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Abstract:  

Cropland cultivation is fundamental to food security and plays a crucial role in the global water, 25 

energy, and carbon cycles. However, our understanding of how climate change will impact 

cropland functions is still limited. This knowledge gap is partly due to the simplifications made 

in Terrestrial Biosphere Models (TBMs), which often overlook essential agricultural 

management practices such as irrigation and fertilizer application, and simplify critical 

physiological crop processes. 30 

Here we demonstrate how with minor, parsimonious enhancements to the TBM T&C it is 

possible to accurately represent a complex cropland system. Our modified model, T&C-CROP, 

incorporates realistic agricultural management practices, including complex crop rotations, 

irrigation and fertilization regimes, along with their effects on soil biogeochemical cycling. We 

successfully validate T&C-CROP across four distinct agricultural sites, encompassing diverse 35 

cropping systems such as multi-crop rotations, monoculture, and managed grassland.  

A comprehensive validation of T&C-CROP was conducted, encompassing water, energy, and 

carbon fluxes, Leaf Area Index (LAI), and organ-specific yields. Our model effectively captured 

the heterogeneity in daily land surface energy balances across crop sites, achieving coefficients 

of determination of 0.77, 0.48, and 0.87 for observed versus simulated net radiation (Rn), 40 

sensible heat flux (H), and latent heat flux (LE), respectively. Seasonal, crop-specific gross 

primary production (GPP) was simulated with an average absolute bias of less than 10%. Peak 

season LAI was accurately represented, with an r² of 0.67. Harvested yields (above-ground 

biomass, grain, and straw) were generally simulated within 10-20% accuracy of observed 

values, although inter-annual variations in crop-specific growth were difficult to capture.  45 
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1.Introduction 

1.1 Climate Change, food security and the need for process-based crop 
models. 

Understanding the impact of weather and field management on cropland productivity is critical, 

not least in the face of mounting challenges such as anthropogenic climate change and shifting 50 

socio-demographics (Godfray et al. 2010; Foley et al. 2011; FAO, 2022; Cammarano et al. 2022; 

Wang et al. 2022).  The effects of climate change on both local and global agri-food systems 

are expected to increase, with shifts in the frequency, intensity, and timing of droughts and 

heatwaves, all posing real threats to crop growth (Ortiz-Bobea et al. 2021;Dury et al. 2022; FAO, 

2022; Kim and Mendelshorn, 2023). The effects of climate change on agriculture are set to vary 55 

spatially, with a large degree of heterogeneity between regions (Semenov, 2009; Waha et al. 

2013; Ukkola et al. 2020;Moustakis et al. 2021; Slater et al. 2022). Therefore mitigation efforts 

will demand a nuanced understanding of processes, causes and ultimately, effects. For 

example, as a function of anthropogenic emissions, global CO2 is rising roughly uniformly, 

however its effect on crop growth dynamics, termed the CO2 fertilization effect, is likely to vary 60 

regionally (McGrath and Lobell, 2013); likely due to complex non-linear interactions between 

CO2, temperature, water and nutrient availability. Processes such as the above make the study 

of climate-crop interactions particularly interesting, and complex (Lawlor and Mitchel, 1991; 

Polley, 2002; Fatichi et al. 2016; Cernusak, 2020; Hussain et al. 2021).  

 65 

One way to address the challenges climate change poses to crops is to deepen our 

understanding of climate-crop interactions and their interface with field management practices 

through the development of process-based models. A particular strength of this approach is its 

potential to enhance our understanding and forecasting capabilities beyond current or past 

observations (Boote et al., 2013; Muller and Martre, 2019). Such research is vital to align 70 

agronomic strategies with societal food demands, all whilst promoting environmental 

sustainability, as emphasized by Cassman and Grassini (2020). 
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1.2 Diversity in crop models, strengths and limitations  

A vast array of models have been developed to capture the interactions between soil, crop, 

climate and field management practices. It is possible to lump these models into one of three 75 

categories; statistical, conceptual or physics based.  Statistical models are entirely data driven 

and contain little to no pre-conceived representation of physical processes, they rely on 

historical data to establish statistical relationships between crop yield and climate variables (e.g. 

Lobell and Burke, 2010; Gaupp et al. 2019; Van Klompenburg et al. 2020; Ansarifar et al. 2021; 

Slater et al. 2022). Conceptual models represent key physical processes in a simplified fashion 80 

which can then be parameterised or calibrated to best fit observational data, an example is 

Aquacrop (Steduto et al. 2009) but many other crop models have been developed with this 

approach (Di Paola et al. 2016). Physics based models codify state of the art understanding of 

physical laws, such as conservation of energy, water, carbon and momentum, into a crop 

modelling framework. Examples here include CLM-CROP (Drewniak et al. 2013; Bilionis et al. 85 

2014; Sheng et al. 2018; Boas et al. 2021), JULES-CROP (Osborne et al. 2014; Williams et al. 

2017), Gecros (Ingwersen et al. 2018) or ORCHIDEE-CROP (Wu et al. 2016).  These physics-

based models are built on the latest scientific understanding of soil-plant-atmosphere 

interactions. They start by resolving photosynthesis and plant energy budgets and incorporate 

key processes such as water and nutrient uptake, crop phenology, and carbon allocation 90 

schemes (Fatichi et al. 2019; He et al. 2021; Wiltshire et al. 2021). A comprehensive review on 

the respective limitations of different modelling frameworks is provided by Roberts et al. (2019). 

Comparative studies have shown that, in terms of yield prediction, process-based models are 

currently less effective than their statistical counterparts (Leng and Hall, 2020). This may be 

attributed to the higher complexity of physics-based models, where yield is the by-product of 95 

multiple processes, and to current data limitations that hinder the proper parameterization and 

calibration of these models (He et al., 2017). 
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The question thus arises as to why prioritise further development of physics-based models in 100 

agricultural research? Firstly, physics-based models address several limitations inherent to 

statistical crop models. These limitations include issues such as multicollinearity between 

climate variables and yield, as well as lack of potential generalizability beyond their calibration 

envelope. This latter point is crucial, as statistical models rely on historical climate-yield 

relationships which may not hold true under future climates (Sheehy et al. 2006; Boote et al 105 

2013; Lobell and Asseng, 2017). Secondly, physics based models offer explicit representation 

of coupled dynamics, including water, carbon and nutrient cycles. These dynamics are expected 

to be significantly impacted by climate change, making their understanding crucial for accurate 

crop yield projections and sustainable agricultural management. Lastly, whilst physics-based 

models do currently face challenges due to data requirements, such as climate forcing and crop-110 

specific traits, this obstacle is expected to diminish over time. The integration of evolving plant 

databases, such as the TRY database (Kattge et al. 2020), and advancements in remote 

sensing technologies (Khanal et al, 2020; Wu et al. 2023) are anticipated to yield more 

comprehensive datasets. This increasing availability of data is likely to enhance the 

effectiveness and reliability of future physics-based crop models.  115 

1.3 Space for a new TBM Crop model, needed developments.  

In a bid to better capture the intricacies of cropland dynamics, various previous studies have 

further developed existing TBMs akin to T&C (Fatichi et al. 2012;2019). Examples include, 

