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Figure S1. Model evaluation (CESM vs ERAS). ERA5 and CESM mean frequencies (count) of wintertime compound wind and precipi-
tation (CWP) extremes computed at each grid cell without any constraints on modes of variability phases. For model evaluation only, CWP
extreme frequencies from the CESM model have been regridded via a nearest-neighbour approach to ERAS grid. Results are presented by
defining CWP extremes when both daily wind and precipitation values exceed their 95th percentiles simultaneously for the period 1959-
2019. Numbers in the headers indicate the empirical return period (T=1 year because there are no constraints on modes here in contrast to
images in the main text). Stippling indicates that the range of the average CWP extreme frequencies of the CESM ensemble does not cover
the value of ERAS.
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Figure S2. Model evaluation for the effects of NAOQ. (a, b) ERAS and (c, d) CESM ratio of mean frequencies of wintertime compound wind
and precipitation (CWP) extremes computed at each grid cell between individual phases of the NAO mode and neutral conditions. Please
note that here the other modes are not constrained to be in a particular phase due to ERA’s limited sample size (see Methods). For model
evaluation only, CWP extreme frequencies from the CESM model have been regridded via a nearest-neighbour approach to ERAS grid.
Results are presented by defining CWP extremes when both daily wind and precipitation values exceed their 95th percentiles simultaneously
for the period 1959-2019. Numbers in the headers indicate the empirical return periods (in years) for the (a, c) positive and (b, d) negative
phases of NAO. Stippling indicates that the range of the ratio of average CWP extreme frequencies for the CESM ensemble does not cover
the value of ERAS.



ERAS5, ENSO+ (T=6 years)

s o R ey

ERA5, ENSO- (T=7 years)

Ratio of CWP occurrence

T T T
1/4 1/3 12 1 2 3 4

Figure S3. Model evaluation for the effects of ENSO. Same as Fig. S1 but for ENSO.
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Figure S4. Model evaluation for the effects of AMYV. Same as Fig. S1 but for AMV.
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Figure S5. Model evaluation for the effects of PNA. Same as Fig. S1 but for PNA.
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Figure S6. Sea level pressure anomalies for direct effects of variability modes. Mean sea level pressure (SLP) anomalies for the (a)
positive and (b) negative phases of NAO (while other variability modes are in their neutral phases) compared to neutral conditions (all
variability modes being in their neutral phases) based on the CESM model. Corresponding maps are also displayed for (c, d) PNA, (e, f)
ENSO and (g, h) AMV. Numbers in the headers indicate the empirical return period T (in years) for positive and negative phases of the
variability modes stated in the title of the panels (while other modes are in their neutral phases). The empirical return period for neutral
conditions (i.e., when all modes are in their neutral phases) is T=3 years. The regions framed in blue are areas where the direct effects of
variability modes significantly increase regionally averaged compound wind and precipitation extremes compared with neutral conditions
(see methods in subsection section 2.2.3); This reflects the information in Fig. 3).
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Figure S7. Influence of individual and concurrent variability modes on regional wintertime compound wind and precipitation (CWP)

solute frequencies (counts per winter).

b

1ntertime a

frequency. Same as Fig. 3 but for w



MED

MED

[-AWY+OSN3-OVN

[ *OSN3-OVN
| *OSNI+YNd-OVYN
[ "AWVY+OSNI+VNd-OYN

+¥Nd-OvN

OVN

+0OSN3

NAY

+¥Nd

[rennan

9 § ¥ € ¢ 3 ]
"PUOD [B1INBU LM bal) JMD olrey

121 €— e - <
59 €— +----- -

25 €— +----- I+

or1 €— -l

Iy €— [ =+
0z €— bR} -4
[ [o— "
81 [OS— "
iz b 4

[ -AWVY+OSN3-OVN

| *OSN3-OVN

[ *OSN3+VNd-OVN

[ "AINY+OSNI+YNd-OYh

[ *¥Nd-OV¥N

[ -OVN

[ +OSN3

NNV

" +¥Nd

Frennan

9 § ¥ € ¢ L 0
‘PUOD [BAINBU 1M bai) J\WMD oley

Figure S8. Influence of individual and concurrent variability modes on regional wintertime compound wind and precipitation (CWP)

frequency for the MED region. (a) Same as Fig. 3 but for the MED region only. (b) Boxplots for all combinations of modes.
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Figure S9. Influence of individual and concurrent variability modes on regional wintertime compound wind and precipitation (CWP)

frequency for the NEU region. (a) Same as Fig. 3 but for the NEU region only. (b) Boxplots for all combinations of modes.
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Figure S10. Influence of individual and concurrent variability modes on regional wintertime compound wind and precipitation

(CWP) frequency for the ARP region. (a) Same as Fig. 3 but for the ARP region only. (b) Boxplots for all combinations of modes.
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Figure S11. Influence of individual and concurrent variability modes on regional wintertime compound wind and precipitation

(CWP) frequency for the ENA region. (a) Same as Fig. 3 but for the ENA region only. (b) Boxplots for all combinations of modes.
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Figure S12. Influence of individual and concurrent variability modes on regional wintertime compound wind and precipitation

(CWP) frequency for the NCA region. (a) Same as Fig. 3 but for the NCA region only. (b) Boxplots for all combinations of modes.
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Figure S13. Influence of individual and concurrent variability modes on regional wintertime compound wind and precipitation
(CWP) frequency for the WSB region. (a) Same as Fig. 3 but for the WSB region only. (b) Boxplots for all combinations of modes.
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Figure S14. Influence of individual and concurrent variability modes on regional wintertime compound wind and precipitation
(CWP) frequency for the SAS region. (a) Same as Fig. 3 but for the SAS region only. (b) Boxplots for all combinations of modes.
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Table S1. Summary of direct effect of modes of variability on wintertime compound wind and precipitation (CWP) extremes. Blue
ticks indicate where the direct effects of modes significantly increase the average wintertime CWP extreme frequencies compared with
neutral conditions. Green ticks indicate where those significant direct effects of modes are supported by previous literature.

Regions Sub-regions NAO+ NAO- PNA+ PNA- ENSO+ ENSO- AMV+ AMYV-
EEU '

MED s

NEU e

EUROPE

WCE !
ARP O

SAH v

WAF v
CNA

ENA /o
GIC

NEN v v
NWN s
WNA v
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NCA v/

SCA
ESB v

RAR e
RFE v

WSB s
EAS A

ECA v

SAS V0
TIB

WCA v

NORTH AMERICA | AFRICA

C.AM.

NORTH AS.

C.-S.ASIA

"Hurrell and Deser (2010)

ZPinto et al. (2009)

3Niranjan Kumar and Ouarda (2014)
4Yeh et al. (2018)

5Guan and Waliser (2015)
Taschetto et al. (2020)

7Pinto and Raible (2012)

8Zhang et al. (2012)

“Mahala et al. (2015)
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