New Particle Formation Events Observed during the COALA2020 Campaign
 2

Jhonathan Ramirez-Gamboa ${ }^{1,2}$, Clare Paton-Walsh ${ }^{1 *}$, Melita Keywood ${ }^{2}$, Ruhi Humphries ${ }^{2}$, Asher Mouat ${ }^{4}$, Jennifer Kaiser ${ }^{4,5}$, Malcom Possell ${ }^{3}$, Jack 3
Simmons ${ }^{1}$, Travis A. Naylor ${ }^{1}$ 4
${ }^{1}$ Centre for Atmospheric Chemistry, School of Earth, Atmospheric and Life Sciences, University of Wollongong, NSW 6
2522, Australia 7
${ }^{2}$ Climate Science Centre, CSIRO Environment, Aspendale, VIC 3195, Australia 8
${ }^{3}$ School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia 9
${ }^{4}$ School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta GA 30332, USA 10
${ }^{5}$ School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta GA 30332, USA 11

* Correspondence: clarem@uow.edu.au 12
Abstract: 13
Aerosols play an important role in atmospheric processes influencing cloud formation, scattering and absorbing solar 15radiation, and as a part of the chemical reactions affecting the abundance of trace gases in the atmosphere. Ultimatelyaerosols affect the radiative balance of the earth modifying climate. A large fraction of aerosols is formed throughchemical reactions following gas-to-particulate processes in the atmosphere: nucleation, condensation and growth.Biogenic Secondary Organic Aerosols (BSOA) are formed when plant produced volatile organic compounds (VOCs)react in the atmosphere through heterogeneous reactions. South-east Australia is one of the locations with the highestemissions of biogenic VOCs in the world, due to the high density of Eucalyptus species, which are high emitters of VOCs.The COALA-2020 (Characterizing Organics and Aerosol Loading over Australia) campaign worked towards a betterunderstanding of biogenic VOCs in quasi-pristine conditions in the atmosphere and their role in particle formation.141617

The observations showed a highly reactive atmosphere with frequent new particle formation occurring (50\% days with data) often associated with pollution plumes. Analysis of NPF events indicated that SO_{2} and NOx plumes triggered particle formation, while particle growth depended on available VOCs, OH concentration (influenced by relative humidity), and the presence of multiple SO_{2} and NOx intrusions promoted growth of smaller clusters. Nighttime NPF events correlated with NOx but the limited night-time data hindered conclusive interpretations. These findings highlight the significant role of biogenic VOCs, especially isoprene, in driving NPF and SOA formation in South-east Australia, even after major wildfires. The COALA-2020 campaign provided valuable insights into local atmospheric chemistry and its potential impact on regional air quality and climate. However, longer-term observations are crucial to understand seasonal variations, trends and extreme events.

Keywords: COALA-2020; aerosols, BVOCs, NPF.

1. Introduction

2012). The chemical composition, size and particle concentration determine the effects on health and the environment (Liu et al., 2016b; Pope and Dockery, 2006; Ren et al., 2017). Aerosols can be directly emitted (primary aerosols) or they can be product of interactions in the atmosphere (secondary aerosols) (Pöschl, 2005).

Secondary aerosols are produced via gas-to-particle transition, where reactive compounds in the atmosphere are oxidised to become low volatility organic compounds (LVOC). These compounds, along with sulfuric acid vapour are often involved in the nucleation process promoting clustering (e.g., Yu and Luo, 2009). Once the clusters (ultrafine particles) are formed, they can grow through coagulation and condensation potentially resulting in cloud condensation nuclei (CCN) (Dal Maso et al., 2005; Hussein et al., 2005; Kulmala et al., 2001). Usually, three distribution modes are used to classify the particle size distributions of ultrafine particles: the nucleation mode ($<10 \mathrm{~nm}$), the Aitken mode ($10-100 \mathrm{~nm}$) and the accumulation mode (> 100 nm). The formation of these molecular clusters and their subsequent growth to larger sizes is denominated new particle formation (NPF).

Biogenic VOCs play an important role in secondary organic aerosol (SOA) formation (e.g., Mahilang et al., 2021). Monoterpenes have higher SOA formation yields than isoprene (Friedman and Farmer, 2018; Riva et al., 2019; Zhang et al., 2018) but isoprene contributes more than half of the total BVOC emissions in the world making it an important SOA source too (e.g. Fry et al., 2018). Particularly the SOA yield of isoprene oxidised through NO_{3} at night is reported to be several times the yield observed through the OH oxidation path (e.g. Ng et al., 2008). Recent studies suggest that in biogenic-rich regions isoprene-SOA yield can be much higher than previously reported when considering further oxidation of the products in low $N O_{x}$ environments (e.g. Liu et al., 2016a), promoting the formation of key condensing species.

