The 2022 Drought Needs to be a Turning Point for European Drought Risk Management

Riccardo Biella ^{1,2}, Anastasiya Shyrokaya ^{1,2}, Monica Ionita ^{3,4}, Raffaele Vignola ⁵, ⁶, Samuel J. Sutanto ⁷⁵, Andrijana Todorovic ⁸⁶, Claudia Teutschbein ^{1,2}, Daniela Cid ^{9,10}, ⁸ Maria Carmen Llasat ^{11,129,10}, Pedro Alencar ¹³¹¹, Alessia Matanó ¹⁴¹², Elena Ridolfi ¹⁵¹³, Benedetta Moccia ¹⁵¹³, Ilias Pechlivanidis ¹⁶¹⁴, Anne van Loon ¹³¹¹, Doris E Wendt ¹⁷¹⁵, Elin Stenfors ^{1,2}, Fabio Russo ¹⁴¹³, Jean-Philippe Vidal ¹⁸¹⁶, Lucy Barker ¹⁹¹⁷, Mariana Madruga de Brito ²⁰¹⁸, Marleen Lam ²¹¹⁹, Monika Bláhová ^{22,2320,21}, Patricia Trambauer ²⁴²², Raed Hamed ¹³¹¹, Scott J. McGrane ^{25,2623,24}, Serena Ceola ²⁷²⁵, Sigrid J. Bakke ²⁸²⁶, Svitlana Krakovska ^{29,3027,28}, Viorica Nagavciuc ^{3,4}, Faranak Tootoonchi ³¹²⁹, Giuliano Di Baldassarre ^{1,2}, Sandra Hauswirth ³²³⁰, Shreedhar Maskey ³³³¹, Svitlana Zubkovych ², Marthe Wens ¹³¹¹, Lena M Tallaksen ³⁴³²

- 1 Centre of Natural Hazards and Disaster Science, Uppsala, Sweden
- 15 2 Department of Earth Sciences, Uppsala University, Uppsala, Sweden
 - 3 Paleoclimate Dynamics Group, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, 27570 Bremerhaven, Germany
 - 4 Forest Biometrics Laboratory Faculty of Forestry, "Ștefan cel Mare" University of Suceava, Universității street, no.13, 720229, Suceava, România
- 20 5 Water System and Global Change, Wageningen University and Research, Wageningen, the Netherlands 6 Gund Institute for the Environment, Vermont University, USA
 - 75 Earth Systems and Global Change, Wageningen University and Research, Wageningen, the Netherlands
 - 86 University of Belgrade, Faculty of Civil Engineering, Institute for Hydraulic and Environmental Engineering
 - 97 Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, Spain
- 25 Hydrogeology Group (UPC-CSIC), Spain
 - 119 Department of Applied Physics, University of Barcelona, Spain
 - 1210 IdRA, Water Research Institut, University of Barcelona, Spain
 - 1311 Chair of Ecohydrology, Technical University of Berlin, Germany
 - 1412 Institute for Environmental Studies (IVM), Vrije Universiteit Amsterdam, The Netherlands
- 30 <u>4513</u> Dipartimento di Ingegneria Civile, Edile e Ambientale, Università degli Studi di Roma La Sapienza, 00184 Roma, Italy
 - 1614 Swedish Meteorological and Hydrological Institute, Norrköping, Sweden
 - 17 Cabot Institute for the Environment, 15 University of Bristol, Bristol, UK
 - 1816 INRAE, RiverLy, Villeurbanne, France
 - 1917 UK Centre for Ecology & Hydrology, Wallingford, United Kingdom
- 35 2018 Department of Urban and Environmental Sociology, Helmholtz Centre for Environmental Research, Leipzig, Germany
 - 219 Water Resources Management (WRM), Wageningen University & Research (WUR), Wageningen, the Netherlands
 - 2220 Global Change Research Institute CAS, Brno, Czech Republic
 - 2321 Mendel University in Brno, Brno, Czech Republic
 - 2422 Deltares, The Netherlands
- 40 2523 Department of Economics, Strathclyde Business School, University of Strathclyde, Glasgow
 - 2624 Applied Physics Department, Stanford University, CA, USA
 - 2725 Department of Civil, Chemical, Environmental and Materials Engineering, Alma Mater Studiorum Università di Bologna, Bologna, Italy
 - 2826 Norwegian water and energy directorate, Oslo, Norway

- 45 2927 Ukrainian Hydrometeorological Institute, Kyiv, Ukraine
 - 3028 National Antarctic Scientific Center, Kyiv, Ukraine
 - 3129 Department of crop production ecology, Swedish university of agricultural sciences, Uppsala, Sweden
 - 3230 Department of Physical Geography, Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands
 - 3331 IHE Delft Institute for Water Education, Delft, the Netherlands
- 50 3432 Department of Geosciences, University of Oslo, Oslo, Norway

Correspondence to: Riccardo Biella (riccardo.biella@geo.uu.se)

Abstract

The 2022 European drought has underscored critical deficiencies in European water management. This paper explores these shortcomings and suggests a way forward for European drought risk management.

Data for this study was gathered through In particular, we focus on four key aspects: the increasing drought risk, its spatial and temporal impacts, current management approaches, and how these differ across Europe. We base our findings on a continent-wide survey of water managers involved in this event responding to the 2022 drought. The survey collected 481 responses from 30 European countries and is comprised of contained 19 questions concerning on perceived sectorial impact in the regions of the responders and impacts and the drought risk management practices of their implemented by the respondents' organizations. Information from the survey is enriched was supported with climate-related information data on drought severity as quantified by the Standardised Precipitation Evapotranspiration Index, to offer a comprehensive overview of drought risk management inhow extreme historical droughts are managed across Europe. Our research focuses on four key aspects: the increasing risk of drought, its spatial and temporal impacts, current drought risk management approaches, and the evolution of drought risk management across the continent.

Our-findings reveal a consensus on the growing risk of drought, which is confoundeddriven by thedroughts' rising frequency and intensity—of—droughts. While the 2022 event affected most of the continent, our findings show significant regional disparities in drought risk—management capacity among the various. In many countries—Our analysis indicates that current drought risk management measures often rely on short term operational concerns,— particularly inthose with agriculture-dominated economies,—drought responses remain short-term and reactive, often leading to potentially maladaptive practices. An overall—Despite these challenges, we also observe a positive trend in drought risk managementshift, with organizations showing increased awareness and preparedness; indicates how this crisis can be. Hence, the lessons learnt from the 2022 event may provide an ideal momentopportunity to mainstream European-wide drought risk management. ConsequentlyTo seize this opportunity, we advocate for a European Drought Directive, to harmonize and enforce—drought risk management policies across the continent. This directive should promote a systemic, integrated, and long-term risk management perspective. The directiveIt should also set clear guidelines for drought risk management—at the national and sub-national level, and for cross-boundary drought collaboration. This study and its companion paper, "From Crisis to Capacity: Institutional Preparedness and Response During the 2022 European Drought", result from work carried out by the Drought in the Anthropocene network, an initiative of the International Association of Hydrological Sciences (IAHS).

1 Introduction

90

95

100

105

Just a few years after the exceptionally severe 2018-2019 drought (Moravec et al., 2021), large parts of Europe faced another record-breaking drought in 2022. Summer temperatures set newbroke records across the continent (Copernicus Climate Change Service, 2022), exceeding previous extremes extreme temperature observed duringin 2003, 2015-16, and 2018-19 droughts (Rakovec et al., 2022). Dry weather persisted through spring, initially affecting hydrological systems in the Eastern Alps, followed by extremely dry conditions, soil moisture deficits, and streamflow drought in Central and Southern Europe (Montanari et al., 2023; Bonaldo et al., 2023). In several countries, this prolonged and widespread situation led to Sustained dry conditions triggered increased water withdrawals and, in countries such as Italy and eventually France, water use restrictions on water use due to persistent hot and dry conditions in May, June and Julywere implemented (Avanzi et al., 2024; Bonaldo et al., 2023; Toreti et al., 2022). The Mediterranean was particularly affected by, as a dry winter and spring. exacerbating deficits in compounded with the dry and hot summer, causing early soil moisture deficits and low river flow (Toreti et al., 2022), withleading to wide-ranging impacts on society and nature (Faranda et al., 2023). This study analyses the 2022 European drought, linking its physical characteristics as represented by the Standardised Precipitation Evapotranspiration Index (SPEI) (Vicente-Serrano et al., 2010), with sectoral impacts and current drought risk management practices across Europe. To do so, it employs. Based on a detailed continent-wide survey of European-water managers involved in the 2022 drought response to the event. The findings from the survey are used to discuss the, we assess current limitations of the Europeanin Europe's drought risk management framework and present recommendations propose key areas for its-improvement. The study identifies the 2022 drought as a turning point for Europe, highlighting growing drought risks, diverse management capacities, and the urgent need for a unified, systemic, and legally binding approach to drought risk governance across the continent. This work is the result of a collaboration of was conducted by the Drought in the (DitA) network (https://iahs.info/Initiatives/Scientific-Decades/helping-working-groups/drought-in-theanthropocene/) and is a follow up to the paper "Lessons" builds on lessons learnt from the 2018—2019 European droughts: A collective need for unifying drought risk management" (Blauhut et al., 2021). Following this study, a A companion paper titled "The-From Crisis to Capacity: Institutional Preparedness and Response During the 2022 European drought shows the importance of preparedness Drought" (Biella et al., 2024b) delves deeper into the need for preparedness measures 2025) reveals significant disparities in drought risk management and is available preparedness and response across the continent, highlighting that organizations with forecasting systems and drought management plans are generally more effective and faster in the same issuetheir actions, underscoring the urgent need for a European guidance in drought preparedness.

1.1 Drought Droughts in Europe

125

130

135

140

Droughts are periods of extraordinary water deficit in the hydrological cycle (IPCC, 2021; Van Loon et al., 2016), which that can significantly impact can have adverse effects on the Socio-Ecological Systems (SES) (Van Loon et al., 2016). They are commonly defined as a deviation from normal conditions, it being below normal precipitation (meteorological drought) or climate water balance (precipitation less evapotranspiration) or below normal water availability on the ground (soil moisture, river flow and groundwater), referred to as hydrological drought (Tallaksen and Van Lanen, 2004). The possibilitiespossibility of damage and losses to society and ecosystems caused by a given drought is referred to as drought risk (IPCCa, 2022(IPCC, 2022a; Hagenlocher et al., 2023), which dependdepends on the interactions between thehazard severity of the drought event, exposure and the SES vulnerability and exposure of the SES (UNDRR, 2021).), while drought impacts are the resulting effects of a specific drought event (Walker et al., 2024). Finally, water scarcity indicates insufficient deficits—when water availability compared fails to the demand of themeet SES (Van Loon et al., 2016), which demands—can be the result of from both droughts, but can also be the result of and human factors activities (Van Loon et al., 2016).

Droughts present complex challenges that not only affectextend beyond the hydrological system, but rather affect all complex interdependencies of the SES (Kallis, 2008, disrupting ecological, economic, and social systems (van Loon et al., 2016). In Europe, this gives rise to a rippling effect of the drought impact across terrestrial and aquatic ecosystems, economic sectors, and even the socio-cultural system (; Crausbay et al., 2017), exacerbated by the increasing). Increasing population and reliance on water in drought-affected areas. There is a close link between drought, heatwave, may exacerbate these impacts. Moreover, droughts often coincide with heatwaves and wildfires, as evidence shows increasing heatwave and wildfire occurrences and severity with increasing dryness forming compounding hazards that intensify risks (Sutanto et al., 2020; Rodrigues et al., 2023). This compounding hazard presents new threats to human and the environment.

ClimateIn Europe, climate change is intensifying drought hazardhazards over most of the continent (Spinoni et al., 2018; Jaagus et al., 2021). Record high temperatures and altered rainfall patterns have led to an increasing drought risk in Europe (Vicente-Serrano et al., 2010). Europe-wide analysis has shown increasing drought frequencies in southern Europe and decreasing frequencies in northern Europe (Stagge et al., 2017). Whereas an increase in temperature and potential evaporation have enhanced droughts in southern Europe, it has counteracted increased precipitation in northern Europe. The pattern observed is likely to be further aggravated in the future (Faranda et al., 2023; Schumacher et al., While 2022, 2024), leading to drier and more intense droughts notable in central, eastern and southern Europe (Ionita et al., 2022). The Mediterranean countries have long faced recurrent droughts have historically been a major concern for water scarce regions such as the Mediterranean basin, and are considered the most drought-prone region in Europe (Caloiero et al., 2018, 2021) and is a global hot spot now and in the future (IPCC, 2022a), recent decades have witnessed show a consistent increase in their frequencydrought frequency not only in the Mediterranean, but also across central, northern, and eastern Europe, especially during summer (Caloiero et al., 2018; Spinoni et al., 2018; Markonis et al., 2021; Montanari et al., 2023), semenova & Vicente-Serrano, 2024). Combined with an ever-increasing demand for water globally (Savelli et al., 2023), water scarcity has

become an emerging threat to many European countries that requires revisiting water management strategies (Stein et al., 2016). Continental and northern regions of Europe are not spared from drought, as studies show increasing drought risk even in Western Europe and Northern Scandinavia (Spinoni et al., 2018) as well as in Eastern Europe particularly Ukraine (Semenova & Vicente-Serrano, 2024). Yet, the Mediterranean remains the most drought-prone region in Europe (Caloiero et al., 2018, 2021) and a global hot spot now and in the future (IPCC, 2022a). In their study, Ionita & Nagavciuc (2021) underscore the significant role of rising temperatures in the increasing frequency of droughts due to increased evapotranspiration and reduced snow accumulation. The record temperatures and altered rainfall patterns that are already being observed confirm the increasing drought risk in Europe due to global warming (Stagge et al., 2017; Vicente Serrano et al., 2010), which is likely to be aggravated even further in the future (Faranda et al., 2023; Schumacher et al., 2022, 2024), leading to drier and more intense droughts (Ionita et al., 2022). In fact, more than 30% of all extreme droughts observed in Europe since 1950 have occurred in between 2012 and 2022 (van Daalen et al., 2022). This staggering sequence of unprecedented extreme droughts This sharp increase stresses the importance of comprehensive and wider drought governance frameworks to enablefor effective drought risk management, including mitigation, adaptation, preparedness, and early warnings (Blauhut et al., 2021).

1.2 Systemic drought risk management

145

150

155

160

165

170

Drought in Europe often eovercovers large regions and last lasts for a few to several months – even years, causing severe socioeconomic impacts on different areas of the SES, including agriculture, water supply, water quality, energy production, ecosystems, public health, tourism, and recreation. (Stahl et al., 2016). Such impacts evolve slowly and tend to have cooccurringoccur (Shyrokaya et al., 2023) and lead to cascading effects across sectors in different parts of the SES (de Brito, 2021). In recent decades, annual drought-related economic losses in the EU and UK have been estimated at around €9 billion, with the highest losses in Spain (€1.5 billion/year), Italy (€1.4 billion/year), and France (€1.2 billion/year) (Cammalleri et al., 2020). Climate change is projected to further increase these losses, with a projected €65 billion for the EU and UK combined by 2100 (Naumann et al., 2021). Depending on the region, 39-60% of these losses are in the agriculture agricultural sector, while 22-48% are in the energy sector, costs which are expected to rise with a warmer climate (Cammalleri et al., 2020). Atlantic and Mediterranean Europe experience the highest drought related economic losses, contributing to 68% of total European losses in recent years, a share that is expected to rise with increasing temperatures, potentially reaching 85% with 3°C of warming (Cammalleri et al., 2020). The European Drought Risk Atlas (Rossi elet al., 2023) demonstrated that indicated extreme impacts on ecosystems and inland navigation are more often reported than those on compared to other sectors. They estimate the effect of droughts on aquatic and terrestrial ecosystems isto be the highest in Finland and Croatia, respectively, and note the largest. Largest increases in drought risk are found for the ecosystemecosystems in Italy and Spain. Yet, these figures represent only the quantifiable part; excluding indirect impacts are often or non-monetary and challenging or even impossible to quantify impacts (de Brito et al., 2024). Consequently, the true extent of drought impacts is likely much larger than current estimates suggest currently estimated.

Droughts, unlike many other disasters, have diffuse beginnings and endings (van Loon et al., 2024), involving various components of the SES as they propagate through the hydrological cycle affecting a wide range of sectors. Traditional drought management approaches have largely been reactive, focusing on crisis management rather than risk management, which often results resulting in ineffective and poorly coordinated risk management. However, researchers have warned against short-sighted measures, as this This can often lead to unintended consequences and maladaptation (Biella et al., 2024; Di Baldassarre et al., 2017; Magnan et al., 2016), increasing the vulnerability of the system to future-droughts. Instead, researchers argue that droughts necessitated rought management needs a systemic perspective that recognizes the complexities and interlinkages between elements and processes of the systems (Hagenlocher et al., 2023; Kallis, 2008; Van Loon et al; Wilhite, 2019), often underscoring the risks associated with infrastructural measures (Di Baldassarre et al., 2017), and the benefits provided by ecosystem-based adaptation (IPCC, 2022a; McVittie et al., 2018; Sudmeier-Rieux et al., 2021; Vignola et al., 2009). This perspective calls for continuous monitoring and adaptive management strategies that can respond dynamically is responsive to changing conditions and focus on dependencies, non-linearities, feedback dynamics, compounding and cascading effects, tipping points, multi-level risk, and deep uncertainties (Hagenlocher et al., 2023, de Brito et al. 2024).

