Dear editor, dear reviewer.

Before we proceed with point-by-point addressing of the issues raised by the reviewer, we would
like to make a very short synopsis of what was done during this revision.

1.

Based on the recommendation of Referee #2, we conducted experiments to test the failure
of regional tide gauges. In light of this, we propose changing the title of the manuscript by
removing the word “robust” and replacing it with a more descriptive phrase “in the presence
of tide gauge sensor failures,” so the new title reads: “HIDRA3: deep-learning model for
multi-point ensemble sea level forecasting in the presence of tide gauge sensor failures.”

We have added new sections to the manuscript: 2.4 “Summary of differences to HIDRA2,” 3.1
“NEMO model description," 3.3 “Uncertainty estimation analysis,” 3.4.2 “Extreme scenario of a
regional tide gauge failure” and 3.7 “HIDRA3 limitations”.

We have provided additional explanations and figures in the architecture description
sections, rewriting Section 2.2.3, "Feature fusion module," and Section 2.2.4, "SSH regression
module."

We have included explanations for the data quality check procedures and computation of
the tidal signal, expanded the analysis of sea surface temperature and waves' impact on the
performance of the model, and corrected some typos.

We proceed to a detailed point-by-point response below.



Reply on RC1:

COMMENT 1:

Review of HIDRA3: a robust deep-learning model for multi-point ensemble sea level
forecasting.

The paper presents a new version of the HIDRA sea level forecasting model. HIDRA3 is a
machine learning model with a deep convolutional architecture. The most important update
from version 2 is that the current version uses data not just from the local tide gauge it
predicts, but also from neighbouring tide gauges, which allows prediction also when the local
tide gauge is not operational.

The paper is well written, figures are nice and the model architecture and modelling choices
are well described. | recommend publications after some minor revisions.

RESPONSE 1:
We thank the reviewer for their encouraging comments.

COMMENT 2:

General points:

1) The manuscript makes the point that their machine learning model outperforms the
numerical ocean model NEMO on SSH prediction. But that is not really what is tested. They do
get better results on most metrics than what is seen in the specific NEMO run they compare
with. However, the performance in that specific NEMO run, says almost nothing about the
capabilities of numerical ocean models in general or even of the NEMO modelling systems
capabilities. The SSH performance in the NEMO run they compare with depends on modelling
choices (resolution, parametrisations, coordinate systems used. etc.) of which NEMO has very
many and of course also on the forcing used to run the NEMO model.

Especially on the forcing side the HIDRA model has a great advantage in this comparison as it
is allowed to use tide gauge data, whereas as | understand it the NEMO run they compare
with does not assimilate sea level data. | would expect, although | don't know, that HIDRA3
without tide gauge data as inputs would perform worse that the specific NEMO run. Anyway,
it should be made more clear in the text that although they outperform this specific
Copernicus product it does not really imply much about the capabilities of numerical ocean
models in general.

RESPONSE 2:

Thank you for pointing this out. We now provide a more detailed description of the specific CMEMS
Copernicus NEMO model setup in Section 3.1 and include a reference. We would like to clarify that
the version of NEMO used in this paper incorporates sea-level data assimilation for satellite



altimetry (SLA), but not for tide gauges. However, tide gauge measurements are used to correct the
bias. This is discussed further in Response 6. Below is the new Section 3.1, which describes the
version of NEMO used in this study:

3.1 NEMO model description

We compare HIDRA3 with the state-of-the-art deep model HIDRA2 (Rus et al., 2023) and with the standard Copernicus
Marine Environment Monitoring Service (CMEMS) product MEDSEA_ANALYSISFORECAST _PHY_006_013 (Clementi
et al., 2021) numerical model Nucleus for European Modelling of the Ocean (NEMO) v4.2 (Madec, 2016). The Mediterranean
Sea Physical Analysis and Forecasting model (MEDSEA_ANALYSISFORECAST_PHY_006_013) operates on a regular grid
with a horizontal resolution of 1/24° (approximately 4 km) and 141 vertical levels. It uses a staggered Arakawa C-grid with
masking for land areas, and a z* vertical coordinate system with partial cells to accurately represent the model topography. The
model incorporates tidal forcing using eight components (M2, S2, N2, K2, K1, Ol, P1, Q1) and is forced at its boundaries by
the Global analysis and forecast product (GLOBAL_ANALYSISFORECAST_PHY_001_024) on the Atlantic side, while in
the Dardanelles Strait, it uses a combination of daily climatological fields from a Marmara Sea model and the global analysis
product. Atmospheric forcing comes from ECMWF forecasting product. Initial conditions are taken from the World Ocean
Atlas (WOA) 2013 V2 winter climatology as of January 1, 2015. Data assimilation is performed using the OceanVar (3DVAR)
scheme, which integrates in-situ vertical profiles of temperature and salinity from ARGO, Glider, and XBT, as well as Sea Level
Anomaly (SLA) data from multiple satellites (including Jason 2 & 3, Saral-Altika, Cryosat, Sentinel-3A/3B, Sentinel6A, and
HY-2A/B). The hydrodynamic part of the model is coupled to the wave model WaveWatch-III. Further information about the
model is available in Clementi et al. (2021).

Since NEMO predicts the full ocean state, including SSH, on a regular grid, the respective tide gauge locations are approxi-
mated by the nearest-neighbor locations in the grid. One important thing to note is that ocean models like NEMO calculate sea
surface height as a local departure from the geoid in the computational cell. A typical cell dimension is of the order of hundreds
of meters. This means that the model’s SSH represents a departure from the geoid, averaged over hundreds of squared meters,
and is not directly relatable to the in-situ observations from local tide gauges, which measure local water depth. Therefore, to
align NEMO forecasts with local tide gauge water depth, an offset adjustment of the initial 12-hour forecast is necessary to

ensure zero bias compared to the respective tide gauge, as explained in Rus et al. (2023).