The OH availability in the atmosphere is key to promoting SOA formation (e.g. Song et al., 2019). To form key condensing species, multiple oxidation steps must happen to the original VOC molecule. After a VOC molecule oxidises becoming a more complex and larger OVOC, it is less likely to be oxidised again, particularly when in the presence of other VOCs with higher OH reactivity (Kiendler-Scharr et al., 2009). This was recently demonstrated in different chamber and ambient studies where isoprene mole fractions were many times higher than monoterpenes. In these studies, isoprene scavenged OH , interrupting the formation of C_{20} dimers and reducing the yield of highly oxygenated molecules (HOMs), thereby suppressing the nucleating process driving NPF (Heinritzi et al., 2020; Liu et al., 2016a). This effect is non-linear nor constant and will change with local conditions. High levels of SO_{2} and VOCs in a humid atmosphere will enhance NPF (Nestorowicz et al., 2018; Song et al., 2019, p.20; Xu et al., 2021).

Understanding BVOC emissions and their role in SOA formation is important to accurately predict aerosol properties and their impact on climate. However, BVOC are poorly characterized under Australian conditions (Paton-Walsh et al., 2022). MEGAN emissions show south-east Australia as one of the BVOC hot-spots in the region (Guenther et al., 2012) but multiple modelling studies have shown that MEGAN emissions estimation might not be representing local conditions correctly in this region (Emmerson et al., 2016, 2018, 2019). Most of the Australian forested regions are dominated by high emitting Eucalyptus species (ABARES, 2019; Aydin et al., 2014; Padhy and Varshney, 2005) that combined with periods of temperature and drought stress create the conditions to have high emissions/concentrations of BVOCs in the atmosphere (Emmerson et al.,

2020; Fini et al., 2017; Ormeño et al., 2007). The emissions ratios of isoprene to other VOCs are poorly 79 constrained and the local chemistry is not well understood.

The COALA-2020 campaign worked towards a better understanding of biogenic VOCs in quasi-pristine conditions in the atmosphere and their role in local atmospheric chemistry in south-east Australia. COALA2020 was a collaborative effort between local institutions including the University of Wollongong, CSIRO, ANSTO, and the University of Sydney, and international peers from Georgia Institute of Technology, The University of California, Irvine, Nagoya University and Lancaster University. This part of the study focused on identifying and characterising NPF events after the "Black Summer" 2019-2020 Australian bushfire season. Here we aimed to identify drivers and conditions in which NPF started or were enhanced in the local environment.

2. Materials and Methods

2.1 The COALA-2020 Campaign

The COALA-2020 campaign took place at Cataract Scout camp ($34^{\circ} 14^{\prime} 44^{\prime \prime} \mathrm{S}, 150^{\circ} 49^{\prime} 26^{\prime \prime}$ E) located 20 km north-northwest of Wollongong on the east coast of NSW, Australia. The site is surrounded by a heavily forested area mainly stocked by Eucalyptus species (see Figure 1). North of the sampling site is the Appin Road, a four-lane arterial road connecting the M1 motorway on the east coast with south-western Sydney. Other possible anthropogenic sources impacting the site are two underground coal mine heads, the Appin Colliery (1.5 km to the northeast) and the West Cliff Colliery (2.5 km to the north). Besides the close sources it is important to note the proximity of the Sydney suburban area (around 18 km north-west), Sydney city (45 km north), Wollongong urban area and Port Kembla steelworks in the southern part of Wollongong (28 km to the southeast). The campaign was conducted from January 17th until March 23rd, 2020. The first period of the campaign was heavily impacted by smoke pollution from the bushfires affecting the region until February 5th, when a substantial rain event extinguished the fires and cleared the atmosphere of residual smoke pollution (Mouat et al., 2022; Simmons et al., 2022). This period was removed from the analysis presented here as we focus on understanding atmospheric processes during more normal conditions. Thus, this paper presents the analysis of BVOCs alongside anthropogenic emissions and their role

Figure 1 Location of the sampling site, to Sydney, NSW in the north. The sampling site had four different climate control containers for the
instruments, as well as a soil sampling site around 50 meters northeast from the main sampling site and the High-Vol PM filter. Satellite view
taken from Google Earth, © Google Earth 2024.

2.2 Instrumentation

The instruments deployed in the campaign are presented in Table 1. They included an air quality monitoring station owned and operated by the NSW Government Department of Climate Change, Energy, the Environment and Water (DCCEEW), located approximately 10 m away from the main sampling line. This station included measurements of temperature, windspeed and direction, $\mathrm{PM}_{10}, \mathrm{PM}_{2.5}, \mathrm{O}_{3}, \mathrm{SO}_{2}, \mathrm{NO}_{\mathrm{x}}, \mathrm{CO}$ and visibility. All NSW air quality monitoring stations are accredited by the National Association of Testing Authorities (Australia). Inlet heights on this station were between 4.5 m to 5.6 m above ground level.