JULES-CROP (Osborne et al. 2014), CLM-Crop (Drewniak et al. 2013; Bilionis et al. 2014; 

Sheng et al. 2018; Boas et al. 2021), ORCHIDEE-Crop (Wu et al., 2016) and CARAIB DGVM 120 

(Jacquemin et al. 2021).  Commonly, model developments in the context of TBMs centre on the 

introduction of new crop-specific modules, which incorporate crop-specific carbon pools and 

dynamics alongside harvest indexes and management options. While these past endeavours 

represent a significant step forward, they often introduce multiple modifications that may not 

generalize well. 125 

 



6 

 

Despite these advancements, there remains a need to improve the integration of crop 

management practices such as sowing, harvesting, irrigation, and fertilizer application within 

TBMs. This would more comprehensively capture the coupled dynamics of plant growth and soil 

biogeochemical cycles, as influenced by crop nutrient uptake and the timing and quantity of 130 

NPK fertilizer application. For example, previous work with JULES-CROP (2014) omitted 

nutrient limitations, while ORCHIDEE-Crop (Wu et al. 2016) addressed nutrient limitation via a 

simple empirical 0-1 index limiting crop growth. Furthermore, irrigation practices need better 

incorporation; ORCHIDEE-Crop (Wu et al. 2016) omitted irrigation, while JULES-CROP 

(Williams et al. 2017) assumed perfect irrigation, neglecting soil moisture as a crop growth stress 135 

factor. Additionally, there is a need to transition from empirical harvest indices or harvest-specific 

carbon pools to a fully integrated mechanistic approach, whereby crop yield is derived from 

generalizable carbon organ-specific pools being harvested. 

 

Most importantly, the goal of introducing crops into Terrestrial Biosphere Models (TBMs) should 140 

be to do so with minimal changes to the existing model structure for natural vegetation, as most 

physical and biophysical processes are similar. We argue that this can be accomplished without 

adding additional carbon pools or extensive model modifications and parameter additions. The 

aim is to demonstrate that accurate crop representation within a TBM can be achieved in a 

parsimonious manner, avoiding the need for crop-specific parameterizations that are difficult to 145 

generalize. This approach differentiates our model from previous formulations. 

 

Our study introduces T&C-CROP to address the aforementioned challenges, building on the 

success of previous Terrestrial Biosphere Models (TBMs). Previous developments to T&C 

(Fatichi et al. 2012; 2019) have ensured that an effective representation of crops, irrigation, and 150 

fertilizer application can now be seamlessly integrated into the established vegetation carbon 

pool dynamics. This integration links agricultural practices with water and energy budgets, plant 

growth development, and soil biogeochemical cycling. All enhancements to the original T&C 

model to better represent crop processes revolve around minimal structural changes. 
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Specifically, only three new parameters are added to the original model, along with prescribed  155 

irrigation, fertilizer, and sowing/harvesting dates. 

 

To assess the effectiveness of T&C-CROP, we evaluated model performance in terms of 

energy, water and carbon fluxes with on-site eddy covariance data and benchmarked it against 

other TBMs with dedicated crop-specific modules at the same sites. We also assessed T&C-160 

CROP’s skill in predicting crop yields, specifically examining carbon allocation to various pools, 

making good use of detailed harvest data available across the selected sites. The evaluation 

covers four fields which employ varied management strategies and operate in diverse climates.  

2. Materials and Methods  

2.1 Overview of T&C 165 

T&C is a state-of-the-art terrestrial biosphere model (Fatichi et al. 2012;2019) which resolves 

the land surface energy balance, water balance and soil C/N/P/K dynamics. T&C has been 

successfully used in several ecosystems globally covering a wide range of scenarios, for 

example assessing the impacts of fertilization on grassland productivity in the European Alps 

(Botter et al. 2021) or assessing ecohydrological changes after tropical conversion to oil palm 170 

(Manoli et al. 2018). T&C operates across various time scales, tailoring its resolution to the 

specific process being resolved. Specifically, the energy budget is resolved at hourly scales, 

water and photosynthesis are computed at the hourly scale, with the exception of soil water flow 

that uses an adaptive sub-hourly step, vegetation carbon pools and soil C/N/P/K dynamics are 

resolved at the daily scale. Inputs consist of hourly meteorological data (precipitation, 175 

temperature, wind speed, atmospheric pressure, relative humidity, shortwave and longwave 

radiation, atmospheric CO2 concentration). Site parameterization requires site-specific 

information including soil texture, and plant specific traits for tailoring the dynamic vegetation 

component. T&C does not use predefined plant functional types, but rather focuses on specific 

vegetation types (e.g. conifer, oak, grassland, palm) and thus requires the model user to input 180 
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parameter values based on the particular vegetation type being simulated.T&C can be run as a 

plot-scale version, i.e., without an explicit treatment of the topography and lateral fluxes (e.g., 

Paschalis et al. 2017; Manoli et al. 2018 and this study) or alternatively in a spatially explicit 

manner (i.e., as a fully distributed model defined on a regular 2D mesh as a fully distributed 

model defined on a regular 2D mesh), which accounts for complex topography by considering 185 

local and remote solar radiation shading effects and lateral transfer of water in the surface and 

subsurface (e.g., Paschalis et al. 2017; Mastrotheodoros et al. 2020; Paschalis et al. 2022).   

The hydrological module of T&C is physics-based and models interception, throughfall, canopy 

water storage, runoff and soil water dynamics, as well as snow and ice hydrology. Soil water 

dynamics are represented in the point scale simulations via the 1-D Richards equation. In this 190 

study soil hydraulic conductivity alongside the shape of the water retention curve are estimated 

based on user-defined soil texture; following the Saxton and Rawls pedotransfer function 

(Saxton and Rawls, 2006; Paschalis et al. 2022). However, T&C can also use custom water 

retention curves including the van Genuchten model and more complex soil hydraulic function 

accounting for soil structural effects (Fatichi et al. 2020). Plant-water uptake is simulated using 195 

a sink term, with plant transpiration uptake being thus proportional to root biomass which decays 

exponentially with soil depth. Both saturation and infiltration excess mechanisms are used for 

runoff generation (Fatichi et al. 2012). 