COMMENT 3

2) The uncertainty quantifications and it's capabilities should be elaborated on more in the
manuscript.

RESPONSE 3:

We agree with the reviewer. To address this concern, we add a new Section 3.3, “Uncertainty
Estimation Analysis”, to discuss and analyze HIDRA3's uncertainty prediction capabilities:

3.3 Uncertainty estimation analysis

Besides the forecasted SSH values, HIDRA3 also estimates uncertainties by predicting the standard deviation for each fore-

casted value. To assess the reliability of the estimated standard deviations, we employ the scaled error metric
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as proposed by Barth et al. (2020). This metric quantifies the difference between the ground truth SSH value p; ;+ and the
predicted SSH value fi; ;, scaled by the estimated standard deviation & ¢, where 7 is the tide gauge index and ¢ is the prediction
lead time. To assess the accuracy of our predicted uncertainty, we calculate the mean i, and the standard deviation o, of the
scaled error. If the predicted and the observed error distributions align, the standard deviation of the scaled error should be
o = 1.0.

For the second half of 2019 data, which was not used in training, the standard deviation of the scaled error for HIDRA3 is
o = 0.98. This indicates that HIDRA3 has good uncertainty prediction capabilities, with a slight overestimation of standard
deviations of the prediction errors. To further analyze the distribution of the scaled error metric €; ;, we plot its histogram in
Fig. 13, along with the ideal model (a zero-centered unit-sigma Gaussian), and with the Gaussian distribution characterized
by the estimated mean p. and standard deviation o, of HIDRA3. Note that the estimated Gaussian distribution aligns well
with the distribution of the ideal uncertainty prediction model, suggesting that HIDRA3 has excellent uncertainty prediction

capabilities.
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Figure 13. Histogram of the scaled error €; 4, overlaid with ideal Gaussian distribution with mean 0 and variance 1, and a Gaussian distribution
characterized by the estimated mean pi. and standard deviation o, from HIDRA3. The estimated Gaussian distribution aligns well with the

ideal one, suggesting excellent uncertainty prediction capabilities of HIDRA3.



COMMENT 4:

3) The models architecture is well described, but the reasons for the modelling choices made
is not. Perhaps, much of this information is available in earlier HIDRA papers, but | would like
to see more motivations for the different modelling choices.

RESPONSE 4:

We thank the reviewer for their suggestion to provide more explanations for our modelling choices.
We include additional explanations and insights in Section 2.2.1, "Geophysical encoder module," and
Section 2.2.2, "Feature extraction module," and revised Section 2.2.3, "Feature fusion module," and
Section 2.2.4, "SSH regression module." Below, we include a latexdiff of Section 2.2.1 and 2.2.2, and
the new Section 2.2.3 and Section 2.2.4.

2.2.1 Geophysical encoder module

The Geophysical encoder takes past and future, i.e. -72:72 h in hourly steps, of geophysical variables as the input: wind (v =
(u10,v10) € RZXW=H) pressure (p € RV *H), sea surface temperature (T € R *#), and waves (w € R*>*"W>H) where
W =19 and H = 12 are the spatial dimensions of the resampled input fields. The waves tensor w is composed of the following
four components (hence the dimension 4 x W x H): the first two are sine and cosine encodings of the mean wave direction,
while the remaining two components are the mean wave period and significant height of combined wind waves and swell.
The input variables are processed in two steps. In the first step, variables (wind, pressure, SST and waves) are encoded sepa-
rately, and then in the second step, encodings from different variables are fused together. We model each variable independently.

to avoid modeling low-level interactions between different variables, which would increase the number of

in the first ste

parameters. The first step is shown in Fig. 5. The encoder processes variable of size ¢ x 144 x 9 x 12 by a 3D convolution block
with 64 2 x 3 x 3 kernels with stride 2 x 2 x 2 (the first dimension is temporal, while the second two are spatial), followed by
a ReLU, a 3D dropout (Tompson et al., 2014) and another 3D convolution with 512 2 x 4 % 5 kernels with stride 2 x 1 x 1.
Note that the strides and the kernel sizes are adjusted to reduce the dimensions to 512 x 36 x 1 x 1. This adjustment aims to
compress the information into a low number of features, which helps reduce the risk of overfitting in the network and limits

the number of output features of the Geophysical encoder. For the sea surface temperature and wave variables, the number of
kernels in the last convolutional layer is 64 instead of 512, forming the output of size 64 x 36 x 1 x 1. This modification has led

to a marginal enhancement in performance, presumably due to the larger number of features representing wind and pressure
compared to SST and waves, thereby assigning greater significance to the former variables, which hold more relevance in the

context of SSH forecasting.



In-Encodings from all variables are concatenated

(see Fig. 6) - -processed by a 1D convolution with 256 kernels of
temporal size 5. We have chosen the kernel size of 5 and-to increase the receptive field of the layer, which, with this setup,
covers approximately 20 hours. We have found this to be effective in preliminary studies (not shown here). Next, two 1D
convolutions with 256 kernels of temporal size +—Fhis—is-1 are applied and followed by a SELU activation (Klambauer et al.,

2017), 1D dropout and a residual connection (see Fig. 6). These layers enable the extraction of more complex features from
the geophysical variables. After flattening, the output is a single vector of 8192 geophysical features.