175

180

185

190

195

200

205

One-such example is Integrated Drought Management (IDM), which advocates for a proactive, risk-based approach that incorporates incorporating monitoring, early warning systems, and vulnerability assessments (Grobicki et al., 2015; Wilhite, 2019). IDM strategies are essential for mitigating drought impacts, and balancing water demand and supply while ensuring environmental sustainability (Wendt et al., 2021). Regional governments and local communities play an essential role in drought management, as drought resilience depends on the collective capacity of stakeholders across different scales (Kchouk et al., 2023). Each country's drought management strategy reflects its administrative arrangements, with countries like Spain, and Germany, leaving vast operational autonomy to regional authorities, while other countries, such as France and Hungary being more centralized (European Committee of the Regions, 2025; Rowbottom et al., 2022). This underscores the need for policies that are sensitive to local contexts and that can mobilize resources and knowledge effectively across various governance levels. The Integrated Drought Management Programme (IDMP) launched by the Global Water Partnership (GWP) emphasizes regional cooperation and capacity building. The IDMP aims to create a coordinated framework for drought monitoring and management that involves framework involving several decision-making levels, from government officials to local stakeholders (Bokal et al., 2014; WMO & GWP, 2014). Finally, integrated and systemic drought risk management needs to account for the interplay between other forms of disaster risk management and drought risk management hazards. In particular, research has demonstrated the interaction between flood and drought risk management, and thethere is a need for holistic approaches to managing drought and flood interactions ensuring that manage the two hazards ((measures taken to mitigate one extreme do not exacerbate the other (Barendrecht et al., 2024; Di Baldassarre et al., 2017). Systemic approaches to drought risk management are crucial for developing effective drought policies and plans that can adapt to the region's specific needs.

1.3 European drought governance framework

210

215

Overall, European drought awareness and preparedness have been following an upward trajectory, as drought governance has been mainstreamed across many countries (Biella et al., 2024b2025; Kreibich et al., 2022; Publications Office of the European Union, 2023). However, this progress has not been a steady one. Awareness of drought risk awareness often peaks shortly after an extreme event, eapturing the attention of the public and policy

"Water is not a commercial product like any other,

"Water is not a commercial product like any other, but rather, a heritage which must be protected, defended and treated as such"

European Commission (DIRECTIVE 2000/60/EC Preface, Comma 1)

makers, potentially leading to changes while slowly decreases in water governance and drought risk management periods of "normality".

The scale of Europe's droughts and its interconnected socio-hydrological systems necessitate continent-wide drought risk management. Yet, Europe (where the EU represents the largest governance body) lacks a unified drought policy, relying instead on other water-related directives and non-binding communications (Hervás-Gámez & Delgado-Ramos, 2019; Publications Office of the European Union, 2023; Stein et al., 2016). The 2000 European Commission's (EC) Water 220 Framework Directive (WFD) is considered one of the most ambitious and substantial pieces of legislation dealing with water resource management (Voulvoulis et al., 2017), instituting catchment-level water management, environmental output requirements, unified monitoring, and international collaboration for transboundary catchments (Publications Office of the European Union, 2023; Stein et al., 2016). The WFD promotes a precautionary approach, emphasizing water conservation and stating that water is "a heritage to be protected" (DIRECTIVE 2000/60/EC Preface, Comma 1). Further developments on 225 drought risk management include the 2007 EC Communication on Water Scarcity and Droughts and the 2012 EC communication Blueprint to Safeguard Europe's Water Resources, which provide guidelines for Drought Management Plans (DMPs) and country-level drought risk management (Hervás-Gámez & Delgado-Ramos, 2019). The latter is particularly important for its emphasis onemphases water conservation, stating the need to prioritize demand-reduction over efficiency measures, and especially over increased supply and/or infrastructural measures (Hervás-Gámez & Delgado-Ramos, 2019; Stein et al., 2016). Despite its guidelines and ambitions, the EU's drought risk governance framework has significant gaps; the 230 WFD does not directly address drought risk management, and the; EC Communications of 2007 and 2012 are non-binding, lacking mandatory action for member states; and the fragmentation of institutional provisions of regulations impede coordinated effort and clear guidance (Publications Office of the European Union, 2023; Stein et al., 2016). In This is in contrast, with the EC established a Flood Directive in 2008, which laid the basis for European-level flood governance, creating a precedent for integrated Europe-wide guidance legislation on a hazard-specific risk management policy. Table 1 summarizes 235 the content and relevance of the policy instruments described in this section.

Table 1: Summary of the drought-related major policy instruments enacted by the EU and discussed in this paper.

Policy Instrument	Purpose	<u>Legal Status</u>	Scope	Relevance to Drought Risk	Identified Gaps	Official Document
Water Framework Directive (WFD) (2000)	Achieve good status for all EU waters by integrating water management.	Binding (Directive)	Broad: water quality, quantity, ecological health	Indirectly relevant: promotes sustainable water use, but drought is not explicitly addressed.	Lacks specific mechanisms for drought prevention, preparedness, and coordinated response.	WFD 2000/60/EC
EC Communication on Water Scarcity and Drought (2007)	Provide guidance and propose measures to address water scarcity and drought.	Non-binding (Communication)	Drought- specific focus	Key reference for raising drought awareness and proposing policy responses.	No legal enforcement; recommendations largely unimplemented or inconsistently applied across Member States.	COM (2007) 414 final
Blueprint to Safeguard Europe's Water Resources (2012)	Update on WFD progress; includes drought risk in water policy planning.	Non-binding (Communication)	Broad: includes drought among other challenges	Highlights need for improved water efficiency and drought risk integration.	Lacks mandatory implementation; limited follow-up or operationalization of drought-related actions.	COM (2012) 673 final
Floods Directive (2007)	Reduce and manage flood risks through risk assessment and planning.	Binding (Directive)	Flood- specific	Demonstrates EU capacity for targeted disaster directives.	No provisions for drought; illustrates asymmetry in EU treatment of water-related hazards.	Floods Directive 2007/60/EC

1.4 Objective of this research

The current drought governance framework offered by the EU is not suited for managing the increasing drought risk that

Europe is experiencing (Publications Office of the European Union, 2023; Stein et al., 2016). In this study, we provide an overview of the 2022 European drought, demonstrating the linkage between its physical aspects, sectoral impacts, as well as adopted risk management measures. In this paper More specifically, we explore four main questions: (1) "Is drought risk increasing?"; (2) "What iswas the spatial and temporal evolution of drought impacts in 2022?"; (3) "What are the drought risk management measures in place in 2022?"; and (4) "How is drought risk management changing across Europe?". To answer these, we employ a large-survey targeting water managers across Europe (described in Sec. 2.2). The survey results show the ramifications of drought impacts across Europe and provide insights into the status and trends in drought risk management and drought impacts (Sec.3.1, Sec 3.2, and Sec. 3.3). Additionally, two case studies (referred to as "("regional

spotlights") are used to provide additional insights on various aspects of drought risk management during the 2022 event, combining results from the questionnaire with additional information (Sec. 3.4). knowledge on the severity of the event as quantified using the SPEI and information on the local context (Sec. 3.4). to the two case studies are both located in the Mediterranean region, which was severely impacted by the 2022 event and where there is also a long tradition in drought risk management. Furthermore, the drought in this region lasted several years, exceeding the duration of the campaign analysed here. In the discussion (Sec. 4) we underline the need for unified drought risk management coordination at the continent level. Following up on the plea madeEchoing findings by Blauhut et al. (2021), we advocate for the development of an EC *Drought Directive*, inspired by the EC *Flood Directive* of 2007 (Sec. 5). This directive should offer a legally-binding policy mix that enshrines into law integrated and systemic drought risk management, placing equity, sustainability, and environmental needs at its centre, while acknowledging the differences in risk and capacity across the continent.

2 Methods and data

250

255

260

265

270

2.1 Climate data and Drought Assessment

Meteorological drought refers to a-prolonged period of abnormally low precipitation, often combined with higher-than-normal evaporation, leading to a climatic water deficits, deficit, which if sustained may manifest itself as a deficit in soil moisture and water resources (streamflow and groundwater). The Standardized Precipitation-Evapotranspiration Index (SPEI; Vicente-Serrano et. al., 2010) measures meteorological droughtthe climatic water balance by considering both precipitation and potential evapotranspiration. Similar to the Standardised Precipitation Index (SPI; McKee et al., 1993), it relies on selecting a suitable probability distribution to normalisethat normalises the index, allowing for comparisons across climates (Staggeclimate data (Vicente-Serrano et al., 20152010). Positive SPEI values indicate wetter conditions, while negative values suggest meteorological drier conditions, with values below -1 typically indicating moderate drought, below -1.5 severe drought, and below -2 extreme drought. Shorter accumulation periods of SPEI (e.g., SPEI-1 and SPEI-3) are used as proxies for meteorological and agricultural droughts, while longer accumulation periods (e.g. SPEI-6 and SPEI-12) are commonly taken to represent hydrological drought. Seasonality of drought is indicated an be represented using SPEI-3 winter. Winter is defined by calendar- months from December to February, with the SPEI-3 for Februarys—used to assess this period (representing the wet/dry anomaly three months back, i.e., the calendar winter months). Similarly, SPEI-3 in May represents the spring (March to May), SPEI-3 in August represents the summer (June to August), and SPEI-3 in November represents the autumn (September to November).

SPEI estimates derive are derived from monthly precipitation (PP), mean air temperature (TT), and potential evapotranspiration (PET) based on the data from the Climatic Research Unit (CRU) TS v. 4.07 dataset (Harris et al., 2020), with a spatial resolution of 0.5° x 0.5°., data from the Climatic Research Unit (CRU) TS v. 4.07 dataset (Harris et al., 2020). The CRU TS dataset is a global land climate record (excluding Antarctica) on a 0.5° grid, offering monthly data since 1901. It includes ten observed variables like temperature, precipitation, humidity, cloud cover, sunshine, frost, and wind speed, along with derived variables

such as potential evapotranspiration and the self-calibrating Palmer Drought Severity Index (Harris et al., 2020). We obtained Potential Evapotranspiration (PET) time series from the CRU TS dataset, where PET is calculated based on the Penman-Monteith formula (Monteith, 1965) based on monthly gridded values of mean temperature, vapor pressure, and cloud cover, as well as a static 1961–90 average wind field (with an annual cycle) (Harris et al., 2020).

The climatological period 1971 – 2000, is used here as a reference period for the computation of SPEI. We selected the 1971–2000 period as our reference to facilitate comparison with existing research (e.g., Ionita et al., To this end, we use the R package "SPEI"2017). We acknowledge that employing a more recent 30-year reference period could lead to slightly other results, especially in light of prevailing trends like overall warming. To this end, we use the R package "SPEI" (https://cran.r-project.org/web/packages/SPEI/index.html), which is based on the probability distribution of the difference between PP and PET. Data are normalized into a log logistic probability distribution to derive the SPEI values (Vicente Serrano et al., 2010). Potential evapotranspiration is determined using the Penman Monteith equation (Vanderlinden et al., 2008).

2.2 Impact and management data

285

290

295

300

305

310

2.2.1 Questionnaire targeting water managers

To collect data on drought impact and management measures, we designed a questionnaire targeting water managers responding to the 2022 European drought. Designed was designed by a team of researchers with expertise in drought risk management belonging to experts of the DitA working group of the IAHS-HELPING initiative (https://iahs.info/Initiatives/Scientific-Decades/HELPING/). Topics covered in the questionnaire (hereafter referred to just as the questionnaire) covers a wide range of topics. These include sectoral impacts of the drought, the occurrence of compounding and concurrent hazards, the measures taken by the respondents' organizations (along with their effectiveness and timeliness), the presence and use of preparedness measures, and developments in drought risk management across Europe. The survey is comprised ofquestionnaire comprises 19 questions (24 including additional clarification options)—out), of which 14 (17 including clarifications) are analysed in this study. The selected questions (listed in Table 42) focus specifically on drought impacts and drought risk management, as well as general questions regarding the respondents' organizations background and function.

To minimize misunderstandings, a glossary of terms like "drought risk management," "drought risk," and "drought risk management plans" iswas provided at the beginning of each relevant questionnaire section. Translated The team translated the questionnaire into 19 languages (listed in supplement, Sec. S1.2), the questionnaire was) and distributed it from March to October 2023. The sampling strategy utilized the DitA group's network. Key contacts in various European countries received the questionnaire through personal connections or web searches for experts, academics, and public organization contacts, who then disseminated it further via snowball sampling (or chain sampling)—nonprobability sampling where existing participants recruit future subjects through their social network. No personal information was automatically collected, ensuring compliance

with the General Data Protection Regulation (GDPR). An overview of the surveyquestions included in the questionnaire is provided in the supplement (Sec. S1).

Table 12: Questions included in the questionnaire to <u>water-water</u> managers <u>used in this study. Question number refers to the number of the question in the questionnaire. Type of question indicates the typology of the question. Qpen-ended questions hadhave a field where the respondents could leave their answers in text. Multiple choices were provided as either single, or matrixes (i.e. multiple choice for multiple options of the question). Multiple choice + open-ended means that the multiple—choice questions have one option that can be answered as an open-ended question if selected.</u>

Question number	Question	Туре
1	What type of organization do you belong to?	Multiple choice
2	At which level does your organization operate?	Multiple choice
3	In which country is your organization located?	Multiple choice + open
4	In which municipality/region do you operate (name, region, country)?	Open-ended question
6	Which sectors does your organization operate in?	Multiple choice + open
7	How severe was the impact of the 2022 drought on a scale from 1 (Not affected) to	Multiple choice matrix
	5 (Severe)? -[by sector]	
9a	When were the impacts first seen (month)? -[by sector]	Multiple choice matrix
9b	When did the 2022 drought end (month)? [by sector]	Multiple choice matrix
10	Which sectors were prioritized in the distribution of water resources? [by sector]	Multiple choice
12	What were the main measures taken by your organization?	Open-ended question
13	When did your organization first take measures to mitigate the impact of the 2022	Multiple choice
	drought?	
14	How effective were the measures taken?	Multiple choice
17	Compared to the 2018-2019 drought, your organization was[More; Less;	Multiple choice matrix
	Same]; [Aware; Prepared; Effective in response]	
18a	Do you think that the risk posed by droughts is [Increasing; Same; Decreasing]	Multiple choice matrix
18b	Elaborate (optional)	Open-ended question
19a	Do you expect the drought to become a more significant risk to manage for your	Multiple choice
	organization in the future?	
19b	If yes, how is drought management changing in your organization (optional)	Open-ended question

2.2.2 Dataset

320

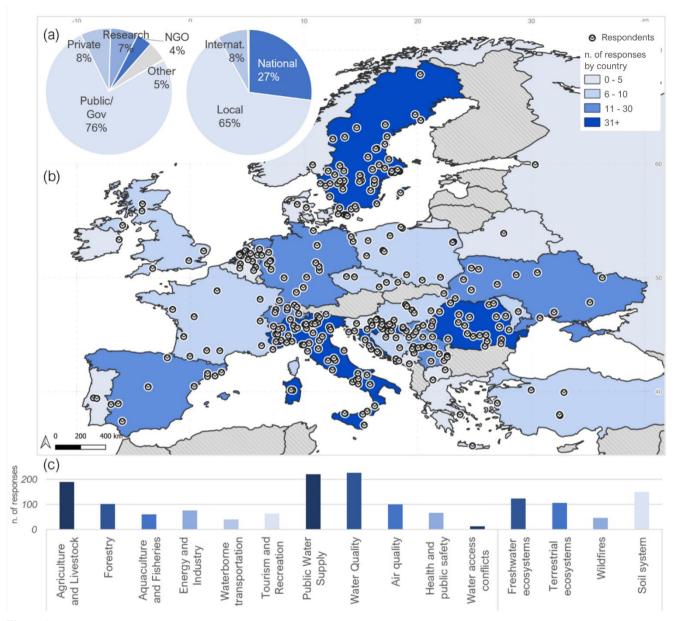
315

The <u>surveyquestionnaire</u> gathered 487 responses, of which 481 <u>arewere</u> deemed <u>valid</u>. <u>Invalid responses include those from outside within</u> the study area, <u>or clear duplicates</u>. Responses were received from 30 European countries, predominantly <u>from Italy</u>, Sweden, Croatia, Romania, and Serbia. Fifteen countries each have ten or more respondents, collectively accounting for

89% of the total responses (Fig. 1b). Notably, high concentrationsnumber of responses, came from the Alpine and Adriatic regions, central Balkan Peninsula, Rhine Valley, Southern Sweden, and the Pyrenees Region. Fifteen countries each have ten or more respondents, collectively accounting for 89% of the total responses (Fig. 1b). A significant portion of Most respondents (76%) are employed in public and governmental organizations, while the remainder fewer work in private companies (8%), research institutes (7%), NGOs (4%), and unspecified organizations (4%). Regarding their operational scope, a The majority (65%) of respondents operates regionally, (65%) with an additional 27% at the national level and 6% internationally (Fig. 1a). Respondents are involved in various sectors (based on EDII categories, Stahl et al., 2016) considered critical to drought management, especially water quality, public water supply, and agriculture, with 226, 220,47%, 46%, and 189-39% responses, respectively, in addition to. This include also several ecosystem-related areas (Fig. 1c). Sectors are based on the classes of drought impact as defined in the European Drought Impact Inventory (EDII, Stahl et al., 2016). The same classes were used to indicate drought impact by sector.

