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Abstract:  

Cropland cultivation is fundamental to food security and plays a crucial role in the global water, 25 

energy, and carbon cycles. However, our understanding of how climate change will impact 

cropland functions is still limited. This knowledge gap is partly due to the simplifications made 

in Terrestrial Biosphere Models (TBMs), which often overlook essential agricultural 

management practices such as irrigation and fertilizer application, and simplify critical 

physiological crop processes. 30 

Here we demonstrate how with minor, parsimonious enhancements to the TBM T&C it is 

possible to accurately represent a complex cropland system. Our modified model, T&C-CROP, 

incorporates realistic agricultural management practices, including complex crop rotations, 

irrigation and fertilization regimes, along with their effects on soil biogeochemical cycling. We 

successfully validate T&C-CROP across four distinct agricultural sites, encompassing diverse 35 

cropping systems such as multi-crop rotations, monoculture, and managed grassland.  

A comprehensive validation of T&C-CROP was conducted, encompassing water, energy, and 

carbon fluxes, Leaf Area Index (LAI), and organ-specific yields. Our model effectively captured 

the heterogeneity in daily land surface energy balances across crop sites, achieving coefficients 

of determination of 0.77, 0.48, and 0.87 for observed versus simulated net radiation (Rn), 40 

sensible heat flux (H), and latent heat flux (LE), respectively. Seasonal, crop-specific gross 

primary production (GPP) was simulated with an average absolute bias of less than 10%. Peak 

season LAI was accurately represented, with an r² of 0.67. Harvested yields (above-ground 

biomass, grain, and straw) were generally simulated within 10-20% accuracy of observed 

values, although inter-annual variations in crop-specific growth were difficult to capture.  45 
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1.Introduction 

1.1 Climate Change, food security and the need for process-based crop 
models. 

Understanding the impact of weather and field management on cropland productivity is critical, 

not least in the face of mounting challenges such as anthropogenic climate change and shifting 50 

socio-demographics (Godfray et al. 2010; Foley et al. 2011; FAO, 2022; Cammarano et al. 2022; 

Wang et al. 2022).  The effects of climate change on both local and global agri-food systems 

are expected to increase, with shifts in the frequency, intensity, and timing of droughts and 

heatwaves, all posing real threats to crop growth (Ortiz-Bobea et al. 2021;Dury et al. 2022; FAO, 

2022; Kim and Mendelshorn, 2023). The effects of climate change on agriculture are set to vary 55 

spatially, with a large degree of heterogeneity between regions (Semenov, 2009; Waha et al. 

2013; Ukkola et al. 2020;Moustakis et al. 2021; Slater et al. 2022). Therefore mitigation efforts 

will demand a nuanced understanding of processes, causes and ultimately effects. For example, 

as a function of anthropogenic emissions, global CO2 is rising roughly uniformly, however its 

effect on crop growth dynamics, termed the CO2 fertilization effect, is likely to vary regionally 60 

(McGrath and Lobell, 2013); likely due to complex non-linear interactions between CO2, 

temperature, water and nutrient availability. Processes such as the above make the study of 

climate-crop interactions particularly interesting, and complex (Lawlor and Mitchel, 1991; Polley, 

2002; Fatichi et al. 2016; Cernusak, 2020; Hussain et al. 2021).  

 65 

One way to address the challenges climate change poses to crops is to deepen our 

understanding of climate-crop interactions and their interface with field management practices 

through the development of process-based models. A particular strength of this approach is its 

potential to enhance our understanding and forecasting capabilities beyond current or past 

observations (Boote et al., 2013; Muller and Martre, 2019). Such research is vital to align 70 

agronomic strategies with societal food demands, all whilst promoting environmental 

sustainability, as emphasized by Cassman and Grassini (2020). 
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1.2 Diversity in crop models, strengths and limitations  

A vast array of models have been developed to capture the interactions between soil, crop, 

climate and field management practices. It is possible to lump these models into one of three 75 

categories; statistical, conceptual or physics based.  Statistical models are entirely data driven 

and contain little to no pre-conceived representation of physical processes, they rely on 

historical data to establish statistical relationships between crop yield and climate variables (e.g. 

Lobell and Burke, 2010; Gaupp et al. 2019; Van Klompenburg et al. 2020; Ansarifar et al. 2021; 

Slater et al. 2022). Conceptual models represent key physical processes in a simplified fashion 80 

which can then be parameterised or calibrated to best fit observational data, an example is 

Aquacrop (Steduto et al. 2009) but many others crop models have been developed (Di Paola et 

al. 2016). Physics based models codify state of the art understanding of physical laws, such 

as conservation of energy, water, carbon and momentum, into a crop modelling framework. 

Examples here include CLM-CROP (Drewniak et al. 2013; Bilionis et al. 2014; Sheng et al. 85 

2018; Boas et al. 2021), JULES-CROP (Osborne et al. 2014; Williams et al. 2017), Gecros 

(Ingwersen et al. 2018) or ORCHIDEE-CROP (Wu et al. 2016).  These physics-based models 

are built on the latest scientific understanding of soil-plant-atmosphere interactions. They start 

by resolving photosynthesis and plant energy budgets and incorporate key processes such as 

water and nutrient uptake, crop phenology, and carbon allocation schemes (Fatichi et al. 2019; 90 

Wiltshire et al. 2021; He et al. 2021). A comprehensive review on the respective limitations of 

different modelling frameworks is provided by Roberts et al. (2019). Comparative studies have 

shown that, in terms of yield prediction, process-based models are currently less effective than 

their statistical counterparts (Leng and Hall, 2020). This may be attributed to the higher 

complexity of physics-based models, where yield is the by-product of multiple processes, and 95 

to current data limitations that hinder the proper parameterization and calibration of these 

models (He et al., 2017). 

 

 

https://doi.org/10.5194/egusphere-2024-2072
Preprint. Discussion started: 3 September 2024
c© Author(s) 2024. CC BY 4.0 License.