VOCs were measured using a Proton Transfer Reaction Mass Spectrometer (Ionicon PTR-ToF-MS 4000) which operated with a mass range spanning $\mathrm{m} / \mathrm{z}=18-256$. The drift tube was held at a temperature of $70^{\circ} \mathrm{C}$, pressure at 2.60 mbar, and an electric field to molecular number density ratio of 120 Td . The instrument was housed in a separate climate-controlled unit. Samples were drawn from an inlet on a 10 m mast through a 20 m long PTFE line using a bypass flow of 1.2-3 $\mathrm{L} \mathrm{min}^{-1}$. Calibrations were made on site using standardized cylinders containing 17 compounds including isoprene, monoterpenes, methyl vinyl ketone (MVK) \& methacrolein (MACR), benzene, C_{8}-aromatics, and C_{9}-benzenes (Mouat et al., 2022). Mass spectra were integrated to produce data at 1 minute temporal resolution. Mole fractions were further averaged on a fiveminute basis.

A suite of aerosol instruments were operated within in the Atmospheric Integrated Research Facility for Boundaries and Oxidative eXperiment (AIRBOX) container (Chen et al., 2019). Sample air was drawn from a common aerosol bypass inlet. The inlet was located 5 m above ground level for the following instruments:

1. A Ultrafine Condensation Particle Counter (UCPC TSI 3776) was used to measure condensation nuclei number concentration greater than $3 \mathrm{~nm}\left(\mathrm{CN}_{3}\right)$ (TSI Incorporated, Shoreview, MI, USA). The
instrument was operated at a sample flow rate of $300 \mathrm{~mL} \mathrm{~min}^{-1}$. Measurements were recorded at 1 Hz temporal resolution.
2. A Scanning Mobility Particle Sizer (SMPS) was used to measure aerosol size distribution between 14 and 670 nm mobility diameter. Full scans of this size range were recorded every five minutes. The system consisted of an X-ray aerosol neutralizer and 3071 Long Electrostatic Classifier (TSI Incorporated, Shoreview, MI, USA) coupled to a 3772 CPC (TSI Incorporated, Shoreview, MI, USA). Sample was drawn from the same inlet as used by the UCPC.
3. Chemical composition of aerosols with diameter smaller than $1 \mu \mathrm{~m}\left(\mathrm{PM}_{1}\right)$ were taken using a Time-of-Flight Aerosol Chemical Speciation Monitor (ACSM; Aerodyne Research Inc., Billerica, MA, USA). Mass concentrations of organics (Org), sulphate $\left(\mathrm{SO}_{4}{ }^{2-}\right)$, nitrate $\left(\mathrm{NO}_{3}{ }^{-}\right)$, ammonium $\left(\mathrm{NH}_{4}{ }^{+}\right)$, and chloride $\left(\mathrm{Cl}^{-}\right)$in the aerosol fraction 40-1000 nm vacuum aerodynamic diameter range, referred to as PM_{1}, are reported. Measurements were taken at 10 -minute resolution. Sample air was drawn from the aerosol inlet common to the CPC and SMPS and dried using a Nafion dryer to < 40% relative humidity before sampling.

Name of parameter	Instrument type
$\mathrm{NO}-\mathrm{NO}_{2}-\mathrm{NO}_{x}$	API T204
O_{3}	Ecotech 9810
PM_{10}	Thermo (TEOM) 1405A
$\mathrm{PM}_{2.5}$	Thermo (BAM)5014i
SO_{2}	API T100
Black Carbon	Magee Scientific Aethalometer AE33
VOCs	PTR-ToF-MS (Ionicon)
$\mathrm{CO}-\mathrm{CO}_{2}-\mathrm{CH}_{4}-\mathrm{N}_{2} \mathrm{O}$	FTIR in situ analyser
CN_{3}	TSI 3776
Particle number size distribution (14 nm to 660 nm)	SMPS
PM mass composition	Tof-ACSM, Aerodyne
Wind Speed and Wind Direction	2D Ultrasonic anemometer
Temperature, Relative humidity	Vaisala HMP155
Photosynthetic active radiation (PAR)	

2.3 NPF Classification Method

The method proposed by Dal Maso et al. (2005) was used to classify the particle size distribution data. To apply the method the particle number density plots were made for each day during the campaign. Then

Once the events were classified, a logarithmic fit was applied to determine the geometrical diameter of each mode. The data was manually divided in chunks of 10 minutes to visually inspect and determine the number
accumulation $>100 \mathrm{~nm}$). Once those parameters were defined and included in the code, each event was divided in periods of time with similar distribution modes.

For illustration a hypothetical event lasting two hours was divided in two: one hour with simultaneous two particle modes (nucleation and Aitken) and then one hour with just one particle mode (Aitken). This is done to estimate an accurate geometrical particle diameter based on the number of modes. This avoided the problems of changes in the number of modes in the sample. Finally, the data was merged again to have a time series of number of particles predicted with the fit, number of modes predicted and geometrical particle diameter.