325

330


335

340

345

350

As a survey-based dataset, several limitations are inherent. First, responses reflect respondents' subjective views. Metrics For example, measures describing drought risk management, such as response effectiveness or awareness, should thus be understood as perceived effectiveness and awareness. However, given the respondents' of a professional role in drought risk management. Hence their subjective observations are considered relevant and valid metrics measures. Second, snowball sampling, while necessary here, limits may limit the representativeness of the data, particularly when aggregated into subgroups (such as by country, area of operation sector, or type of organization). This study assumes that the sub-group samples are representative of represent their larger groups, though although this cannot be confirmed. Finally, since the different eountries received vastly different numbers of responses, comparison response rate per country limited the comparisons that could be done between countries is limited. To reduce accommodate this bias, the study only displays information from countries that received with more than 10 valid responses to a specific question. Additionally, information is also presented at the regional level. The regions are adapted from those used in The World Factbook (https://www.cia.gov/the world factbook/), then adjusted with Southern Europe divided into two parts instead of three to keep (adapting the classification in The World Factbook (https://www.cia.gov/the-world-factbook/). Information presented at the regional level includes the responses from all countries in a region, not only those from countries with more than 10 valid responses. This allows accounting for the perspectives of countries that would otherwise be excluded from the analysis. We have adjusted the division of Southern Europe to obtain a more equal distribution of the responses: consequently, Italy, Vatican, and San Marino are grouped with the South Western region, and together with the countries of the Iberian Peninsula, whereas Greece and Cyprus with are imbedded in the South Eastern region, together with the Balkans countries. In the figures and tables, the regions will be are referred to using acronyms: norther western Norther-Western (NW), north eastern North-Eastern (NE), western Western (W), centralCentral (C), easternEastern (E), south-westernSouth-Western (SW) and south-eastern (SE). An overview of the regions used in this study and the acronyms used for each country can be found in Sec. S2 of the supplement.

Figure 1: Overview of the <u>distributionnumber</u> of respondents <u>as grouped</u> by (a) type of organization and operational level, (b) <u>location and frequency across</u> <u>Europe country</u>, and (c) <u>areas of operations sector</u>. The total number of responses to the questionnaire was 481.

2.2.3 Drought impact

355

360

Questions Observed (sectoral) drought impacts were raised in questions 9a and 9b required, with blank options if the sectors were not relevant to respondents to indicate the beginning and end of the observed drought impact for each sector. Responders could leave blanks for sectors they were not familiar with, and only provide indications for the sectors in which they were

the period extends for nine months; from March to September 2022. Additionally, the option with additional options "before March 2022", and "after September 2022" are available. Respondents were required to indicate the severity of the impact by sector on a scale from 1 (not severe) to 5 (very severe) (question 7, see Table 12), as well as the prioritization that each sector received in the response to the drought as "low priority", "medium priority", or "high priority" (question 9, see Table 1). Again, respondents could leave blank any sector for which they could not provide a response.

2.2.4 Drought risk management

365

370

375

380

385

390

Respondents detailed thetheir organizations' drought risk management measures taken by their organizations in an open-ended question (question 12, Table \(\frac{1}{2}\)). The responses to this question were reclassified using a typology devised by Reckien et al. (2023), which in turn is based on the IPCC AR6 GAMI (Ch. 16) (IPCC, 2022b). To facilitate reclassification, responses Responses were first translated from their original language to English using ChatGPT (chatgpt.com). These translations were) to facilitate reclassification. Native speakers then validated by native speakers. Additionally, these translations. Additional classification of the responses to the question on measures taken were also classified based on the was applied following recommendations outlined in the EC Blueprint to Safeguard Europe's Water Resources of 2012. The Blueprint prioritizes the different types of drought risk management measures, placing demand decrease as the highest priority, followed by prioritization and efficiency measures, and assigning the lowest priority to supply increase measures and infrastructural measures. Based on this, three categories were established to evaluate responses in this study: "Decrease Demand"; "Prioritization and Efficiency"; "Increase Supply". Demand-side measures refer to measures aimed at those reducing water demand in order to match the decreased supply. Conversely, supply-side measures attempt to integrate water supply through additional or alternative water sources of water (e.g. groundwater) to meet demand. To ensure the validity of the classification, two Two researchers were involved in the classification process, and to ensure the validity of the classification, with an inter-annotator agreement test was carried out, which reached of 86% and was considered satisfactory. Details regarding the agreement test are reported in the supplement (Table \$2\$S3).

Question 14 prompted respondents to rate the *effectiveness* of the measures taken during the 2022 drought on a scale from 1 (not effective) to 5 (very effective). Respondents also had the option to <u>indicate unknown effectiveness or</u> leave the question blank (reported as "no answers" or "NA"), or indicate "I don't know". Additionally, respondents could respond "not relevant". This option was <u>originally initially</u> intended for respondents whose actions, like monitoring and data collection, do not directly impact drought management; or for those who took no measures. To prevent misinterpretation (inferring "not relevant" as "not effective at all"), this option (less than 1) was placed separately from the 1-to-5 scale in the questionnaire.

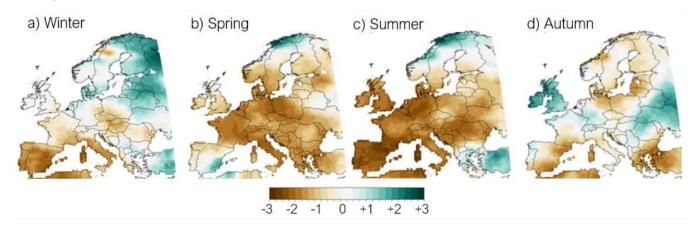
Finally, question 17 allowed respondents to indicate the <u>directionoverall change</u> of drought risk management for their organizations by indicating whether their organizations were more, less, or equally aware of drought risk in 2022 compared to 2018 (i.e. the year of the previous large-scale European drought). They were also asked to <u>assessindicate</u> the preparedness and effectiveness of their organization's management in 2022 compared to 2018.

3 Results

395

400

405


410

3.1 Drought occurrence

3.1.1 Development of the 2022 drought in Europe

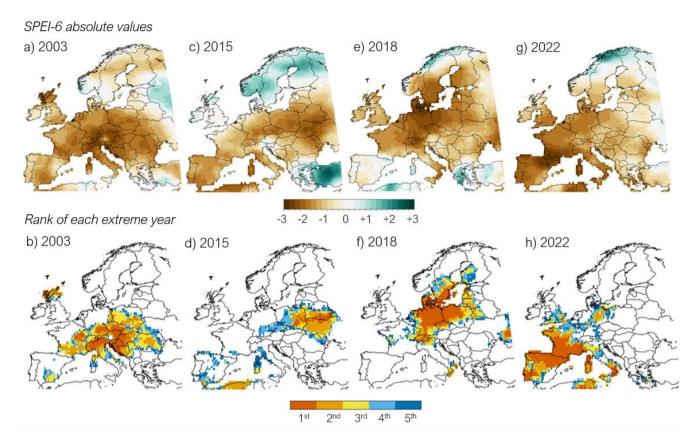
The onset of the 2022 drought was already visible in the winter of 2021-2022 (Fig. 2a), which was unusually warm and dry across the southern and eastern parts of Europe, (Avanzi et al., 2024). The Alps, a crucial source of freshwater for the continent central and southern part of Europe, received significantly less snowfall than average (Carrer et al., 2023; Montanari et al., 2023). Snowpack and seasonal snow cover act as natural reservoirs, slowly releasing water throughout the spring and summer. The absence lack of snow means that rivers and streams are deprived of their usual replenishment, leaving them vulnerable as temperatures and evaporative demand (i.e. the water needed for evapotranspiration processes) rose, especially for the Rhine and Danube rivers, which are essential rivers for inland waterways navigation and drinking water (Van Loon et al., 2024).

Spring 2022 was characterized by warm Warm and dry conditions across most of Europe characterized spring 2022 (Faranda et al., 2023), further exacerbating the dry conditions (Fig. 2b). The most affected countries were France, Italy, Germany, Poland, Czech Republic and the Balkan countries. High temperatures accelerated evaporation from soils and water bodies, impacting ecosystems, and increasing increased the demand for irrigation. This early onset of warm and dry weather—imposed stress on already depleted_stressed water resources, raising concerns for the months ahead. In summer, a high-pressure system persisted over Europe, creating a heat dome that trapped warm air and blocked moisture-bearing weather systems (Bakke et al., 2023). Temperatures soared to record highs, drying out soils, wilting crops, and fuelling wildfires. The summer period witnessed the drought moving northward, affecting the UK and the Republic of Ireland, the Netherlands, Germany, Northern Poland, Belarus, and Ukraine (Fig. 2c), whereas the most northern parts remained unaffected, except for southern Scandinavia in the spring. In autumn (Fig. 2d), only a small region was still affected by extremely dry weather conditions, namely the southern and eastern parts of Spain, Turkey, Greece and Bulgaria, the north-eastern part of Germany and the western part of Poland, and the Baltic states.

Figure 2: Seasonal evolution of the Standardized Potential Evapotranspiration Index for 3-month accumulation (SPEI-3) for 2022; a) Winter (SPEI-3 February); b) Spring (SPEI-3 May); c) Summer (SPEI-3 August) and d) Autumn (SPEI-3 November).

420

425


430

435

440

The SPEI-6 for September, which (Fig. 3, top row) indicates the wet/dry condition over the growing season; for four major droughts in Europe over the past two decades (i.e., 2003, 2015, 2018, and 2022) of the last two decades is shown in Fig. 3 (top row).). The top-corresponding drought severity ranks (Fig.3, bottom row) highlight the seven ranking of the-lowest SPEI-6 values recorded for these events is shown in Fig.3 (bottom row), each event. A rank of one means that SPEI for indicates a given year is record-breaking drought, i.e., the lowest during observed in the analysed study period. The location of the drought, the size of the affected area, extent, and its unprecedented level, varyseverity of drought varied across the events. For example, in In 2003, the core of the drought, in terms of record-breaking low SPEI values, was in central — were centred over Central Europe (Fig. 3a and 3b), whereas in 2015, the most affected regions were in the eastern part of Eastern Europe (e.g., eastern Poland and Ukraine) (Fig. 3c and 3d). In 2018, the core of the drought was over Germany, Poland and the southern part of SwedenScandinavia (Fig. 3e and 3f), while between March and). Despite Fig. 3 not clearly showing it due to the choice of SPEI-6 for September as the reference indicator, Scandinavia in particular experienced one of its worst recorded droughts (Bakke et al. 2020). In 2022, northern Spain and south western southwestern France were affected by experienced recordbreaking meteorological droughts. None of the events covered the whole of from March to September. No single event affected the entire Europe, but in most cases, more than 50% of the continent experienced at least moderate drought conditions. It is worth noting that Notably, the two most recent events (2018 and 2022) show the highest continuous area of record—high SPEI values (dark brown colour in Fig. 3e and g).

From a hydrological perspective, in 2022, many prominent European rivers, including the Rhine, Danube, Po, and Ebro experienced one of the most severe droughts in recent decades (more details in Fig. S3 in the supplement). By the end of winter 2022, these rivers faced prolonged drought conditions that persisted until the end of summer for the Rhine and Danube, and even longer for the Po and Ebro.

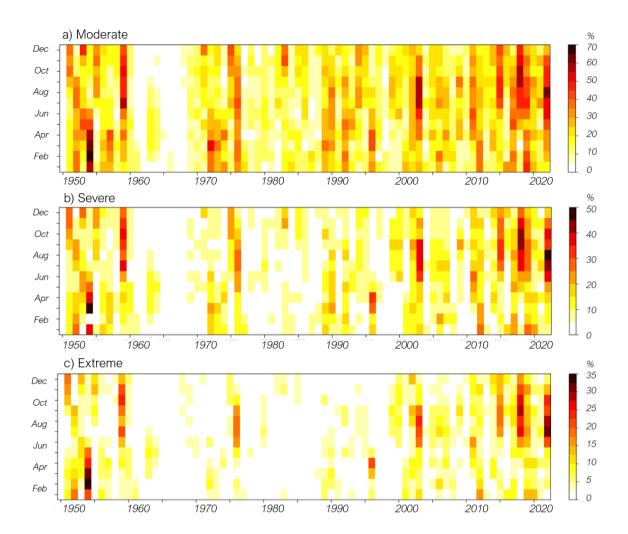


Figure 3: Comparison of the SPEI6 for September of the main Europe-wide droughts since 2000: Namely, 2003, 2015, 2018, and 2022 (top row) and their associated ranking (bottom row). The period analysed is 1950–2022. A rank of one signifies that SPEI6 September for a given year (i.e. 2003, 2015, 2018 or 2022) is record-breaking, i.e. the lowest value during the analysed period.

445 3.1.2 Observed and perceived change in drought risk

450

Over the last 70 years, droughts have become more frequent, more extreme, and more extensive overin Europe particularly in the last decade (Fig. 4). Moderate—____(SPEI between -1 and -1.5) and severe (SPEI between -1.5 and -2) droughts, in particular, have intensified at the European level, especially after 2000's, in agreement with previous studies (Ionita and Nagavciuc, 2021). SPEI values lower than -2 are referred to as extreme drought (Vicente-Serrano et. al., 2010). As for the 2022 drought, this event was the most extreme summer drought that the continent has experienced since 1954. However, unlike the 1954 drought event, which mostly took place during winter, recent droughts, and in particular the 2022 drought, occurred between April and October, and peaked in July and August (Fig. 4).

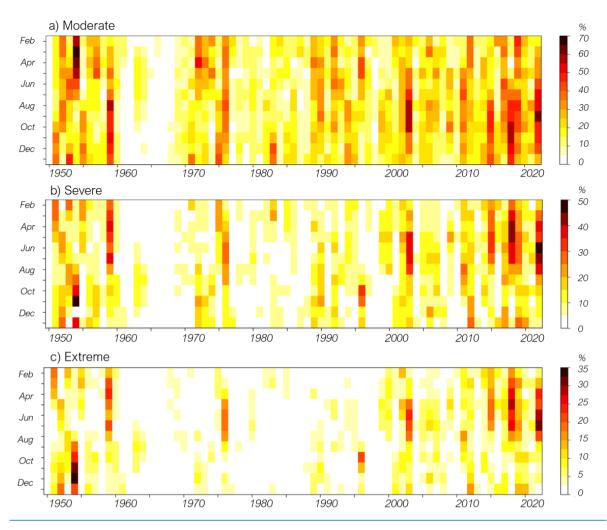


Figure 4: Temporal evolution of the percentage of area affected by droughtsdrought at European level for three drought severity categories: moderate (a; SPEI_6 between -1 and -1,5), severe (b; SPEI_SPEI_6 between -1,5 and -2), and extreme (c; SPEI_SPEI_6 below -2). The colour of the cell indicates the percentage of the European area covered by a drought (i.e. below SPEI_SPEI_6) of the corresponding intensity.

3.1.2 Perception of drought risk among the respondents

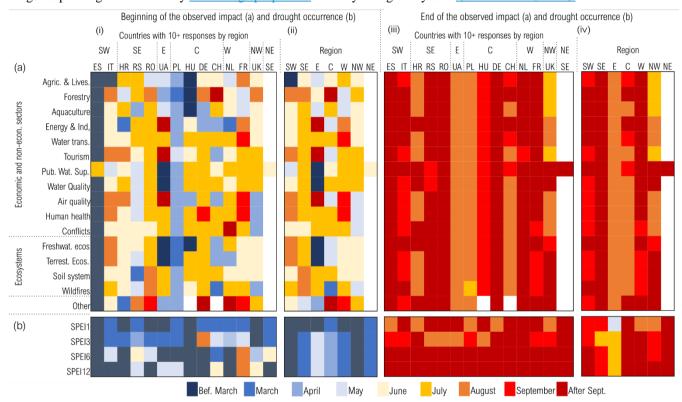
460

465

According to the survey, the vast majority of the most respondents (87%) consider that the risk of believe drought has been risk is increasing. In contrast, only 89% of the respondents consider that 9% think the risk remains has remained the same, while just 1% of the respondents think that the risk and only 1% believe it is decreasing. Additionally, 2% of the respondents Another 2% are unsure about the risk (i.e., responded "I don't know"). Concern about rising drought The highest levels of concern for increasing risk are expressed by is strongest among respondents operating working in water management in the for ecosystem-related fields (i.e., For Terrestrial and Aquatic Ecosystems, Wildfires 92% see an increase in drought risk, and Soil System); 92% of those operating in Terrestrial Freshwater Ecosystems, and 91% for those operating in Freshwater Ecosystems.

Regarding economic sectors, the respondents within 91% report the same. Participants from the Energy and Industry considered drought risk to be increasing the most sectors show the highest concern (92%), followed by those working on Air Quality (89%). On the other hand, the sectors where the least percentage of respondents think that the risk of drought is increasing are. Tourism and Recreation (83%), Human Health (84%), and Forestry (86%). %) show the lowest shares of respondents who think drought risk is rising. These sectors also have the highest percentage of respondents who believe the risk has not changed — 14% in Tourism and Recreation, and 13% in both Human Health, and Waterborne Transportation show the highest number of respondents who consider drought risk to be unchanged, with 14%, 13%, and 13%, respectively. At the country level (considering only countries with over 10 responses), countries. Countries with the highest percentage of respondents indicating that drought risk is increasing are France and the UK (both 100% out of 15 and 14 answers, respectively), Serbia (93% out of 29 answers) and the Netherlands (93% out of 28 answers). On the other hand, respondents Respondents from Sweden (73%), Romania (74%), and Germany (79%) indicated the smallest increase in drought risk. Furthermore, countries with the largest share of respondents perceiving that the Drought risk posed by drought is was reported unchanged, are in Sweden (by 21%),% of respondents. Romania (at 14%),%, and Germany, and Switzerland (both at 12%).%. The largest share of respondents indicating decreasing risk are from Sweden (5%), Croatia (2%), and Romania (2%).