5 

 

The question thus arises as to why prioritise further development of physics-based models in 100 

agricultural research? Firstly, physics-based models address several limitations inherent to 

statistical crop models. These limitations include issues such as multicollinearity between 

climate variables and yield, as well as lack of potential generalizability beyond their calibration 

envelope. This latter point is crucial, as statistical models rely on historical climate-yield 

relationships which may not hold true under future climates (Sheehy et al. 2006; Boote et al 105 

2013; Lobell and Asseng, 2017). Secondly, physics based models offer explicit representation 

of coupled dynamics, including water, carbon and nutrient cycles. These dynamics are expected 

to be significantly impacted by climate change, making their understanding crucial for accurate 

crop yield projections and sustainable agricultural management. Lastly, whilst physics-based 

models do currently face challenges due to data requirements, such as climate forcing and crop-110 

specific traits, this obstacle is expected to diminish over time. The integration of evolving plant 

databases, such as the TRY database (Kattge et al. 2020), and advancements in remote 

sensing technologies (Khanal et al, 2020; Wu et al. 2023) are anticipated to yield more 

comprehensive datasets. This increasing availability of data is likely to enhance the 

effectiveness and reliability of future physics-based crop models.  115 

1.3 Space for a new TBM Crop model, needed developments.  

In a bid to better capture the intricacies of cropland dynamics, various previous studies have 

further developed existing TBMs akin to T&C (Fatichi et al. 2012;2019). Examples include, 

JULES-CROP (Osborne et al. 2014), CLM-Crop (Drewniak et al. 2013; Bilionis et al. 2014; 

Sheng et al. 2018; Boas et al. 2021), ORCHIDEE-Crop (Wu et al., 2016) and CARAIB DGVM 120 

(Jacquemin et al. 2021).  Commonly, model developments in the context of TBMs centre on the 

introduction of new crop-specific modules, which incorporate crop-specific carbon pools and 

dynamics alongside harvest indexes and management options. While these past endeavours 

represent a significant step forward, they often introduce multiple modifications that may not 

generalize well. 125 
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Despite these advancements, there remains a need to improve the integration of crop 

management practices such as sowing, harvesting, irrigation, and fertilizer application within 

TBMs. This would more comprehensively capture the coupled dynamics of plant growth and soil 

biogeochemical cycles, as influenced by crop nutrient uptake and the timing and quantity of 130 

NPK fertilizer application. For example, previous work with JULES-CROP (2014) omitted 

nutrient limitations, while ORCHIDEE-Crop (Wu et al. 2016) addressed nutrient limitation via a 

simple empirical 0-1 index limiting crop growth. Furthermore, irrigation practices need better 

incorporation; ORCHIDEE-Crop (Wu et al. 2016) omitted irrigation, while JULES-CROP 

(Williams et al. 2017) assumed perfect irrigation, neglecting soil moisture as a crop growth stress 135 

factor. Additionally, there is a need to transition from empirical harvest indices or harvest-specific 

carbon pools to a fully integrated mechanistic approach, whereby crop yield is derived from 

generalizable carbon organ-specific pools being harvested. 

 

Most importantly, the goal of introducing crops into Terrestrial Biosphere Models (TBMs) should 140 

be to do so with minimal changes to the existing model structure for natural vegetation, as most 

physical and biophysical processes are similar. We argue that this can be accomplished without 

adding additional carbon pools or extensive model modifications and parameter additions. The 

aim is to demonstrate that accurate crop representation within a TBM can be achieved in a 

parsimonious manner, avoiding the need for crop-specific parameterizations that are difficult to 145 

generalize. This approach differentiates our model from previous formulations. 

 

Our study introduces T&C-CROP to address the aforementioned challenges, building on the 

success of previous Terrestrial Biosphere Models (TBMs). Previous developments to T&C 

(Fatichi et al. 2012; 2019) have ensured that an effective representation of crops, irrigation, and 150 

fertilizer application can be seamlessly integrated into the established vegetation carbon pool 

dynamics. This integration links agricultural practices with water and energy budgets, plant 

growth development, and soil biogeochemical cycling. All enhancements to the original T&C 
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model involve minimal structural changes. Specifically, only three parameters are added to the 

original model, along with irrigation, fertilizer, and the sowing and harvesting dates. 155 

 

To assess the effectiveness of T&C-CROP, we evaluated model performance in terms of 

energy, water and carbon fluxes with on-site eddy covariance data and benchmarked it against 

other TBMs with dedicated crop-specific modules at the same sites. We assessed T&C-CROP’s 

skill in predicting crop yields, specifically examining carbon allocation to various pools, making 160 

good use of detailed harvest data available across the selected sites. The evaluation covers 

four fields which employ varied management strategies and operate in diverse climates.  

2. Materials and Methods  

2.1 Overview of T&C 

T&C is a state-of-the-art terrestrial biosphere model (Fatichi et al. 2012;2019) which resolves 165 

the land surface energy balance, water balance and soil C/N/P/K dynamics. T&C has been 

successfully used in several ecosystems globally covering a wide range of scenarios, for 

example assessing the impacts of fertilization on grassland productivity in the European Alps 

(Botter et al. 2021) or assessing ecohydrological changes after tropical conversion to oil palm 

(Manoli et al. 2018). T&C operates across various time scales, tailoring its resolution to the 170 

specific process being resolved. Specifically, the energy budget is resolved at hourly scales, 

water and photosynthesis are computed at the hourly scale, with the exception of soil water flow 

that uses an adaptive sub hourly step, vegetation carbon pools and soil C/N/P/K dynamics are 

resolved at the daily scale. Inputs consist of hourly meteorological data (precipitation, 

temperature, wind speed, atmospheric pressure, relative humidity, shortwave and longwave 175 

radiation, atmospheric CO2 concentration). Site parameterization requires site-specific 

information including soil texture, and plant specific traits for tailoring the dynamic vegetation 

component. T&C does not use predefined plant functional types, but uses a vegetation specific 

approach where the model user defines the vegetation/crop in question. T&C can be run as a 
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plot-scale version, i.e., without an explicit treatment of the topography and lateral fluxes (e.g., 180 

Paschalis et al. 2017; Manoli et al. 2018 and this study) or alternatively in a spatially explicit 

manner, which accounts for complex topography by considering local and remote solar radiation 

shading effects and lateral transfer of water in the surface and subsurface (e.g., Paschalis et al. 

2017; Mastrotheodoros et al. 2020; Paschalis et al. 2022).   