The surface energy balance is resolved by balancing net radiation with latent, sensible and 

ground heat fluxes. In T&C, we use the two-stream approximation for estimating net shortwave 200 

radiation with a canopy being split into a sun and shaded fraction (de Pury and Farquhar, 1997; 

Wang and Leuning, 1998; Dai et al. 2004). Latent and sensible heat fluxes are parameterized 

using the resistance analogue, with aerodynamic, leaf-boundary layer, stomatal, and under 

canopy air resistances as well as soil resistance all included (e.g. Leuning, 1995; Niyogi and 

Raman, 1997; Haghigi et al. 2013; Paschalis et al. 2017).  205 
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Plant carbon dynamics in T&C are inspired by Friedlingsein et al. (1998) and Krinner et al. 

(2005). Vegetation is conceptualized using 7 carbon pools for woody vegetation (leaves, living 

sapwood, heartwood, dead leaves, roots, carbohydrate reserves and fruits and flowers) and 5 

pools for herbaceous species with the sapwood and hardwood carbon pools supressed. Carbon 

allocation is governed by phenology, environmental stresses, and stoichiometric constraints for 210 

C:N, C:P, C:K ratios across all tissues which in turn depend on the potential of plants to acquire 

necessary macronutrients (NPK) from the ground via root uptake and mycorrhiza symbiosis. In 

T&C, for extratropical climates we have four phenological stages (dormant, maximum and 

normal growth, and senescence) defined by temperature, day length, water stress and leaf age. 

Initially, carbon is assimilated via photosynthesis which is based on Farquhar et al. (1980) for 215 

C3, and Collatz et al. (1991, 1992) for C4 plants with subsequent adjustments (Bonan et al. 

2011) and then scales from leaf to canopy scale according to a two big leaves approach  (Wang 

and Leuning, 1998; Dai et al., 2004). This approach has the benefit of taking into account the 

vertical distribution of nitrogen and therefore also of photosynthetic capacity. The CAM 

photosynthetic pathway is currently not considered. Stomatal conductance follows Leuning 220 

(1990; 1995) and has been recently adapted to consider plant hydraulics (Paschalis et al. 2024) 

although this scheme is not considered here. Any assimilated carbon which is not respired via 

maintenance and growth respiration, is subsequently partitioned into one of five carbon pools 

(foliage, living sapwood, roots, carbohydrate reserves or fruits and flowers) via an empirical 

allocation scheme; largely based on phenological stages and light and water availability. The 225 

translocation of carbon between pools is also considered, enabling the depletion of carbon 

stored as reserves. This better represents the responses of vegetation to stress and changes 

in phenological stages. Details of plant phenology dynamics are outlined in the supplementary 

of Fatichi et al. 2012.  

The latest version of T&C includes soil carbon and nutrient (nitrogen, phosphorus, and 230 

potassium) dynamics (Fatichi et al. 2019). Options for anthropogenic nutrient application 

(fertilizer), in both mineral and organic forms have been added (Botter et al. 2021). Leaching of 

dissolved nutrients is also computed by coupling soil biogeochemistry with T&C’s soil hydrology 
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module. Specifically, the biogeochemistry module separates plant litter into different pools 

based on decomposability recalcitrance and account for different soil organic carbon functional 235 

pools, as mineral associated, particulate and dissolved organic carbon. Its 

decomposition/mineralization depends on the activities of microbial biomass separated between 

bacteria and fungi and macraufauna in the soil. NPK cycles (including fertilizer application) are 

linked to microbial dynamics and naturally, plant growth. A comprehensive outline of T&C soil 

biogeochemistry is provided by Fatichi et al. (2019) and Botter et al. (2021).  240 

2.2 From T&C to T&C-CROP 

T&C-CROP adds parameterizations designed to enhance the representation of crops within the 

T&C model, improving its ability to simulate crop vegetation dynamics. Our approach aimed at 

being as parsimonious as possible, limiting complexities which are often part of crop 

implementations in process -based models (e.g., Ingwersen et al. 2018). The T&C model 245 

structure was modified to better tailor specific leaf area, carbon allocation, leaf turnover, and 

photosynthetic efficiency of senesced leaves to crop conditions. It was possible to achieve this 

by only adding three new crop-specific parameters (outlined below). Model developments are 

visually outlined in Figure 1 and further discussed in this section. 

 250 

 

 

 

 

Figure 1 Illustrating model developments implemented into the pre-existing T&C model structure in order to develop T&C-255 
CROP. 
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Crops, like many plants, exhibit changes in their Specific Leaf Area (SLA) over time 

(Amanullah, 2015; Li et al. 2023), defined as the leaf area divided by its dry weight (m² kg⁻¹). 

Early in their growth stages, leaves tend to have a higher SLA, indicating thinner and cheaper 

leaves that facilitate rapid expansion of the leaf canopy and higher photosynthetic rates for 260 

invested carbon, essential for early plant growth post-germination. However, as leaves age, 

they typically become thicker, resulting in a lower SLA. To better capture this phenomenon 

and align with observed trends, we've implemented a dynamic SLA in T&C-CROP. This 

dynamic SLA is modelled with a linearly decaying rate from an initial maximum SLA until the 

leaf age reaches the value of the phenological stage of maximum growth, beyond which SLA 265 

retains a constant value. 

 

𝑆𝐿𝐴𝑛𝑒𝑤 = {
𝑆𝐿𝐴 + (1 −

𝐴𝑔𝑒𝐿

𝑑𝑚𝑔
) ∗ 𝑆𝐿𝑒𝑚𝑒𝑟𝑐𝑟𝑜𝑝, 𝑖𝑓 𝐴𝑔𝑒𝐿 < 𝑑𝑚𝑔

𝑆𝐿𝐴, 𝑖𝑓 𝐴𝑔𝑒𝐿 ≥ 𝑑𝑚𝑔
                                          [1]  

 
 270 

Where, SLA represents the full grown crop static specific leaf area (m² gC-1), 𝐴𝑔𝑒𝐿  [days] 

denotes the age of the leaf in days, 𝑆𝐿𝑒𝑚𝑒𝑟𝑐𝑟𝑜𝑝 is a new parameter representing the additional 

SLA at emergence which can be crop-dependent, and dmg signifies the days of maximum leaf 

growth phenology stage, which is a model parameter. Variable names are intentionally kept 

identical to model parameters in T&C which can be accesses from our repository (see data 275 

availability).  

 

We also aimed to enhance the portrayal of the initial leaf flushing period. At the onset of crop 

growth, carbon allocation to fruits and flowers is impeded, with newly assimilated carbon instead 

directed towards leaf development. As the initial leaf flush concludes, carbon allocation shifts 280 

predominantly towards the fruits and flower pool with a reference value allocation fraction ffr [-] 

to this pool, which is significantly higher than for natural vegetation, while allocation to living 

sapwood is reduced or nullified if the crop does not have a stem component by using a new 
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crop specific parameter socrop [-] which is the carbon allocation fraction to stem. These values 

can be user-defined and crop-specific, but generally for crops ffr is in the order of 0.2-0.5 and 285 

socrop in the order of 0.0-0.1.  

