead time at 312 

given forcing conditions, see details in the section on optimization. 313 

 314 

2.3.2 LSTM 315 

 316 

LSTMs are recurrent networks that consider long-term dependencies in time series through 317 

gated units with input and forget mechanisms (Hochreiter & Schmidhuber, 1997). In 318 

explicitly providing time-varying forcing and state variables, LSTM cell states serve as long-319 

term memory while LSTM hidden states are the cells’ output and pass on stepwise short-term 320 

representations stepwise. In short notation (Lees et al., 2022), a one-step ahead forward pass 321 

followed by a linear transformation can be formulated as 322 

'( , )( = +(-( , '("), )("), .) 323 

	&/( =	0'( + 2 324 

where '(") denotes the hidden state, i.e. output estimates from the previous time step, )(") 325 

the cell state from the previous time step, and . the time-invariant model weights. We stacked 326 

multiple LSTM cells to an encoder-decoder model with transfer layers for hidden and cell 327 

state initialization and for transfer to the context vector (see figure 1) (Nearing et al., 2024). A 328 
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 10 

lookback 3 of the previous static and dynamic feature states are passed sequentially to the first 329 

LSTM cells in the encoder layer, while the 3 prognostic state variables & initialize the hidden 330 

state '* after a linear embedding. The output of the first LSTM layer cells become the input 331 

to the deeper LSTM layer cells and the last hidden state estimates are the final output from 332 

the encoder. Followed by a non-linear transformation with hyperbolic tangent activation, the 333 

hidden cell states are transformed into a weighted context vector 4. Together with the encoder 334 

the cell state ()(, 4) initializes the hidden and cell states of the decoder. The decoder LSTM 335 

cells take as input again static and dynamic features sequentially at lead times 5 = 1,… , 8, but 336 

not the prognostic states variables. These are estimated from the sequential hidden states of 337 

the last LSTM layer cells, transformed to target size with a linear forecast head before 338 

prediction. LSTM predicts absolute state variables &( while being optimized on &( and 9&/( 339 

simultaneously, see section on optimization. 340 

 341 

Figure 1: LSTM architecture. Blue shaded area indicates the encoder part, where the model 342 
is driven by a lookback : of meteorological forcing and state variables. The light-blue shaded 343 
area indicates the decoder part that is initialized from the encoding to unroll LSTM forecasts 344 
from the initial time step t up to a flexibly long lead time of  8. 345 

2.3.3 XGB 346 

 347 

Extreme gradient boosting (XGB) is a regression tree ensemble method that uses an 348 

approximate algorithm for best split finding. It computes first and second order gradient 349 

statistics in the cost function, performing a similar to gradient descent optimization (T. Chen 350 

& Guestrin, 2016), where each new learner is trained on the residuals of the previous ones. 351 
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Regularization and column sampling aim for preventing overfitting internally. XGB is known 352 

to provide a powerful benchmark for time series forecasting and tabular data (T. Chen & 353 

Guestrin, 2016; X. Chen et al., 2020; Shwartz-Ziv & Armon, 2021). Like the MLP, it is 354 

trained to predict the increment 	9&;(,, of prognostic state variables, but only for a one-step 355 

ahead prediction. 356 

 357 

2.4 Experimental setup 358 

 359 

We distinguish the experimental analysis into three parts that vary in the usage of the training 360 

database: (1) model development, (2) model testing, and (3) global model transfer.  361 

The models were developed and for the first time evaluated on a low state resolution 362 

(ECMWF’s TCO199 reduced gaussian grid, see section on data sources) and temporal subset 363 

from the training data base, i.e. on a bounding box of 7715 grid cells over Europe with time 364 

series of six years from 2016 to 2022. For details on the development data base, model 365 

selection and model performances, see Supplementary Material S3.  366 

The selected models were recreated on a high state resolution (TCO399) continental scale 367 

European subset with 10 051 grid cells. Models were trained on five years 2015-2020 with 368 

the year 2020 as validation split and evaluated on the year 2021 for the scores we report in 369 

the main part. Note that for computation of forecast horizons, the two test years 2021 and 370 

2022 were used, see details in section on forecast horizons. With this same data splitting 371 

setup, the analysis was repeated in transferring the candidates to the low resolution (TCO199) 372 

global data set with a total of 47892 grid cells. The low global resolution on one hand 373 

allowed a systematic comparison of the three models, because high resolution training with 374 

XGB was prohibited by the required working memory. On the other hand, this extrapolation 375 

scenario created an unseen problem for the models that were selected on a continental and 376 

high-resolution scale which is reflected in the resulting scores.  377 

 378 

2.5 Optimization 379 

 380 

2.5.1 Loss functions 381 

 382 
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The basis of the loss function ℒ for the neural network optimization was PyTorch’s 385 