The algorithm works by providing the number of modes observed in the input dataset. Then it selects the provided model equation for each mode number and iterates over a hundred fits looking for the best one. The Bayesian Information Criterion (BIC) was used to identify the best fit, looking for the lowest values. Once the best fit was selected, the total particle number estimated by the model was compared with the sample record for each sample to assure it was within a 5% difference compared to the total particle number reported in the sample. The result was then visually checked looking for the geometrical diameter and how it compares to the distribution size plots from the raw aerosol distribution size data. Once the model was considered representative and accurate enough, the growth rate for each event was determined using a simple linear regression of the change in the geometrical diameter in time from nucleation to Aitken and eventually to accumulation mode.

3. Results and Discussion

3.1 Frequency of NPF Events

Of the forty days included in the analysis, fourteen (35\%) showed clear NPF events, nine (22\%) were considered undefined, eight (18\%) didn't have enough data or were classified as a non-event and nine days (25\%) didn't have any data. The percentage of days with NPF is similar to those of other sites in forested areas in the Northern Hemisphere (Kalkavouras et al., 2020; Uusitalo et al., 2021). On the days in which the particle growth pattern is not clear, the same chemical reactions driving the NPF events may also be influencing these particle clusters, but the pattern is obscured due to different factors influencing the chemistry and physically mixing the atmosphere. 35% of days with NPF events and 18% with undefined events implies a highly reactive atmosphere even in this rural area with relatively low anthropogenic influence.

3.2 Triggers for NPF Events

Of the fourteen days with NPF, five were registered during the night or early morning (before sunrise), and nine during the day. The starting time of the event was important to mark which possible reactions might be driving the oxidation of products that eventually nucleate. Besides that, the time series of $\mathrm{SO}_{2}, \mathrm{NO}_{x}$, ozone VOCs and the aerosol composition were used to identify which variables influenced the aerosol formation and growth. Of the fourteen events, eight have VOC data and nine have aerosol composition data. Only three events led to accumulation sized particles (diameter >100 nm).

From the daily time series of all available variables, it is evident that SO_{2} and NO_{x} are probably triggering or 191 at least influencing the particle formation most of the time. As an example, the event on Feb 11 ${ }^{\text {th }} 2020,192$ presented in Figure 2 shows how after there was a first SO_{2} and NO_{\times}peak coming to the site at around 8:00 $\quad 193$ am, one hour later the nucleation process starts. This event did not show a quick growth like several other 194 events in the record possibly due to the early morning start time when there were not enough VOCs to 195 accelerate the nucleation and growth process. Later, once the temperature starts to increase, enhancing the 196 VOCs emitted, and there is more OH available in the atmosphere, there will be higher density of particles in 197 both nucleation and Aitken mode. This difference is reflected in the peak of particles captured in the $C N_{3} 198$ data around 11:00 am.

$$
\mathrm{dN} / \mathrm{dlog} \mathrm{D}_{\mathrm{p}} \mathrm{~cm}^{-3} 10^{0} \quad 10^{1} \quad 10^{2} \quad 10^{3} \quad 10^{4}
$$

Figure 2 Time series for all selected variables during the NPF event during 2020-02-11. NO $=$ Nitric oxide, NO2 $=$ Nitrogen dioxide, $\mathrm{SO} 2=$ Sulphur dioxide, Org = Organic mass fraction, NH4 = Ammonium mass fraction, NO3 = Nitrates mass fraction, SO4 = Sulphates mass fraction, $C l=$ Chloride mass fraction, CN3 = Condensation Nuclei $>3 n m$. VOCs mole fractions were not available during this specific event. Note how the fraction of organics, sulphates and ammonium increase with a positive correlation, dominating over the nitrate and chloride fractions until the end of the event. The light green vertical line marks the NPF approximated starting time. The purple line marks the time were subsequent SO_{2} emissions impacted the site. The black line represents the NPF approximated ending time.
SO_{2} appears to only affect daytime events, while NO_{x} seems to have a shared role in both daytime and night-
comparison of the growth rate was used to determinate if the rates were similar during the day and during
3.3 Particle Growth Rates during daytime and nighttime events

The estimated growth rate is presented in Figure 3. Only four of the nine events during daytime (see upper panel of Figure 3) had a representative Pearson coefficient ($R>0.6$), the remaining five events did not have a stable linear growth and are not shown in the plot.