 

Typically, photosynthetic efficiency decreases as leaves age. For example, this is the case with 

wheat (Suzuki et al. 1987). To replicate the rapid drop in late season photosynthesis of 

senesced leaves, once a leaf’s age exceeds a critical threshold (age_cr ), the photosynthetic 290 

efficiency is reduced as a power law (power of minus eight) of the relative age (rage). Where rage 

is the relative time from leaf onset exceeding age_cr. 

 

Additionally, we updated the leaf turnover function, which represents the rate of leaf mortality 

due to aging. Our update is illustrated below in Eq. 2, where dla is the leaf death rate [days⁻¹] 295 

due to age, age_cr is the critical leaf age (a crop-specific parameter), and AgeL [day] is the 

current average age of the leaf (a prognostic variable). Previously, T&C applied a linear relation 

for grass and extratropical evergreen trees and a power law for deciduous tree leaves (Fatichi 

et al., 2012; 2019). Our modification, in the form of a sigmoidal function (Supplementary 1), 

ensures that the majority of leaf turnover occurs as leaf age approaches the critical age, and 300 

suppresses completely leaf mortality in the early phases, which is more realistic for crops. 

 

𝑑𝑙𝑎 = (
1

𝑎𝑔𝑒𝑐𝑟
) × (

1

2
tanh(10 × (

𝐴𝑔𝑒𝐿

𝑎𝑔𝑒𝑐𝑟
) − 7) + 0.5                                                                            [2]   

 

To enable crop representation in T&C-CROP, we have introduced the option of user defined 305 

sowing and harvesting dates. In the model, sowing is conceptualized by introducing an initial 

carbon stock for fine root biomass and non-structural carbohydrates, comparable to typical seed 

applications, from which the crops evolve post-germination. Root depth can be parameterized 

as a function of fine root biomass and fine root growth, if allometric relationships are available, 

or kept constant if such knowledge is unavailable.  After crop establishment, leaf age or 310 
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environmental stress can trigger crop senescence before harvesting. Additionally, to 

accommodate multiple crop management practices, users can define the fraction of the crop left 

in the field post-harvest. This feature can be tailored to specific crops or management practices, 

such as leaving stems behind while harvesting only grains. This flexibility allows for a more 

nuanced representation of different cropping systems and practices within the model. 315 

2.3 Simulation Setup  

T&C-CROP was run at a plot scale (i.e., neglecting topographic features) and used site-specific 

hourly meteorological data, retimed from the half-hourly data available from local weather 

observations (Table 2). In T&C-CROP the partitioning of shortwave radiation to direct/diffuse 

and different wavelengths such as Photosynthetic Active Radiation (PAR) was done using 320 

REST2, as implemented in AWEGEN (Fatichi et al. 2011; Peleg et al. 2017). Site-specific data 

such as dates of planting/sowing/irrigation/fertilizer application and soil type were obtained 

either from available literature (references in Table 2) or directly from the site’s PI. To balance 

the soil carbon and nitrogen pools an appropriate spin-up was run, the length required to reach 

a dynamic steady state was site dependent but normally in the order of 200 years.    325 

 

T&C-CROP, like T&C does not use generic plant functional types, meaning the user must input 

plant or crop-specific parameters, the most important of which are illustrated in Table 1. These 

were obtained from literature and the TRY database (Kattge et al. 2020; Fraser, 2020). 

However, the final values used in the model runs were adjusted within a ±30% range from the 330 

reported values as part of a manual trial and error calibration, necessary to best fit the cultivar 

type being sown on each site (Supplementary S21.5). Therefore, the model needs to be re-

parameterized for certain parameters for each site.. Temperature and daylength thresholds for 

phenological changes were retrieved with expert knowledge and manual calibration at each site 

matching leaf area observations. Furthermore, in T&C-CROP the user inputs the date of sowing, 335 

therefore the start date for crop growth is largely prescribed through crop management. Other 

models such as AquaCrop (Steduto et al. 2009) calculate the sowing date dynamically based 
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on local environmental conditions. This is also possible in T&C-CROP, but for this study, as 

sowing dates were available at all sites (Supplementary 32), for best realism they were 

prescribed. Following emergence, plant growth is purely dependent on local climate and 340 

environmental conditions. Inputs regarding fertilizer/irrigation application are inputted based on 

the management log shared by the PI (e.g. Supplementary 43) or where not available we used 

typical values for the region and crop type.  

Table 1 Illustrating some of the most important crop-specific parameters necessary to run T&C-CROP. The last three 
parameters in bold are the new parameters introduced with this study. 345 

CROP MODEL VARIABLES  

PARAMETER UNIT DESCRIPTION 

SL m2 / gC Specific leaf area 
AGE_CR day Critical Leaf Age 

TLO Celsius Temperature for leaf onset 
DMG day Days of Max Growth 
TRR gC / m2 d Translocation rate 

LDAY_MIN - Minimum Day duration for leaf onset 
LTR - Leaf to Root ratio maximum 

VCMAX μmol CO2/ m2 s] Maximum Rubisco capacity at 25°C leaf level 
BFAC - Leaf onset water stress threshold 
ASE C3/C4 Photosynthesis type 

LDAYCRIT hours Threshold for senescence (hours of daylight) 
FF_R - Fraction of biomass allocated to fruit 

SL_EMECROP m2/gC Additional SLA at emergence. 
SO_CROP - Fraction of biomass allocated to stem 

MAX_HEIGHT m Maximum crop height 

2.4 Description of selected sites and validation data 

It is crucial to model agricultural fields which experience both monocropping and crop rotations, 

as these practices are significant and widespread (Eurostat, 2020). This modelling approach 

also serves as an excellent benchmark for complex mechanistic crop models such as T&C-

CROP. An important objective was to select sites with on-site observational records that could 350 

demonstrate T&C-CROP's capability to continuously simulate field growth across various 

rotation and management practices within a single simulation. This contrasts with the common 

practice of starting a new simulation for each crop individually. The benefit of a continuous model 

simulation is that this allows T&C-CROP to account for legacy soil conditions, including soil 

moisture, soil carbon, based on historical management practices—such as crop residue 355 

management, fertilizer application, and irrigation. This approach ensures our model accurately 
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reflects the cumulative impact of past agricultural practices on current and future crop 

performance. 

 

To showcase T&C-CROP’s capabilities, we selected four well-monitored agricultural sites, all 360 

characterized by a temperate climate but featuring diverse cropping systems and management 

practices. These sites are affiliated with FLUXNET (Heinesch et al. 2021) and have been 

previously utilized for model evaluations (e.g., Boas et al. 2021), making them ideal for model 

intercomparison and benchmarking. Further details about the selected sites are provided in 

Table 2. 365 

Table 2 Information regarding the agricultural sites used in this study. 