SmoothL1Loss3, a robust loss function that combines L1-norm and L2-norm and is less 386 

sensitive to outliers than pure L1-norm (Girshick, 2015). Based on a pre-defined threshold 387 

parameter =, smooth L1 transitions from L2-norm to L1-norm above the threshold.  388 

SmoothL1Loss ℒ is defined as 389 

ℒ(>̂, >) = 	0.5(>̂ − 	>)# )-  if |>̂ − 	>| < 	=	and 390 

ℒ(>̂, >) = 	 |>̂ − 	>| − 	0.5	=  otherwise, 391 

here with = = 1. All models were trained to minimize the incremental loss ℒ. that is the 392 

differences between the estimates of the seven prognostic states increments  9&;(	and the full 393 

model’s prognostic states increments 9&(	simultaneously as the sum of losses over all states. 394 

We opted for a loss function equally weighted by variables to share inductive biases among 395 

the non-independent prognostic states (Sener & Koltun, 2018). When aggregating over all 396 

training lead times 5 = 1,… , 8, ℒ. and grid cells F = 1,… , G is  397 

ℒ.(	9&;, 9&) = 	HHℒ((	9&;(,, , 9&(,,)
/

,

0

(
, 398 

Whereas when computing a rollout loss ℒ1 stepwise,  399 

 400 

ℒ1(	9&;, &) = 	 18	HHℒ((>("),, +	9&;(,, , >(,,)
/

,

0

(
 401 

 402 

Prognostic state increments are essentially the first differences from one to the next timestep 403 

that are normalized again by the global standard deviation of the model’s states increments, 404 

I	!" before computation of the loss (Keisler, 2022). Due to the forecast models’ structural 405 

differences, loss functions were individually adapted: 406 

MLP The combined loss function for the MLP is the sum of the incremental loss ℒ. and the 407 

rollout loss ℒ1. For the rollout loss ℒ1, ℒ was aggregated over grid cells G and accumulated 408 

after an auto-regressive rollout over lead times 8, before being averaged out by division by 8 409 

(Keisler, 2022).  410 

LSTM The combined loss function for the LSTM is the sum of the incremental loss 411 

ℒ.,	where the 9&/( were derived from &/( after the forward pass, and the loss ℒ computed on 412 

 
3 https://pytorch.org/docs/stable/generated/torch.nn.SmoothL1Loss.html 
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decoder estimates of prognostic states variables, a functionality that leverages the potential of 413 

our LSTM structure.  414 

XGB Trained only from one to the next time step, i.e. at a lead time of 8 = 1, the incremental 415 

loss ℒ. =	ℒ1. Without a SmoothL1Loss implementation provided in dmlc’s XGBoost, we 416 

trained XGB with both the Huber-Loss and the default L2-loss. The latter initially providing 417 

better results, we chose the default L2-norm as loss function for XGB with the regularization 418 

parameter : = 1. 419 

 420 

2.5.1 Normalization 421 

As prognostic target variables are all lower bounded by zero, we tested both z-scoring and 422 

max-scoring. The latter yielded no significant improvement; thus we show our results with z-423 

scored target variables. For neural network training but not for fitting XGB, static, dynamic 424 

and prognostic state variables were all normalized with z-scoring towards the continental or 425 

global mean >̅ and unit standard deviation I3 as 426 

>(,4 =	 3#,%"	3̅.&
. 427 

Prognostic target state increments were normalized again by the global standard deviation of 428 

increments computing the loss (see section 2.5.1) to smooth magnitudes of increments 429 

(Keisler, 2022). State variables were back transformed to original scale before evaluation. 430 

 431 

2.5.3 Spatial and temporal sampling 432 

Sequences were sampled randomly from the training data set, while validation happened 433 

sequentially. MLP and XGB were trained on all grid cells simultaneously in both the 434 

continental and global setting, while LSTM was trained on the full continental data set but 435 

was limited by GPU memory in the global task. We overcame this limitation by randomly 436 

subsetting grid cells in the training data into largest possible, equally sized subsets which 437 

were then loaded along with the temporal sequences during the batch sampling.  438 

 439 

2.6 Evaluation 440 

 441 

Three scores are used for model validation during the model development phase and in 442 

validating architecture and hyperparameter selection, being the root mean squared error 443 

(KLMN), the mean absolute error (LON) and the anomaly correlation coefficient (OPP). 444 

First, scores were assessed objectively in quantifying forecast accuracy of the emulators 445 

hat gelöscht: improvement,446 
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against ECLand simulations directly with RMSE and MAE. Doing so, scores were 448 

aggregated over lead times, grid cells or both. The total RMSE was computed as  449 

RMSE = 	U
∑ (> −	 >̂)#0,/

W , 450 

As the mean absolute error in prognostic state variable prediction over the total of W grid cells 451 

G times lead times 8. Equivalently, MAE was computed as 452 

MAE = 	∑ |> −	 >̂|(,/
W , 453 

Beyond accuracy, the forecast skill of emulators was assessed using a benchmark model: the 454 