Day

Night

Figure 3: Geometric particle diameter evolution in each event where the logarithmic fit converged. The top panel presents the daytime data (only 217
four events converged to a statistically significant model). The bottom panel presents the nighttime events.
During these more unstable events the influence of plumes on the sampling site bringing SO_{2} and NO_{x} likely
produced multiple reactions drastically changing the particle density in short periods of time or induced
when there is rapid growth. The first part of the regression shows slower growth rate. After the $6^{\text {th }}$ hour of 223slow growth, the rate increases substantially.Some events showed how the daytime concentrations of SO_{2} and NO_{2} were so dynamic that it might provedifficult to study a particular phenomenon when sampling in the ambient air (see figure S1). Nonetheless,these events provide insight into the factors that may drive the growth and particle formation and so were224225226
included in all the analysis.228
In contrast to the daytime events, all the night-time events were stable enough to determinate the event 229likely reflects differences in the factors driving the particle formation between these episodes. Thedifferences in the growth rate might be directly affected by the main oxidation pathways available at thetime of the reaction. These reactions pathways might include VOC oxidation through nitrates (NO_{3}^{-})oxidation path during the night, leftover isoprene or monoterpene oxidation and condensation overpreviously formed clusters, oxygenated VOCs (OVOCs) brought to the site and condensed on formed seedsor starting nucleation, or VOC oxidation through the ozone pathway. Some of these processes were observed
growth rate. The growth rate varied considerably between events (see lower panel of Figure 3) and most 230231232233234235236
during the campaign and will be further explored on the nighttime events section. 237From the timeseries analysis of all daytime events (see Figure 2, 5-8 and supplementary figures S1-S5), four
3.4 Daytime NPF Events 238
key points were identified for NPF in the area:239

1. SO_{2} and NO_{2} arriving at the site triggers nucleation and growth events. 241
2. VOC availability is needed for growth and nucleation. 242
3. The hours with VOCs and higher oxidation capacity in the atmosphere ($O H$ concentrations are 243assumed to be higher during the hours with higher PAR will have the highest particle density andthe highest frequency of the observed events.244245
4. There might be nucleation without SO_{2} and NO_{2} in the atmosphere but at a slower growth rate. 246
247
During most of the daytime events SO_{2} and NO_{2} plumes impacted the site at some stage of each event.On some occasions the SO_{2} plume might last for a couple hours as shown in the first part of the event onFeb $11^{\text {th }} 2020$ (see Figure 2), whilst at other times there were multiple peaks of high $S O_{2}$ measured at thesite (Figures S2, S3, S4). Every time SO_{2} was first detected at the site, some nucleation commenced within0 to 150 minutes after the SO2 was first detected. This window of time matches the time needed to reachnucleation sized particles if we extrapolate the growth rate function from the daytime events previouslydiscussed (see Figure 3). To highlight this phenomenon a cross correlation between $S O_{2}$ and the aerosolmass of SO_{4} time series obtained from the tof-ACSM and the measured particle number concentration $\left(C N_{3}\right)$was applied. Figure 4 shows the Pearson correlation between SO_{2} and the CN 3 and SO 4 in a window periodof four hours i.e. starting two hours before the nucleation started and ending after the first two hours of theevent. This time window aims to capture the SO_{2} influence on the particle formation. Each line/point showsthe correlations at $0,30,6,90,120$ and 150 minutes lagged for each daytime event. The dotted blue linesshow where the lagged correlation is significant at $(|r|>0.5)$. 259249250251252

Figure 4 : Pearson correlation values obtained from the cross correlation between SO_{2} and CN_{3} and SO_{4} mass. The dashed lines represent the 0.5
threshold as a reference to identify significant correlations. Events on Feb 10th and March 11th did not follow this pattern and were removed from the plot.

To interpret Figure 4, we can use the event on February $11^{\text {th }}$ (black line) as an example. Here the correlation between SO_{2} and CN_{3} becomes significant (at $|r|>0.5$) if the aerosol data is lagged 120 minutes and the correlation between SO_{2} and SO_{4}^{2-} becomes significant after 3 hours. This means that if we move the SO_{2} time series two hours forward it will be better correlated with the particle number concentration, accounting for the reaction time of SO_{2} to produce SO_{4}^{2-} radicals and enhance/trigger the particle formation under the conditions in the atmosphere at the time. Usually, the SO_{2} correlation with SO_{4}^{2-} takes longer to be significant. This is a potential indication of the order in which the chemical reactions happen. First, we will see oxidation of the SO_{2} to SO_{4}^{2-} and then nucleation.