2.2.2 Feature extraction module

1At prediction time, some tide gauges may not have measurements available, e.g.. due to temporary sensor failures. Therefore

in the Feature extraction moduletsee-Fig—H-, the location-specific features x-x; are extracted independently for each location.

Then, in the Feature fusion module, the features from all stations are mereed, taking into account that the data at some locations

is unavailable.

As is visualized in Fig. 7, The SSH observations (72 values) and the astronomic tide (144 values) are concatenated and
encoded with a dense layer (i.e. fully-connected layer) with 512 output channels. Geophysical features are also passed through
a dense layer with 512 output channels, whose task is to extract the features relevant to the specific tide gauge. Outputs
of both layers are concatenated and processed with four dense layers with 1024 output channels. A SELU, a dropout and
teldi i i i . The

residual connections are applied as shown in Fig. 7;

skip-connection-based approach is chosen for its excellent feature construction capability, which proceeds by adding non-linearly
stronger gradient in the backpropagation phase (He et al., 2016). We chose SELU (Klambauer et al., 2017) for its smoother
gradient propagation properties compared to its RELU counterpart, while the dropout is employed as a classical technique to
curb gverfitting.

Below are rewritten sections (not latexdiff):
2.2.3 Feature fusion module

As indicated in Fig. 4, the feature fusion module combines the location-specific features x; € R'%2%, into a joint state vector
s € R¥192 A critical design requirement for the module is robustness to missing data; specifically, the number of location-

specific features x; may vary, as they are only available for the tide gauges with available measurements.



A partial reconstruction s; of the state is computed from each location-specific feature vector x; by applying a location-
specific dense layer (see Fig. 8). In addition, a weight vector w; is computed by applying another location-specific dense layer
to x;. Each coordinate in w; reflects the extent by which the particular location contributes to the respective coordinate in
the joint state vector. If some tide gauges are non-descriptive, their weights would be reduced during training, lowering their
influence on the final state vector s, which is thus computed as
S=Z€vi-\’-jsz, (L)

ieV
where © denotes element-wise array multiplication, w; are the coordinate-normalized weight vectors and V' contains indices
of tide gauges with available SSH measurements, so that s is approximated from tide gauges with available measurements. The
components 1; ; are computed by a softmax, i.e.,

. eWi.i
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where the softmax ensures that the coordinate-wise weights sum to one across all locations with available measurements.
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Figure 8. The Feature Fusion Module takes features x; from location 7 and uses them to generate weights w; and a partial reconstruction
of state s;. These weights and partial reconstructions are combined into a joint state vector s using weighting and aggregation mechanisms.
Locations without available measurements are excluded from the softmax calculation and aggregation. The parameters of the dense layers

are specific to each location. The element-wise multiplication is denoted by the symbol .
2.2.4 SSH regression module

The i-th SSH regression module receives the joint state vector s. But since some stations may be deprioritized in the state
vector by the Feature fusion module, i.e., due to a smaller amount of training data available for that station, the state vector is
concatenated with a station-specific feature vector %;. The concatenated feature vector is then processed by a dense layer with
72 output features to regress the 72 hourly SSH predictions fi;.

Note that two situations emerge in the construction of the station-specific feature vector %;, depending on the sensor data

availability. If the measurements are available for the i-th tide-gauge, the station-specific feature vector is simply obtained by



passing the features computed for the respective tide-gauge x; (Sect. 2.2.2) through a dense layer with 1024 output features.
This nonlinear transformation is applied to enable the network to emphasize the part of the feature vector possibly under-
represented in the joint state vector. However, if the measurements are unavailable, e.g. due to sensor failure, then station-

specific feature vector is approximated by transforming the joint state vector, i.e. passing it through a dense layer with 1024
output features (see Fig. 9).
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Figure 9. The SSH regression module for a location i receives joint state vector s and location-specific features x;. The features x, are
processed by a dense layer to produce the features x;. In cases where measurements from the tide gauge at location i are unavailable, and

therefore x; is undefined, x; is approximated from s using a separate dense layer. The features x; and s are then concatenated and passed
through a final dense layer to obtain SSH predictions, denoted as f1;.



COMMENT 5:
Specific comments:

L13 I think standard numerical model NEMO is the wrong label.

RESPONSE 5:

We agree. We changed the label to be more specific into “the Mediterranean basin NEMO setup of
the Copernicus CMEMS service.”

COMMENT 6:
L44 Goes back to general point 1), these comparisons are very much of apples and oranges

RESPONSE 6:

The reviewer is raising an interesting point. We agree that it is often difficult to compare models
between themselves or at least to attribute which level of performance corresponds to which
algorithmic aspect of the model. In this sense, comparing ROMS to NEMO using different lateral
boundary conditions, different atmospheric forcing and different parameterization schemes is no
less difficult than comparing NEMO to HIDRA. We are unfortunately not in a position to feed the
exact same atmospheric input and the exact same tide gauge input into NEMO (which does not
ingest tide gauges as HIDRA3 but does assimilate satellite SLA) and into HIDRA3 (which does not
ingest SLA as NEMO but receives tide gauges), therefore any comparison needs to keep in mind that
the errors of both numerical approaches are accumulated across all input sources and the models
themselves. Both NEMO and HIDRA3 are at the end of the modeling chain so their performance also
reflects the accuracy of their input data.

We nevertheless feel that these comparisons can serve a purpose to establish the bottom line -
which of the models at our disposal gives the best forecast for civil rescue and other emergency
responses. In this optics, the comparisons presented in the paper are simply comparisons between
the best sea level prediction setups at our disposal. We agree that these setups may be structurally
quite heterogeneous but they all answer the same key question: what is the evolution of sea level in
the next 72 hours? For the civil rescue response, coastal safety and the economy, this is a key issue.