ACC (see below) as index of the long-term naïve climatology Y of ECLand, forced by ERA5 455 

(see section 2.2). More specifically, this is the 6-hourly mean of prognostic state variables 456 

over the last 10 years preceding the test year, i.e. the years 2010 to 2020. While climatology 457 

is a hard-to-beat benchmark specifically in long-term forecasting, the persistence is a 458 

benchmark for short-term forecasting (Pappenberger et al., 2015). For verification against 459 

climatology, we compute the anomaly correlation coefficient (ACC) over lead times as  460 

ACC(5)	 =
(>̂ − Y)(	> − Y)[[[[[[[[[[[[[[[[[[[

\(>̂ − Y)#[[[[[[[[[[[		(> − Y)#[[[[[[[[[[[
 461 

at each t = 1, …, 8 where the overbar denotes averaging over grid	cells	G = F, … , W. This way, 462 

the nominator represents the average spatial covariance of emulator and numerical forecasts 463 

with climatology as expected sample mean. Hence, it indicates the mean squared skill error 464 

towards climatology, and the denominator indicates its variability. The aggregated scores that 465 

are shown in tables 3-5 represent the temporally arithmetic mean of ACC(t). ACC is bounded 466 

between 1 and -1, and an ACC of 1 indicates perfect representation of forecast error 467 

variability, an ACC of 0.5 indicates a similar forecast error to that of the climatology, an ACC 468 

of 0 indicates that forecast error variability dominates and the forecast has no value and an 469 

ACC approaching -1 indicates that the forecast has been very unreliable (ECMWF, n.d.).  470 

ACC is undefined when the denominator is zero. This is the case either when mean squared 471 

emulator or ECLand anomaly, or both are zero because forecast and climatology perfectly 472 

align, or because they cancel out at summation to the mean. 473 

 474 

2.6.1 Forecast horizons  475 

 476 
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Forecast horizons of the emulators are defined by the decomposition of the RMSE 479 

(Bengtsson et al., 2008) into the emulator’s variability around climatology (i.e. anomaly), 480 

ECLand’s variability around climatology and the covariance of both. The horizon is the point 481 

in time at which the forecast error reaches saturation level, that is when the covariance of 482 

emulator and ECLand anomalies approaches zero, as does the ACC. 483 

We analysed predictive ability and predictability by computing the ACC for all lead times 484 

from 6 hours to approx. one year, i.e. lead times 5 = 1,… , 8, 8 being 1350. As this confounds 485 

the seasonality with the lead time, we compute these for every starting point of the prediction, 486 

requiring two test years (2021 and 2022).  487 

Forecast horizons based on the emulators’ skill in standardized anomaly towards persistence 488 

were equivalently computed but with persistence as a benchmark for shorter time scales, this 489 

was only done for three months, from January to March 2021. 490 

The analysis was conducted on two exemplary regions in northern and southern Europe that 491 

represent very different conditions orography and in prognostic land surface states, 492 

specifically in snow cover. For details on the regions and on the horizons computed with 493 

standardized anomaly skill, see Appendices A1 and A4 respectively.   494 

 495 

3 Results 496 

 497 

The improvement in evaluation runtimes achieved by emulators toward the numerical 498 

ECLand were significant. Iterating the forecast over a full test year at 30 km spatial 499 

resolution, XGB evaluates in 5.4 minutes, LSTM in 3.09 minutes and MLP in 0.05 minutes 500 

(i.e. 3.2 seconds) on average. In contrast, ECLand integration over a full test year on 16 501 

CPUs at 30 km spatial resolution takes approximately 240 minutes (i.e. four hours). The slow 502 

runtime of the LSTM compared to the MLP emulator is caused by a spatial chunking 503 

procedure that was not optimise for this work, but could be improved in the future. 504 

 505 

3.1 Aggregated performances 506 

 507 

Europe. All emulators approximated the numerical LSM with high average total accuracies 508 

(all RMSEs < 1.58 and MAEs < 0.84) and confident correlations (all ACC > 0.72) (see table 509 

2 and figure 2). The LSTM emulator achieved the best results across all total average scores 510 

on the European scale. It decreased the total average MAE by ~25% towards XGB and by 511 

~37% towards the MLP and the total average RMSE by ~42% towards XGB and ~38% 512 
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towards the MLP.  In total average ACC, the LSTM scored 20% higher than the MLP and 513 

15% than XGB, also being the only emulator that achieved an ACC > 0.9. While the MLP 514 

outperforms XGB in total average RMSE by ~5%, XGB scores better than the MLP in MAE 515 

by ~27%. 516 

At variable level, results differentiate into model specific strengths. In soil water volume, 517 

XGB outperforms the neural network emulators by up to 60%	(m!m"!) in the first and 518 

second layer MAEs towards the LSTM and up to over 40% (m!m"!) for towards the MLP 519 