The hydrological module of T&C is physics-based and models interception, throughfall, canopy 185 

water storage, runoff and soil water dynamics, as well as snow and ice hydrology. Soil water 

dynamics are represented in the point scale simulations via the 1-D Richards equation. In this 

study soil hydraulic conductivity alongside the shape of the water retention curve are estimated 

based on user-defined soil texture; following the Saxton and Rawls pedotransfer function 

(Saxton and Rawls, 2006; Paschalis et al. 2022). However, T&C can also use custom water 190 

retention curves including the van Genuchten model and more complex soil hydraulic function 

accounting for soil structural effects (Fatichi et al. 2020). Plant-water uptake is simulated using 

a sink term, with plant transpiration uptake being proportional to root biomass which decays 

exponentially with soil depth. Both saturation and infiltration excess mechanisms are used for 

runoff generation (Fatichi et al. 2012). 195 

The surface energy balance is resolved by balancing net radiation with latent, sensible and 

ground heat fluxes. In T&C, we use the two-stream approximation for estimating net shortwave 

radiation with a canopy being split into a sun and shaded fraction (de Pury and Farquhar, 1997; 

Wang and Leuning, 1998; Dai et al. 2004). Latent and sensible heat fluxes are parameterized 

using the resistance analogue, with aerodynamic, leaf-boundary layer, stomatal, and under 200 

canopy air resistances as well as soil resistance all included (e.g. Leuning, 1995; Niyogi and 

Raman, 1997; Haghigi et al. 2013; Paschalis et al. 2017).  

Plant carbon dynamics in T&C are inspired by Friedlingsein et al. (1998) and Krinner et al. 

(2005). Vegetation is conceptualized using 7 carbon pools for woody vegetation (leaves, living 

sapwood, heartwood, dead leaves, roots, carbohydrate reserves and fruits and flowers) and 5 205 
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pools for herbaceous species with the sapwood and hardwood carbon pools supressed. Carbon 

allocation is governed by phenology, environmental stresses, and stoichiometric constraints for 

C:N, C:P, C:K ratios across all tissues which in turn depend on the potential of plants to acquire 

necessary macronutrients (NPK) from the ground via root uptake and mycorrhiza symbiosis. In 

T&C, for extratropical climates we have four phenological stages (dormant, maximum and 210 

normal growth, and senescence) defined by temperature, light, water stress and leaf age. 

Initially, carbon is assimilated via photosynthesis which is based on Farquhar et al. (1980) for 

C3, and Collatz et al. (1991, 1992) for C4 plants with subsequent adjustments (Bonan et al. 

2011) and then scales from leaf to canopy scale according to a two big leaf approach  (Wang 

and Leuning, 1998; Dai et al., 2004). This approach has the benefit of taking into account the 215 

vertical distribution of nitrogen and therefore also of photosynthetic capacity. The CAM 

photosynthetic pathway is currently not considered. Stomatal conductance follows Leuning 

(1990; 1995) and has been recently adapted to consider plant hydraulics (Paschalis et al. 2024) 

although this scheme is not considered here. Any assimilated carbon which is not respired via 

maintenance and growth respiration, is subsequently partitioned into one of five carbon pools 220 

(foliage, living sapwood, roots, carbohydrate reserves or fruits and flowers) via an empirical 

allocation scheme; largely based on phenological stages and light and water availability. The 

translocation of carbon between pools is also considered, enabling the depletion of carbon 

stored as reserves. This better represents the responses of vegetation to stress and changes 

in phenological stages. Details of plant phenology dynamics are outlined in the supplementary 225 

of Fatichi et al. 2012.  

The latest version of T&C includes soil carbon and nutrient (nitrogen, phosphorus, and 

potassium) dynamics (Fatichi et al. 2019). Options for anthropogenic nutrient application 

(fertilizer), in both mineral and organic forms have been added (Botter et al. 2021). Leaching of 

dissolved nutrients is also computed by coupling soil biogeochemistry with T&C’s soil hydrology 230 

module. Specifically, the biogeochemistry module separates plant litter into different pools 

based on decomposability recalcitrance and account for different soil organic carbon functional 

pools, as mineral associated, particulate and dissolved organic carbon. Its 
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decomposition/mineralization depends on the activities of microbial biomass separated between 

bacteria and fungi and macraufauna in the soil. NPK cycles (including fertilizer application) are 235 

linked to microbial dynamics and naturally, plant growth. A comprehensive outline of T&C soil 

biogeochemistry is provided by Fatichi et al. (2019) and Botter et al. (2021).  

2.2 From T&C to T&C-CROP 

T&C-CROP adds parameterizations designed to enhance the representation of crops within the 

T&C model, improving its ability to simulate crop vegetation dynamics. A total of three new 240 

parameters— 𝑆𝐿𝑒𝑚𝑒𝑟𝑐𝑟𝑜𝑝 , a value of additional specific leaf area at leaf emergence; socrop, a 

parameter to shift carbon allocation; and  𝑀𝑎𝑥ℎ𝑒𝑖𝑔ℎ𝑡 , maximum crop height—were added to the 

original code. Additionally, irrigation, fertilizer (N/P/K), and sowing and harvest dates for each 

crop were also included. 

Crops, like many plants, exhibit changes in their Specific Leaf Area (SLA) over time (Amanullah, 245 

2015; Li et al. 2023), defined as the leaf area divided by its dry weight (m² kg⁻¹). Early in their 

growth stages, leaves tend to have a higher SLA, indicating thinner and cheaper leaves that 

facilitate rapid expansion of the leaf canopy and higher photosynthetic rates, essential for early 

plant growth post-germination. However, as leaves age, they typically become thicker, resulting 

in a lower SLA. To better capture this phenomenon and align with observed trends, we've 250 

implemented a dynamic SLA in T&C-CROP. This dynamic SLA is modelled with a linearly 

decaying rate from an initial maximum SLA until the leaf age reaches the value of the 

phenological stage of maximum growth, beyond which SLA retains a constant value. 

 

𝑆𝐿𝐴𝑛𝑒𝑤 = {
𝑆𝐿𝐴 + (1 −

𝐴𝑔𝑒𝐿

𝑑𝑚𝑔
) ∗ 𝑆𝐿𝑒𝑚𝑒𝑟𝑐𝑟𝑜𝑝, 𝑖𝑓 𝐴𝑔𝑒𝐿 < 𝑑𝑚𝑔

𝑆𝐿𝐴, 𝑖𝑓 𝐴𝑔𝑒𝐿 ≥ 𝑑𝑚𝑔
                                          [1]  255 
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Where, SLA represents the full grown crop static specific leaf area (m² gC-1), 𝐴𝑔𝑒𝐿  [days] 

denotes the age of the leaf in days, 𝑆𝐿𝑒𝑚𝑒𝑟𝑐𝑟𝑜𝑝 is a new parameter representing the additional 

SLA at emergence which can be crop-dependent, and dmg signifies the days of maximum leaf 260 

growth phenology stage, which is a model parameter. Variable names are intentionally kept 

identical to model parameters in T&C which can be accesses from our repository (see data 

availability).  