We hope the reviewer agrees that the comparisons between admittedly heterogeneous modeling
setups nevertheless hold some valuable information for the downstream services.



COMMENT 7

L193 The NEMO setup has to be better described. What NEMO version is used? What forcing is
used (also temporal and spatial resolution). What is the vertical and horizontal resolution of
the model. What vertical coordinate system is used? Does it have a wave model? Does it have
data assimilation? Does it have a minimum depth? Information of that kind is needed to give
more context to the different comparisons.

RESPONSE 7:

We agree and have addressed this issue in our Response 2.



Reply on RC2:

COMMENT 1:

This study introduces HIDRA3, a deep-learning model developed to estimate multi-point sea
levels. It builds upon previous work (Rus et al., 2023), aiming to enhance accuracy and handle
missing data. While the research aligns with the scope of this journal and is generally
well-written, several unclear aspects need to be addressed before the manuscript can be
considered for publication.

RESPONSE 1:

The authors thank the reviewer for their constructive remarks. We have done our best to amend the
manuscript according to their suggestions. We respond point by point below.

COMMENT 2:

Major Comments:
The major concern is the unclear methodology and application conditions for HIDRA3.

Page 5, Line 84: The phrase “detailed manual quality checks” is vague. Does this mean the
authors removed data if outliers were detected? How were outliers defined? Is this process
feasible in real time? If not, HIDRA3 has only been tested under ideal conditions where
manual quality checks have already been applied, which may not be applicable in real-world
scenarios. It is essential to clarify what data processing was conducted and if this is possible
in real-time. If not, HIDRA3's performance should be tested on original data without quality
checks.

RESPONSE 2:

We agree with the reviewer that the data-cleaning process is important to the reader. Our data
cleaning process addressed three types of errors, all of which could be automatically detected,
making real-time implementation feasible. To enable automatic data cleaning, we defined
thresholds based on our data-cleaning process and provide detailed descriptions of the
data-cleaning steps in the manuscript:

In order to eliminate SSH measurement errors, we apply three filters to address three types of errors: (1) sensor freeze, which
results in the same value being produced for an extended period of time; (2) extreme outliers; and (3) extreme jumps in the
signals. For case (1), we define a threshold of 5 repetitions, as repetitions typically span more than 5 time points. For case (2),
we define a location-specific threshold equal to 10 times the standard deviation of measurements and remove all points that are
further away from the mean value than that threshold. Note that the threshold needs to be recalculated after each measurement
is removed. For case (3), we examine the first derivative of the signals and define a location-specific threshold equal to 10 times
the standard deviation of all first derivatives for some location. When two derivatives with opposite signs are close together
(less than 10 time points), the region between them is removed. Again, it is necessary to recalculate the threshold after each

removal. The validity of all thresholds was visually verified.



COMMENT 3

Page 5, Line 85: The manuscript suggests that tide data was predicted in one-year intervals.
This may lead to “cheating” by using future data for tide predictions. For instance, predicting
water levels on June 1, 2019, might involve tide data that includes water levels from that
date. In real-world applications, future water level data would not be available. The authors
should revise their approach to ensure that tide predictions are made only using available
data, rather than yearly-based data.

RESPONSE 3:

We thank the reviewer for pointing out this unclarity. We emphasize that the future data was not
used. The tidal analyses used to compute tidal constituents during each particular year were
computed from the past year of tide gauge observations except for the first year. The reason for
performing tidal analysis in one-year chunks stems from the fact that tidal signals contain several
low-frequency signals, most notably an 18.6-year cycle of the precession of lunar nodes. This leads
to a slow oscillation in amplitudes and phases of tidal constituents. A classical approach to remedy
this situation when computing tides from observations is to compute them in one-year chunks (see

e.g. https://doi.org/10.1016/S0098-3004(02)00013-4). An alternative for longer time windows is to

employ nodal corrections or perform analyses on series of sufficient length to resolve all necessary
low frequency constituents. To address the reviewer's concern, we add the following text to the
manuscript:

Astronomic tides were calculated from tide gauge data in one-year intervals using the UTIDE Tidal Analysis package for
Python (Codiga, 2011). Using one year intervals for tidal analysis are common approach to compensate for the unresolved low
frequency signals in the tidal signal, like the 18.6 year oscillation due to the precession of lunar nodes (Pawlowicz et al., 2002).
For each one-year interval, tidal constituents are inferred from the past year of observations to ensure that no information
beyond the prediction point is used. The only exception is in the first year of measurements for each location, when the first
year of measurements is used to calculate the first year of tides. This approach is beneficial for training the model and does not

affect the evaluation data, as all tide gauges have measurements spanning at least one year prior to the test period.


https://doi.org/10.1016/S0098-3004(02)00013-4

COMMENT 4:

Page 5, Line 93: The reason for using ERAS for training and ECMWF for testing is unclear. If the
model trained with ERA5 outperforms the model trained with ECMWF, the authors should
clearly present this result. Otherwise, the choice to use ERAS for training is unjustified.

RESPONSE 4:

We thank the reviewer for this comment. We have experimented with training using both ERA5 and
ECMWF prediction data, and we discovered that training with ERA5 slightly enhances performance
on the test set. This is why we decided to train with ERA5. We include a sentence in the manuscript
to demonstrate this improvement:

ERAS reanalysis data (Hersbach et al., 2018) was employed for training purposes, while ECMWF Ensemble Prediction
System (EPS) data (Leutbecher and Palmer, 2007) was employed for evaluation to reflect the practical forecasting setup in
which future reanalysis does not exist and forecasts are used. To independently verify the impact of the training set, HIDRA3
was also retrained on ECMWF EPS data instead of ERAS. When evaluated on the ECMWF EPS dataset, this led to a slight
increase in MAE (1.7%). We consequently decided to select the ERAS dataset for the training.