 
Site 

 
Crops 

 
Years 

Simulated 

 
Further site 
specific info 

 
FLUXNET  Link 

CH-OE2  
(Solothurn, 

Switzerland) 

Wheat, Barley, 
Grass, Potato, 

Rapeseed, 
Peas. (Rainfed) 

 

 
2004-2020 

Dietiker et al. 
(2010); 

Ecosystem 
Thematic Center 

(2021). 

https://fluxnet.org/sites/siteinfo/CH-Oe2  

CH-CHA 
(Zug, 

Switzerland) 
 

Grass (Rainfed) 2006-2015 Hörtnagl et al. 
(2018) 

https://fluxnet.org/sites/siteinfo/CH-Cha  

US-NE1  
(Nebraska, 

USA) 
 

Maize 
(Irrigated) 

2002-2013 Suykeret al. 
(2004) 

https://fluxnet.org/sites/siteinfo/US-Ne1  

BE-LON  
(Valonia, 
Belgium) 

Sugar Beet, 
Wheat, 

Potatoes, 
Mustard (cover 
crop), Maize, 
Oat. (Rainfed) 

 

2004-2020 Dufranne et al. 
(2011), Buysse et 
al 2017, Moureux 

et al. 2006; 
Dumont et al. 

2023 

https://fluxnet.org/doi/FLUXNET2015/BE-

Lon  

 

 

https://fluxnet.org/sites/siteinfo/CH-Oe2
https://fluxnet.org/sites/siteinfo/CH-Cha
https://fluxnet.org/sites/siteinfo/US-Ne1
https://fluxnet.org/doi/FLUXNET2015/BE-Lon
https://fluxnet.org/doi/FLUXNET2015/BE-Lon
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2.5 Model Intercomparison  

The performance of T&C-CROP was compared with that of three other leading similar models 370 

which have been previously validated on the same sites. Specifically, JULES-CROP was 

evaluated on the US-NE1 site for maize, CLM-CROP on the BE-LON site for sugar beet, 

potatoes, and wheat, and ORCHIDEE-CROP on the BE-LON site for wheat. The data for this 

comparison was extracted from published works: Williams et al. (2017) for JULES-CROP, Boas 

et al. (2021) for CLM-CROP, and Wu et al. (2016) for ORCHIDEE-CROP. An open-source web-375 

based tool, WeplotDigitilizer (see acknowledgements) was used to extract numerical data from 

plot images provided in the publications. Minor discrepancies due to the accuracy of the graph 

digitizer are expected.  

 

JULES-CROP was run under conditions of sufficient irrigation (no water stress) and no nitrogen 380 

limitation. Two model runs were conducted: one where LAI and crop height were prescribed 

from observations, and another where they were not. To ensure a fairer comparison, we used 

results from the latter. In JULES-CROP input parameters were tuned based on site 

observations. In the case of CLM-CROP, the default parameter set for winter wheat () was found 

to perform poorly in representing crop phenology across the evaluated sites. Therefore, new 385 

parameter values were adopted based on literature or site-specific observations. For instance, 

adjustments were made to the growing season length and minimum LAI parameter according 

to field data. All three models—JULES-CROP, CLM-CROP, and ORCHIDEE-CROP—used 

prescribed sowing and harvest dates, except for ORCHIDEE-CROP, where harvest timing was 

determined by crop development processes. Notably, the ORCHIDEE-CROP model was not 390 

calibrated for each site individually but was tested for improvements in a more generic manner. 

Full details regarding the respective model simulation setups and crop-parameter selection can 

be found in the published works as referenced above.  
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3. Results  395 

3.1 Land surface Energy balance  

Across the four selected sites, the model captured the monthly trends in energy fluxes as 

illustrated in Figure 2. The mean monthly r2 across sites for net radiation (Rn), sensible (H) and 

latent heat (QE) was 0.97, 0.85 and 0.96 respectively (Full table available in Supplementary 

54). Unpacking this further the across Rn, H and QE mean daily r2 was 0.68 which is 400 

commendable given potential discrepancies in the energy budget closure of flux tower 

measurements.  

 

Figure 2 This graph illustrates the comparison between modelled and observed energy fluxes across various sites: CH-CHA 
(grassland), US-NE1 (maize), CH-OE2, and BE-LON (both with complex crop rotations). The hourly fluxes, representing the 405 
average diurnal cycle, are depicted with different colours: green for latent heat flux (LE), red for sensible heat flux (H), and 

blue for net radiation (Rn). 
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Figure 2.  This graph illustrates the comparison between modelled and observed energy fluxes across various 
sites: CH-CHA (grassland), US-NE1 (maize), CH-OE2, and BE-LON (both with complex crop rotations). The hourly 410 

fluxes, representing the average diurnal cycle, are depicted with different colours: green for latent heat flux (LE), 
red for sensible heat flux (H), and blue for net radiation (Rn). 

3.2 Gross Primary Productivity, Ecosystem Respiration, Net Ecosystem 
Exchange and Soil Moisture. 

We found that to capture the correct timing of GPP fluxes for each crop (Figure 3) it was 415 

imperative to draw on a traits -based approach, as lumping different crops into PFTs (Plant 

Functional Types) performed significantly worse. As illustrated in Figure 3, the magnitude and 

timings of the GPP fluxes are correctly captured, as are the differences between crops and to a 

lesser extent between seasons (same crop different year). Additionally, in Table 3 the modelled 

and observed seasonal sum of gross primary productivity (GPP), ecosystem respiration (RECO) 420 

and their difference; net ecosystem exchange (NEE) is presented; a season is defined as the 

period between crop emergence to harvest. T&C-CROP was able to capture the seasonality of 

GPP, across crops, within roughly a 10% range of observed values, as depicted in Table 3. 

Although it did slightly less well at capturing seasonal RECO (Table 3), possibly due to lack of 

knowledge regarding post-harvest management, ploughing, crop residue etc and of course 425 

there exists sometimes notable uncertainty in observed fluxes (Hollinger and Richardson, 2005). 
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 430 

Figure 3 Validation of Gross Primary Productivity (GPP) across the four simulated sites, covering a total of 10 different crops. 

 

 
 
 435 

 
 
 
 
 440 

 
 
 
 
 445 

 
 
 
 
 450 
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Table 3 Illustrating seasonal cumulative sum (sowing-harvest) of T&C-CROP flux estimates (MOD) compared to EC-derived 
data (OBS) across sites and crops. Note we have also included percentage MOD-OBS differences (Δ). The AVG value 
corresponds to an absolute average. Note that potatoes in CH-OE2 were a crop failure event due to hail which is a phenomenon 455 
we currently do not simulate therefore we discarded this from computed averages. At the BE-LON site defoliant was applied to 
potatoes mid-season, a management which was incorporated into T&C-CROP. At the US-NE1 site, presented values are the 
average of all seasons (sowing-harvest) across 2002-2012. At CH-CHA the presented values are the average of all periods 
(sowing-harvest) for which we had available site data which was 2006-2020. 