(see table 3). While the representation of anomalies by specifically the LSTM decreases 520 

towards lower soil layers with an ACC of only 0.6214 at the third soil layer, it remains 521 

consistently higher for XGB with an ACC still > 0.789 at soil layer three.  522 

In soil temperature approximation, LSTM achieves best accuracies at higher soil levels with 523 

up to 7% (K) improvement in MAE towards XGB and ACCs > 0.92, but XGB outperforms 524 

LSTM at the third soil level with a close to 50% (K) improvement (see table 4). The MLP 525 

doesn’t stand out by high scores on the continental scale. However, in terms of accuracy we 526 

found an inverse ranking in the model development procedure during which LSTM outscored 527 

XGB in soil water volume but struggled with soil temperature approximations, for the 528 

interested reader we refer to the supplementary information. 529 

In snow cover approximation, the LSTM emulator enhances accuracies by over ~50% in 530 

MAE towards both the XGB and the MLP emulator and scores highest in anomaly 531 

representation with an ACC of ~0.87 compared to an ACC of ~0.66 for the MLP and only 532 

~0.74 for the XGB (see table 5). 533 

Globe. Score ranking on the global scale varies strongly from the continental scale (see table 534 

2). In total average accuracies, the MLP outperforms XGB by over 30% and LSTM by up 535 

~25% in RMSE and improves MAE more than 15% towards both. In anomaly correlation 536 

however it scores last, whereas XGB achieves the highest total average of over 0.75. 537 

Consistent with scores on the continental scale is XGBs high performance in soil temperature 538 

(see table 3). It significantly outperforms the LSTM by ~60% (K) in RMSE and nearly up to 539 

75% (K) in MAE in all layers and the MLP by up to 50% (K) in MAE at the top layer. 540 

Anomaly persistence for all models degrade visibly towards the lower soil layers, while that 541 

of the LSTM most relative to MLP and XGB. Like on the continental scale, XGB also 542 

outperforms the other candidates in soil temperature forecasts in all but the medium layer, 543 

where the MLP gets higher scores in MAE and RMSE but not in ACC (see table 4). LSTM 544 

doesn’t stand out with any scores on the global scale.  545 

 546 
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3.2 Spatial and temporal performances 549 

 550 

Europe. When summarizing temporally aggregated scores as boxplots to a total distribution 551 

over space (see figure 2, A), the long tails of XGB scores become visible, whereas the MLP 552 

indicates most robustness. This is reflected in the geographic distribution of scores at the 553 

example of ACC (see figure 2, bottom), where the area of low anomaly correlation is largest 554 

for XGB, ranging over nearly all northern Scandinavia, while MLP and LSTM have smaller 555 

and more segregated areas of clearly low anomaly correlation. The LSTM shows a 556 

homogenously high ACCs over most of central Europe but the Alps, while also seems to be 557 

challenged in areas of relative to the central Europe extreme weather conditions at the 558 

Norwegian and Spanish coasts. 559 

Globe. Like the results from the continental analysis, we find again long upper tails of 560 

outliers for XGB in total spatial distribution of accuracies, both in RMSE and MAE and only 561 

few outliers for MLP and LSTM. The anomaly correlation distribution changed towards 562 

longer lower tails for MLP and LSTM and a shorter lower tail for XGB. We should, however, 563 

take the results of total average ACC with care as it remains largely undefined in regions 564 

without much noise in snow cover or soil water volume and globally represents mainly 565 

patterns of soil temperature. 566 
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 569 

Figure 2: a: Total aggregated distributions of (log) scores averaged over lead times, i.e. 570 
displaying the variation among grid cells. b: The distribution of the anomaly correlation in 571 
space on the European subset (b.1: XGB, b.2: MLP, b.3: LSTM). c: Model forecasts over test 572 
year 2021 for grid cell with minimum and maximum RMSE values (LSTM). 573 

 574 
Table 2: Emulator total average scores (unitless), aggregated over variables, time and space 575 
from the European and Global model testing. 576 

Variable Model RMSE  MAE  ACC  

  Europe Globe Europe Globe Europe Globe 

All variables XGB 1.575 2.611 0.695 1.601 0.765 0.755 
 MLP 1.486 1.699 0.832 1.189 0.728 0.569 

 LSTM 0.918 2.252 0.526 1.787 0.925 0.647 

A
no

m
al

y 
Co

rre
la

tio
n

A
no

m
al

y 
Co

rre
la

tio
n

M
A

E

RM
SE

(a)

(b.1) XGB (b.2) MLP (b.3) LSTM

(c.1) Min RMSE grid cell (c.2) Max RMSE grid cell

hat formatiert: Schriftart: (Standard) Times New Roman, 12
Pt.

hat formatiert: Schriftart: (Standard) Times New Roman, 12
Pt.

hat formatiert: Schriftart: (Standard) Times New Roman, 12
Pt.

hat formatiert: Schriftart: (Standard) Times New Roman

hat formatiert: Schriftart: (Standard) Times New Roman, 12
Pt.

hat formatiert: Schriftart: 12 Pt.

hat formatiert: Schriftart: 12 Pt.

hat formatiert: Schriftart: 12 Pt.

hat formatiert: Schriftart: 12 Pt.

hat formatiert: Schriftart: 12 Pt.