480 **3.2 Drought impact**


470

485

495

3.2.1 Impact duration

According to the respondents, the impacts of the 2022 drought were initially observed in Southern Europe (Fig. 5a). In particular, most sectors in Spain showed signs of drought impacts before March 2022, while in Italy, Agriculture agriculture was the key sector displaying early signs of impact (before March). Central and Eastern Europe, such as (i.e. Hungary, Poland and Ukraine, also exhibited an early onset of drought impacts, particularly in sectors like Agriculture, Fishery and, in some cases, Forestry. The remaining part of Europe (excluding northern Europe, which was not affected by the event) experienced the drought impact later in summer, typically not earlier than June or July. However, some exceptions can be seen Even later impacts (after September) were observed in certain sectors, notably Forestry, Energy and Industry, Tourism and Recreation, Air Quality, and Water Conflict, as well as in some countries where first drought impacts manifested later, i.e., after September. This aligns with expectations, as impacts on confirms that Forestry drought impact may require a longer period to become apparent, given that dieback results from prolonged dry conditions, diminishing pest and disease resistance over time (Shyrokaya et al. 2023; Bastos et al. 2020; Messori et al. 2021; Wu et al. 2022). Additionally, hydropower Hydropower production is dependent depends on reservoir (and snow) storage, short and long-term weather forecasts, and the energy market, all of which are also influenced by droughts drought (Okkan et al., 2023). Survey reports also indicated that the drought ended last-lasted longest in Southern, Central, and Western Europe (the Netherlands, Germany, and France), with respondents reporting that is was still ongoing after September 2022. Consequently, Southern Europe emerges as the region experiencing the longest-lasting impacts, persisting for over nine months in some cases (the entire observation period covered by our questionnaire). This <u>number and</u> severity of drought impacts, as reported across much of Southern Europe, <u>is mirroringmirrors</u> the drought extent and severity as depicted by SPEI-3 and SPEI-6 indices (Fig. 5b, lower left panel), starting as early as March. Overall, many countries show <u>lagsa delayed response</u> between the drought hazard (represented by the SPEI) and impact occurrences, ranging from 0 months in Spain (<u>suggesting that the drought started prior to March</u>) to 5 months in France. As for-the drought termination, several countries reported drought impacts beyond the drought period as defined by SPEI-3 (Fig. 5b, lower right panel). The main reason <u>beingis</u> that rainfall—occurring during summer may terminate meteorological and agricultural droughts, represented by SPEI-3, while hydrological droughts (<u>represented by SPEI-6 and SPEI 12</u>) may persist longer depending on the memory and storage properties of the hydrological system. (Sutanto et al., 2024).

Figure 5: Most commonly reported beginning (left) and end month (right) of drought impacts in Europe listed from south to north (a). The lower plot (b) indicates the onset of the drought defined as the first month when more than 50% of the territory was under drought conditions (SPEI < -1) for SPEI-1, SPEI-3, SPEI-6, and SPEI-12 of each month. Only countries with 10 or more responses are shown. The European regions are described using the acronyms: SE (southeast), SW (southwest), E (east), C (central₇), W (west), N (Northwest), NE (northeast). Countries are indicated using their two-letter country code. White cells indicate missing data.

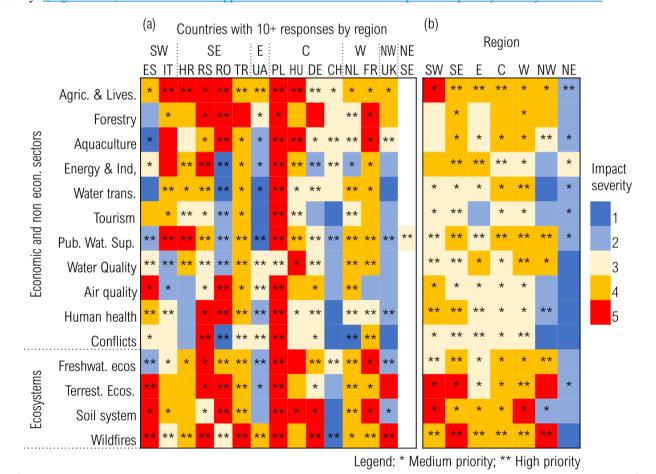
3.2.2 Impact severity and prioritization

500

505

510

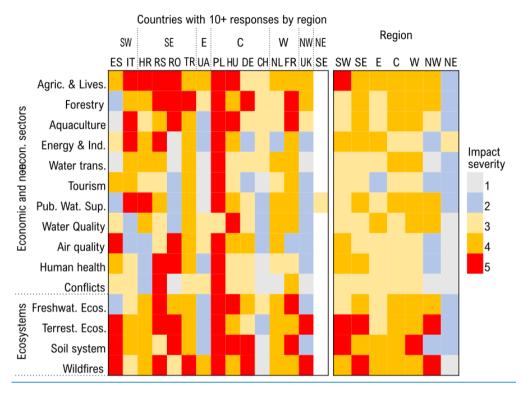
515


In terms of impact severity, Southern Europe experienced earlier and longer-duration droughts with more severe consequences as —compared to fewer and less severe impacts in the northNorth. In particular, sectors such as Agriculture, Forestry, and Public Water Supply were highly impacted in Central and Southern Europe, with increased wildfires and soil degradation as

examples. Conversely, Northern Europe witnessed less severe impacts (Fig. 6), as expected, due to the less severe drought conditions or even no drought at all.

Notably, <u>certainsome of the</u> highly_impacted sectors, including Forestry in Germany <u>as well as and Energy</u> and Industry and Fisheries in Italy, received low priority water allocation. <u>InThis forms a sharp contrast, to high priority</u> sectors <u>withthat</u> perceived milder impacts, such as Public Water Supply and Water Quality, Water Transportation, and Tourism and Recreation, according <u>were considered high priority by the to</u> respondents across multiple countries. <u>Yet, However, these</u> less severe impacts <u>cammay</u> also result from <u>the priority given toprioritizing and applying</u> mitigation and <u>timely adaptation measures</u> and <u>the benefits-to-cost that these measures provide for each sector.</u> As prioritization affects drought <u>impactimpacts</u>, a high priority is likely linked to a less severe impact within certain sectors (e.g. Public Water Supply), and as such <u>can be indicative of indicating</u> an effective response. <u>Moreover, sectors Sectors</u> where impacts generally take longer to materialise, such as Forestry, are likely to receive lower prioritization (Fig. 6). Still, this prioritization discrepancy highlights the nuanced approach to managing diverse <u>impact levelsimpacts</u> across sectors in response to varying degrees of <u>impact and</u> drought <u>and impact severity- (Fig. 2 and 3)</u>. Table S2 in the Supplement shows information on reported impact by country and sector.

520


525

535

540

545

Figure 6: Impact severity (on a scale from 1 to 5; where 5 is the most severe level) on the various sectors and their prioritization according to the respondents (on a scale from none, to 1 or 2 stars that indicate low, medium, and high priority, respectively). Only countries with 10 or more responses are presented. Countries are grouped into geographical regions. The panel to the right shows the value for the entire geographical region. These include countries with less than 10 responses. The European regions are described using the acronyms: SE (southeast), SW (southwest), E (east), C (central, W (west), N (Northwest), NE (northeast). Countries are indicated using their two-letter country code.

3.3 Drought risk management

3.3.1 Types of drought measures taken

Most measures taken fall into two primary categories: those related to water supply (2%)27%) (i.e., increasing (reservoir / groundwater) sources to meet demand or prioritizing users, such as increasing the use of groundwater), and those concerning water use and demand (19%) (i.e., reducingthat aim to reduce demand to meet availability, such as by (i.e introducing restrictions-on-use) (Fig. 7). This trend is observed across all sectors, although variations exist differences are evident between countries. Countries in Southern Europe (and the Netherlands) tended to favour water supply management, while countries in Central and Western Europe predominantly focussed on water demand management. Other prevalent measures included awareness raising (19%), which was common across all sectors and many countries, and monitoring (9%), which is most common in the Public Water Supply and Water Quality sectors. Monitoring was also particularly notable in Sweden (where the drought was less severe). Germany, France, the Netherlands, and Croatia also implemented 'incentive and compensations'

schemes to tackle drought impacts. Farm-related management practices were common in Romania and Turkey. Ecosystembased measures were only common in Poland, where many responses came from natural park management authorities, and which were mostly missing notably underrepresented in other countries (with some minor exceptions in the Balkan region). Sweden and Ukraine most frequently reported that few or no measures were taken. In Sweden, the milder manifestation of the drought led many respondents to deem drought management unnecessary (in agreement with the two respondents from Norway). This is reflected in the Public Water Supply and Water Quality sectors, being the sectors withwhich show the highest recurrence of no measures taken, as most of the Swedish responses cameoriginated from those these two sectors. In Ukraine, in addition to the 2022 drought being milder than in the previous two years, it could be speculated one may acknowledge that the war and consequent prioritization needs have hampered-limited response to the capacity to respond, questionnaire. Responses addressing Reclassification of the elassification based responses on the bases of the recommendations from the EC Blueprint (Sec. 1.3) showed that responders mostly respondents mainly employed 'demand reduction' and 'supply increase' measures (respectively-13% and 14%), while efficiency and prioritization measures remained were underused (6.3%) (Fig. 7). Respondents in France (40%), Spain (37%), and the UK (35.7%) showed the largest adoption of demand reduction measures, whereas the Netherlands (43%), the UK (28.6%), Hungary (27%), and Italy (23%) showed the largesta large use of supplyside measures. Prioritization and efficiency measures remained underused underreported except in Italy where they constituted 19% of the responses. This contrasts with the advice byguidelines of the EC Communication, which clearly states the need to prioritize demand reduction measures, followed by improving efficiency, and only as a last measure, increasing supply.

550

555

560

565

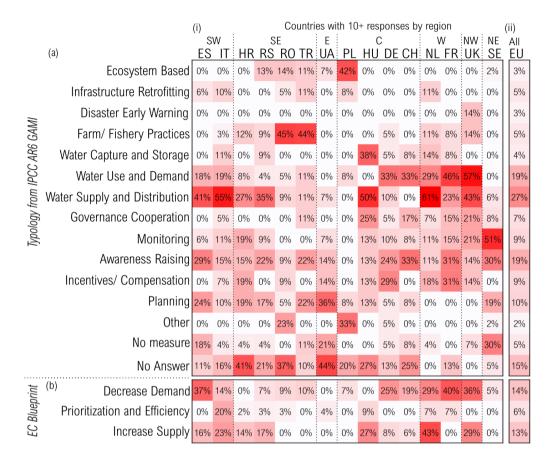
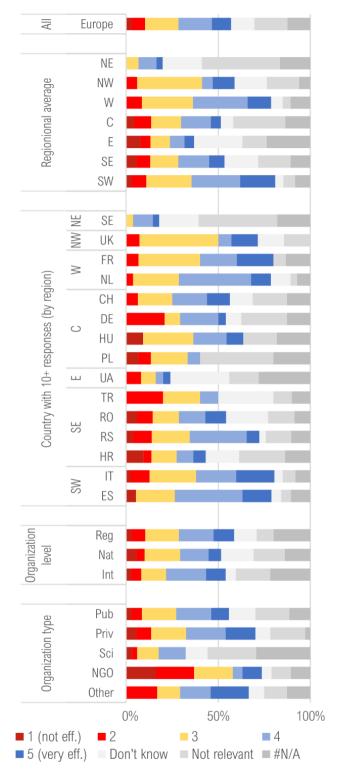


Figure 7: Measures taken by the respondents organised by country (only countries with 10+ responses), and region. Panel a) shows the measures classified according to the Ch. 16 of the IPCC AR6, while panel b) shows the same measure re-classified according to the EC Blueprint. Panel i) shows the results by country, while panel ii) shows the aggregates for the entire dataset. The numbers represent the percentage of respondents using a specific measure as relative to the total number of respondents for that country. Depending on the response, multiple measures could be identified for the same response. The European regions are described using the acronyms: SE (southeast), SW (southwest), E (east), C (central, W (west), N (Northwest), NE (northeast). Countries are indicated using their two-letter country code.


3.3.2 Perceived effectiveness of the response

570

575

580

Respondents were asked to rate the effectiveness of the measures taken during the 2022 drought on a scale from 1 (not effective) to 5 (very effective). The key features of results are depicted in Fig. 8. 2528% of respondents rated the effectiveness of their measures between 1 and 3, meaning non-to moderately effective. Conversely, 1618 % rated the measures as effective (4), and 910% very effective (5). Additionally, 11% were unable to answer, 11% responded "I don't know," and 16% marked "not relevant". A small share reported unknown (13%) or irrelevant (18%) effectiveness with some additional blank answers (12%). Sweden and Ukraine in particular show a high rate of non-valid answers, possibly reflecting the fewer and (less severe impact) impacts of the 2022 drought for the former; and the effects of the war for the latter. Respondents from NGOs generally rated their efforts as least effective in managing drought risk, with 57% of the responders giving a rating of effectiveness from 1 to 3. Scientific Respondents from scientific organizations also reported below-average effectiveness (18% 1 to reported)

effectiveness between 1 and 3, but with). However, only 32% valid responses) and a higher occurrence of of the respondents rated their response, while many stating effectiveness is "not relevant" responses (26%), reflecting their indirect role in drought response.%). Both private and public/governmental organizations reported effectiveness levels close to the European average, though only 27% of public/governmental organizations considered their measures effective or very effective. Organizations operating at the international levelinternationally were the most positive on the effect, with 32% rating measures as 4 or 5. Regional-level organizations followed (30%), with national-level organizations being less certainsure about the effect (22%). Despite these variations, the differences across organizational levels were overall smallminor and aligned closely with the overall assessment at the European level when (excluding non-valid answers. The countries). Countries with the highest share of respondents indicating measures taken to be effective or very effective were Spain (53%), the Netherlands (50%), and Italy (42%). On the other hand, the highest share of effectiveness rated between 1 and 3, was found in the UK (50%), France (40%), and Italy (38%). A more detailed overview of the findings is available in the supplement (Table S3).

A notable share of respondents (18%) selected "not relevant" for their measures. This option was originally intended for organizations whose actions, like monitoring and data collection, do not directly impact drought management or for those who took no measures. To avoid misinterpretation (inferring 'not relevant' as 'not effective at all'), the option (less than 1) was placed separately from the 1 to 5 scale in the questionnaire. The responses indicate that 26% took no measures, and 24.1% did not answer the question. Among those who took measures, the most common were also commonly reporting monitoring (17%) and awareness raising (9.5%). This

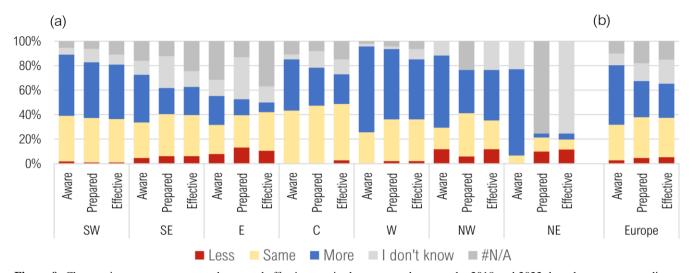

suggests respondents correctly interpreted the question, though some misinterpretation might have occurred, potentially overestimating the reported effectiveness may also be overestimated effectiveness (Fig. S2 in the supplement). Swedish respondents accounted for 31% of "not relevant" responses, reflecting their fewer and less severe drought impacts and focus on monitoring.

Figure 8: Effectiveness of theorganizational measures taken by the respondent's organization (Question 14 in the survey). The options included values 1 to 5 on a scaleagainst drought. Responses range from "1 ("not effective"") to "5 ("very effective" respectively;"), plus options: "I don't know" indicating the respondents lacked knowledge on the effects of the measures that their organization put in place,;" "not relevant" meaning that the measures taken are not meant to impact drought response (e.g. scientific organizations collecting data),;" and the option to leave the question blank if the respondent was not able to answer the question for unspecified reasons. The values displayed are the percentage of valid answers for each sub-group. The first row shows the values for all the responses received and is labelled as "All / Europe". The sub-groups presented are individual countries with at least 10 answers grouped by region (see Sec. 2.1.3); and regional averages (including countries with less than 10 answers). The European regions are described using the acronyms: SE (southeast), SW (southwest), E (east), C (central, W (west), N (Northwest), NE (northeast). Countries while countries are indicated using their two-letter country code.

3.3.3 Changes in drought risk management

According to the survey, About 79% of the respondents across the whole of Europe-considered that drought risk management will become more significant for their organisation. In contrast, with only 9.6% considerconsidering the opposite. Drought is expected to become a more significant risk to manage for all sectors, as indicated by the responses given for Freshwater Aquaculture and Fisheries (88%), Public Water Supply (86%), and Waterborne Transportation (85%). Again, water managers operating on ecosystems are among the most certain that drought risk management will become more relevant, with Terrestrial Ecosystems, Freshwater Ecosystems, and Wildfires reporting indicating (87-88%, 87%, and 87%, respectively.%). Respondents in Switzerland (27%), Romania (20%), and the Netherlands (18%) are the countries where the perception indicated that drought risk management will not become more important for the organization represent the highest although rather low percentages. Conversely, fin contrast to respondents from France (100%), Spain (95%), the UK (93%) and Italy (91%) indicate that stating increased importance of drought management will become more important.