CH-OE2: Crop Averages 

CROP MODGPP 
 (gC/m2) 

OBSGPP   
(gC/m2) 

Δ 
(%) 

MODRECO  
  (gC/m2) 

OBSRECO  
  (gC/m2) Δ(%) MODNEE  

  (gC/m2) 
OBSNEE  
 (gC/m2) 

Wheat 1153 1300 -11 722 751 -4 -431 -504 
Barley 1127 1069 5 662 575 15 -465 -408 
Cover 433 414 5 294 308 -5 -139 -75 

Rape Seed 1254 1098 14 749 888 -16 -505 -366 
Peas 377 386 -2 187 527 -65 -190 -366 

Potato* 1477 935 58 772 980 -21 -706 199 
AVG     9     10     

BE-LON: Crop Averages  

Crop MODGPP 
 (gC/m2) 

OBSGPP   
(gC/m2) 

Δ 
(%) 

MODRECO  
  (gC/m2) 

OBSRECO  
  (gC/m2) Δ(%) MODNEE  

  (gC/m2) 
OBSNEE  
 (gC/m2) 

Sugar Beet 1353 1455 -7 537 664 -19 -816 -808 
Wheat 1526 1496 2 801 887 -10 -725 -570 

Potato* 531 556 -5 236 454 -48 -294 -149 
Mustard 192 162 19 94 204 -54 -99 43 

Maize 1876.3 1492.9 25.7 951.8 963.2 -1.2 -924 -595.4 
Oat 280 288 -2 169 299 -43 -168 16 
AVG     11     31     

US-NE1  

Crop MODGPP 
 (gC/m2) 

OBSGPP   
(gC/m2) 

Δ 
(%) 

MODRECO  
  (gC/m2) 

OBSRECO  
  (gC/m2) Δ(%) MODNEE  

  (gC/m2) 
OBSNEE  
 (gC/m2) 

Maize 1785 1668 7 731 1161 -37 -1054 -566 
CH-CHA 

Crop MODGPP 
 (gC/m2) 

OBSGPP   
(gC/m2) 

Δ 
(%) 

MODRECO  
  (gC/m2) 

OBSRECO  
  (gC/m2) Δ(%) MODNEE  

  (gC/m2) 
OBSNEE  
 (gC/m2) 

Grass 708 763 12.7 612 560 57 -156 -58 
 460 
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T&C-Crop’s skill in simulating Soil Water Content (SWC) is illustrated in Figure 4. The maize 

monoculture site (US-NE1) along with the crop rotation site (BE-LON) were chosen for this 

illustration due to their long observational SWC record. At a depth of 25cm, a correlation 

coefficient of r2 =0.64 was achieved between daily observed and modelled SWC at the US-NE1 465 

site, a similar value of 0.62 is achieved at the BE-LON site (if we only include data until the 

sensor change in 2015).  

 

 

Figure 4 Validation of Soil Water Content (SWC) across BE-LON, complex crop rotation and US-NE1, maize monoculture. 470 
Both sites represent modelled and observed SWC at a depth of 25cm. The dashed blue line represents the date of a sensor 

change 

 
 

 475 
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 3.3 Crop development: LAI and Biomass Growth 

T&C-CROP was able to capture the timing of leaf flushing and growing season length across 

various simulated sites and crop types (Figure 5). The model demonstrated considerable skill 

in reproducing peak season Leaf Area Index (LAI), indicated by a correlation coefficient (r2) of 

0.75, 0.66 and 0.61 for CH-OE2, BE--LON and USNE1 respectively. However, on CH-CHA, 480 

grassland site, whilst the leaf growth pattern was clearly captured, there was no significant 

correlation between observed and simulated peak LAI, likely due to the spread in recorded LAI 

values on each date. Importantly, T&C-CROP successfully captured most differences in LAI 

among different crops; most clearly depicted with mustard and wheat at the BE-LON site (Figure 

5, panel b). The model’s strongest performance was in replicating LAI dynamics at the US-NE1 485 

maize monoculture, achieving an r2 of 0.77, a satisfactory result considering the limited 

developments to T&C-CROP and inherent heterogeneity in field-based LAI sampling and 

different cultivars sown.  

 
           490 

Figure 5 Validation of Leaf Area Index (LAI) across the four simulated sites. 
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The validation of T&C-CROP against observed crop harvests (Table 4) demonstrates the 

model's ability to accurately capture biomass differences at harvest time among various crops 495 

and effectively partition assimilated carbon into different crop components, such as stems and 

grains. Across the four simulated sites, T&C-CROP successfully predicted the annual harvested 

aboveground biomass (AGB) within approximately 20% of the observed values, with a few 

exceptions (Table 4). 

 500 

We also assessed dynamic carbon allocation mechanisms throughout the growing season at 

the US-NE1 site, using published observations (Peng et al. 2018) as a reference (Figure 6). Our 

findings indicate that T&C-CROP effectively captures the overall trend and magnitude of carbon 

allocation to specific crop components such as leaves, stems, and grains. This underscores the 

model's promising ability to represent the dynamic processes that drive crop growth and 505 

development. Regarding Figure 6, it is important to note that in 2007 at the US-NE1 site, our 

modelled above-ground carbon (AGC) was slightly lower than observed, peaking at 9.5 t C/ha 

compared to the observed 11.34 t C/ha (Fig. 7a).  

 

We analysed crop rotations at two sites, CH-OE2 and BE-LON, and also evaluated T&C-510 

CROP’s performance on maize at the US-NE1 site and grassland at the CH-CHA site. At the 

CH-OE2 site, we simulated 19 crop cycles over fifteen years (2004-2019). On average, the 

harvested aboveground biomass (AGB) was simulated within 10% of recorded values. Grain 

and straw were simulated within 13% and 30% of recorded values, respectively. However, inter-

annual variation in crop growth and carbon allocation to different pools (grain/straw) were 515 

difficult to capture. 

 

At the BE-LON site, we simulated 21 crop cycles over sixteen years (2004-2020). Winter wheat 

and maize were well simulated, with AGB and grain values, on average, within 10% of 

observations. Straw was slightly overestimated, by 27% for wheat and 13% for maize. If we 520 
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account for crop residues, particularly the first few centimetres of straw, our simulated values 

could align more closely with observed values. Additionally, including the belowground 

component of sapwood, which is currently excluded, would likely bring simulated AGB values 

even closer to observations. For wheat, the average residue at BE-LON was 26% of AGB, with 

a standard deviation of 4%. Potatoes at BE-LON were more challenging to simulate accurately, 525 

partly due to the defoliant treatment applied in mid-August, which is not currently included in our 

model. This resulted in simulated tuber biomass (daughter tubers) being about 50% lower than 

observed. 