COMMENT 5:

Page 7, Line 119: HIDRA3 incorporates additional features (sea surface temperature and
waves) compared to HIDRA2, but this is not clearly stated. The manuscript should explain
why these features were included. Although Section 3.4.2 discusses their impact, it does not
analyze their individual contributions. The authors should reference feature selection studies
and test the impact of each new feature (sea surface temperature and waves) to justify their
inclusion.

RESPONSE 5:

We thank the reviewer for their suggestion. We have added two ablation studies to Section 3.6.2
“Impact of sea temperature and waves,” in which we test the individual contributions of waves and sea
surface temperature. From the experiments, it is difficult to conclusively state which feature
contributes more, but it is nevertheless clear, that adding them slightly improves the performance.
The revised Section 3.6.2, "Impact of sea temperature and waves," now reads as follows:

3.6.2 Impact of sea temperature and waves

To evaluate the importance of using sea surface temperature and wave data to enhance our model, we retrained HIDRA3 by
these variables ablated. We first removed only sea surface temperature, which resulted in an average 1.7% increase in the
overall MAE and a 1.2% increase in the MAE on high SSHs. Next, we removed only wave data, which led to an average 1.2%
increase in the overall MAE and a 2.4% increase in the MAE on high SSHs. Finally, in the third experiment, we removed
both sea surface temperature and wave data, which caused an average 0.8% increase in the overall MAE and a 2.7% increase
in the MAE on high SSHs. These results suggest that sea surface temperature and wave data are not the main sources of the
HIDRA3’s excellent performance, however, they do bring a non-negligible contribution and we recommend using them in the

SSH prediction tasks.



COMMENT 6:

Sections 2.2.3 and 2.2.4: It is unclear how missing data (denoted as xi) is handled. Page 9, Line
150 mentions that missing values are estimated from “s,” but it is unclear what “s” refers to.
The authors need to clarify what the feature fusion module is doing and explain the
difference between xi and s, preferably with a figure for better understanding.

RESPONSE 6:

We thank the reviewer for this comment. We agree that the explanation of how missing values are
handled is not clear. In the Feature Fusion module, location-specific features "xi" from only tide
gauges with available measurements are combined into "s". We rewrite Section 2.2.3 “Feature fusion
module” and include figures to clearly illustrate this process, as well as the reasons for passing “xi” to
the SSH regression module.

2.2.3 Feature fusion module

As indicated in Fig. 4, the feature fusion module combines the location-specific features x; € R'%?4, into a joint state vector
s € R®%2, A critical design requirement for the module is robustness to missing data; specifically, the number of location-
specific features x; may vary, as they are only available for the tide gauges with available measurements.

Firstly, a partial reconstruction s; of the state is computed from each location-specific feature vector x; by applying a
location-specific dense layer (see Fig. 8). In addition, a weight vector w; is computed by applying another location-specific
dense layer to x;. Each coordinate in w; reflects the extent by which the particular location contributes to the respective
coordinate in the joint state vector. If some tide gauges are non-descriptive, their weights would be reduced during training,
lowering their influence on the final state vector s, which is thus computed as
s=) WiOsi, (1

gV
where ) denotes element-wise array multiplication, W; are the coordinate-normalized weight vectors and V' contains indices
of tide gauges with available SSH measurements, so that s is approximated from tide gauges with available measurements. The

components @ ; are defined computed using softmax function:
e

if"i.j - =
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where the softmax ensures that the coordinate-wise weights sum to one across all locations with available measurements.
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Figure 8. The Feature Fusion Module takes features x; from location 7 and uses them to generate weights w; and a partial reconstruction
of state s;. These weights and partial reconstructions are combined into a joint state vector s using weighting and aggregation mechanisms.
Locations without available measurements are excluded from the softmax calculation and aggregation. The parameters of the dense layers

are specific to each location. The element-wise multiplication is denoted by the symbol .

COMMENT 7

Page 11, Line 191: The differences between HIDRA2, NEMO, and HIDRA3 are not adequately
explained. It would be helpful for the authors to provide a clear comparison of these models.
For example, HIDRA2 does not consider temperature and wave data. Both HIDRA2 and
HIDRA3 are designed for 72-hour predictions. NEMO, on the other hand, performs bias
correction every 12 hours. Clarifying these differences would strengthen the manuscript.

RESPONSE 7:

We thank the reviewer for pointing this out. We have provided a detailed description of NEMO in
Section 3.1, titled "NEMO model description," and outlined the differences between HIDRA2 and
HIDRAS3 in Section 2.4, "Summary of differences to HIDRA2." Both are included below.

2.4 Summary of differences to HIDRA2

HIDRAS3 presents a significant advancement over its predecessor, HIDRA?2 (Rus et al., 2023), by introducing the capability to

simultaneously process data from multiple tide gauge locations. This required a major redesign of the model, as HIDRA3 must

effectively handle scenarios where SSH measurements are not available.

The only similar part is the Geophysical encoder module, but with a difference in the way temporal data is processed.
In HIDRAZ2, there is a 4-hour temporal reduction of atmospheric data, while HIDRA3 incorporates the temporal reduction
directly into the convolutional operations of the Geophysical encoder module. Additionally, HIDRA3 expands its input data to
include sea surface temperature and wave fields, and considers not only the past 24 hours like HIDRA?2, but 72 hours before
the prediction point.