 19 

Table 3: Emulator average scores (RMSE, MAE in d!d"!)	on soil water volume forecasts 577 
for the European subset, aggregated over space and time from the European and Global 578 
model testing. 579 

Variabl
e 

Laye
r 

Model RMSE  MAE  ACC  

   Europe Globe Europe Globe Europe Globe 

Soil  1 XGB 0.013 0.015 0.01 0.01 0.908 0.92 
water  MLP 0.019 0.029 0.015 0.023 0.856 0.791 

volume  LSTM 0.029 0.048 0.023 0.04 0.847 0.729 

 2 XGB 0.011 0.012 0.008 0.009 0.901 0.884 

  MLP 0.019 0.023 0.014 0.018 0.789 0.77 

  LSTM 0.029 0.05 0.023 0.042 0.79 0.617 

 3 XGB 0.015 0.014 0.011 0.01 0.789 0.777 
  MLP 0.02 0.02 0.017 0.016 0.576 0.667 

  LSTM 0.033 0.051 0.027 0.043 0.621 0.475 

 580 

Table 4: Emulators’ mean scores (RMSE, MAE in K) on soil temperature forecasts for the 581 
European subset, aggregated over space and time. 582 

Variable Layer Model RMSE  MAE  ACC  
   Europe Globe Europe Globe Europe Globe 

Soil  1 XGB 1.154 4.539 0.744 3.278 0.806 0.769 

temperature  MLP 1.628 2.606 1.188 2.072 0.674 0.581 

  LSTM 0.931 3.152 0.682 2.626 0.938 0.735 

 2 XGB 0.901 2.501 0.51 1.772 0.812 0.797 
  MLP 1.134 1.851 0.784 1.452 0.718 0.606 

  LSTM 0.734 2.87 0.541   2.4 0.928 0.699 

 3 XGB 0.714 1.287 0.482 0.933 0.722 0.711 
  MLP 1.128 1.375 0.821 1.071 0.416 0.514 

  LSTM 1.141 3.466 0.918 3.002 0.598 0.406 

 583 

Table 5: Emulators’ mean scores (RMSE, MAE in %) on snow cover forecasts for the 584 
European subset, aggregated over space and time.  585 

Variable Layer Model RMSE  MAE  ACC  
   Europe Globe Europe Globe Europe Globe 
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Snow  top XGB 8.219 9.906 3.099 5.196 0.746 0.707 
cover  MLP 6.449 5.995 2.986 3.671 0.66 0.618 

  LSTM 3.526 6.127 1.47 4.357 0.877 0.698 

 587 

3.3 Forecast horizons 588 

Forecast horizons were computed for two European regions, of which the northern one 589 

represents the area of lowest emulators’ skill (see figure 2, B.1-3) and the southern one an 590 

area of stronger emulators’ skill. Being strongly correlated with soil water volume, these two 591 

regions differ specifically in their average snow cover fraction (see figure 3). The displayed 592 

horizons were computed over all prognostic state variables simultaneously, while their 593 

interpretation is related to horizons computed for prognostic state variables separately, for the 594 

figures of which we refer to the Supplementary Material.  595 

In the North, predictive skill depended on an interaction of how far ahead a prediction was 596 

made (the lead time) and the day of year to which the prediction was made. In the best case, 597 

the LSTM, summer predictions were poor (light patches in figure 3 heat maps), but only 598 

when initialised in winter. Or, in other words, one can make good predictions starting in 599 

winter, but not to summer. Vertical structures indicate a systematic model error that appears at 600 

specific initialisation times and that is independent of prediction date, for example in XGB 601 

forecasts that are initialized in May (see figure 3, northern region). Diagonal light structures 602 

in the heat maps indicate a temporally consistent error and can be interpreted as physical 603 

limits of system predictability, where the different initial forecast time doesn’t affect model 604 

scores. 605 

All models show stronger limits in predictability and predictive ability in the northern 606 

European region (see figure 3, left column). MLP and XGB struggled with representing 607 

seasonal variation towards climatology at long lead times, while LSTM is strongly limited by 608 

a systematic error in certain regions. Initializing the forecast the 1 January 2021, MLP drops 609 

below an ACC of 80% repeatedly from initialization on and then to an ACC below 10% at the 610 

beginning of May. LSTMs performance is more robust in the beginning of the year but 611 

depletes strongly later to less than 10% ACC in mid-May. On the one hand, this represents 612 

two different characteristics of model errors: MLP forecasts for snow cover fraction are less 613 

than zero for some grid cells while LSTM forecasts for snow cover fraction remain falsely at 614 

very high levels for some grid cells, not predicting the snowmelt in May (see Supplementary 615 