 

We also aimed to enhance the portrayal of the initial leaf flushing period. At the onset of crop 265 

growth, carbon allocation to fruits and flowers is impeded, with newly assimilated carbon instead 

directed towards leaf development. As the initial leaf flush concludes, carbon allocation shifts 

predominantly towards the fruits and flower pool with a reference value allocation fraction ffr [-] 

to this pool, which is significantly higher than for natural vegetation, while allocation to living 

sapwood is reduced or nullified if the crop does not have a stem component by using a crop 270 

specific parameter socrop [-] which is the carbon allocation fraction to stem. These values can be 

user-defined and crop-specific, but generally for crops ffr is in the order of 0.2-0.5 and socrop in 

the order of 0.0-0.1.  

 

Typically, photosynthetic efficiency decreases as leaves age. For example, this is the case with 275 

wheat (Suzuki et al. 1987). To replicate the rapid drop in late season photosynthesis of 

senesced leaves, once a leaf’s age exceeds a critical threshold (age_cr ), the photosynthetic 

efficiency is reduced as a power law (power of minus eight) of the relative age (rage). Where rage 

is the relative time from leaf onset exceeding age_cr. 

 280 

Additionally, we updated the leaf turnover function, which represents the rate of leaf mortality 

due to aging. Our update is illustrated below in Eq. 2, where dla is the leaf death rate [days⁻¹] 

due to age, age_cr is the critical leaf age (a crop-specific parameter), and AgeL [day] is the 

current average age of the leaf (a prognostic variable). Previously, T&C applied a linear relation 

for grass and extratropical evergreen trees and a power law for deciduous tree leaves (Fatichi 285 
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et al., 2012; 2019). Our modification, in the form of a sigmoidal function (Supplementary 1), 

ensures that the majority of leaf turnover occurs as leaf age approaches the critical age, and 

suppresses completely leaf mortality in the early phases, which is more realistic for crops. 

 

𝑑𝑙𝑎 = (
1

𝑎𝑔𝑒𝑐𝑟
) × (

1

2
tanh(10 × (

𝐴𝑔𝑒𝐿

𝑎𝑔𝑒𝑐𝑟
) − 7) + 0.5                                                                            [2]   290 

 

To enable crop representation in T&C-CROP, we have introduced the option of user defined 

sowing and harvesting dates. In the model, sowing is conceptualized by introducing an initial 

carbon stock for fine root biomass and non-structural carbohydrates, comparable to typical seed 

applications, from which the crops evolve post-germination. Root depth can be parameterized 295 

as a function of fine root biomass or fine root growth, if allometric relationships are available, or 

kept constant if such knowledge is unavailable.  After crop establishment, leaf age or 

environmental stress can trigger crop senescence before harvesting. Additionally, to 

accommodate multiple crop management practices, users can define the fraction of the crop left 

in the field post-harvest. This feature can be tailored to specific crops or management practices, 300 

such as leaving stems behind while harvesting only grains. This flexibility allows for a more 

nuanced representation of different cropping systems and practices within the model. 

In summary, while the model structure was modified to better tailor specific leaf area, carbon 

allocation, leaf turnover, and photosynthetic efficiency of senesced leaves to crop conditions, 

we added only two additional parameters—soCrop, and SL_emercrop—for these purposes. This 305 

approach is much more parsimonious than many other crop implementations in process-based 

models (e.g., Ingwersen et al. 2018). Additionally, sowing and harvesting dates, the amount of 

carbon in seeds during sowing (typically 5-20 gC m²), and the maximum crop height, which is 

the third new parameter, also need to be specified in T&C-CROP. 

 310 
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2.3 Simulation Setup  

T&C-CROP was run at a plot scale (i.e., neglecting topographic features) and used site-specific 

hourly meteorological data, retimed from the half-hourly data available from local weather 

observations (Table 2). In T&C-CROP the partitioning of shortwave radiation to direct/diffuse 315 

and different wavelengths such as Photosynthetic Active Radiation (PAR) was done using 

REST2, as implemented in AWEGEN (Fatichi et al. 2011; Peleg et al. 2017). Site-specific data 

such as dates of planting/sowing/irrigation/fertilizer application and soil type were obtained 

either from available literature (references in Table 2) or directly from the site’s PI. To balance 

the soil carbon and nitrogen pools an appropriate spin-up was run, the length required to reach 320 

a dynamic steady state was site dependent but normally in the order of 200 years.    

 

T&C-CROP, like T&C does not use generic plant functional types, meaning the user must input 

plant or crop-specific parameters, some of which are illustrated in Table 1. These were obtained 

from literature and the TRY database (Kattge et al. 2020; Fraser, 2020). However, the final 325 

values used in the model runs were adjusted within a ±30% range from the reported values as 

part of a manual trial and error calibration, necessary to best fit the cultivar type being sown on 

each site. Temperature and daylength thresholds for phenological changes were retrieved with 

expert knowledge and manual calibration at each site matching leaf area observations. 

Furthermore, in T&C-CROP the user inputs the date of sowing, therefore the start date for crop 330 

growth is largely prescribed through crop management. Other models such as AquaCrop 

(Steduto et al. 2009) calculate the sowing date dynamically based on local environmental 

conditions. This is also possible in T&C-CROP, but for this study, as sowing dates were available 

at all sites (Supplementary 2), for best realism they were prescribed. Following emergence, 

plant growth is purely dependent on local climate and environmental conditions. Inputs 335 

regarding fertilizer/irrigation application are inputted based on the management log shared by 

the PI (e.g. Supplementary 3) or where not available we used typical values for the region and 

crop type.  
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 340 

CROP MODEL VARIABLES 

PARAMETER UNIT DESCRIPTION 

SL m2 / gC Specific leaf area 
AGE_CR day Critical Leaf Age 

TLO Celsius Temperature for leaf onset 
DMG day Days of Max Growth 
TRR gC / m2 d Translocation rate 

LDAY_MIN - Minimum Day duration for leaf onset 
LTR - Leaf to Root ratio maximum 

VCMAX μmol CO2/ m2 s] Maximum Rubisco capacity at 25°C leaf level 
BFAC - Leaf onset water stress threshold 
ASE C3/C4 Photosynthesis type 

LDAYCRIT  Threshold for senescence (hours of daylight) 
SL_EMECROP - Additional SLA at emergence.  