Comparing the management of the 2022 drought with that of the 2018 drought, most organisations noticed increased drought awareness after the 2018-2019 drought, but not all could translate this into increased preparedness or a more effective response (Fig. 9). It is worth noting that there is a rather high correlation between 'more awareness' and 'more preparedness' or 'effective in the response' (correlation coefficient of 0.52 and 0.46 respectively). Among the organisations reporting increased awareness, 49% reported increased preparedness, and 46% reported increased effectiveness (40% reported both). There is The responses have an even stronger correlation (correlation coefficient of 0.7) between 'improved preparedness' and 'improved effectiveness' in the responses. Only a. Very few organisations were less aware/prepared/effective in 2022 than during the 2018-2019 drought event (respectively, 3%, 5%, %) (Table S5 in the supplement presents these results in more detail).

Figure 9: Changes in awareness, preparedness, and effectiveness in the response between the 2018 and 2022 drought events, according to the respondents. The respondents could answer "more", "same", or "less" to the three questions "How aware/prepared/effective was your organization in 2022 compared to 2018?". The option "I don't know" and the possibility to leave the question blank (i.e. "#N/A") were also available. The results are presented at the European level (i.e. all responses), and at the regional level. The European regions are described using the acronyms: SE (southeast), SW (southwest), E (east), C (central, W (west), N (Northwest), NE (northeast). Countries are indicated using their two-letter country code.

3.4 3.4 Regional Spotlights

Catalonia and Italy were selected to deepen the analysis and complement the questionnaire results with additional information on local water management. They both have a reasonably high number of respondents (Fig. 10) while having a different timing (Fig. 5) and sectorial severity (Fig. 6) of impacts. They also show rather different practices in terms of mitigation measures according to the EC Blueprint classification (Fig. 7).

3.4.1 Catalonia Spain

655

660

665

670

In 2022, most of Spain experienced a severewidespread and prolonged drought. The SPEI-12 for December 2022 reached values lower than 2.3 in, with the north-east of the country, only slightly less severe than the value of 2.9 reached in the 2004 2008 displaying already SPEI-6 values below -2 during the winter of 2021-2022 (Fig. 2a). Early indicators appeared in winter 2021–2022, and the situation worsened over summer despite slight improvements in spring. The drought (Kreibich et al., continued well into 2023). Out of the 19 respondents in Spain, representing various sectors, six indicated that the impacts of the drought were noticeable even and 2024, with some areas still affected as of 2025. Respondents confirmed the early onset, with several impacts reported before March 2022 (Fig. 5, Sec. 3.2). This difference and continuing beyond September. Catalonia, in perceptions among particular, endured exceptional conditions, with SPI-12 dropping below -3 and reservoirs falling below 16% of capacity by early 2024.

Impacts were felt across environmental and socio-economic sectors, particularly in freshwater ecosystems, agriculture, and public water supply. Nearly 70% of respondents ean be attributed to the fact that drought began in some regions of Spain

already in June 2021, as shown in Fig. 4. Furthermore, mostreported high severity (level 4 or 5) in sectors such as public water supply, freshwater ecosystems, and water quality. In Catalonia, emergency declarations were issued in over 230 municipalities, including Barcelona, affecting more than six million people. Drastic water use restrictions were imposed—limiting urban water use to 160 litres per person per day, cutting irrigation by up to 80%, and reducing industrial use by 25%. Emergency actions included reduced ecological flows, temporary bans on new high-water-use activities, and fines for exceeding consumption limits. Over time, traditional supply sources like dams were supplemented by groundwater, desalination, and for the first time, significant use of recycled water for human consumption.

To manage the crisis, organizations relied heavily on existing water infrastructure. Spain's 1,225 dams—372 of which are high-capacity—played a key role, though many aquifers were already over-exploited. Nearly all Spanish respondents reported that the (84%) believed drought risk is increasing, and 61% reported having both short- and long-term drought plans. Actions taken included the activation of special drought persisted beyond September 2022, indicating its long lasting nature (Fig. 5, Sec. 3.2). decrees, reduced allocations to agriculture, infrastructure retrofitting, and enhanced hydrological monitoring. The meteorological revised 2018 drought, as identified by a SPEI 12 below—1, started plans emphasized desalination, ecological flow management, nitrate pollution control, and improved planning. Spain also co-launched the International Alliance for Drought Resilience (IDRA) in June 2021 in most parts of Catalonia and is still ongoing in 2024 (GenCat, 2024):2022, supporting global coordination on drought preparedness. Despite these efforts, responses highlighted gaps in forecasting and planning, underscoring the need for a more integrated, long-term management approach.

685

690

695

700

705

Water resources in some areas of Spain have been dwindling due to long periods of meteorological drought. This situation is not uncommon, but it has worsened in recent years due to an increase in evaporative demand caused by global warming. To adapt to the current situation, there are 1225 dams in Spain, out of which 372 are categorized as high storage dams, with a combined storage capacity of 56,000 hm³ of water. These multipurpose dams, used primarily for irrigation, hydropower and drinking water supply, are also utilized for flood control and ecological discharge maintenance in some cases. During wet years, hydropower production in Spain exceeds 40,000 GWh, whereas during dry years, it drops to less than 25,000 GWh. The average of recent years is 32,500 GWh, which represents 17% of annual energy production. Spain has the largest irrigated area in Europe, with 54% using localized irrigation systems. Despite irrigation occupying only 23% of the cultivated area, it contributes to 65% of the final agricultural production. During a drought, there can be a conflict of interest between the different dam objectives (Ward et al., 2020). Most aquifers in Spain are over exploited, and the legislation considers the state of the reserves in the dams as a criterion to distinguish the different drought alert levels.

In the case of Catalonia, the persistent drought has led to a SPI-12 index below 3, and surface reservoirs below 16% of their capacity as of February 2024, over two years after the start of the drought. Between 2022 and 2024, the Government has decreed several "emergency situations" due to hydrological drought in more than 230 municipalities across Spain, including the Barcelona Metropolitan Area, affecting more than six million people. This involves restrictions to general water uses, including urban water use. Among the measures taken, it is possible to find a progressive restriction on domestic water consumption down to 160 liters per person and day. There are also restrictions for other economic sectors, with reductions of

80% for agriculture irrigation, or transition to reclaimed 50% for livestock and 25% for industries. Other measures involve the reduction of the ecological river flows established from the Sectoral Maintenance Flow Plan (e.g., Muga from 1,200 to 40 l/s, Ter from 5,500 to 600 l/s, and Llobregat from 4,300 to 250 l/s), and a moratorium on the start-up of economic activities that require intensive use of water. Fines have been imposed on towns that fail to comply with the decree of maximum consumption. Additionally, there has been the announced need to rethink the water fee to penalize significant losses in the supply network or large consumers, and the request to close showers and pools in some sports and touristic facilities. Measures such as bringing water in ship carriers from other parts of Spain, which was implemented during the drought in 2008, have also been proposed. However, the transfer of water from one river basin to another remains a sensitive topic. Under this crisis scenario, which is the worst drought registered in Catalonia, around three quarters of the water consumed in Catalonia no longer comes from dams, but from a combination of groundwater resources, regenerated water and desalination plants. Spain's aquifers are capable of storing up to 400,000 hm3 of water, which is seven times the capacity of the dams.

3.4.2 Italy

720

730

735

740

In Italy, the impacts of the 2022 drought were observed as early as March (depending on the sector), and persisted until after September 2022 (Fig. 5). The damage wasconsequences were severe and felt across social and economic sectors, particularly for the Public Water Supply, Energy, Fisheries and Agriculture sectors (Fig. 6). The entire peninsula grappled with significant water searcity balance deficit (Fig. 2), distinguishing the 2022 drought as more severe than the one experienced in 2018-/2019 event. Amid ongoing water scarcity, the Italian government responded with Decree-Law Drought No. 39 of 2023 (C.d.D., 2023), emphasizing urgent provisions to counter water scarcity and enhance water infrastructure. Mitigation measures included simplifying water infrastructure procedures, increasing reservoir volumesstorage, rainwater harvesting for irrigation, treated wastewater reuse, and desalination projects. A dedicated committee assessed projects and the National Commissioner for Water Scarcity expedited interventions.

Regional and public administrations played a pivotal role in implementing drought management strategies, with a primary focusprimarily focusing on Public Water Supply, Agriculture, and Water Quality. During the first half of 2022, approximately 60% of these organizations took proactive measures to address the impact of the drought. Respondents prioritized Public Water Supply, Agriculture, and Livestock Farming (Fig. 6). Most organizations (61%) initiated drought risk management measures during the first half of 2022. Still, despite legislative efforts, questionnaire responses indicated gaps in drought preparedness. Only 28% had both short- and long-term drought management plans, and 51% reported a complete lack of plans. By far, the The most commonly implemented measure regarded related to water distribution management, withwere Water Supply and Distribution being the most common (55%), followed by%) and Water Supply and Demand (19%) (Fig. 7). This demonstrates a tendency for water managers to guarantee business-as-usual operations in times of water scarcity. As exemplified by this statement provided by one of the respondents from Italy when asked about how drought risk management is changing in their organizationThis is exemplified by a respondent who stated: "Greater control and assessment of the situation through monitoring, elimination of [water] leaks or waste, exploration of new supply sources, and implementation of

new storage facilities": to the question regarding which measures their organization took to mitigate the impact of the drought. Still, respondents have also shownshowed awareness of the need to reduce demand: "It is necessary for the authorities to allow extraordinary works and permits to prevent the loss of well zones. Even the sole reduction of withdrawals during hot periods along the riverbank would be a response". Other measures included: awareness rising (15%), water capture and storage (11%), monitoring (11%), infrastructure retrofitting (10%), and planning (10%). Despite challenges, respondents emphasized the relevance of ongoing efforts to enhance water resilience. Yet, the Italian context shows a strong preference towardsstrongly prefers short-term and supply—side measures, emphasizing the need to meet water demand even during drought periods.

4 Discussion

745

750

755

760

4.1. Challenges of drought risk management

4.1.1 Increasing drought risk

One notable consensus among the <u>responders of the survey respondents</u> is the recognition that drought is increasingly becoming a more significant risk across Europe. They anticipate that their respective organizations will place drought risk management at higher priority in the future. This <u>corroboratesechoes</u> the increase in frequency and intensity of drought <u>hazardhazards</u> presented-<u>both</u> in this and in previous studies (Markonis et al., 2021; Moravec et al., 2021, Spinoni et al., 2018, Ionita et al., 2022, Jaguus et al., 2021, Semenova & Vicente-Serrano, 2024).

Beyond the higher frequency, this study highlights the extensive scale of drought impacts, prompting drought risk management measures across all European countries. This underscores, underscoring the potential benefits of continent-wide coordination already highlighted indicated by previous research (Blauhut et al., 2021; Hervás-Gámez & Delgado-Ramos, 2019; Publications Office of the European Union, 2023; Rossi, 2009; Stein et al., 2016). This shared understanding of growing drought risk and the increasing need for drought risk management emphasizes the continent-wide scale of the challenge and further reinforces the need for collaborative initiatives and unified guidance. Our findings align with extensive research showing how droughts transcend national borders and emerge as cross-boundary challenges (Herrera-Estrada et al., 2019), impacting the entire European continent (Ionita et al., 2022; Rakovec et al., 2022; Schumacher et al., 2024; Spinoni et al., 2018; Toreti, et al., 2022), and requiring). This requires a European-level direction in drought risk management and response (Blauhut et al., 2022; Hagenlocher et al., 2023; Stein et al., 2016; van Daalen et al., 2022).

The study stresses the need to assess water prioritization criteria, considering the actual-impacts on various sectors and adjusting the allocation strategy to ensure a more equitable and effective distribution of water resources. The example of Catalonia only highlights the challenges of managing prioritizing water use prioritization between sectors. -Yet, observed or /expected impact should not be the only indicator drive prioritization as this is a manifestation of prioritization as it is in itself influenced by prioritization and other measures itself. Sectors of key importance for human and environmental well-being (e.g. Public Water Supply and Aquatic Ecosystems) must be prioritized regardless of impact due to their importance in the functioning of the SES (Rossi et al., 2023).

4.1.2 Spatial and temporal evolution of drought

Droughts are long-lasting events that can span over several seasons and years. Their impact can affect different aspects of SES depending on the response time of the system in question (e.g. depletion of water supplies can last for years, while the forestry sector might only show visible effects years after the drought "event", and governance effects may take years to materialize). This characteristic of underscores drought as a complex crisis with long-term systemic ramifications is explored under the notion of "drought as a continuum" by (Van Loon et al. (2024).

Respondents indicated that the impact of the 2022 drought extended beyond the observation period covered by the questionnaire in 44% of cases (i.e. after September 2022), and spanned the entire observation period in 7% of all cases (i.e. from before March 2022 to after September 2022). This is exemplified in the autonomous region of Catalonia (ES), where the drought is ongoing ascontinued until the end of 2024. The Catalan case is It shows how a clear example of prolonged drought impacting can impact different components of the wider system over time, from the hydrological, ecological, and socioeconomic systems.

Still, drought risk management in Europe generally defines drought as an extraordinary, time-confined, event with a predominant seasonal occurrence (Stein et al., 2016). As a consequenceConsequently, monitoring and drought management teams are typically assembled on a seasonal basis and are disbanded once the crisis has subsided (this differs across European countries), with consequent overlooking of long-lasting and lingering impacts of drought. Additionally, a crisis approach to drought risk management frames drought as a crisis and justifies extreme measures that can have long-lasting consequences. This is exemplified byadverse effects, as evident in the Italian case, where an ad-hoc drought commission wasis instituted to tackle the crisis, but no permanent drought risk management coordination body exists.

Most European member states present some version of article 4(6) of the WFD in their national water basin management plans, allowing them to reduce or forego environmental outputs during times of drought (Publications Office of the European Union, 2023). This overlooks the complex nature of drought risk management and the ramifications that short-sighted measures can have. Instead, research shows that a systemic risk perspective is necessary to manage complex crises like droughts (Wilhite et al. 2019; Hagenlocher et al., 2023), and that European-level drought risk management should strive to implement it (Stein et al., 2016). Drought hazard and impact monitoring and forecasting should be strategic efforts that not only take into accountconsider the physical aspects of drought, but focus on water scarcity and its relation with impacts (Sutanto et al., 2019; Shyrokaya et al., 2024). A systemic perspective, in this instancethus, is necessary to show how drought impacts can be worsened by decisions taken during "normal" times (Hagenlocher et al., 2023; Kallis, 2008; Wilhite et al. 2019; WMO, 2021). Moreover, forto effectively implement the principles stated in the EC communications about drought and water scarcity to be effectively implemented, this systemic perspective must prioritize holistic measures that account for environmental conservation and water use reduction across all sectors and users.

780

785

790

795

800

4.1.3 Drought risk management measures

810

820

825

830

835

The measures taken by <u>different sectors</u>' organizations predominantly focus on immediate operational concerns, such as water supply management, to ensure business continuity during droughts. In particular, supply-side measures were the most commonly used, especially in countries where agriculture plays an important economic role (e.g. Italy, Spain, the Netherlands). This is in direct contrast with the recommendations from the EC communications *Blueprint to Safeguard Europe's Water Resources* and the *Water Scarcity and Drought Policy*, which instead stress the importance of prioritizing demand reduction and

"The main issue was high demand rather than supply shortfall—the distribution network encountered issues due to the high demand in May July and eased off in August. All sources were utilising their peak output for 2 3months whilst planned outages were postponed."

UK Responder (Question 12)

improving efficiency before opting for increasing supply (Stein et al., 2016). Additionally, both <u>EC</u> recommendations and research stress the importance of reducing water use in general. Simply providing <u>more</u>-water surplus by either increasing supply or improving efficiency leads to <u>ana systemic</u> increased water-use, which <u>quickly</u> nullifies the surplus, as demonstrated by the reservoir effect (Di Baldassarre et al., 2017, 2018). Instead, by prioritizing water demand reduction and increasing efficiency, organizations should reduce water consumption, and avoid maladaptive practices and path-dependencies.

As the Italian case exemplifies, short-term and supply-side measures are likely favoured as they address the immediate concerns of the responders and sectors involved (Teutschbein et al., 2023). This is an example of "salience-bias", where disproportionate weight is given to more immediate concerns due to proximity, memory, perspective, or deliberate choice, potentially leading to suboptimal decisions (Bordalo et al., 2020; Garcia et al., 2020; Garcia & Islam, 2021). Still, as the "hydro-illogical cycle" shows, it is challenging to mainstream drought risk management measures during periods of non-drought, depriving preparedness and mitigation measures of their effectiveness, making response measures more necessary (Wilhite et al., 2005). This situation can be further exacerbated by development policies that are not aligned with drought management policies and instead negatively impact them (Kallis, 2008). Rather, drought risk management should embrace an integrated and systemic approach, as proposed by IDM, by avoiding short-term measures when these are shown to be less effective than proactive, long-term, and systemic ones (Wilhite et al. 2019; Wendt et al. 2021).