 

Over eleven years (2002-2012) at the US-NE1 site, simulated maize yield (kernel) was within 530 

8% of recorded values on average. For the grassland site CH-CHA, harvest data was available 

for eight cuts from 2008 to 2010. Here simulated harvested biomass was within 20% of recorded 

values on average. Full results in a tabular format are included in supplementary 54. 

 

 535 

Figure 6 Total fraction of above-ground biomass in leaves, stems, and grain at the maize site (US-NE1), illustrating the 
partitioning of assimilated carbon by T&C. Leaves are represented by the "foliage" pool, stems include sapwood and dead 
sapwood pools, and grain consists of carbohydrate reserves, fruit and flower pools. Observed values are derived from the 
graphs in the supplementary material of Peng et al. (2018). 

 540 

 

 

 
 
 545 
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 550 

 
 

Table 4 In T&C-Crop, crop carbon is distributed across six distinct biomass carbon pools: B1=Foliage, B2=Living Sapwood, B3=Fine 

Roots, B4=Carbohydrate Reserves, B5=Fruit and Flowers, and B6=Standing Dead Foliage. In Table 4, Simulated Above Ground Biomass 

(AGB) corresponds to the sum of all T&C-Crop's biomass pools excluding B3 (Fine Roots); we assume that all sapwood is aboveground, 555 
an approximation which is reasonable for most crops. Simulated Grain is represented by the sum of B5 (Fruit and Flowers) and B4 

(Carbohydrate Reserves), which are expected to be contained mostly within the fruits for a crop, and simulated straw is derived from the 

sum of B1 (Foliage), B2 (Living Sapwood), and B6 (Standing Dead Foliage). Validation for belowground biomass (roots) was not possible 

due to the absence of on-site data. Note that for US-NE1, a value of 43%, as suggested by the PI, was used to translate t ha -1to t C ha -1. For 

CH-CHA grass yields are annual from 2008-2010. * Note that in CH-OE2 OBS AGB refers to the total AGB at the time of harvest whereas 560 
in BE-LON C Exported refers to the harvested component of the AGB. All values are in t C ha -1. 

CH-OE2 Yields 

Crop 
OBS AGB  

(t c C ha-1) 
SIM 
AGB 

Δ 
(%) 

OBS 
STRAW 

SIM 
STRAW 

Δ 
(%) 

OBS 
GRAIN 

SIM  
GRAIN Δ (%) 

Wheat 4.3 3.7 14.0 1.7 1.3 23.5 2.6 2.4 -7.7 

Barley 3.9 3.9 0.0 0.7 1.2 
-

71.4 3.2 2.7 -15.6 
Rape 
Seed / / / / / / 2.0 2.2 10 
Peas / / / / / / 3.5 6.1 74.3 

BE-LON Yields 

Crop 
C 

Exported 
SIM 
AGB 

Δ 
(%) 

OBS 
STRAW 

SIM 
STRAW 

Δ 
(%) 

OBS 
GRAIN 

SIM  
GRAIN Δ (%) 

Sugar 
Beet / / / / / / 8.9 6.9 -22.5 

Wheat 5.5 5.9 -6.0 1.8 2.5 

-
27.0 3.7 3.5 -5.4 

Potato / /  / / / 3.3 2.2 -33.3 

Maize 7.8 7.2 7.1 3.6 4.2 

-
13.4 4.2 4.2 0.0 

US-NE1 Yields 

Maize / / / / / / 5.5 4.9 -10.9 
CH-CHA 

Grass 0.85 1.00 17.6 / / / / / / 

 
 
 

 565 
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3.5 Model Intercomparison 

T&C-CROP simulations were compared to those of JULES-CROP (Williams et al. 2017). 

Figures 7 and 8 illustrate how both models, relative to each other represent AGB and LAI over 

a course of eight years at the Maize (US-NE1) site. Despite T&C-CROP being arguably more 570 

process-based and more parameter parsimonious, both models did a comparable job at 

capturing the correct magnitude and timing of LAI and AGB, neither model correctly simulated 

inter-annual variations in peak LAI or AGB. 

 

Figure 7 Simulation of above ground biomass by both T&C-CROP and JULES-CROP models compared to observations on the US-NE1 575 
Maize site. 

 

Figure 8  Simulation of LAI by both T&C-CROP and JULES-CROP models compared to observations on the US-NE1 Maize 
site. 
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 580 

 

Figure 9 Side by side comparison of CLM-CROP and T&C-CROP. 

T&C-CROP simulations conducted over the crop rotation site BE-LON were compared to those 

of CLM-CROP (Boas et al. (2021). Figure 9 illustrates how both models simulate grain yields for 

winter wheat across the four years which were presented in the CLM-CROP paper. To produce 585 

this comparison, we converted CLM-CROPS’ modelled values, which are reported in T DM ha-

1 to T C ha-1 using the average site-reported C content per unit of dry mass for wheat grain 

during these four years which was 40.5%; there was little interannual variation in this value, 

(<3%). Unfortunately, there is not sufficient data or variation in grain yield to truly assess the 

efficacy of either model, however, based on the presented observations, both capture the 590 

correct magnitude but neither capture the inter-annual observations in yield.  Figure 10 

illustrates how both models successfully represent LAI as well as key land surface fluxes over 

the years for which sugar beet and potatoes were sown. Note that a defoliant was applied to 

potatoes at the BE-LON site (Aubinet et al., 2009). To replicate this in T&C-CROP, we simulated 

a sudden "cut" on the recorded date of defoliant application. 595 
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Figure 10 Simulation of Leaf Area Index (LAI), Net Ecosystem Exchange (NEE), latent heat flux (LE),sensible heat flux (HE) 600 
and net radiation (Rn) across both T&C-CROP and CLM-CROP for Sugar Beet and Potatoes cultivated at the BE-LON site. 

 

 

 

 605 

 

 

 

 

 610 
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Lastly, T&C-CROP was evaluated against results from ORCHIDEE-CROP (Wu et al. 2016) for 615 

the winter wheat season on the BE-LON site in 2006 (Figure 11).  ORCHIDEE-CROP (Wu et 

al. 2016) undershoots above ground biomass (AGB) by about 50% whilst T&C-CROP does a 

much better job, albeit overshooting AGB by just under 10%. More specifically, T&C-CROP 

achieved a correlation coefficient of r2 = 0.94 between simulated and observed AGB whilst this 

was 0.2 for ORCHIDEE-CROP.  620 

 

 

Figure 11 Illustrating a comparison of ORCHIDEE-CROP outputs from Wu et al. 2016 and T&C-CROP outputs from this 
paper for Winter Wheat sown in BE-LON. Note that both Latent (QE) and Sensible Heat (H) were smoothed using a weekly 

time step to improve graph readability. Note AGB here refers to total, not only harvestable AGB. 625 
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4. Discussion 

The integration of three new crop-specific parameters, combined with streamlined model 

developments, has significantly enhanced the representation of cropland sites in T&C-CROP. 