FF_R - Fraction of biomass allocated to fruit 
SO_CROP - Fraction of biomass allocated to stem 

MAX_HEIGHT m Maximum crop height 

Table 1. Illustrating some of the most important crop-specific parameters necessary to run T&C-CROP. 

2.4 Description of selected sites and validation data 

It is crucial to model agricultural fields which experience both monocropping and crop rotations, 

as these practices are significant and widespread (Eurostat, 2020). This modelling approach 

also serves as an excellent benchmark for complex mechanistic crop models such as T&C-345 

CROP. An important objective was to select sites with on-site observational records that could 

demonstrate T&C-CROP's capability to continuously simulate field growth across various 

rotation and management practices within a single simulation. This contrasts with the common 

practice of starting a new simulation for each crop individually. The benefit of a continuous model 

simulation is that this allows T&C-CROP to account for legacy soil conditions, including soil 350 

moisture, soil carbon, based on historical management practices—such as crop residue 

management, fertilizer application, and irrigation. This approach ensures our model accurately 

reflects the cumulative impact of past agricultural practices on current and future crop 

performance. 

 355 
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To showcase T&C-CROP’s capabilities, we selected four well-monitored agricultural sites, all 

characterized by a temperate climate but featuring diverse cropping systems and management 

practices. These sites are affiliated with FLUXNET (Heinesch et al. 2021) and have been 360 

previously utilized for model evaluations (e.g., Boas et al. 2021), making them ideal for model 

intercomparison and benchmarking. Further details about the selected sites are provided in 

Table 2. 

 
Site 

 
Crops 

 
Years 

Simulated 

 
Further site specific 

info 

                         
FLUXNET  Link 

CH-OE2  
(Solothurn, 

Switzerland) 

Wheat, Barley, 
Grass, Potato, 

Rapeseed, Peas. 
(Rainfed) 

 

 
2004-2020 

Dietiker et al. (2010); 
Ecosystem Thematic 

Center (2021). 

Site Info for CH-Oe2- 

AmeriFlux 

(fluxnet.org) 

CH-CHA 
(Zug, Switzerland) 

 

Grass (Rainfed) 2006-2015 Hörtnagl et al. (2018) Site Info for CH-Cha- 

AmeriFlux 

(fluxnet.org) 

US-NE1  
(Nebraska, USA) 

 

Maize (Irrigated) 2002-2013 Suykeret al. (2004) Site Info for US-Ne1- 

AmeriFlux 

(fluxnet.org) 

BE-LON  
(Valonia, Belgium) 

Sugar Beet, Wheat, 
Potatoes, Mustard 

(cover crop), Maize, 
Oat. (Rainfed) 

 

2004-2020 Dufranne et al. (2011), 
Buysse et al 2017, 

Moureux et al. 2006; 
Dumont et al. 2023 

DOI Listing for BE-

Lon - FLUXNET 

 

Table 2. Information regarding the agricultural sites used in this study. 

 

 

2.5 Model Intercomparison  365 

The performance of T&C-CROP was compared with that of three other leading similar models 

which have been previously validated on the same sites. Specifically, JULES-CROP was 

evaluated on the US-NE1 site for maize, CLM-CROP on the BE-LON site for sugar beet, 

potatoes, and wheat, and ORCHIDEE-CROP on the BE-LON site for wheat. The data for this 

comparison was extracted from published works: Williams et al. (2017) for JULES-CROP, Boas 370 

et al. (2021) for CLM-CROP, and Wu et al. (2016) for ORCHIDEE-CROP. An open-source web-
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based tool, available at https://github.com/ankitrohatgi/WebPlotDigitizer, was used to extract 

numerical data from plot images provided in the publications. Minor discrepancies due to the 

accuracy of the graph digitizer are expected.  

3. Results  375 

3.1 Land surface Energy balance  

Across the four selected sites, the model captured the monthly trends in energy fluxes as 

illustrated in Figure 1. The mean monthly r2 across sites for net radiation (Rn), sensible (H) and 

latent heat (QE) was 0.97, 0.85 and 0.96 respectively (Full table available in Supplementary 4). 

Unpacking this further the across Rn, H and QE mean daily r2 was 0.68 which is commendable 380 

given potential discrepancies in the energy budget closure of flux tower measurements.  

 

 

Figure 1.  This graph illustrates the comparison between modelled and observed energy fluxes across various 
sites: CH-CHA (grassland), US-NE1 (maize), CH-OE2, and BE-LON (both with complex crop rotations). The hourly 385 

fluxes, representing the average diurnal cycle, are depicted with different colours: green for latent heat flux (LE), 
red for sensible heat flux (H), and blue for net radiation (Rn). 
 

 

 390 
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3.2 Gross Primary Productivity, Ecosystem Respiration, Net Ecosystem 

Exchange and Soil Moisture. 

We found that to capture the correct timing of GPP fluxes for each crop (Figure 2) it was 

imperative to draw on a traits based approach, as lumping different crops into PTFs performed 395 

significantly worse. As illustrated in Figure 2, the magnitude and timings of the GPP fluxes are 

correctly captured, as are the differences between crops and to a lesser extent between 

seasons (same crop different year). Additionally, in Table 4 the modelled and observed seasonal 

sum of gross primary productivity (GPP), ecosystem respiration (RECO) and their difference; 

net ecosystem exchange (NEE) is presented; a season is defined as the period between crop 400 

emergence to harvest. T&C-CROP was able to capture the seasonality of GPP, across crops, 

within roughly a 10% range of observed values, as depicted in Table 3. Although it did slightly 

less well at capturing seasonal RECO (Table 3). 