The allocation of water resources during droughts presents a complex challenge, particularly in balancing the needs of highly impacted sectors against those less severely impacted, or where the risk seems more imminent. For instance, from This was observed in the responses gathered in this study, it emerged that sectors such as Forestry sector in Germany and Energy, Industry, and Fisheries sectors in Italy that all received a low priority for water allocation despite experiencing significant drought-related impacts. Conversely, sectors such as Public Water Supply, Water Quality, Water Transportation, and Tourism were considered high priority across multiple countries, even if their impact seems less severe, possibly as a result of the higher prioritization. However, it is crucial to acknowledge that the effect of prioritization itself may also influence the perception of milder impacts in certain sectors may also be influenced by the effect of prioritization itself. Moreover, sectors

like Forestryforestry, where the full extent of the impact may take longer to manifest (Shyrokaya et al., 2023), might receive lower priority despite their critical importance, especially with a significant increase of drought impacts in the forestry sector (Rossi et al., 2023). This prioritization discrepancy underscores the need for a nuanced approach to managemanaging the diversity of drought impact across operational levels and sectors in response to varying degrees of drought severity.

Consequently, decision makers must strike This in turn, highlights the need for a delicate balance between addressing immediate needs and ensuring equitable resource allocation across sectors, especially considering the potential long-term consequences of drought impacts.

This study shows that during the 2022 European drought, water managers expressed there was a lack of emphasis on longer-term adaptive measures; expressed by water managers as also highlighted by evident in the Italian case. This is supported by research showing that despite the WFD supporting adaptive water management approaches, implementation generally follows a standard responsive approach as institutional practices, competencies, and skills are not aligned to what an adaptive approach would require (Voulvoulis et al., 2017). This suggests a potential strategy gap in strategies, with an opportunity for organizations to consider more sustainable and forward-looking approaches to drought risk management, such as ecosystem-based adaptation (IPCC, 2022a). This is also highlighted by the overall preference for sub-seasonal forecasting and short-term drought management plans over seasonal forecasting and long-term plans (Biella et al., 2024b2025). Yet, research warns against the risk of maladaptation that reliance on short-term information alone can cause (Biella et al., 2024a). Consequently, a2024). A systemic and long-term perspective in the DMPs focusing on demand-reduction can be is instrumental in avoiding maladaptive outcomes and path-dependencies (Hagenlocher et al., 2023).

4.1.4 Shifts in drought risk management

850

855

860

865

We find clear regional and country-level differences in drought risk management across Europe, likely reflecting the varying impacts diversity of drought impacts in the region and at the scale considered. These differences in drought risk management can be observed across all aspects, from the type of measures taken, to the effectiveness of these measures, to the reported changes in drought risk awareness and preparedness. Due to the limited sample size of some of the countries (see Table S1 in the supplement), and the high rate of "no answers" in some of the categories, it is not possible to draw a generalizable conclusion for all sub-groups. However, the consistency reported across with respect to different aspects of drought risk management should be taken as strong evidence of the large differences currently present in European drought risk management. Similar differences have been highlighted in the drought preparedness of have been highlighted by water managers across European countries (Biella et al., 2024b2025). This also is supported by reports showing the continent's diverse drought risk governance landscape of the continent (Publications Office of the European Union, 2023). This discrepancy in drought risk management capacity across European countries emphasizes the urgent need for continent-level guidance, acknowledging the diverse challenges faced by different regions face. Despite the various EC communications on droughts and the inclusion of drought in many strategies, the lack of a unified policy with binding force means that the drought risk management landscape of the continent remains diverse (Stein et al., 2016). Factors, such as availability of resources and

drought risk awareness, likely contribute to the disparities in drought risk management capacity observed. The development of Developing a European Drought Directive, would be instrumental in levelling out the difference among countries (Blauhut et al., 2022).

The survey results point to a trendshift where organizations are becoming more conscious of the risks posed by drought and suggest that time is ripe tofor mainstream drought risk management into policy in Europe-Europe's policies. While awareness of drought risk increases across Europe, preparedness and effectiveness are lagginglag behind. The survey demonstrates clear differences at the regional level, with respondents from Eastern, South-Eastern, and Northern Europe displaying minor changes in drought risk management compared to their counterparts in South-Western, Central, and Western Europe. Research shows that mainstreaming drought risk management is most effective after times of crisis, when awareness is high (Cavalcante et al 2023, Kreibich et al 2023). This is evident in the EU, as several countries with drought legislation in place have promoted it following the sever, large—drought-scale droughts of the last decade (Publications Office of the European Union, 2023; Bartholomeus et al., 2023). Still, EU-level policy mainstreaming is often a complex, lengthy, and highly political process and compromising (Deters, 2018; Kaika, 2003). The results of this study clearly show that European water managers display high levels of drought risk awareness, while preparedness still—has room for improvement. This means that it is essential to taketaking advantage of this mainstreaming window to promote drought risk management policy across Europe is essential. It is the role of research to ensure that awareness remains high in times of non-crisis, avoiding the hydro-illogical cycle.

5 Recommendations for European drought risk governance

5.1 Gaps in European drought governance—

875

880

885

895

900

This research underscores the necessity for cohesive, European-wide coordination in addressing the increasing drought risk, the scale of the threat posed by drought, and the interconnectedness and co-dependence of ecosystems and socio-economic sectors across the continent. The regional differences and the differences in the adaptive pathways across countries show the need for a coordinated approach to address shared vulnerabilities, foster collaboration and coordination, and increase equity (EC et al., 2015; Hagenlocher et al., 2023; Publications Office of the European Union, 2023; Stein et al., 2016).

Nevertheless, the EU lacks a unified drought policy, and the reliance on a framework of other water-related directives and non-binding communications limits this—progress (Hervás-Gámez & Delgado-Ramos, 2019; Publications Office of the European Union, 2023; Stein et al., 2016). The 2000 WFD remains the only existing binding directive loosely dealing with drought; yet it does not specifically address it nor defines or define it, only mentioning drought together with and floods (Publications Office of the European Union, 2023; Stein et al., 2016). Furthermore, the WFD's framing of droughts (and floods) as "force majeure" can justify non-compliance with environmental needs (DIRECTIVE 2000/60/EC). This is in contrast with a vast body of research showing that viewing droughts as exceptional events overlooks their lasting and systemic impacts and increased risk (Hagenlocher et al., 2023; Van Loon et al., 2024; Walker et al., 2024; Markonis et al., 2021; Moravec et al., 2021; Spinoni et al., 2018; Ionita et al., 2022). Still, the WFD offers a solid base on which European drought

risk management can be developed, as it crucially defines catchment-level water management, environmental output requirements, unified monitoring, and international collaboration for transboundary basins (Publications Office of the European Union, 2023; Stein et al., 2016). The catchment-centred perspective (instead of administrative borders) in particular suits the need offor cross-country drought risk management. Finally, its cross-sectorial focus and the adaptability of its 6-year revision cycles align with the needs of a systemic drought risk management approach.

Following the WFD, the 2007 EC communication on water scarcity and droughts and the 2012 Blueprint to Safeguard Europe's Water Resources (also an EC Communication) have also been instrumental in defining DMPs, and promoting country-level drought risk management through a clear emphasis on the importance of water conservations measures (Hervás-Gámez & Delgado-Ramos, 2019; Stein et al., 2016). However, despite their ambitious principles, the EC Communications of 2007 and 2012 remain non-binding, crucially lacking mandatory power over EU member states' legislation, as well as and diverse, binding policy options (Stein et al., 2016).

Droughts are recognized as a priority in other EU policy frameworks dealing with specific sectorial issues; adding to the need of cross-sectoral policy. The European Green Deal and the 2021 EU Strategy on Adaptation to Climate Change have a dedicated Group on Water Scarcity and Drought in the 2022-2024 Programme for the Common Implementation Strategy for the Water Framework and Floods Directives. Other relevant directives include the EC Flood Directive (2007), Groundwater Directive (2006), and Habitats Directive (1992). Moreover, the EU's Common Agriculture Policies (CAP), a vast framework governing agriculture since the 1950s, also defines tools for drought governance (Stein et al., 2016). However, these directives only deal with drought within the boundaries of thetheir sectors that they address. For example, although CAP includes many ecosystem-focused principles, it also includes stabilization mechanisms that might encourage risky agricultural practices during droughts, which clearly indicates/points to a lack of systematic/holistic perspective (Stein et al., 2016). Similarly, measures in flood risk management and reservoir management measures can indirectly affect drought risk management. Consequently, without unified guidance taking a systemic, sustainable, and long-term approach to drought risk management strategies may risk incurring in-maladaptation, especially when competing with the economic development interest interests of other sectors.

5.2 A way forward: The European Drought Directive

910

915

920

This study completes a series of research efforts highlighting the need to establish European coordination and guidance on drought risk management (Blauhut et al. 2021, Moravec et al. 2021, Stein et al 2016, Rossi 2009, Hervás-Gamez & Delgado-Ramos 2019, European Drought Atlas 2023). Supporting the recommendations by Blauhut et al., (2022), we advocate for the development of an *EU Drought Directive*. While the EC communications on drought (namely, the WS&D and the Blueprint) already present many ambitious principles, a legally-binding directive is necessary to ensure their implementation and create consistency among different countries. This *EU Drought Directive* should establish principles of drought risk management, provide coordination, and guidance at the EU level, and set up cooperation agreements with third countries of interest (e.g. Switzerland, the UK, Norway, Ukraine, and countries in the western Balkans). At the same time, Its implementation should be

carried out at the member state level, being tailored to the local context and operational needs-accounting for differences in drought risk, as well as risk management capacity. This approach is similar to that already provided in the *Floods Directive* (Directive 2007/60/EC). Additionally, we suggest amending the WFD to include clear drought risk management principles as a necessary first step, as the framework already introduces valid water resource management principles that can be effectively applied to drought risk management (e.g. catchment-based management, and international coordination guidance). The WFD is can also provide the ideal governance framework for a holistic and integrated approach which manages boththat assists managing the increasing drought and flood risk. We believe a European *Drought Directive* should:

940

950

955

960

- 1. Define the principles that guide drought risk management. These have already been indicated in the non-binding EC Communications, have counterparts in the Flood Directive, or have been defined by research. These principles are:
 - a. Managing drought risk, not drought hazards. While periods with less precipitation drought cannot be prevented it is possible to reduce their, reducing its adverse impacts on human health, the environment, and socio-economic activities are possible. A risk approach to drought risk management requires considering all aspects of risk and not focussing on the hazard alone.
 - b. Drought is a continuum. Droughts are not entirely exceptional events. They occur with They relative frequencies are recurrent feature of the climate, and their impacts propagate through the socio-economic system. Hence, drought risk management should not merely be responsive, seasonal, and with a crisis-based approach. Instead, it should adopt systemic, integrated, and long-term risk management perspectives that address water scarcity and stresses even—during non-drought periods. This approach helps avoid path-dependency, lock-ins, and maladaptation.
 - c. Environment-centred drought risk management. Environmental needs should <u>also</u> be prioritized <u>also</u> during drought periods, especially in case of long-term<u>damaging impacts</u> <u>adverse effects</u> on the <u>ecosystemecosystems</u>. This means that drought should not constitute a valid reason to forego environmental needs in favour of economic activity. Instead, drought risk management should ensure and protect the ecosystem's capacity to support natural and human activity (ecosystem services).
 - d. First reduce demand, second improve efficiency, last increase supply. The measures aimed at managing drought risk need to prioritize reducing water demand reduction, and reduction of reducing dependencies. A second priority is to increase water use efficiency in the system. Yet this increased efficiency should come hand in hand with demand reduction. Lastly, supply increase measures and infrastructural measures should only be considered where the first two options are not feasible. Maladaptive outcomes, such as increased water dependence and the reservoir effect, should be avoided.
 - 2. Provide guidance and coordination for drought risk management.
 - a. Provide guidelines for the definition of drought. The directive contains a general definition of drought, while allowing Member States to tailor the definitionit to their contexts. This requires including indices

- representing different types of drought (meteorological, soil moisture/agriculture, hydrological droughts) in response to the wide range of drought impacts encountered.
- b. Provide guidance for international coordination in drought risk management. Drought risk management should be carried out on the principles of shared/transboundary river basin asprinciples already defined in the WFD. To do so, amending the WFD to include drought is necessary. The Directive must also provide guidance onguide collaboration with countries that are not members of the EU due to the sectorial cross-border dependencies and shared river basins. The flood directive offers an example of such guidance.
- c. Provide guidelines for the <u>revision</u>, development and <u>implementation</u> of national drought risk management policies following the 10 steps process detailed in the National Drought Management Policy Guidelines: A Template for Action (WMO & GWP, 2014).
- d. Provide deadlines for key steps in the development of national drought risk management policies:
 - i. Carry out preliminary drought risk assessment.
 - ii. Carry out drought risk assessment and draw drought risk maps.
 - iii. Develop Drought Risk Management Plans at the national and regional level.
 - iv. Mandate the development of Drought Risk Management Plans for private actors in key sectors.

6 Conclusion

The 2022 European drought, a continent-wide event, has—exposed numerous critical deficiencies in the existing European Europe's water management framework. This study provides an overview of the 2022 European drought, highlighting the connections between by linking its physical aspects (the hazard), the with perceived sectoral impacts by water managers, and the drought risk management strategies employed—by water authorities.

The study reveals Findings show that drought is increasingly recognized as a significant major risk across Europe, with growing awareness, institutional preparedness, and response capacity among institutions. However, droughts are still frequently addressed as exceptional crises, resulting in reactive and organizations. Asoften maladaptive responses. In the context of a warming climate where droughts are becoming more frequent and intense in the warming climate, the need for severe, such short-term approaches are no longer adequate. Lessons learned from countries with a history of frequent droughts such as Spain and Italy, can help informing drought management strategies in other parts of Europe that are now experiencing greater exposure to drought hazards as the continent wide coordination and data sharing is of utmost importance. Despite existing measures, droughts are often treated as extraordinary events, leading to short sighted becomes warmer and potentially maladaptive responses. The study highlights the importance of adopting drier.

Hence, a shift toward a systemic, integrated, and long-term perspective in drought-strategy is urgently needed. Drought risk management at the continent level, prioritizingmust prioritize demand reduction and ecosystem health. A, moving beyond emergency response. To support this, a European Drought Directive is recommended to unify and enforce drought risk management policies at the national, regional and catchment scales, ensuring coordinated efforts across the continent. This

975

980

985

990

995

directive should guide the development of drought management plans, emphasize risk management over crisis response, and prioritize environmental outputs and water demand reduction. Coordinated European-level action is essential to address the shared vulnerabilities and complex nature of droughts, ensuring effective and sustainable management of this escalating risk on the climate resilient pathway for all European countries.

Competing interests

At least one of the (co-)authors is a member of the editorial board of Natural Hazards and Earth System Sciences Journal.

1010 Code Availability

All codes used for the statistical analysis can be made available upon individual request.

Data availability

1015

The data collected during the survey contains information that might allow to identify some of the respondents. Hence, all data collected through the survey has been stored on DitA's workspace and can be made available upon request. Climate-related data is freely available as described in Sec. 2.1.

Interactive computing environment

No interactive computer environment is available.

Sample availability

No physical samples were collected.

1020 Video supplement

No video supplement was developed.

Supplement link

The link to the supplement will be included by Copernicus, if applicable.

Author contribution

1025 Conceptualization: The conceptualization of the article involved a large group of authors as the initial idea was developed during the *Drought in the Anthropocene* annual workshop in Uppsala in July 2022 and was defined during a first online meeting in October the same year. All the following authors were involved in the conceptualization of this manuscript as they were present and actively participated during either of those events: AM, AS, AT, AvL, BM, CT, DC, ER, ES, FR, FT, GDB, IP, J-PV, LMT, LB, MW, MI, PT, RH, RB, SS, SH, SC, SM, SJB, SK and VN. Methodology and Data Collection: The following 1030 authors were involved in the designing, translation, and dissemination of the survey: AM, AS, AT, AvL, BM, CT, DC, ER, ES, FR, IP, MCL, MMdB, ML, MW, MI, PT, PA, RH, RV, RB, SS, SC, SJB and VN. Additionally, the following authors were involved in the collection and handling of climate data: IP, MI, PA, RH and SS. Project Administration: AS, MI, and RB were responsible of management and coordination of the team's research activities throughout the development of the study. Supervision: GDB and LMT offered invaluable supervision at various stages of the development of the manuscript. 1035 Visualization: The figures, tables and maps present in the manuscript were created by: AS, MI, PA, RB and SS. Writing: The original draft was mostly prepared by a core team composed by: AS, LMT, MI, RV and RB. Additionally, other authors were involved in writing specific sections of the manuscript: AM, BM, DC, ER, FR, IP, MCL and SC. Other authors were involved in the reviewing and editing process, offering commentary and suggestions to the original draft: AT, CT, DW, FT, MMdB, ML, MW, PA, SS, SJMG and SK.

1040 Special issue statement

The statement on a corresponding special issue will be included by Copernicus, if applicable.