A notable contribution of HIDRA3 is its capacity for uncertainty quantification, a feature that was absent in HIDRA2. This

capability is crucial for assessing the reliability and potential limitations of the SSH forecasts generated by the model.



3.1 NEMO model description

We compare HIDRA3 with the state-of-the-art deep model HIDRA2 (Rus et al., 2023) and with the standard Copernicus
Marine Environment Monitoring Service (CMEMS) product MEDSEA_ANALYSISFORECAST_PHY_006_013 (Clementi
et al., 2021) numerical model Nucleus for European Modelling of the Ocean (NEMO) v4.2 (Madec, 2016). The Mediterranean
Sea Physical Analysis and Forecasting model (MEDSEA_ANALYSISFORECAST_PHY_006_013) operates on a regular grid
with a horizontal resolution of 1/24° (approximately 4 km) and 141 vertical levels. It uses a staggered Arakawa C-grid with
masking for land areas, and a z* vertical coordinate system with partial cells to accurately represent the model topography. The
model incorporates tidal forcing using eight components (M2, 82, N2, K2, K1, Ol, P1, Q1) and is forced at its boundaries by
the Global analysis and forecast product (GLOBAL_ANALYSISFORECAST_PHY_001_024) on the Atlantic side, while in
the Dardanelles Strait, it uses a combination of daily climatological fields from a Marmara Sea model and the global analysis
product. Atmospheric forcing comes from ECMWF forecasting product. Initial conditions are taken from the World Ocean
Atlas (WOA) 2013 V2 winter climatology as of January 1, 2015. Data assimilation is performed using the OceanVar (3DVAR)
scheme, which integrates in-situ vertical profiles of temperature and salinity from ARGO, Glider, and XBT, as well as Sea Level
Anomaly (SLA) data from multiple satellites (including Jason 2 & 3, Saral-Altika, Cryosat, Sentinel-3A/3B, Sentinel6A, and
HY-2A/B). The hydrodynamic part of the model is coupled to the wave model WaveWatch-I11. Further information about the
model is available in Clementi et al. (2021).

Since NEMO predicts the full ocean state, including SSH, on a regular grid, the respective tide gauge locations are approxi-
mated by the nearest-neighbor locations in the grid. One important thing to note is that ocean models like NEMO calculate sea
surface height as a local departure from the geoid in the computational cell. A typical cell dimension is of the order of hundreds
of meters. This means that the model’s SSH represents a departure from the geoid, averaged over hundreds of squared meters,
and is not directly relatable to the in-situ observations from local tide gauges, which measure local water depth. Therefore, to
align NEMO forecasts with local tide gauge water depth, an offset adjustment of the initial 12-hour forecast is necessary to

ensure zero bias compared to the respective tide gauge, as explained in Rus et al. (2023).



COMMENT 8:

Tables 2, 3, and 4: It is unclear why the recall, precision, and F1 scores for “low SSH values” are
missing. Low water level predictions are important, particularly for critical infrastructure like
nuclear power plants or harbors. The authors should explain why these metrics are missing
and include them if possible.

RESPONSE 8:

We agree with the reviewer that there is no reason not to include recall, precision, and F1 scores for
low SSH values. We computed the metrics and added them to the tables:

Model MAE (ecm) RMSE (em) ACC (%) Bias(cm) Re(%) Pr(%) FIl (%)
NEMO 2.65 3.56 97.76 -0.31 ! ! !
Overall HIDRA2 2.63 3.56 98.15 -0.17 ! ! !
HIDRAS3 (ours) 242 3.28 98.60 -0.00 ! ! /
NEMO 4.19 5.23 92.91 2.88 94.04 9992  96.39
Low SSH
Val HIDRA2 3.27 4.27 95.94 102 97.64 99.55 98.51
alues
HIDRAS3 (ours) 330 4.24 96.16 1.33 98.04 99.85 98.88
NEMO 4.68 6.19 89.14 -3.02 94.53 99.40 96.79
High SSH
Val HIDRA?2 4.80 6.53 89.49 -2.35 96.62 97.82 97.18
alues
HIDRAS3 (ours) 4.06 5.61 91.63 -2.06 97.58 98.67 98.09

Table 2. Performance calculated on all SSH values, low SSH values and high SSH values, averaged over all locations. The proposed HIDRA3
has the best performance overall and on high SSH values, and a comparable performance on low values to HIDRA2.

Model MAE (cm) RMSE (cm) ACC (%) Bias(cm) Re(%) Pr(%) FI (%)

NEMO,, 3.26 4.15 95.81 0.03 / / /

Overall

HIDRAS3 (ours) 2.63 352 98.35 -0.07 / / /
Low SSH NEMO, 4.00 4.95 96.00 3.08 97.41 99.55 98.44
Values HIDRAS3 (ours) 3.30 4.26 95.75 1.02 98.23 9951 98.82
High SSH NEMO, 5.12 6.48 86.82 -2.96 92.20 99.81 95.24
Values HIDRA3 (ours) 4.46 6.04 §9.94 -2.32 97.38 98.81 98.06

Table 3. Performance of HIDRA3 and NEMOg under the target location tide gauge failure.