Material, S4.1). On the other hand, this represents a characteristic error due to change in 616 
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seasonality: the snowmelt in this region in May happens abruptly and all emulators 618 

repeatedly over- or underpredict the exact date.  619 

 620 

 621 

Figure 3: Top row: European subregions for computations of forecast skill horizons and their 622 
yearly average snow cover fraction (%), predicted by ECLand. Rows 2-4: Emulator forecast 623 
skill horizons in the subregions, aggregated over prognostic state variables, computed with 624 
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the anomaly correlation coefficient (ACC) at 6-hourly lead times (y-axis) over approx. one 633 
year, displayed as a function of the initial forecast time (x-axis). The horizon is the time at 634 
which the forecast has no value at all, i.e. when ACC is 0 (or below 10%). The diagonal 635 
dashed lines indicate the day of the test year 2021 as labelled on the x-axis, the arrows 636 
indicate where forecasts reach the second test year 2022. 637 

 638 
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 641 

Figure 4: a) Total average scores, representing spatial variation among grid cells. B)  Total 642 
average ACC in space. Note that ACC remained undefined for regions of low signal in snow 643 
cover and soil water volume, see Supplementary Material. 644 
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4 Discussion 645 

 646 

In the comparative analysis of emulation approaches for land surface forecasting, three 647 

primary models—LSTM (Long Short-Term Memory networks), MLP (Multi-Layer 648 

Perceptrons), and XGB (Extreme Gradient Boosting)—have been evaluated to understand 649 

their effectiveness across different operational scenarios. Evaluating emulators over the test 650 

period yielded a significant runtime improvement toward the numerical model for all 651 

approaches (see section 3). While all models achieved high predictive scores, they differ in 652 

their demand of computational resources (Cui et al., 2021) and each one offers unique 653 

advantages and faces distinct challenges, impacting their suitability for various forecasting 654 

tasks. In this work we present the first steps towards enabling quick offline experimentation 655 

on the land surface with ECMWF’s land surface scheme ECLand and towards decreasing 656 

computational demands in, i.e. coupled data assimilation.  657 

 658 

4.1 Approximation of prognostic land surface states 659 

 660 

The total evaluation scores of our emulators indicate good agreement with ECLand 661 

simulations. Among the seven individual prognostic land surface states, emulators achieve 662 

notably different scores and in the transfer from the high-resolution continental to the low-663 

resolution global scale, their performance ranking change. On average, neural network 664 

performances degrade towards the deeper soil layers, while XGB scores remain relatively 665 

stable. Also, the neural networks scores drop in the extrapolation from continental to global 666 

scale, while XGB scores also for this task remain constantly high. 667 

In a way, these findings are not surprising. It is known that neural networks are highly 668 

sensitive to selection bias (Grinsztajn et al., 2022) and tuning of hyper-parameters 669 

(Bouthillier et al., 2021), suboptimal choices of which may destabilise variance in predictive 670 

skill. Previous and systematic comparisons of XGB and deep neural networks have 671 

demonstrated that neural networks can hardly be transferred to new data sets without 672 

performance loss (Shwartz-Ziv & Armon, 2021). On tabular data, XGB still outperforms 673 

neural networks in most cases (Grinsztajn et al., 2022), unless these models are strongly 674 

regularized (Kadra et al., 2021). The disadvantage of neural networks might lay in the 675 

rotational invariance of MLP-like architectures, due to which information about the data 676 

orientation gets lost, as well as in their instability regarding uninformative input features 677 

(Grinsztajn et al., 2022).  678 
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Inversely to expectations and preceding experiments, on the European data set relative to the 685 

two other models the LSTM scored better in the upper layer soil temperatures than in 686 

forecasting soil water volume and decreased in scores towards lower layers with slower 687 

processes. For training on observations, the decreasing LSTM predictive accuracy for soil 688 

moisture with lead time is discussed (Datta & Faroughi, 2023), but reasons arising from the 689 

engineering side remain unclear. In an exemplary case of a single-objective, deterministic 690 

streamflow forecast, a decrease in recurrent neural network performance has been related 691 

with an increasing coefficient of variation (Y. Guo et al., 2021). In our European subregions, 692 

the signal-to-noise ratio of the prognostic state variables (computed as the averaged ratio of 693 

mean and standard deviation) is up to ten times higher in soil temperature than in soil water 694 

volume states (see Supplementary Material, S2.1). While a small signal of the latter may 695 

induce instability in scores, it does not explain the decreasing performance towards deeper 696 

soil layers with slow processes, where we expected an advantage of the long-term memory. 697 