Acknowledgements

1045

050

The research work was partly funded by:

European Union's Horizon 2020 research and innovation programme under the Grant Agreement Number 101037293: ICISK Innovating Climate services through Integrating Scientific and local Knowledge.; European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 956396 (EDIPI Project); partially supported by a grant of the Ministry of Research, Innovation and Digitization, under the "Romania's National Recovery and Resilience Plan - Founded by EU – Next Generation EU" program, project "Compound Extreme events from a long-term perspective and their impact on forest growth dynamics (CExForD)" number760074/23.05.2023, code 287/30.11.2022; The Wageningen Data Driven Discoveries in Changing Climate (D3-C2); <u>UK</u> National Hydrological Monitoring Programme, supported by the Natural Environment Research Council award number NE/R016429/1 as part of the UK SCAPE programme delivering, through the UKCEH National Capability; for UK Challenges Programme [NE/Y006208/1]; NERC project 'IndicatoRs to Impacts for drought Surveillance and management' (IRIS, Grant Number: NE/X012727/1) by the European

Union (ERC, PerfectSTORM, ERC-2020-StG 948601); European Union's Horizon Europe research and innovation 1055 programme under the Grant Agreement Number 101121192: MedEWSa - Mediterranean and pan-European forecast and Early Warning System against natural hazards, and from the European Union's Horizon 2020 research and innovation programme under the Grant Agreement Number 101003876: CLINT - Climate Intelligence: Extreme events detection, attribution and adaptation design using machine learning; .RETURN Extended Partnership and received funding from the European Union Next-Generation EU (National Recovery and Resilience Plan – NRRP, Mission 4, Component 2, Investment 1.3 – D.D. 1243 1060 2/8/2022, PE0000005 – Spoke DS8); European Union's Horizon Europe research and innovation programme under the Grant Agreement Number 101003469-XAIDA; European Union's Horizon 2020 research and innovation programme under the Grant Agreement Number 820712-RECEIPTSwedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS, contract number: 942-2015-1123); Views and opinions expressed are however those of the authors only and do not necessarily reflect those of the European Union or the European Research Council Executive Agency. Neither the 1065 European Union nor the granting authority can be held responsible for the European Union's Horizon 2020 research and innovation programme.

Finally; we thank the following people for their help in disseminating and translating the questionnaire, or for other types of support offered:

Francesco Avanzi (CIMA foundation); Gregorio Pezzoli (UNIBG); Lotte Muller (VU Amsterdam); Irem Daloglu (Bogazici University); Saeed Vazifehkhah (WMO); Shaun Harrigan (ECMWF); Florian Pappenberger (ECMWF); Conor Murphy (Maynooth University); Mónika Lakatos (Hungarian Met Service); David W. Walker (WUR); Magdalena Smigaj (WUR); Sina Khatami; Veit Blauhut (Freiburg University); Kevin Dubois (Uppsala University); Ferran López Martí (Uppsala University); Gemma Coxon (University of Bristol); Ype van der Velde (VU Amsterdam); Niko Wanders (Utrecht University); Matthijs ten Harkel (province Noord-Brabant); and Lars de Graaff (IVM-VU Amsterdam).

1075 References

- Avanzi, F., Munerol, F., Milelli, M., Gabellani, S., Massari, C., Girotto, M., Cremonese, E., Galvagno, M., Bruno, G., Morra di Cella, U., Rossi, L., Altamura, M., & Ferraris, L.: Winter snow deficit was a harbinger of summer 2022 sociohydrologic drought in the Po Basin, Italy. Communications Earth & Environment, 5(1), 1–12, https://doi.org/10.1038/s43247-024-01222-z, 2024.
- Bakke, S. J., Ionita, M., & Tallaksen, L. M.: <u>The 2018 northern European hydrological drought and its drivers in a historical perspective</u>. <u>Hydrology and Earth System Sciences</u>, <u>24</u>, <u>5621–5653</u>, <u>https://doi.org/10.5194/hess-24-5621-2020</u>, <u>2020</u>.
 - Bakke, S. J., Ionita, M., & Tallaksen, L. M.: Recent European drying and its link to prevailing large-scale atmospheric patterns. Scientific Reports, 13(1), 1–13, https://doi.org/10.1038/s41598-023-48861-4, 2023.

- Barendrecht, M. H., Matanó, A., Mendoza, H., Weesie, R., Rohse, M., Koehler, J., de Ruiter, M., Garcia, M., Mazzoleni, M., Aerts, J. C. J. H., Ward, P. J., Di Baldassarre, G., Day, R., & Van Loon, A. F. -Exploring drought-to-flood interactions and dynamics: A global case review. Wiley Interdisciplinary Reviews: Water, https://doi.org/10.1002/WAT2.1726, 2024.
- Bartholomeus, R. P., van der Wiel, K., van Loon, A. F., van Huijgevoort, M. H. J., van Vliet, M. T. H., Mens, M., Muurling-van Geffen, S., Wanders, N., & Pot, W.: Managing water across the flood-drought spectrum experiences from and challenges for the Netherlands. Cambridge Prisms: Water, 1(e2), 1–22, https://doi.org/10.1017/WAT.2023.4, 2023.
 - Bastos, A., Ciais, P., Friedlingstein, P., Sitch, S., Pongratz, J., Fan, L., Wigneron, J. P., Weber, U., Reichstein, M., Fu, Z., Anthoni, P., Arneth, A., Haverd, V., Jain, A. K., Joetzjer, E., Knauer, J., Lienert, S., Loughran, T., McGuire, P. C., Zaehle, S.: Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity. Science Advances, 6(24), https://doi.org/10.1126/SCIADV.ABA2724/SUPPL FILE/ABA2724 SM.PDF, 2020.

- Biella, R., Mazzoleni, M., Brandimarte, L., & Di Baldassarre, G.: Thinking systemically about climate services: Using archetypes to reveal maladaptation. Climate Services, 34, 100490, https://doi.org/10.1016/J.CLISER.2024.100490, 2024a2024.
- Biella, R., Shyrokaya1 A., Pechlivanidis I., Cid D., Llasat M.C., Wens M., Lam M., Stenfors E., Sutanto S., Ridolfi E., Ceola S., Alencar P., Di Baldassarre G., Ionita M., de Brito M.M., McGrane S.J., Moccia B., Nagavciuc V., Russo F., Krakovska S., Todorovic A., Tootoonchi F., Trambauer P., Vignola R., Teutschbein C.: The 2022 Drought Shows the Importance of Preparedness in European Drought Risk Management, *SUBMITTED IN THE SAME ISSUE AS COMPANION PAPER, AVAILABLE IN POREPREINT, 2024b2025.
- Blauhut, V., Stoelzle, M., Ahopelto, L., Brunner, M. I., Teutschbein, C., Wendt, D. E., Akstinas, V., Bakke, S. J., Barker, L. J., Bartošová, L., Briede, A., Cammalleri, C., Kalin, K. C., De Stefano, L., Fendeková, M., Finger, D. C., Huysmans, M., Ivanov, M., Jaagus, J., ... Zivković, N.: Lessons from the 2018-2019 European droughts: a collective need for unifying drought risk management. Natural Hazards and Earth System Sciences, 22(6), 2201–2217, https://doi.org/10.5194/NHESS-22-2201-2022, 2022.
- Bokal, S., Grobicki, A., Kindler, J., & Thalmeinerova, D.: From national to regional plans the Integrated Drought

 Management Programme of the Global Water Partnership for Central and Eastern Europe,

 https://doi.org/10.1016/j.wace.2014.03.006, 2014.
 - Bonaldo, D., Bellafiore, D., Ferrarin, C., Ferretti, R., Ricchi, A., Sangelantoni, L., & Vitelletti, M. L.: The summer 2022 drought: a taste of future climate for the Po valley (Italy)? Regional Environmental Change, 23(1), 1–6, https://doi.org/10.1007/S10113-022-02004-Z/TABLES/1, 2023
- Bordalo, P., Gennaioli, N., & Shleifer, A.: Memory, Attention, and Choice. The Quarterly Journal of Economics, 135(3), 1399–1442, https://doi.org/10.1093/QJE/QJAA007, 2020.
 - Caloiero, T., Veltri, S., Caloiero, P., & Frustaci, F.: Drought Analysis in Europe and in the Mediterranean Basin Using the Standardized Precipitation Index. Water 2018, 10(8), 1043, https://doi.org/10.3390/W10081043, 2018.

- Camera dei Deputati (C.d.D.): D.L. 39/2023 Decreto Siccità, https://temi.camera.it/leg19/provvedimento/d-1-39-2023decreto-siccit.html, 2023.
 - Carrer, M., Dibona, R., Prendin, A. L., & Brunetti, M.: Nature Climate Change nature climate change Recent waning snowpack in the Alps is unprecedented in the last six centuries. Biogeosciences, 20, 4259–4272, https://doi.org/10.1038/s41558-022-01575-3, 2022.
- Cavalcante, L., Pot, W., van Oel, P., Kchouk, S., Neto, G. R., & Dewulf, A.: From creeping crisis to policy change: The adoption of drought preparedness policy in Brazil. Water Policy, 25(10), 949–965, https://doi.org/10.2166/WP.2023.073/1305358/WP2023073.PDF, 2023.
 - Copernicus Climate Change Service: Copernicus: Summer 2022 Europe's hottest on record | Copernicus, https://climate.copernicus.eu/copernicus-summer-2022-europes-hottest-record, 2022.
- Crausbay, S. D., Ramirez, A. R., Carter, S. L., Cross, M. S., Hall, K. R., Bathke, D. J., Betancourt, J. L., Colt, S., Cravens, A. E., Dalton, M. S., Dunham, J. B., Hay, L. E., Hayes, M. J., McEvoy, J., McNutt, C. A., Moritz, M. A., Nislow, K. H., Raheem, N., & Sanford, T.: Defining Ecological Drought for the Twenty-First Century. Bulletin of the American Meteorological Society, 98(12), 2543–2550, https://doi.org/10.1175/BAMS-D-16-0292.1, 2017.
 - Deters, H.: Policy coherence by subterfuge? Arenas and compromise-building in the European Union's energy efficiency policy. Environmental Policy and Governance, 28(5), 359–368, https://doi.org/10.1002/EET.1822, 2018.
- de Brito, M. M.: Compound and cascading drought impacts do not happen by chance: A proposal to quantify their relationships. Science of The Total Environment, 778, 146236, https://doi.org/10.1016/J.SCITOTENV.2021.146236, 2021.
 - de Brito, M. M., Sodoge, J., Fekete, A., Hagenlocher, M., Koks, E., Kuhlicke, C., Messori, G., de Ruiter, M., Schweizer, P. J., & Ward, P. J.: Uncovering the Dynamics of Multi-Sector Impacts of Hydrological Extremes: A Methods Overview. Earth's Future, 12(1), e2023EF003906, https://doi.org/10.1029/2023EF003906, 2024.
- Di Baldassarre, G., Martinez, F., Kalantari, Z., & Viglione, A.: Drought and flood in the Anthropocene: Feedback mechanisms in reservoir operation. Earth System Dynamics, 8(1), 225–233, https://doi.org/10.5194/ESD-8-225-2017, 2017
 - Di Baldassarre, G., Wanders, N., AghaKouchak, A., Kuil, L., Rangecroft, S., Veldkamp, T. I. E., Garcia, M., van Oel, P. R., Breinl, K., & Van Loon, A. F.: Water shortages worsened by reservoir effects. In Nature Sustainability 1(11), 617–622. Nature Publishing Group, https://doi.org/10.1038/s41893-018-0159-0, 2018.
- 1145 (EC) European Commission, Directorate-General for Research and Innovation, Street, R., Parry, M., Scott, J., Jacob, D., & Runge, T.: A European research and innovation roadmap for climate services. Publications Office of the European Union, https://doi.org/doi/10.2777/702151, 2015.
 - European Committee of the Regions, 2025 Decentralization Index [WWW Document]. Div. Powers. URL https://portal.cor.europa.eu/divisionpowers/Pages/default.aspx (accessed 5.19.25).
- Faranda, D., Pascale, S., & Bulut, B.: Persistent anticyclonic conditions and climate change exacerbated the exceptional 2022 European-Mediterranean drought. Environmental Research Letters, 18(3), 034030, https://doi.org/10.1088/1748-9326/ACBC37, 2023.

- Garcia, M., & Islam, S.: Water stress & water salience: implications for water supply planning. Hydrological Sciences Journal, 66(6), 919–934, https://doi.org/10.1080/02626667.2021.1903474, 2021.
- Garcia, M., Ridolfi, E., & Di Baldassarre, G. (2020). The interplay between reservoir storage and operating rules under evolving conditions, Journal of Hydrology, 590, https://doi.org/10.1016/J.JHYDROL.2020.125270
 - GenCat.: Semàfor vermell. El portal de la sequera: https://sequera.gencat.cat/ca/accions/el-semafor-de-la-sequera/semafor-vermell/index.html, last access 23 May 2024
- Grobicki, A., MacLeod, F., & Pischke, F.: Integrated policies and practices for flood and drought risk management, Water Policy, 17(S1), 180–194, https://doi.org/10.2166/WP.2015.009, 2015.
 - Hagenlocher, M., Naumann, G., Meza, I., Blauhut, V., Cotti, D., Döll, P., Ehlert, K., Gaupp, F., Van Loon, A. F., Marengo, J.
 A., Rossi, L., Sabino Siemons, A. S., Siebert, S., Tsehayu, A. T., Toreti, A., Tsegai, D., Vera, C., Vogt, J., & Wens,
 M.: Tackling Growing Drought Risks The Need for a Systemic Perspective. Earth's Future, 11(9), e2023EF003857,
 https://doi.org/10.1029/2023EF003857, 2023.
- Hermann, M., Röthlisberger, M., Gessler, A., Rigling, A., Senf, C., Wohlgemuth, T., & Wernli, H.: Meteorological history of low-forest-greenness events in Europe in 2002-2022, Biogeosciences, 20(6), 1155–1180, https://doi.org/10.5194/BG-20-1155-2023, 2023.
 - Harris, I., Osborn, T. J., Jones, P., & Lister, D.: Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific Data 2020, 7(1), 1–18, https://doi.org/10.1038/s41597-020-0453-3, 2020.
- Hervás-Gámez, C., & Delgado-Ramos, F.: Drought Management Planning Policy: From Europe to Spain. Sustainability 2019, 1862, 11(7), 1862, https://doi.org/10.3390/SU11071862, 2019.
 - Ionita, M., Tallaksen, L. M., Kingston, D. G., Stagge, J. H., Laaha, G., Van Lanen, H. A. J., Scholz, P., Chelcea, S. M., and Haslinger, K.: The European 2015 drought from a climatological perspective, Hydrol. Earth Syst. Sci., 21, 1397–1419, https://doi.org/10.5194/hess-21-1397-2017, 2017.
- Inita, M., & Nagavciuc, V.: Changes in drought features at the European level over the last 120 years. Natural Hazards and Earth System Sciences, 21(5), 1685–1701, https://doi.org/10.5194/NHESS-21-1685-2021, 2021.
 - Ionita, M., Nagavciuc, V., Scholz, P., & Dima, M.: Long-term drought intensification over Europe driven by the weakening trend of the Atlantic Meridional Overturning Circulation. Journal of Hydrology: Regional Studies, 42, 101176, https://doi.org/10.1016/J.EJRH.2022.101176, 2022.
- Iturbide, M., Gutiérrez, J. M., Alves, L. M., Bedia, J., Cerezo-Mota, R., Cimadevilla, E., Cofiño, A. S., Di Luca, A., Faria, S. H., Gorodetskaya, I. V., Hauser, M., Herrera, S., Hennessy, K., Hewitt, H. T., Jones, R. G., Krakovska, S., Manzanas, R., Martínez-Castro, D., Narisma, G. T., Nurhati, I. S., Pinto, I., Seneviratne, S. I., van den Hurk, B., and Vera, C. S.: An update of IPCC climate reference regions for subcontinental analysis of climate model data: definition and aggregated datasets, Earth Syst. Sci. Data, 12, 2959–2970, https://doi.org/10.5194/essd-12-2959-2020, 2020.
- 1185 IPCC. Chen, D., M. Rojas, B.H. Samset, K. Cobb, A. Diongue Niang, P. Edwards, S. Emori, S.H. Faria, E. Hawkins, P. Hope, P. -Huybrechts, M. Meinshausen, S.K. Mustafa, G.-K. Plattner, and A.-M. Tréguier: Framing, Context, and Methods.

- In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change editred by: Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 147–286, doi:10.1017/9781009157896.003, 2021.
- IPCCaIPCC. Caretta, M.A., A. Mukherji, M. Arfanuzzaman, R.A. Betts, A. Gelfan, Y. Hirabayashi, T.K. Lissner, J. Liu, E. Lopez Gunn, R. Morgan, S. Mwanga, and S. Supratid: Water. In: Climate Change 2022a: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change edited by: H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama, Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 551–712, doi:10.1017/9781009325844.006, 2022.
- IPCCbIPCC. O'Neill, B., M. van Aalst, Z. Zaiton Ibrahim, L. Berrang Ford, S. Bhadwal, H. Buhaug, D. Diaz, K. Frieler, M. Garschagen, A. Magnan, G. Midgley, A. Mirzabaev, A. Thomas, and R. Warren: Key Risks Across Sectors and Regions. In: Climate Change 20222022b: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama, Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 2411–2538, doi:10.1017/9781009325844.025, 2022b.
- Jaagus, J., Aasa, A., Aniskevich, S., Boincean, B., Bojariu, R., Briede, A., Danilovich, I., Castro, F.D., Dumitrescu, A., Labuda, M., Labudová, L., Lõhmus, K., Melnik, V., Mõisja, K., Pongracz, R., Potopová, V., Řezníčková, L., Rimkus, E., Semenova, I., Stonevičius, E., Štěpánek, P., Trnka, M., Vicente-Serrano, S. M., Wibig, J., Zahradníček, P.: Longterm changes in drought indices in eastern and central Europe. International Journal of Climatology, Pub Date: 2021-06-05, DOI: 10.1002/joc.7241, 2021.
- 1210 Kaika, M.: The Water Framework Directive: A New Directive for a Changing Social, Political and Economic European Framework. European Planning Studies, 11(3), 299–316, https://doi.org/10.1080/09654310303640, 2003.
 - Kallis, G.: Droughts. Annual Review of Environment and Resources, 33, 85–118, https://doi.org/10.1146/ANNUREV.ENVIRON.33.081307.123117/CITE/REFWORKS, 2008.
- Kchouk, S., Neto, G. R., Melsen, L. A., Walker, D. W., Cavalcante, L., Gondim, R., & van Oel, P. R.: Drought-impacted communities in social-ecological systems: Exploration of different system states in Northeast Brazil. International Journal of Disaster Risk Reduction, 97, https://doi.org/10.1016/J.IJDRR.2023.104026, 2023.