 

 405 

 Figure 2. Validation of Gross Primary Productivity 
(GPP) across the four simulated sites, covering a 
total of 10 different crops. 
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CH-OE2: Crop Averages 
CROP MODGPP OBSGPP Δ (%) MODRECO OBSRECO Δ(%) MODNEE OBSNEE 
Wheat 1153 1300 -11 722 751 -4 -431 -504 
Barley 1127 1069 5 662 575 15 -465 -408 
Cover 433 414 5 294 308 -5 -139 -75 

Rape Seed 1254 1098 14 749 888 -16 -505 -366 
Peas 377 386 -2 187 527 -65 -190 -366 

Potato* 1477 935 58 772 980 -21 -706 199 
AVG   9   10   

Table 3a * Note that potatoes were crop failure event due to hail. A phenomenon we currently do not simulate; this 
crop was discarded from the averages. Also note that AVG is absolute average. Values are seasonal, from date of 
sowing to harvest.  410 

 

BE-LON: Crop Averages 
Crop MODGPP OBSGPP Δ (%) MODRECO OBSRECO Δ(%) MODNEE OBSNEE 

Sugar Beet 1353 1455 -7 537 664 -19 -816 -808 
Wheat 1526 1496 2 801 887 -10 -725 -570 

Potato* 531 556 -5 236 454 -48 -294 -149 
Mustard 192 162 19 94 204 -54 -99 43 

Maize 1876.3 1492.9 25.7 951.8 963.2 -1.2 -924 -595.4 
Oat 280 288 -2 169 299 -43 -168 16 
AVG   11   31   

Table 3b *Note that a defoliant was applied to potatoes mid-season, a management which was incorporated into 
T&C-CROP.   

 

US-NE1  
Crop MODGPP OBSGPP Δ (%) MODRECO OBSRECO Δ(%) MODNEE OBSNEE 

Maize 1785 1668 7 731 1161 -37 -1054 -566 
Table 3c  Values are the average of all periods from sowing to harvest (2002-2012) 415 

 

CH-CHA 
Crop MODGPP OBSGPP Δ (%) MODRECO OBSRECO Δ(%) MODNEE OBSNEE 
Grass 708 763 12.7 612 560 57 -156 -58 

Table 3d These values are the average all the periods running from sowing to harvest for which we had site data 
(2006-2020). 

 
 420 
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T&C-Crop’s skill in simulating Soil Water Content (SWC) is illustrated in Figure 3. The maize 

monoculture site (US-NE1) along with the crop rotation site (BE-LON) were chosen for this 

illustration due to their long observational SWC record. At a depth of 25cm, a correlation 425 

coefficient of r2 =0.64 was achieved between daily observed and modelled SWC at the US-NE1 

site, a similar value of 0.62 is achieved at the BE-LON site (if we only include data until the 

sensor change in 2015).  

 

 430 

Figure. 3 Validation of Soil Water Content (SWC) across BE-LON, complex crop rotation and US-NE1, maize 
monoculture. Both sites represent modelled and observed SWC at a depth of 25cm. The dashed blue line 

represents the date of a sensor change.  
 
 435 

 
 
 
 
 440 
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 3.3 Crop development: LAI and Biomass Growth 

T&C-CROP was able to capture the timing of leaf flushing and growing season length across 

various simulated sites and crop types (Figure 4). The model demonstrated considerable skill 

in reproducing peak season Leaf Area Index (LAI), indicated by a correlation coefficient (r2) of 445 

0.75, 0.66 and 0.61 for CHOE2, BELON and USNE1 respectively. However, on CH-CHA, 

grassland site, whilst the leaf growth pattern was clearly captured, there was no significant 

correlation between observed and simulated peak LAI, likely due to the spread in recorded LAI 

values on each date. Importantly, T&C-CROP successfully captured most differences in LAI 

among different crops; most clearly depicted with mustard and wheat at the BE-LON site (Figure 450 

4, panel b). The model’s strongest performance was in replicating LAI dynamics at the US-NE1 

maize monoculture, achieving an r2 of 0.77, a satisfactory result considering the limited 

developments to T&C-CROP and inherent heterogeneity in field-based LAI sampling and 

different cultivars sown.  

 455 
 

 

Figure 4: Validation of Leaf Area Index (LAI) across 
the four simulated sites.  
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The validation of T&C-CROP against observed crop harvests (Table 4) demonstrates the 

model's ability to accurately capture biomass differences at harvest time among various crops 

and effectively partition assimilated carbon into different crop components, such as stems and 460 

grains. Across the four simulated sites, T&C-CROP successfully predicted the annual harvested 

aboveground biomass (AGB) within approximately 20% of the observed values, with a few 

exceptions (Table 4). 

 

We also assessed dynamic carbon allocation mechanisms throughout the growing season at 465 

the US-NE1 site, using published observations (Peng et al. 2018) as a reference (Figure 5). Our 

findings indicate that T&C-CROP effectively captures the overall trend and magnitude of carbon 

allocation to specific crop components such as leaves, stems, and grains. This underscores the 

model's promising ability to represent the dynamic processes that drive crop growth and 

development. Regarding Figure 5, it is important to note that in 2007 at the US-NE1 site, our 470 

modelled above-ground carbon (AGC) was slightly lower than observed, peaking at 9.5 t C/ha 

compared to the observed 11.34 t C/ha (Fig. 7a).  

 

We analysed crop rotations at two sites, CH-OE2 and BE-LON, and also evaluated T&C-

CROP’s performance on maize at the US-NE1 site and grassland at the CH-CHA site. At the 475 

CH-OE2 site, we simulated 19 crop cycles over fifteen years (2004-2019). On average, the 

harvested aboveground biomass (AGB) was simulated within 10% of recorded values. Grain 

and straw were simulated within 13% and 30% of recorded values, respectively. However, inter-

annual variation in crop growth and carbon allocation to different pools (grain/straw) were 

difficult to capture. 480 

 

At the BE-LON site, we simulated 21 crop cycles over sixteen years (2004-2020). Winter wheat 

and maize were well simulated, with AGB and grain values, on average, within 10% of 

observations. Straw was slightly overestimated, by 27% for wheat and 13% for maize. If we 

account for crop residues, particularly the first few centimetres of straw, our simulated values 485 
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could align more closely with observed values. Additionally, including the belowground 

component of sapwood, which is currently excluded, would likely bring simulated AGB values 

even closer to observations. For wheat, the average residue at BE-LON was 26% of AGB, with 

a standard deviation of 4%. Potatoes at BE-LON were more challenging to simulate accurately, 

partly due to the defoliant treatment applied in mid-August, which is not currently included in our 490 

model. This resulted in simulated tuber biomass (daughter tubers) being about 50% lower than 

observed. 