A similar result is observed for other events at different lagged times. The difference in the length of time necessary to achieve a significant correlation between SO_{2} and the particle number seems to be related to the quantity of VOCs available after the SO_{2} plume arrives at the site and how long the SO_{2} is available in the atmosphere. Events on February $15^{\text {th }}$, March $06^{\text {th }}$ and March $07^{\text {th }}$ had the highest correlations in the first 30 minutes of lagging the SO_{2} data. All these events had in common a relatively high isoprene mole fraction ($>1 \mathrm{ppb}$) in the previous hour to the SO_{2} coming to the site (see Figure $\mathrm{S} 1, \mathrm{~S} 2$ and S 5) or in the circumstances where VOC data were not available, conditions where isoprene mole fractions were assumed to be high (associated with weather conditions; i.e. high PAR and temperature see Figure S6). The event on March $8^{\text {th }}$ also met this condition (see Figure S3), but the growth seems to be partially suppressed by other factors, as seen in the relatively low growth rate in Figure 4 compared to the other events.
The Feb $11^{\text {th }}$ and Feb $16^{\text {th }}$ events had similar arrival times for the SO_{2} pollution (8:00 to 9:00) although the 282
VOC mole fractions were too low to enhance the particle formation and growth. This presumption is 283
supported by looking at the event on February 16th (see Figure S 4). In this event, a first peak of SO_{2} at 8:00 284
started some particle formation but subsequent SO_{2} peaks at 10:00 and 12:00 (times where generally VOCs 285
are higher) led to a NPF event that eventually grew to accumulation sized particles. 286
The event on March 10th shows how SO_{2} pollution occurred around 10:00 when isoprene mole fractions 287
are about 0.5 ppb promoting NPF. This event shows how even when VOCs available if there is no SO_{2} in the 288
atmosphere (13:00) the particle formation will substantially decrease, as shown in the $C N_{3}$ concentration 289
(see Figure S7) 290
A similar result to $\mathrm{SO}_{2} \mathrm{NPF}$ events is observed when the cross correlation is applied with NO_{2} data as shown 291
in Figure 11. (Wang et al., 2019) reported an enhanced effect of SO_{2} oxidation to SO_{3}^{2-} in the presence of 292
NO_{2} and $\mathrm{H}_{2} \mathrm{O}$. The resulting acidic aerosols can easily act as nuclei for VOC condensation explaining the 293
correlations of SO_{2} and NO_{2} with the particle formation events (Wang et al., 2020a). These studies were 294made under urban-like conditions with high concentrations of SO_{2} and NO_{x} to produce this effect. The
atmospheric chemistry community is still debating the role of this reaction on SO_{2} related aerosol formation, 296with recent experiments showing that the enhancement effect is not as large as originally proposed (Au Yanget al., 2018; Wang et al., 2020b). There are other reaction pathways that can lead to SO_{3}^{2-} formation suchas SO_{2} oxidation through the OH path (Long et al., 2017; Margitan, 1984) or photo-oxidation of SO_{2} (Wanget al., 2020b). Nonetheless, measurements and experiments in rural atmospheric conditions provide insightsinto these phenomena a because of the multiple reactions happening depending on the atmosphericconditions at a given time. 302295297298299300301302

Figure 5: Pearson correlation values obtained from the cross correlation between NO_{2} and CN_{3} and SO_{4} mass. The dashed lines represent the 0.5
threshold as a reference to identify significant correlations. Events on Feb 10 th and March 11th did not fit into this category and were removed
from the plot.
SO_{2} and NO_{2} are significantly correlated during most of the day-time events with a Pearson correlation of 0.78 , suggesting a common source for both pollutants. The closest source of combustion products is the Appin Road located north of the sampling site. Given that the sampling site is away from other possible sources of SO_{2} and NO_{2} and the relatively low wind speeds during most of the campaign (see S8), combustion from mobile sources is considered the most likely source of both compounds. Another factor to contribute to this theory is that the SO_{2} levels were higher during the day when most of the commuting takes place and leading to a higher vehicle density on the roads. The intermittent $\mathrm{SO}_{2} / \mathrm{NO}_{2}$ peaks suggest the influence of mobile sources with poor emission control onboard The effects of vehicles with poor emission control technologies on ambient concentrations of $\mathrm{SO}_{2}, \mathrm{NO}_{x}$, AVOCs and PM has been seen in different studies (Kari et al., 2019; Phillips et al., 2019; Smit et al., 2019) and the legislation controlling fuel standards and emissions is relatively lax in New South Wales (Paton-Walsh et al., 2019).

The availability of VOCs to react and produce oxygenated volatile compounds that might condense over the SO_{4}^{2-} seeds formed from SO_{2} pollution impacting the site, is as important as the SO_{2} presence and reaction. This has been previously reported by (Stangl et al., 2019), where chamber experiments showed that SO_{2} presence can significantly enhance SOA formation from isoprene and monoterpene oxidation by ozone. (Xu et al., 2021) reported that water and SO_{2} availability will change the role of SO_{2} in the particle formation process. With high SO_{2} mole fractions, the SO_{2} reaction path will favour reaction to peroxides instead of stable Criegee intermediates, thereby enhancing particle growth, when the relative humidity is higher than 45%; a condition present during most of the COALA-2020 campaign. This suggests that under high SO_{2}, VOC
and relative humidity conditions, the particle formation and growth will occur. Such an effect was observed in some of the events, for example the event on February $16^{\text {th }}$ (Figure S4). There was a continuous source of SO_{2} impacting the site during this event in the period between 07:00 to 22:00. During the first half of the event (up to 14:00) organic aerosol mass fraction is almost as high as the sulphate mass, however after 14:00 there is an increase in the sulphate mass, which becomes the largest mass proportion of this event. The sulphate fraction is practically a mirrored version of the NO_{2} and SO_{2} lagged by an hour. The highest fraction of sulphates during this period can be explained by the previously mentioned effect of relative humidity, and VOCs.