Kreibich, H., Van Loon, A. F., Schröter, K., Ward, P. J., Mazzoleni, M., Sairam, N., Abeshu, G. W., Agafonova, S., AghaKouchak, A., Aksoy, H., Alvarez-Garreton, C., Aznar, B., Balkhi, L., Barendrecht, M. H., Biancamaria, S., Bos-Burgering, L., Bradley, C., Budiyono, Y., Buytaert, W., ... Di Baldassarre, G.: The challenge of unprecedented floods and droughts in risk management. Nature, 608(7921), 80–86, https://doi.org/10.1038/s41586-022-04917-5, 2022

- Magnan, A. K., Schipper, E. L. F., Burkett, M., Bharwani, S., Burton, I., Eriksen, S., Gemenne, F., Schaar, J., & Ziervogel, G.: Addressing the risk of maladaptation to climate change. WIREs Clim Change, 7, 646–665, https://doi.org/10.1002/wcc.409, 2016.
- Markonis, Y., Kumar, R., Hanel, M., Rakovec, O., Máca, P., & Kouchak, A. A.: The rise of compound warm-season droughts in Europe. Science Advances, 7(6), https://doi.org/10.1126/SCIADV.ABB9668/SUPPL_FILE/ABB9668_SM.PDF, 2021.
 - McKee, T. B., Doesken, N. J., & Kleist, J.: The relationship of drought frequency and duration to time scales, in: Proceedings of the 8th Conference on Applied Climatology, 17, American Meteorological Society Boston, MA, 179–183, 1993.
- McVittie, A., Cole, L., Wreford, A., Sgobbi, A., & Yordi, B.: Ecosystem-based solutions for disaster risk reduction: Lessons from European applications of ecosystem-based adaptation measures. International Journal of Disaster Risk Reduction, 32, 42–54, https://doi.org/10.1016/J.IJDRR.2017.12.014, 2018.
 - Montanari, A., Nguyen, H., Rubinetti, S. Ceola., S., Galelli, S., Rubino, S., & Zanchettin, D.: Why the 2022 Po River drought is the worst in the past two centuries. Science Advances, 9, https://doi.org/10.1126/sciadv.adg8304, 2023.
 - Monteith, J. L.: Evaporation and environment. The state and movement of water in living organisms, 19th Symposium of the Society for Experimental Biology, 205–234, 1965.

- Moravec, V., Markonis, Y., Rakovec, O., Svoboda, M., Trnka, M., Kumar, R., & Hanel, M.: Europe under multi-year droughts: how severe was the 2014–2018 drought period? Environmental Research Letters, 16(3), 034062, https://doi.org/10.1088/1748-9326/ABE828, 2021.
- Okkan, U., Fistikoglu, O., Ersoy, Z. B., & Noori, A. T.: Investigating adaptive hedging policies for reservoir operation under climate change impacts. Journal of Hydrology, 619, 129286, https://doi.org/10.1016/J.JHYDROL.2023.129286, 2023.
 - Publications Office of the European Union: Stock-taking analysis and outlook of drought policies, planning and management in EU Member States: final report. Publications Office of the European Union, https://doi.org/10.2779/21928, 2023.
- Rakovec, O., Samaniego, L., Hari, V., Markonis, Y., Moravec, V., Thober, S., Hanel, M., & Kumar, R.: The 2018–2020 Multi-1245 Year Drought Sets a New Benchmark in Europe. Earth's Future, 10(3), e2021EF002394, https://doi.org/10.1029/2021EF002394, 2022.
 - Richardson, D., Black, A. S., Irving, D., Matear, R. J., Monselesan, D. P., Risbey, J. S., Squire, D. T., & Tozer, C. R.: Global increase in wildfire potential from compound fire weather and drought. Npj Climate and Atmospheric Science 2022 5:1, 5(1), 1–12, https://doi.org/10.1038/s41612-022-00248-4, 2022.
- Rodrigues, M., Cunill Camprubí, À., Balaguer-Romano, R., Coco Megía, C. J., Castañares, F., Ruffault, J., Fernandes, P. M., & Resco de Dios, V.: Drivers and implications of the extreme 2022 wildfire season in Southwest Europe. Science of The Total Environment, 859, 160320, https://doi.org/10.1016/J.SCITOTENV.2022.160320, 2023.
 - Rossi, G.: European Union policy for improving drought preparedness and mitigation. Water International, 34(4), 441–450, https://doi.org/10.1080/02508060903374418, 2009.

- Rossi, L., Wens, M., De Moel Hans, Cotti, D., Sabino, S. A.-S., Toreti, A., Maetens, W., Masante, D., Van Loon Anne, Hagenlocher, M., Rudari, R., Naumann, G., Meroni, M., Aavanzi, F., Isabellon, M., & Barbosa, P.: European Drought Risk Atlas, https://doi.org/10.2760/608737. 2023.
 - Rowbottom, J., Graversgaard, M., Wright, I., Dudman, K., Klages, S., Heidecke, C., Surdyk, N., Gourcy, L., Leitão, I.A., Ferreira, A.D., Wuijts, S., Boekhold, S., Doody, D.G., Glavan, M., Cvejić, R., Velthof, G., 2022. Water governance diversity across Europe: Does legacy generate sticking points in implementing multi-level governance? J. Environ. Manage. 319, 115598. https://doi.org/10.1016/j.jenvman.2022.115598

- Savelli, E., Mazzoleni, M., Di Baldassarre, G., Cloke, H., & Rusca, M.: Urban water crises driven by elites' unsustainable consumption. Nature Sustainability 2023 6:8, 6(8), 929–940, https://doi.org/10.1038/s41893-023-01100-0, 2023.
- Schumacher, D. L., Zachariah, M., & Otto, F.: High temperatures exacerbated by climate change made 2022 Northern Hemisphere droughts more likely, Organization: World Weather Attribution, 2022
- Schumacher, D. L., Zachariah, M., Otto, F., Barnes, C., Philip, S., Kew, S., Vahlberg, M., Singh, R., Heinrich, D., Arrighi, J., Van Aalst, M., Hauser, M., Hirschi, M., Bessenbacher, V., Gudmundsson, L., Beaudoing, H. K., Rodell, M., Li, S., Yang, W., Seneviratne, S. I.: Detecting the human fingerprint in the summer 2022 western-central European soil drought. Earth System Dynamics, 15(1), 131–154,- https://doi.org/10.5194/ESD-15-131-2024, 2024.
- Semenova, I., & Vicente-Serrano, S. M.:- Long-term variability and trends of meteorological droughts in Ukraine. International Journal of Climatology, 44(6), 1849–1866, https://doi.org/10.1002/joc.8416, 2024.
 - Shyrokaya, A., Messori, G., Pechlivanidis, I., Pappenberger, F., Cloke, H. L., & Di Baldassarre, G.: Significant relationships between drought indicators and impacts for the 2018-2019 drought in Germany. Environmental Research Letters, 19(1), https://doi.org/10.1088/1748-9326/AD10D9, 2023.
- 1275 Shyrokaya, A., Pappenberger, F., Pechlivanidis, I., Messori, G., Khatami, S., Mazzoleni, M., & Di Baldassarre, G.: Advances and gaps in the science and practice of impact-based forecasting of droughts. Wiley Interdisciplinary Reviews: Water, 11(2), https://doi.org/10.1002/wat2.1698, 2024.
 - Spinoni, J., Vogt, J. V., Naumann, G., Barbosa, P., & Dosio, A.: Will drought events become more frequent and severe in Europe? International Journal of Climatology, 38(4), 1718–1736, https://doi.org/10.1002/JOC.5291, 2018.
- Stahl, K., Kohn, I., Blauhut, V., Urquijo, J., De Stefano, L., Acácio, V., Dias, S., Stagge, J. H., Tallaksen, L. M., Kampragou, E., Van Loon, A. F., Barker, L. J., Melsen, L. A., Bifulco, C., Musolino, D., De Carli, A., Massarutto, A., Assimacopoulos, D., & Van Lanen, H. A. J.: Impacts of European drought events: Insights from an international database of text-based reports. Natural Hazards and Earth System Sciences, 16, 801–819, https://doi.org/10.5194/nhess-16-801-2016, 2016.
- 1285 Stagge, J. H., Tallaksen, L. M., Gudmundsson, L., Van Loon, A. F., & Stahl, K.: Candidate Distributions for Climatological Drought Indices (SPI and SPEI). International Journal of Climatology, 35(13), 4027–4040, https://doi.org/10.1002/JOC.4267, 2015.

- Stein, U., Özerol, G., Tröltzsch, J., Landgrebe, R., Szendrenyi, A., & Vidaurre, R.: European drought and water scarcity policies. Governance for Drought Resilience: Land and Water Drought Management in Europe, 17–44, https://doi.org/10.1007/978-3-319-29671-5_2/TABLES/2, 2016.
 - Sudmeier-Rieux, K., Arce-Mojica, T., Boehmer, H. J., Doswald, N., Emerton, L., Friess, D. A., Galvin, S., Hagenlocher, M., James, H., Laban, P., Lacambra, C., Lange, W., McAdoo, B. G., Moos, C., Mysiak, J., Narvaez, L., Nehren, U., Peduzzi, P., Renaud, F. G., Walz, Y.: Scientific evidence for ecosystem-based disaster risk reduction. Nature Sustainability, 4(9), 803–810, https://doi.org/10.1038/S41893-021-00732-4, 2021.
- Sutanto, S. J., Vitolo, C., Di Napoli, C., D'Andrea, M., & Van Lanen, H. A. J.: Heatwaves, droughts, and fires: Exploring compound and cascading dry hazards at the pan-European scale. Environmental International, 134, 105276, https://doi.org/10.1016/j.envint.2019.105276, 2020.
 - Sutanto, S. J., van der Weert, M., Wanders, N., Blauhut, V., & Van Lanen, H. A. J.: Moving from drought hazard to impact forecasts. Nature Communications, 10, 4945, https://doi.org/10.1038/s41467-019-12840-z, 2019.
- Sutanto, S. J., Syaehuddin, W. A., & de Graaf, I.: Hydrological drought forecasts using precipitation data depend on catchment properties and human activities. Communications Earth & Environment, 5, 118, https://doi.org/10.1038/s43247-024-01295-w, 2024.
 - Tallaksen, L. M., & Van Lanen, H. A. J.: Hydrological drought: Processes and estimation methods for streamflow and groundwater. Elsevier, 2004.
- Teutschbein, C., Albrecht, F., Blicharska, M., Tootoonchi, F., Stenfors, E., & Grabs, T.: Drought hazards and stakeholder perception: Unraveling the interlinkages between drought severity, perceived impacts, preparedness, and management. Ambio, 52(7), 1262–1281, https://doi.org/10.1007/S13280-023-01849-W/FIGURES/7, 2023.
 - Toreti, A., Bavera, D., Acosta, N. J., Cammalleri, C., De, J. A., Di, C. C., Hrast, E. A., Maetens, W., Magni, D., Masante, D., Mazzechi, M., Niemeyer, S., & Spinoni, J.: Drought in Europe August 2022. 24, https://doi.org/10.2760/264241, 2022.
 - Toreti, A., Masante, D., Acosta, N. J., Bavera, D., Cammalleri, C., De Jager, A., Di Ciollo, C., Hrast Essenfelder, A., Maetens, W., Magni, D., Mazzeschi, M., Spinoni, J., & De Felice, M.: Drought in Europe July 2022. JRC Global Drought Observatory Analtical Report July 2022, 17, https://publications.jrc.ec.europa.eu/repository/handle/JRC130253, 2022.
- 1315 UNDRR. United Nations Office for Disaster Risk Reduction.: GAR Special Report on Drought 2021, 2021
- van Daalen, K. R., Romanello, M., Rocklöv, J., Semenza, J. C., Tonne, C., Markandya, A., Dasandi, N., Jankin, S., Achebak, H., Ballester, J., Bechara, H., Callaghan, M. W., Chambers, J., Dasgupta, S., Drummond, P., Farooq, Z., Gasparyan, O., Gonzalez-Reviriego, N., Hamilton, I., ... Lowe, R.: The 2022 Europe report of the Lancet Countdown on health and climate change: towards a climate resilient future. The Lancet Public Health, 7(11), e942–e965, https://doi.org/10.1016/S2468-2667(22)00197-9/ATTACHMENT/D023A5EC-127E-4855-BFA8-
 - F47C3B0D8FD0/MMC1.PDF, 2022.

- Vanderlinden, K., Giráldez, J. V., & van Meirvenne, M.: Spatial Estimation of Reference Evapotranspiration in Andalusia, Spain. Journal of Hydrometeorology, 9(2), 242–255, https://doi.org/10.1175/2007JHM880.1, 2008.
- Van Loon, A. F., Stahl, K., Di Baldassarre, G., Clark, J., Rangecroft, S., Wanders, N., Gleeson, T., Van Dijk, A. I. J. M.,
 Tallaksen, L. M., Hannaford, J., Uijlenhoet, R., Teuling, A. J., Hannah, D. M., Sheffield, J., Svoboda, M., Verbeiren,
 B., Wagener, T., & Van Lanen, H. A. J.: Drought in a human-modified world: Reframing drought definitions,
 understanding, and analysis approaches. Hydrology and Earth System Sciences, 20(9), 3631–3650,
 https://doi.org/10.5194/HESS-20-3631-2016, 2016.
- Van Loon, A. F., Kchouk, S., Matanó, A., Tootoonchi, F., Alvarez-Garreton, C., Hassaballah, K. E., Wu, M., Wens, M. L.,
 Shyrokaya, A., Ridolfi, E., Biella, R., Nagavciuc, V., Barendrecht, M. H., Bastos, A., de Vries, F. T., Garcia, M.,
 Mård, J., Streefkerk, I. N., Teutschbein, C., Werner, M.: Drought as a continuum: memory effects in interlinked hydrological, ecological, and social systems, https://doi.org/10.5194/egusphere-2024-421, 2024.
 - Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I.: A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. Journal of Climate, 23(7), 1696–1718, https://doi.org/10.1175/2009JCLI2909.1, 2010.

- Vignola, R., Locatelli, B., Martinez, C., & Imbach, P.: Ecosystem-based adaptation to climate change: What role for policy-makers, society and scientists? Mitigation and Adaptation Strategies for Global Change, 14(8), 691–696, https://doi.org/10.1007/S11027-009-9193-6, 2009.
- Voulvoulis, N., Arpon, K. D., & Giakoumis, T.: The EU Water Framework Directive: From great expectations to problems
 with implementation. Science of the Total Environment, 575, 358–366,
 https://doi.org/10.1016/J.SCITOTENV.2016.09.228, 2017.
 - Walker, D. W., Oliveira, J. L., Cavalcante, L., Kchouk, S., Ribeiro Neto, G., Melsen, L. A., Fernandes, F. B. P., Mitroi, V., Gondim, R. S., Martins, E. S. P. R., & van Oel, P. R.: It's not all about drought: What "drought impacts" monitoring can reveal. International Journal of Disaster Risk Reduction, 103, 104338, https://doi.org/10.1016/J.IJDRR.2024.104338, 2024.
 - Wendt, D. E., Bloomfield, J. P., Van Loon, A. F., Garcia, M., Heudorfer, B., Larsen, J., & Hannah, D. M.: Evaluating integrated water management strategies to inform hydrological drought mitigation. Natural Hazards and Earth System Sciences, 21(10), 3113–3139, https://doi.org/10.5194/NHESS-21-3113-2021, 2021.
- Wilhite, D. A.: Integrated drought management: moving from managing disasters to managing risk in the Mediterranean region. Euro-Mediterranean Journal for Environmental Integration, 4(1), 1–5, https://doi.org/10.1007/S41207-019-0131-Z/FIGURES/2, 2019.
 - Wilhite, D. A., Hayes, M., Knutson, C. L., & Hayes, M. J.: Drought Preparedness Planning: Building Institutional Capacity, https://digitalcommons.unl.edu/droughtfacpub, 2005.

World Meteorological Organization (WMO) and Global Water Partnership (GWP): National Drought Management Policy

Guidelines: A Template for Action (D.A. Wilhite). Integrated Drought Management Programme (IDMP) Tools and

Guidelines Series 1. WMO, Geneva, Switzerland and GWP, Stockholm, Sweden, 2014,

- World Meteorological Organization (WMO): WMO guidelines on multi-hazard impact-based forecast and warning services.

 Part II: Putting multi-hazard IBFWS into practice (2021 edition), WMO-No. 1150, ISBN 978-92-63-11150-0, https://public.wmo.int/en/resources/library/wmo-guidelines-multi-hazard-impact-based-forecast-and-warning-services-part-ii, 2021.
- Wu, A. L., Wu, M., Manzoni, S., Vico, G., Bastos, A., De Vries, F. T., & Messori, G.: Geophysical Research Letters, https://doi.org/10.1029/2022GL098700, 2011.