 

Over eleven years (2002-2012) at the US-NE1 site, simulated maize yield (kernel) was within 

8% of recorded values on average. For the grassland site CH-CHA, harvest data was available 495 

for eight cuts from 2008 to 2010. Here simulated harvested biomass was within 20% of recorded 

values on average. Full results in a tabular format are included in supplementary 4. 

 

 

 500 

 

 

 
 
 505 

 
 
 
 
 510 

 
 
 

Figure 5 Total fraction of above-ground biomass in leaves, stems, and grain at the maize site (USNE1), 
illustrating the partitioning of assimilated carbon by T&C. Leaves are represented by the "foliage" pool, stems 
include sapwood and dead sapwood pools, and grain consists of carbohydrate reserves, fruit and flower pools. 
Observed values are derived from the graphs in the supplementary material of Peng et al. (2018). 
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CH-OE2 Yields 

Crop OBS AGB  
SIM 
AGB 

Δ 
(%) 

OBS 
STRAW 

SIM 
STRAW 

Δ 
(%) 

OBS 
GRAIN 

SIM  
GRAIN Δ (%) 

Wheat 4.3 3.7 14.0 1.7 1.3 23.5 2.6 2.4 -7.7 

Barley 3.9 3.9 0.0 0.7 1.2 
-

71.4 3.2 2.7 -15.6 
Rape 
Seed / / / / / / 2.0 2.2 10 
Peas / / / / / / 3.5 6.1 74.3 

BE-LON Yields 

Crop 
C 

Exported 
SIM 
AGB 

Δ 
(%) 

OBS 
STRAW 

SIM 
STRAW 

Δ 
(%) 

OBS 
GRAIN 

SIM  
GRAIN Δ (%) 

Sugar 
Beet / / / / / / 8.9 6.9 -22.5 

Wheat 5.5 5.9 -6.0 1.8 2.5 

-
27.0 3.7 3.5 -5.4 

Potato / /  / / / 3.3 2.2 -33.3 

Maize 7.8 7.2 7.1 3.6 4.2 

-
13.4 4.2 4.2 0.0 

US-NE1 Yields 

Maize / / / / / / 5.5 4.9 -10.9 
CH-CHA 

Grass 0.85 1.00 17.6 / / / / / / 

 
Table. 4. In T&C-Crop, crop carbon is distributed across six distinct biomass carbon pools: B1=Foliage, B2=Living 515 

Sapwood, B3=Fine Roots, B4=Carbohydrate Reserves, B5=Fruit and Flowers, and B6=Standing Dead Foliage. In Table 4, 

Simulated Above Ground Biomass (AGB) corresponds to the sum of all T&C-Crop's biomass pools excluding B3 (Fine Roots); 

we assume that all sapwood is aboveground, an approximation which is reasonable for most crops. Simulated Grain is 

represented by the sum of B5 (Fruit and Flowers) and B4 (Carbohydrate Reserves), which are expected to be contained mostly 

within the fruits for a crop, and simulated straw is derived from the sum of B1 (Foliage), B2 (Living Sapwood), and B6 520 

(Standing Dead Foliage). Validation for belowground biomass (roots) was not possible due to the absence of on-site data. Note 

that for US-NE1, a value of 43%, as suggested by the PI, was used to translate t ha -1to t C ha -1. For CH-CHA grass yields are 

annual from 2008-2010. * Note that in CH-OE2 OBS AGB refers to the total AGB at the time of harvest whereas in BE-LON 

C Exported refers to the harvested component of the AGB. All values are in t C ha -1. 

 525 

 
 

 

 

 530 

https://doi.org/10.5194/egusphere-2024-2072
Preprint. Discussion started: 3 September 2024
c© Author(s) 2024. CC BY 4.0 License.



24 

 

3.5 Model Intercomparison 

T&C-CROP simulations were compared to those of JULES-CROP (Williams et al. 2017). 

Figures 6 and 7 illustrate how both models, relative to each other represent AGB and LAI over 

a course of eight years for a Maize (US-NE1) field. Despite T&C-CROP being arguably more 

process-based and more parameter parsimonious, both models did a comparable job at 535 

capturing the correct magnitude and timing of LAI and AGB, neither model correctly simulated 

inter-annual variations in peak LAI or AGB. 

 

Figure 6 Simulation of above ground biomass by both T&C-CROP and JULES-CROP models on the US-NE1 
Maize site. 540 

 

 
Figure 7 Simulation of LAI by both T&C-CROP and JULES-CROP models on the US-NE1 Maize site. 
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 545 

 

 

T&C-CROP simulations conducted over the crop rotation site BE-LON were compared to those 

of CLM-CROP (Boas et al. (2021). Figure 8 illustrates how both models simulate grain yields for 

winter wheat across the four years which were presented in the CLM-CROP paper. To produce 550 

this comparison, we converted CLM-CROPS’ modelled values, which are reported in T DM ha-

1 to T C ha-1 using the average site-reported C content per unit of dry mass for wheat grain 

during these four years which was 40.5%; there was little interannual variation in this value, 

(<3%). Unfortunately, there is not sufficient data or variation in grain yield to truly assess the 

efficacy of either model, however, based on the presented observations, both capture the 555 

correct magnitude but neither capture the inter-annual observations in yield.  Figure 9 and 10 

illustrate how both models successfully represent LAI as well as key land surface fluxes over 

the years for which sugar beet and potatoes were sown. Note that a defoliant was applied to 

potatoes at the BE-LON site (Aubinet et al., 2009). To replicate this in T&C-CROP, we simulated 

a sudden "cut" on the recorded date of defoliant application. 560 

 

 

Figure 8. Side by side comparison of CLM-CROP and T&C-CROP.  
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 565 

Figure 9 Simulation of Leaf Area Index 
(LAI), Net Ecosystem Exchange (NEE), 
latent heat flux (LE),sensible heat flux 
(HE) and net radiation (Rn) across both 
T&C-CROP and CLM-CROP for Sugar 
Beet cultivated at the BE-LON site in 
2008 and 2016.  