Our findings include the successful validation of over ten different crops sown in four 630 

heterogeneous agricultural fields, varying in both management practices and climate conditions. 

Results also demonstrate that T&C-CROP performs comparably to other leading terrestrial 

biosphere models (TBMs) without having to increase model complexity or introduce crop-

specific carbon pools. This underscores the effectiveness of T&C-CROP as a highly parameter-

efficient and process-based model for future studies. 635 

 

This improved incorporation of croplands into T&C opens new avenues for modelling land-

surface interactions, hydrology, carbon fluxes, and crop yields. For instance, the enhanced 

representation of sensible heat (H), latent heat (LE), and net radiation (Rn) facilitates more 

detailed research on land surface interactions. Similarly, improved modelling of 640 

evapotranspiration (ET) and leaf area index (LAI) supports hydrological and water sustainability 

studies (e.g., Bonetti et al. 2022). Additionally, greater accuracy in net ecosystem exchange 

(NEE) and soil carbon storage could aid contemporary carbon emission mitigation efforts. 

 

The hydrological and carbon storage implications of land-use transitions - such as the 645 

conversion of crops, forests, and pastures—are among key applications foreseen for T&C-

CROP. Further studies could also focus on optimizing field management practices, building on 

prior work with models like the DNDC biogeochemical model (Zhang et al., 2019). Applications 

might include investigating irrigation strategies and fertilizer use under changing climatic 

conditions (e.g., Botter et al 2021). These research directions align with efforts to assess climate 650 

risk in agriculture and, ultimately, to develop climate-smart agricultural practices.involving crop, 

forest, pasture conversion, as well studies on optimising field management ( such as irrigation 

and fertilizer application in a changing climate are among the foreseen applications of T&C-

CROP.  
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 655 

Additionally, beyond the biomass, hydrological and energy balance metrics validated in the 

results section, T&C-CROP can also simulate belowground soil biogeochemical dynamics 

(Fatichi et al., 2019). We have included some outputs for illustrative purposes (Supplementary 

76). T&C-CROP captures changes in nutrient leakage as a function of local weather, crop type, 

fertilizer regime, and legacies. Using the biogeochemistry module, we identified a boost in 660 

microbial carbon post-harvest, nutrient flushing following fertilization, and predominantly after 

rainfall events. 

 

Whilst we remain confident in T&C-CROP’s strength at the field scale, particularly as we move 

toward an increasingly data-rich future—where the integration of data-driven and process-based 665 

approaches to crop modelling will enhance predictive capabilities - the utility/potential of a 

versatile tool like T&C-CROP presently lies in its ability to perform at the regional scale. 

However, validating its efficacy at this level presents significant challenges due to sparse 

comprehensive data and the multitude of factors influencing crop growth, including socio-

economic variables. 670 

 

Many of the issues we encountered during site-level validations are expected to diminish at 

broader scales, as local variations average out and climatic variables assume greater 

importance. For instance, representing microscale field management proved challenging during 

validation efforts. Accounting for different cultivar types, accurately determining crop-specific 675 

carbon allocation parameters, incorporating practices - such as the use of growth regulators, 

defoliant or fungicide treatments (e.g., at sites like BE-LON; Dugranne et al., 2011), or 

addressing hail damage (e.g., at CH-OE2; Revill et al., 2016) - proved difficult. Moreover, T&C-

CROP struggled to simulate post-harvest processes, likely due to insufficient knowledge of 

practices such as residue management and soil preparation or tillage. 680 
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These factors, while critical at the field scale, are likely to exert less influence on crop growth 

across larger spatial scales, where climatic conditions are expected to dominate. Nonetheless, 

addressing these challenges could improve model performance at all scales. It is also worth 

noting that our manual trial-and-error calibration of crop parameters (within a ±30% range of 685 

literature values) could be likely improved using systematic calibration techniques to achieve 

more robust validation. However, this was beyond the scope of this introductory paper due to 

the substantial computational resources required, particularly given the high dimensionality of 

T&C-CROP. Advancing in this direction would significantly enhance the precision of model 

outputs and remains an important objective for future work. 690 

5. Conclusion  

 

T&C-CROP was introduced to enhance T&C’s representation of croplands and associated 

carbon, energy and nutrient fluxes. In this study we have assessed the extent to which T&C-

CROP accurately depicts crop growth and associated land surface fluxes across four distinct 695 

agricultural sites CH-OE2, BE-LON, CH-CHA, US-NE1. Each site was subject to varying 

management practices such as irrigation, fertilizer and defoliant application and had several 

types of crops, either as a monoculture or as a crop rotation scheme. Our model validation 

covers over 50 years and 61 crop cycles, encompassing more than nine staple crops and also 

included comparison with results from other leading TBMs. 700 

 

This study demonstrates how with minimal model structural changes and only three additional 

parameters, it is possible to accurately represent Gross Primary Productivity (GPP), LAI (Leaf 

Area Index) and organ-specific harvests not only in monocultures but also in sites with complex 

crop rotations and diverse management practices. Of particular novelty we adapted the carbon 705 

allocation scheme for crops and implemented a novel routine which allowed for multiple 

cropping cycles within one calendar year within the same model run. This enhancement enables 

more realistic simulations of field dynamics.  
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Our approach with T&C-CROP is grounded in practical utility. While our validation efforts were 710 

thorough, they were not overly fixated on meticulously simulating variables such as yield, 

considering that this is only one of the many model outputs. We were realistic with limitations in 

parameter constraints as a high-level granularity was not a primary objective. We prioritized 

broad applicability over micromanagement details like cultivar choice, which is unlikely available 

at larger scales.  715 

 

T&C-CROP’s research horizon is to explore in a single model the concurrent effects of various 

crops on yields, energy dynamics, and carbon fluxes, as well as assessing how major climatic 

factors (temperature, precipitation, CO2, relative humidity, etc.) interact with management 

practices (fertilizer, irrigation) to influence crop yields but also byproducts such as nutrient runoff, 720 

soil degradation, and carbon sequestration.  

 

Future studies with T&C-CROP are envisioned to be conducted over broader spatial scales, 

where detailed management practices or specific cultivar information are less important. T&C-

CROP's ability to capture geographical differences induced by climate and soil properties are 725 

expected to overshadow local variations due to specific cultivars or management practices. This 

capability makes it an invaluable tool for understanding and predicting large-scale 

environmental patterns and their implications.  

 

 730 

 

 

 

 

 735 
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Code and data Availability: The current version of model is available at 

doi.org/10.24433/CO.0905087.v3 and is updated regularly. The exact version of the model used 

to produce the results used in this paper is archived on Zenodo 

(doi.org/10.5281/zenodo.13343701), as are input data and scripts to run the model and produce 1045 

the plots for all the simulations presented in this paper. 
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