Model MAE (cm) RMSE (cm) ACC (%) Bias(cm) Re(%) Pr(%) FI1(%)
NEMO 2.65 3.56 97.76 -0.31 ! / /
Overall HIDRA2 2.63 3.56 98.15 -0.17 ! / /
HIDRA3: (ours) 2.60 347 98.40 0.02 ! / /
NEMO 4.19 5.23 9291 2.88 94.04 99.92 96.39
Low SSH
Val HIDRA2 3.27 4.27 95.94 .02 97.64 99.55 98.51
alues
HIDRA3: (ours) 3.52 4.47 95.58 1.79 97.31 99.21 98.16
NEMO 4.68 6.19 89.14 -3.02 94.53 99.40 96.79
High SSH
Val HIDRA2 4.80 6.53 89.49 -2.35 96.62 97.82 97.18
alues
HIDRA3; (ours) 4.34 5.98 90.94 -1.72 96.82 98.54 97.65

Table 4. Performance of NEMO, HIDRA2 and HIDRA3,. where HIDRA3, is the model trained separately on every single location.



COMMENT 9:

Figure 11: The manuscript only considers “pair” failures for tide gauges, but more realistic
scenarios should be explored. For instance, a failure involving multiple tide stations, such as
in the northern Adriatic (KP, VE, RA), where water levels show similar trends (as per Figure 2),
would offer a more realistic test of HIDRA3's performance. Testing such scenarios would
strengthen the justification for using HIDRA3 over other approaches.

RESPONSE 9:

We thank the reviewer for this excellent experiment, in which we simulated the complete failure of
all tide gauges in Koper, Venice, and Ravenna. The results of the experiment demonstrate that
HIDRA3 remains robust in the case of regional tide gauge failure, with only a slight downgrade in
performance observed for the northern locations due to the removed measurements. The results of
this experiment are detailed in Section 3.4.2 of the revised manuscript, titled "Extreme scenario of a
regional tide gauge failure:”

3.4.2 Extreme scenario of a regional tide gauge failure

To evaluate the model’s performance under an extreme scenario of a regional tide gauge failure, we conducted an additional
experiment where all northern locations (Koper, Venice, and Ravenna) were disabled. These locations exhibit distinct dynami-
cal characteristics compared to others, as illustrated in Figures 2 and 3. The evaluation of HIDRA3 without SSH measurements
from Koper, Venice, and Ravenna is denoted as HIDRA3 g. Importantly, the model was not retrained for this experiment; rather,
the same model trained on all locations was used, with the specified measurements withheld from the test set. This stress test
quantifies HIDRA3 predictions for northern tide gauges based exclusively on data from southern tide gauges.

Figure 17 compares the MAE scores of HIDRA3 5, HIDRA3, and NEMO. Surprisingly, HIDRA3 5 demonstrates robust fore-
casting capabilities in the northern locations, despite lacking direct measurements. While the MAE scores are slightly higher
than those obtained with all locations as inputs (HIDRA3), they significantly outperform NEMO. In the southern locations, the
performance of HIDRA3 and HIDRA3g is comparable and worse than NEMO. This is expected given the availability of past

SSH measurements for these regions.

We plot the performance during multiple tide gauge failure in a separate Figure:

NEMO B HIDRA3 B HIDRA3 H MAE MAE on high S5Hs

= o
Koper
Venice
Ravenna
Ancona
Ortona

Tremiti -
Neretva
Sobra

Stari Grad -
Vela Luka -

Figure 17. Multiple sensor failure scenario. Overall (dark) and high SSH (light) MAE scores for NEMO, HIDRA3, and HIDRA3s.

HIDRA3 s represents the evaluation of HIDRA3 with only southern locations as input, excluding sensors in Koper, Venice, and Ravenna.



We also add a sentence to the Abstract:

respectively, setting a solid new state-of-the-art. Forecasting skill does not deteriorate even in the case of simultaneous failure

of multiple sensors in the basin or when predicting solely from the tide gauges far outside the Rossby radius of a failed

sensor. Furthermore, HIDRA3 shows remarkable performance at substantially smaller amounts of training data compared with
HIDRA?2, making it appropriate for sea level forecasting in basins with large regional variability in the available tide gauge

data.

COMMENT 10:

There is no dedicated section on the limitations of HIDRA3. For example, HIDRA3 does not
work if data from at least one station is missing for the 72-hour prediction window. The
limitations should be clearly stated.

RESPONSE 10:

To ensure a comprehensive understanding of HIDRA3's capabilities and limitations, we have added a
dedicated section to our paper that outlines the specific conditions under which the model may
encounter challenges:

3.7 HIDRAS3 limitations

HIDRAZ3 can generate forecasts for all locations even if the data from some locations is missing, which is a substantial im-
provement over its predecessor, HIDRA2. The current implementation of HIDRA3 disregards the entire 72-hour SSH dataset
from the previous three days if even a single value of SSH is missing. This might be an overly stringent criterion and we are
working to find optimal ways to address this. Furthermore, in a highly unlikely situation when the sensors at all locations would
fail and the data would be missing for the full 72 h past period, HIDRA3 could not generate forecasts reliably. In this case, a
potential solution of using the past HIDRA3 prediction as the input for the current prediction is still applicable. Preliminary
simulations of such scenarios indicate that the MAE of HIDRA3 increases by 35% overall and by 43% for high SSH values.

Additional work, however, needs to be performed to further constrain HIDRA3 behavior in such scenarios.

COMMENT 11:

Minor Comments:

Page 3, Line 45: The full name of HIDRA should be provided.

RESPONSE 11:

Thank you. The text was corrected as suggested.



COMMENT 12:

Page 3, Line 60: The authors should expand their literature review to include studies that
address missing data in real time, such as Lee and Park (2016) and Vieira et al. (2020), for
better context.

RESPONSE 12:

We thank the reviewer for suggesting the relevant articles by Lee and Park (2016) and Vieira et al.
(2020). We expand our literature review to include these contributions.