 

Figure 10 Same as figure 9 but 
for Potatoes.  
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Lastly, T&C-CROP was evaluated against results from ORCHIDEE-CROP (Wu et al. 2016) for 

the winter wheat season on the BE-LON site in 2006 (Figure 11).   

 

 570 

 

ORCHIDEE-CROP (Wu et al. 2016) undershoots above ground biomass (AGB) by about 50% 

whilst T&C-CROP does a much better job, albeit overshooting AGB by just under 10% (Figure 

10). More specifically, T&C-CROP achieved a correlation coefficient of r2 = 0.94 between 

simulated and observed AGB whilst this was 0.2 for ORCHIDEE-CROP.  575 

Figure 11. Illustrating a comparison of ORCHIDEE-CROP outputs from Wu et al. 2016 and T&C-CROP 
outputs from this paper for Winter Wheat sown in BE-LON. Note that both Latent (QE) and Sensible Heat 
(H) were smoothed using a weekly time step to improve graph readability. Note AGB here refers to total, 
not only harvestable AGB.  
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4. Discussion 

The integration of three new crop-specific parameters, combined with streamlined model 

developments, has significantly enhanced the representation of cropland sites in T&C-CROP. 

Our findings include the successful validation of over ten different crops sown in four 

heterogeneous agricultural fields, varying in both management practices and climate conditions. 580 

Results also demonstrate that T&C-CROP performs comparably to other leading terrestrial 

biosphere models (TBMs) without having to increase model complexity or introduce crop-

specific carbon pools. This underscores the effectiveness of T&C-CROP as a highly parameter-

efficient and process-based model for future studies. 

 585 

This improved incorporation of croplands into T&C opens new avenues for modelling land-

surface interactions, hydrology, carbon fluxes, and crop yields. For instance, the enhanced 

representation of sensible heat (H), latent heat (LE), and net radiation (Rn) facilitates research 

on land surface interactions. Similarly, better modelling of evapotranspiration (ET) and leaf area 

index (LAI) benefits hydrological studies, while improved accuracy in net ecosystem exchange 590 

(NEE) and soil carbon storage could aid contemporary carbon emission mitigation efforts. 

Hydrological and carbon storage implications of land-use transitions involving crop, forest, 

pasture conversion, as well studies on optimal irrigation and fertilization application in a 

changing climate are among the foreseen applications of T&C-Crops. 

 595 

Additionally, beyond the biomass, hydrological and energy balance metrics validated in the 

results section, T&C-CROP can also simulate belowground soil biogeochemical dynamics 

(Fatichi et al., 2019). We have included some outputs for illustrative purposes (Supplementary 

6). T&C-CROP captures changes in nutrient leakage as a function of local weather, crop type, 

fertilizer regime, and legacies. Using the biogeochemistry module, we identified a boost in 600 

microbial carbon post-harvest, nutrient flushing following fertilization, and predominantly after 

rainfall events. 
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The utility of a versatile tool like T&C-CROP is intended to perform at a regional spatial scale. 

However, validating its efficacy at this spatial level poses significant challenges due to sparse 605 

comprehensive data and the multitude of factors influencing crop growth, including socio-

economic variables. However, many of the issues we encountered during site-level validations 

are expected to diminish at a broader scale, as local variations average out and climatic 

variables assume greater importance. For instance, representing microscale field management 

proved challenging during validation efforts. Adjusting for different cultivar types, accurately 610 

determining crop-specific carbon allocation parameters, implementing practices such as the use 

of growth regulators or defoliant/fungicide treatments at sites like BE-LON (Dugranne et al. 

2011) or dealing with hail at CH-OE2 (Revill et al.  2016) proved complicated. Furthermore, 

T&C-CROP struggled with simulating post-harvest processes, likely due to inadequate 

knowledge of post-harvest management practices such as residue management and soil 615 

preparation/tillage. All the above considerations are primordial at the field scale, but are likely to 

exert less influence on crop growth across larger spatial scales, where climatic conditions are 

expected to play a dominant role.  

5. Conclusion  

 620 

T&C-CROP was introduced to enhance T&C’s representation of croplands and associated 

carbon, energy and nutrient fluxes. In this study we have assessed the extent to which T&C-

CROP accurately depicts crop growth and associated land surface fluxes across four distinct 

agricultural sites CH-OE2, BE-LON, CH-CHA, US-NE1. Each site was subject to varying 

management practices such as irrigation, fertilizer and defoliant application and had several 625 

types of crops, either as a monoculture or as a crop rotation scheme. Our model validation 

covers over 50 years and 61 crop cycles, encompassing more than nine staple crops and also 

included comparison with results from other leading TBMs. 
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This study demonstrates how with minimal model structural changes and only three additional 630 

parameters, it is possible to accurately represent Gross Primary Productivity (GPP), LAI (Leaf 

Area Index) and organ-specific harvests not only in monocultures but also in sites with complex 

crop rotations and diverse management practices. Of particular novelty we adapted the carbon 

allocation scheme for crops and implemented a novel routine which allowed for multiple 

cropping cycles within one calendar year within the same model run. This enhancement enables 635 

more realistic simulations of field dynamics.  

 

Our approach with T&C-CROP is grounded in practical utility. While our validation efforts were 

thorough, they were not overly fixated on meticulously simulating variables such as yield, 

considering that this is only one of the many model outputs. We were realistic with limitations in 640 

parameter constraints as a high-level granularity was not a primary objective. We prioritized 

broad applicability over micromanagement details like cultivar choice, which is unlikely available 

at larger scales.  

 

T&C-CROP’s research horizon is to explore in a single model the effects of various crops on 645 

yields, energy dynamics, and carbon fluxes, as well as assessing how major climatic factors 

(temperature, precipitation, CO2, relative humidity, etc.) interact with management practices 

(fertilizer, irrigation) to influence crop yields but also byproducts such as nutrient runoff, soil 

degradation, and carbon sequestration. These latter points being particularly valuable for 

research aimed at assessing climate risk in agriculture. 650 

 

Future studies with T&C-CROP are envisioned to be conducted over broader spatial scales, 

where detailed management practices or specific cultivar information are less important. T&C-

CROP's ability to capture geographical differences induced by climate and soil properties are 

expected to overshadow local variations due to specific cultivars or management practices. This 655 

capability makes it an invaluable tool for understanding and predicting large-scale 

environmental patterns and their implications. 
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