Stein’s paradox tells us that joint optimization may lead to better results if the target is multi-698 

objective, but not if we are interested in single targets (James & Stein, 1992; Sener & Koltun, 699 

2018). While from a process perspective multi-objective scores are less meaningful than 700 

single ones, this is what we opted for due to efficiency. The unweighted linear loss 701 

combination might be suboptimal in finding effective parameters across all prognostic state 702 

variables (Z. Chen et al., 2017; Sener & Koltun, 2018), yet being strongly correlated, we 703 

deemed their manual weighting inappropriate. An alternative to this provides adaptive loss 704 

weighting with gradient normalisation (Z. Chen et al., 2017). 705 

 706 

4.2 Evaluation in time and space 707 

 708 

We used aggerated MAE and RMSE accuracies as a first assessment tool to conduct model 709 

comparison, but score aggregation hides model specific spatio-temporal residual patterns. 710 

Further, both scores are variance dependent, favouring low variability in model forecasts 711 

even though this may not be representative of the system dynamic (Thorpe et al., 2013). 712 

Assessing the forecast skill over time as the relative proximity to a subjectively chosen 713 

benchmark helps disentangling areas of strengths and weaknesses in forecasting with the 714 

emulators (Pappenberger et al., 2015). The naïve 6-hourly climatology as benchmark 715 

highlights periods where emulators long-range forecasts on the test year are externally limited 716 

by seasonality, i.e. system predictability, and where they are internally limited by model error, 717 

i.e. the model’s predictive ability. Applying this strategy in two exemplary European 718 
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subregions showed that all emulators struggle most in forecasting the period from late 721 

summer to autumn, unless they are initialized in summer (see figure 3). Because forecast 722 

quality is most strongly limited by snow cover (see Supplementary Material, A4.1), we 723 

interpret this as the unpredictable start of snow fall in autumn. External predictability 724 

limitations seem to affect the LSTM overall less than the two other models, and specifically 725 

XGB drifts at long lead times. 726 

From a geographical perspective inferred from the continental scale, emulators struggle in 727 

forecasting prognostic state variables in regions with complicated orography and strong 728 

environmental gradients. XGB scores vary seemingly random in space, while neural 729 

networks scores exhibit spatial autocorrelation. A meaningful inference about this, however, 730 

can only be conducted in assessing model sensitivities to physiographic and meteorological 731 

fields through gradients and partial dependencies. While the goal of this work is to introduce 732 

our approach to emulator development, this can be investigated in future analyses.  733 

 734 

4.3 Emulation with memory mechanisms 735 

 736 

Without much tuning, XGB challenges both LSTM and MLP for nearly all variables (see 737 

tables 2-4). In training on observations for daily short-term and real-time rainfall-runoff 738 

prediction, XGB and LightXGB were shown before to equally performed as, or outperformed 739 

LSTMs (X. Chen et al., 2020; Cui et al., 2021). Nevertheless, models with memory 740 

mechanism such as the encoder-decoder LSTM remain a promising approach for land surface 741 

forecasting regarding their differentiability (Hatfield et al., 2021), their flexible extension of 742 

lead times, for exploring the effect of long-term dependencies or for inference from the 743 

context vector that may help identifying the process relevant climate fields (Lees et al., 744 

2022).  745 

The LSTM architecture assumes that the model is well defined in that the context vector 746 

perfectly informs the hidden decoder states. If that assumption is violated, potential strategies 747 

are to create a skip-connection between context vector and forecast head, or to consider input 748 

of time-lagged variables or self-attention mechanisms (X. Chen et al., 2020). With attention, 749 

the context vector becomes a weighted sum of alignments that relates neighbouring positions 750 

of a sequence, a feature that could be leveraged for forecasting quick processes such as snow 751 

cover or top-level soil water volume.  752 

Comparing average predictive accuracies across different training lead times indicates that 753 

training at longer lead times may enhance short-term accuracy of the LSTM at the cost of 754 
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training runtime (see Supplementary Material, S2). A superficial exploration of encoder 763 

length indicates no visible improvement on target accuracies if not a positive tendency 764 

towards shorter sequences. This needs an extended analysis for understanding, yet without a 765 

significant improvement by increased sequence length, GRU cells might provide a simplified 766 

and less parameterized alternative to LSTM cells. They were found to perform equally well 767 

on streamflow forecast performance before, while reaching higher operational speed (Y. Guo 768 

et al., 2021). 769 

 770 

4.4 Emulators in application 771 

 772 

LSTM networks with a decoder structure are valued for their flexible and fast lead time 773 

evaluation, which is crucial in applications where forecast intervals are not consistent. The 774 

structure of LSTM is well-suited for handling sequential data, allowing it to perform 775 

effectively over different temporal scales (Hochreiter & Schmidhuber, 1997). They provide 776 

access to gradients, which facilitates inference, optimization and usage for coupled data 777 