As the night approaches, BVOC emissions decrease with temperature, leaving all existing VOCs to oxidize. This provides the initiation for further oxidation of OVOCs into more oxidized species, which are more likely to condense on existing particles. In addition, with the temperature decreasing the relative humidity increases, making this the ideal condition for particle growth, particularly sulphates. However, once the VOCs are mostly consumed (by around 22:00), there are insufficient VOCs to generate growth. This relationship is presented in Figure 6, where relative humidity and sulphate mass are positively correlated during the afternoon hours in the events which had multiple SO_{2} peaks enhancing sulphate formation and particle growth.

Figure 6: Scatter plot of the events on Feb 15th and March 7th comparing total sulphate mass against relative humidity in the afternoon hours

The opposite conditions can also influence particle formation. When there is little SO_{2} or NO_{2} in the atmosphere but there are high enough VOC concentrations, there can be slow nucleation over time. Slow growth was observed during the February $10^{\text {th }}$ event (Figure 7) and may be related to the condensation of monoterpenes oxidation products. Lab studies have shown that this process might take longer than other
particle formation processes because methacrolein (MACR) needs to be oxidized to produce aerosols (Kroll et al., 2006; Ng et al., 2006). Other processes such as autoxidation of monoterpenes could explain these events. Recently (Nie et al., 2023)) showed that low NO concentrations can enhance highly oxygenated molecules (HOMs) formation by favouring alkoxy radicals formation that are prone to autoxidise in pristine atmosphere or low-NO regimes.

$$
\mathrm{dN} / \mathrm{dlog}_{\mathrm{p}} \mathrm{~cm}^{-3} \begin{array}{llllll}
10^{0} & 10^{1} & 10^{2} & 10^{3} & 10^{4}
\end{array}
$$

[^0]Like isoprene, the availability of monoterpene in the morning may determine how fast a NPF event can occur after SO_{2} reaches the site. Monoterpenes are quickly oxidized by OH with relative short lifetimes compared to isoprene (Atkinson, 2000; Atkinson and Arey, 2003). Oxidized monoterpenes through the OH pathway favour OVOCs that eventually condense faster than isoprene oxidation products (Heinritzi et al., 2020; Link et al., 2021). With these events starting in the morning $\sim 8: 00$ to 9:00, there will be enough monoterpenes available for a fast oxidation once the OH starts to build up in the atmosphere, and these OVOCs are easily condensed on already formed seeds or under acidic conditions.

The availability of monoterpene and SO_{2} together may act as a catalyzer for faster particle formation compared to events with no monoterpenes, or events that start later in the day (noon) due to the absence of SO_{2} at the site. In the absence of monoterpenes but presence isoprene the particle formation may be of smaller magnitude and the formation may occur at a slower rate. Isoprene oxidises mainly through the OH path to more stable compounds; usually MACR and MVK are used as tracers to determine which path and under what conditions isoprene is oxidised. MACR is oxidised to heavier OVOCs that eventually condense. Given that the PTR-ToF-MS does not separate these two compounds it is not possible to identify when changes between ratios of MACR to MVK are significant in the NPF events on the current dataset. In general, when there are not enough VOCs in the atmosphere the nucleation and growth will be slow or might not happen at all.

3.5 Night-time NPF Events

The main factor influencing the night-time events appears to be NO_{2} pollution in the atmosphere during the night, however the data available for this study does not provide enough information to make a more definitive statement. Unfortunately, the $N O_{x}$ instrument was not ideal for this type of measurement given that is not designed to be accurate at the low $N O_{x}$ levels in rural areas; it is not capable of separating $N O_{x}$ from $N O_{y}$ and it was set up to calibrate in the night hours between 1:00 and 2:00 every day. Nonetheless, during the night events the particle size distribution data and the $C N_{3}$ captured particle formation and growth from nucleation to Aitken mode when there were considerable increases of $N O_{2}$, but the PM_{1} aerosol mass showed a minimal increase at the same time (e.g. event during night of Feb $5^{\text {th }}$ shown in Figure 8). This suggest that there are conditions to initiate the particle formation process but the conditions to increase the size/mass of the particles are not present at these times.

[^1]Another factor possibly influencing the NPF events at night may include the early night VOC accumulation in the residual planetary boundary layer. This might enhance particle formation for short periods of time, inducing nucleation and clusters, but not growth (due to the lack of VOCs once the available mass has reacted or condensed over existing particle seeds). This might explain the increase in particle number and density, but the relatively low mass observed during the night of Feb 23 compared to day-time events (see Figure 9)

[^2]$C l=$ Chloride mass fraction, CN3 $=$ Condensation Nuclei $>3 \mathrm{~nm}$. The light green vertical line marks the NPF approximated starting time of the

3.6 Aerosol fraction: Day vs Night

Figure 10: Average mass for each chemical group and event on the top panels. The bottom panel presents the percentage contribution to the mass of each of those fractions based on the average value presented above. Org = Organics; SO4 = sulphates; NH4 = ammonium; NO3 = nitrates and $\mathrm{Cl}=$ chlorides .

