Supplementary material for: The cryostratigraphy of thermoerosion gullies in the Canadian High Arctic demonstrates the resilience of permafrost

Samuel Gagnon^{1,3}, Daniel Fortier^{2,3}, Étienne Godin³, Audrey Veillette²

¹Département de Géographie, Université Laval, Québec, QC, G1V 0A6, Canada

²Département de Géographie, Université de Montréal, Montréal, QC, H2V 2B8, Canada

³Centre d'études nordiques, Université Laval, Québec, QC, G1V 0A6, Canada

Correspondence to: Samuel Gagnon (samuel.gagnon.1@gmail.com)

Supplementary material 1. Calculation of thaw front depth (TFD) from temperatures recorded by thermistor cables.

TFD was interpolated linearly using ground temperature of the two depths encompassing 0°C on 29 July 2017 and 30 July 2018. Temperature values were recorded with thermistor cables at 0 cm, 10 cm, 20 cm, 30 cm, 40 cm, 80 cm, 120 cm, 160 cm, 200 cm, and 300 cm.

Supplementary material 2. Calculation of volumetric ice content (VIC) and weighted average VIC and OMC.

Volumetric ice content (VIC; cm³_{ice} cm⁻³_{soil} (Phillips et al., 2015)) was calculated using:

$$VIC = m_w (V_t \rho_{ice})^{-1}$$

where m_w is the mass of water in the sample and ρ_{ice} is the density of ice, 0.917 g cm⁻³ (Andersland and Ladanyi, 2004). To obtain continuous VIC for the complete length of the boreholes, VIC values were assumed to be the same for the entirety of a given cryostructure where they were sampled. When multiple VIC values for the same cryostructure were available, the weighted average VIC (VIC_{wa}) was calculated and used instead. OMC and soil composition values were calculated in a similar manner to VIC: they were assumed to be the same for the entirety of the corresponding stratigraphic layer and when multiple values for the same layer were available, the weighted average OMC (OMC_{wa})/soil composition were used.

Supplementary material 3. Grain size analyses.

Grain size analyses were performed on the dry samples using a sieve column (0.5 phi increments, 1.0 mm, 1.4 mm, 2.0 mm, 2.8 mm, 4.0 mm, 5.6 mm, 8.0 mm, 11.2 mm, 16.0 mm) for particles >1.0 mm and a particle size analyzer (triplicate measurements; Horiba Partica LA-950V2) for particles ≤1.0 mm. Soil composition was determined by calculating the

proportion (% of total mass) of gravel (>2 mm), sand (>63 μ m to \leq 2 mm), and silt (\leq 63 μ m) in each sample. Clay (\leq 2 μ m) was not described as it accounted for <1% in virtually all samples.

Supplementary table 1. Thaw front depth measured on 29 July 2017 and 30 July 2018 with probing at different locations in the two thermo-erosion gullies (TEG1 and TEG2) and by linear interpolation from ground temperature measurements at two reference stations in undisturbed conditions (BYLOTPD and IP-A).

Site	Position	Thaw front depth 29 July 2017	Thaw front depth 30 July 2018		
TEG1_TFD1	Shoulders	22	25		
	Slopes	42	39		
	Bottom of gully channel	42	28		
TEG1_TFD2	Shoulders	41	52		
	Slopes	53	52		
	Bottom of gully channel	41	39		
TEG1_TFD3	Shoulders	27			
	Slopes	44			
	Bottom of gully channel	40			
TEG1_TFD4	Shoulders	14			
	Slopes	46			
	Bottom of gully channel	33			
TEG2_TFD1	Shoulders		44		
	Slopes		27		
	Bottom of gully channel		53		
TEG2_TFD2	Shoulders		34		
	Slopes		30		
	Bottom of gully channel		53		
TEG2_TFD3	Shoulders		44		
	Slopes		35		
	Bottom of gully channel		62		
BYLOTPD	Undisturbed polygon	22	26		
IP-A	Undisturbed polygon	34	34		

Types of sediment in each cryostructure	Proportion (%)				
Crustal					
Silty sandy gravel	81.0				
Gravelly silty sand	19.0				
Ice veins					
Sandy silt	100.0				
Interstitial					
Silty sand	67.6				
Sandy silt	29.7				
Sandy silt, peaty	2.7				
Interstitial visible					
Silty sand	79.3				
Sandy silt	15.5				
Gravelly silty sand	5.2				
Layered					
Sandy silt	63.0				
Silty sand	37.0				
Lenticular					
Sandy silt	100.0				
Lenticular (ice lens)					
Sandy silt	73.8				
Sandy silt, peaty	12.3				
Silty sand	10.8				
Silty sandy gravel	3.1				
Organic matrix					
Sandy silt, peaty	60.3				
Silty sand, peaty	39.7				
Poorly defined (transitional)					
Sandy silt	60.9				
Silty sand, peaty	21.8				
Silty sand	12.6				
Sandy silt, peaty	4.6				
Reticulate					
Sandy silt	85.5				
Gravelly sandy silt	7.8				
Silty sand	4.9				
Silty sand, peaty	1.8				
Suspended					