COMMENT 13:

Page 5, Line 86-89: It would be helpful to clarify where the “high” and “low” data will be used
in the next section. As written, the reason for defining “high” and “low” is unclear.

RESPONSE 13:

We thank the reviewer for this suggestion. We now explicitly mention that we use these data in
evaluation in the appropriate Section and we also list why this is relevant to know. The new
paragraph now reads:

In the context of this analysis, a dataset of sea-level extremes was constructed for each station. SSH readings are categorized
as low if they are below the 1% percentile, and as high if they surpass the 99" percentile of the observed values at the respective
location. During evaluation (Sect. 3.2), metrics are calculated for all SSH values, as well as for low and high values. This
helps assess the model’s performance in predicting both tails of extreme SSH values: high values are relevant for coastal flood
warnings while low values restrict marine traffic in the shallow north of the basin. The thresholds determined are listed in

Table 1.

COMMENT 14:

Figure 2 and Page 5, Line 89: The location names in Figure 2 and the acronyms used in the text
should be consistent for readability.

RESPONSE 14:

As the reviewer suggested, we updated the text to include the full names of the locations.



COMMENT 15:

Figure 5 and Page 7, Line 118: The output dimensions are different for various features (e.g.,
wind and pressure have different dimensions compared to others). The caption for Figure 5
should be corrected to reflect these differences.

RESPONSE 15:

We thank the reviewer for noticing this, we changed the caption as follows:

Figure 5. The first step of the Geophysical encoder module involves encoding each of the four variables separately. Note that wind has two
input channels, while the waves data has four. The encoder consists of two 3D convolutions, reducing spatial dimension to 1 x 1. Wind and

ressure are encoded into 512 output channels, as depicted in the figure, while sea surface temperature and wave data are encoded into 64

channels. The variables k, s and n denote the kernel size, the stride and the number of output channels, respectively. The number of channels

is indicated in gray, the size of the temporal dimension is in red, and the spatial dimensions are in blue.

COMMENT 16:

Figure 6: The authors should explain why the input dimension is 1152*36, given that the
output dimension of Figure 5 is 512*36*1*1. The change in dimensions needs clarification.

RESPONSE 16:

To address the reviewer’s concern, we add the following explanation to the revised manuscript:

Encodings from all variables are concatenated, resulting in a total of 2- 512+ 2 - 64 = 1152 channels. By removing spatial
dimensions of size 1, concatenation is of size 1152 x 36, which is then in the second step of the Geophysical encoder (see

Fig. 6) processed by a 1D convolution with 256 kernels of temporal size 5. We have chosen the kernel size of 5 to increase

COMMENT 17:
Figures 6 and 7: The terms “2X"” and “4X"” should be explained, as their meaning is unclear.

RESPONSE 17:

As suggested, we added the explanations.



COMMENT 18:

Page 8, Line 130: The authors mention a “dense layer,” but later refer to “dropout” in Figure 7.
This needs clarification, as dropout is not typically associated with fully connected layers.

RESPONSE 18:

After the first dense layer mentioned in Line 130, we do not apply Dropout. However, after dense
layers with residual connections, we do apply Dropout. We add dropout to prevent overfitting, and

we have added this information to the manuscript. We hope we have addressed the reviewers'
concerns.

COMMENT 19:

Section 2.2.3 and 2.2.4: Including a diagram, similar to Figure 6, would help readers
understand the concepts better.

RESPONSE 19:
AS suggested, we added the following diagrams:
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Figure 8. The Feature Fusion Module takes features x; from location 7 and uses them to generate weights w; and a partial reconstruction
of state s;. These weights and partial reconstructions are combined into a joint state vector s using weighting and aggregation mechanisms.
Locations without available measurements are excluded from the softmax calculation and aggregation. The parameters of the dense layers

are specific to each location. The element-wise multiplication is denoted by the symbol ©.
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Figure 9. The SSH regression module for a location ¢ receives joint state vector s and location-specific features x;. The features x; are
processed by a dense layer to produce the features X;. In cases where measurements from the tide gauge at location ¢ are unavailable, and
therefore x; i1s undefined, x; is approximated from s using a separate dense layer. The features x; and s are then concatenated and passed

through a final dense layer to obtain SSH predictions, denoted as fi;.

COMMENT 20:

Page 9, Line 158: The term “mean” in “SSH mean value prediction” is unclear. The authors
should clarify whether this is a typo or explain its meaning.

RESPONSE 20:

We thank the reviewer for spotting this. It is a typo and we corrected it in the revision.

COMMENT 21:

Page 10, Line 163: The standardization process needs further explanation. Was the data
normalized for each case or across the entire dataset?

RESPONSE 21:

The geophysical variables are standardized independently, while the tide gauges share the standard

deviation used for their normalization. We add the following text in the revised manuscript to reflect
this:

probability of 0.5. The batch size is set to 128 data samples, the model is trained for 20 epochs. All input data is standardized by
subtracting the mean and dividing by the standard deviation. For each tide gauge location, the mean is calculated independentl

while a single standard deviation is computed across all locations. Each geophysical variable is standardized independently of
the other variables. Training takes approximately one hour on a computer with an NVIDIA A100 Tensor Core GPU graphics

card.



COMMENT 22:

Page 10, Line 170: For consistency, the term “first stage” should be replaced with “first phase.”

RESPONSE 22:

Thank you for your suggestion. We replaced "first stage" with "first phase."

COMMENT 23:
Page 11, Line 193: The full name of NEMO should be provided.

RESPONSE 23:
As suggested, we added the name: “Nucleus for European Modeling of the Ocean.”