assimilation (Hatfield et al., 2021).  Nevertheless, the complexity of LSTMs introduces 778 

disadvantages: Despite their high evaluation speed and accuracy under certain conditions, 779 

they require significant computational resources and long training times. They are also highly 780 

sensitive to hyperparameters, making them challenging to tune and slow to train, especially 781 

with large datasets. 782 

MLP models stand out for their implementation, training and evaluation speed with yet 783 

rewarding accuracy, making them a favourable choice for scenarios that require rapid model 784 

deployment. They are tractable and easy to handle, with a straightforward setup that is less 785 

demanding computationally than more complex models. MLPs also allow for access to 786 

gradients, aiding in incremental improvements during training and quick inference (Hatfield 787 

et al., 2021). Despite these advantages, MLPs face challenges with memory scaling during 788 

training at fixed lead times, which can hinder their applicability in large-scale or high-789 

resolution forecasting tasks. 790 

XGB models are highly regarded for their robust performance with minimal tuning, 791 

achieving high accuracy not only in sample applications, but also in transfer to unseen 792 

problems (Grinsztajn et al., 2022; Shwartz-Ziv & Armon, 2021). Their simplicity makes them 793 

easy to handle, even for users with limited technical expertise in machine learning. However, 794 

the slow evaluation speed of XGB becomes apparent as dataset complexity and size increase. 795 

Although generally more interpretable than deep machine learning tools, XGB is not 796 
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differentiable, limiting its application in coupled data assimilation (Hatfield et al., 2021) even 798 

though research on differentiable trees is ongoing (Popov et al., 2019). 799 

 800 

4.5 Experimentation with Emulators 801 

 802 

In the IFS, the land surface is coupled to the atmosphere via skin temperature (ECMWF, 803 

2023), the predictability of which is known to be influenced by specifically by soil moisture 804 

(Dunkl et al., 2021). This is the interface with the numerical model where a robust surrogate 805 

could act online to improve forward (i.e. parametrization (Brenowitz et al., 2020)) or 806 

backward (i.e. data assimilation (Hatfield et al., 2021)) procedures, and it motivates the 807 

experiment from the perspective of hybrid forecasting models (Irrgang et al., 2021; Slater et 808 

al., 2023). However, because an offline training ignores the interaction with the atmospheric 809 

model, emulator scores will not directly translate to the coupled performance and of course 810 

additional experiments would be necessary (Brenowitz et al., 2020). As the current stand-811 

alone models, emulators provide a pre-trained model-suite (Gelbrecht et al., 2023) and can be 812 

used for experimentation on the land surface. The computation of forecast horizons is an 813 

example for such an experiment, seen as a step toward a predictability analysis of land 814 

surface processes. Full predictability analyses are commonly conducted with model 815 

ensembles (Z. Guo et al., 2011; Shukla, 1981), the simulation of which can quicker be 816 

done with emulators than with the numerical model (see evaluation runtimes, section 817 

3).  818 

We want to stress at this point that to avoid misleading statements, evaluation of the 819 

emulators on observations is required. In the context of surrogate models, two inherent 820 

sources of uncertainty are specifically relevant: First, the structural uncertainty by 821 

statistical approximation of the numerical model and second, the uncertainty arising by 822 

parameterization with synthetic (computer model generated) data (Brenowitz et al., 823 

2020; Gu et al., 2017). Both sources can cause instabilities in surrogate models that 824 

could translate when coupled with the IFS (Beucler et al., 2021), but that also should be 825 

quantified when drawing conclusions from the stand-alone models outside of the 826 

synthetic domain. Consequently, a reliable surrogate model for online or oVline 827 

experimentation requires validation, and enforcing additional constraints may be 828 

advantageous for physical consistency (Beucler et al., 2021). 829 

 830 
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5 Conclusion 832 

 833 

To conclude, the choice between LSTM, MLP, and XGB models for land surface forecasting 834 

depends largely on the specific requirements of the application, including the need for speed, 835 

accuracy, and ease of use. Each model's computational demands, flexibility, and operational 836 

overhead must be carefully considered to optimize performance and applicability in diverse 837 

forecasting environments. When it comes to accuracy, combined model ensembles of XGB 838 

and neural networks have been shown to yield the best results (Shwartz-Ziv & Armon, 2021), 839 

but accuracy alone will not determine a single best approach (Bouthillier et al., 2021). Our 840 

comparative assessment underscores the importance of selecting the appropriate emulation 841 

approach based on a clear understanding of each model's strengths and limitations in relation 842 

to the forecasting tasks at hand. By developing the emulators for ECMWF’s numerical land 843 

surface scheme ECLand, we path the way towards a physics-informed ML-based land surface 844 

model that on the long run can be parametrized with observations. We also provide a 845 

pretrained model suite to improve land surface forecasts and future land reanalyses. 846 
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