Sandy silt	68.4
Silt	15.1
Silty sand	13.8
Gravelly silty sand	1.8
Silty sand, peaty	0.9

Supplementary table 3. Proportion of cryostructures in all cores, in each core, each thermo-erosion gully (TEG1 and TEG2), and for the geocryological layers.

	Proportion of cryostructure (%)										
Site	IV	IIL	Len	Cru	In	PD	lv	Sus	Lay	Org	Re
All	0.9	1.9	2.1	2.5	4.3	5.1	7.9	13.2	17.4	18.5	26.2
TEG1	0.8	2.3	1.1	4.9	6.9	4.6	14	6.6	15.4	20.9	22.6
TEG1-1 _{Undist}	0	1.5	0	52.3	16.9	0	21.5	0	0	0	7.7
TEG1-2 _{Undist}	0	2.7	0	0	0	0	20.9	0	36.4	13.6	26.4
TEG1-3 _{Undist}	0	0	0	0	0	0	0	0	47.9	52.1	0
$TEG1\text{-}1_{Drained}$	0	0	0	0	50.7	0	0	15.1	0	34.2	0
$TEG1-2_{Drained}$	0	1.9	0	0	0	3.8	22.6	32.1	0	14.2	25.5
TEG1-3 _{Drained}	0	0.5	0	0	12.1	0	8.2	0	38.5	28.6	12.1
TEG1-1 _{Slope}	0	2.7	0	7.1	0	18.8	21.4	0	0	18.8	31.3
TEG1-2 _{Slope}	6.5	9.3	8.4	0	0	13.1	20.6	1.9	10.3	16.8	13.1
TEG1-3 _{Slope}	0	0	0	0	0	0	5.3	9.5	0	9.5	75.8
TEG2	0.9	1.5	3.2	0	1.8	5.6	1.9	19.7	19.4	16.2	29.8
TEG2-1 _{Undist}	0	0	9.8	0	0	2.7	0	26.8	2.7	15.2	42.9
TEG2-2 _{Undist}	0	0	0	0	0	0	0	19.2	34.6	37.5	8.7
TEG2-1 _{Drained}	8.3	8.3	5.2	0	0	0	0	5.2	7.3	38.5	27.1
TEG2-2 _{Drained}	0	0	0	0	2	7	0	0	45	25	21
TEG2-1 _{Slope}	0	3	5	0	0	16	0	17	4	21	34
TEG2-2 _{Slope}	0	0	6.7	0	6.7	0	0	34.4	26.7	0	25.6
TEG2-3 _{Slope}	0	2	0	0	0	6.9	8.9	0	29.7	0	52.5
TEG2 _{BGC}	0	0	0	0	4.6	9.8	4.6	43.1	11.1	0	26.8
Frozen AL	0	2.5	6.5	4.7	8.6	14.4	16.5	0	0	42.8	4
Transient L	3.1	1.1	3.1	9.3	6.2	5.8	16.2	0	2.2	23	30.1
Intermediate L	0	1.8	1.9	0	0	2.8	1.2	30.2	27.9	2.3	31.9
Buried IL	0	4.6	0	0	0	0	2.5	16.6	38.5	4.9	32.9
Permafrost	2.3	0	0	2.3	10.2	5.1	11.1	1.7	6.8	33.8	26.7

Cryostructures: IV = Ice vein, IIL = Isolated ice lens, Len = Lenticular, Cru = Crustal, In = Interstitial, PD = Poorly defined,

40 Iv = Interstitial visible, Sus = Suspended, Lay = Layered, Org = Organic matrix, Re = Reticulate

Geocryological layers: Frozen AL = Frozen part of the active layer, Transient L = Transient layer, Intermediate L = Intermediate layer, Buried IL = Buried intermediate layer

References

45 Andersland, O. B. and Ladanyi, B.: Frozen Ground Engineering, 2nd edition., Wiley, 384 pp., 2004.

Phillips, M. R., Burn, C. R., Wolfe, S. A., Morse, P. D., Gaanderse, A. J., O 'Neill, H. B., Shugar, D. H., and Gruber, S.: Improving water content description of ice-rich permafrost soils, https://doi.org/10.13140/RG.2.1.4760.1126, 2015.