Figure 10 shows the mass fraction of the PM_{1} aerosol mass measured in the ACSM. Most of the daytime events show a similar mass fraction distribution. The organic fraction is the largest mass fraction followed by sulphates, ammonium, nitrates, and chlorides. We observed higher sulphate mass fractions in days with higher SO_{2} availability like the events on Feb $16^{\text {th }}$ and March $8^{\text {th }}$, where the average sulphate mass fraction was larger or similar to the organic fraction (see Figure 10). These two events also display the highest proportion of ammonium during daytime events. The overall mass during night-time is much lower than during daytime, likely related to the lower concentrations of VOCs available during the night. Even with less total mass during the night, the contribution of each fraction is similar to the daytime events. The most notable difference between the mass fractions during day and nighttime NPF events is the higher fraction of

Abstract

chlorides during night-time events likely driven by a greater relative contribution from sea salt to the aerosol mass.

Something to highlight is the higher fraction of ammonium compared to nitrates through all the events. Regions with low $N O_{x}$ have been previously characterized with higher ammonium fractions compared to nitrates (Du et al., 2015; Liu et al., 2022; Petit et al., 2015; Takami et al., 2005; Topping et al., 2004), whilst regions with higher $N O_{x}$ concentrations favour nitrate formation (Hu et al., 2015; Parworth et al., 2015; Poulain et al., 2020; Schlag et al., 2016). The local difference in relative mass composition is evident when comparing this study with the aerosol mass fractions observed in an urban site in Sydney (Keywood et al., 2016) in which high nitrate fractions were observed during most of the campaign.426427428429430

4. Summary and Conclusions 432
Here we present aerosol concentration and composition data, VOCs and air pollutant concentrations 433collected during part of the COALA-2020 campaign including data from $5^{\text {th }}$ Feb to $17^{\text {th }}$ March at a rural sitesouth of Sydney Australia. This period followed the Black Summer fires after heavy rainfall cleared thesmoke, offering insights into atmospheric processes under clean or pristine conditions.

The atmosphere during the sampling period was classified as highly reactive with some particle formation taking place on more than 50% of the sampling days with. Like previous studies, daytime NPF events were correlated with the arrival of anthropogenic plumes at the site, suggesting their role in initiating particle formation. The positive correlation between PM_{1} aerosol mass and CN_{3} with isoprene concentrations suggests a direct relationship between biogenic emissions and organic aerosol formation.

The change between gas to aerosol phase was indirectly analysed through the evaluation of the conditions leading to NPF events. This analysis showed how SO_{2} and NO_{x} plumes impacting the site drove NPF. The particle growth rate was dependent on available VOCs in the atmosphere and OH availability, also enhanced during periods with higher relative humidity and multiple intrusions of SO_{2} and NO_{x} plumes producing particles bigger than 100 nm .434435

Night-time events were correlated to NO_{2}, but the enviromental conditions changed between the few identified events limiting the ability to draw definitive conclusions.
The COALA-2020 campaign highlights the significant role of biogenic emissions, particularly isoprene, driving NPF in Southeast Australia. These findings contribute to a better understanding of local atmospheric chemistry and its potential impact on regional air quality and climate. However, longer-term observations are necessary to capture the full picture of seasonal variations and non-fire related extreme events.
The paper was written by Jhonathan Ramirez-Gamboa and Clare Paton-Walsh (Murphy) 461
Funding: 462
COALA-2020 was supported by Australia's National Environmental Science Program through the Clean Air and Urban Landscapes 463
hub. Jhonathan Ramirez-Gamboa was supported during his PhD studies by a commonwealth funded University Post-Graduate 464Award at the University of Wollongong.
Data Availability Statement: 466
Data is available at PANGEA via the following links: 467

- VOCs: https://doi.org/10.1594/PANGAEA. 927277 Aerosol size distributions: https://doi.org/10.1594/PANGAEA. 928853 468
- Condensations nuclei > 3 nm in diameter: https://doi.org/10.1594/PANGAEA. 925555 469
- Cloud condensation nuclei: https://doi.org/10.1594/PANGAEA. 928925 470
- Green-house gases: https://doi.org/10.1594/PANGAEA. 927313 471
- Air Quality data: https://doi.org/10.1594/PANGAEA. 929001 472
- Meteorological data: https://doi.org/10.1594/PANGAEA. 928929 473
Acknowledgments: 474
We are grateful to all who contributed to the COALA-2020 campaign. Particular thanks are due to all the staff at Cataract Scout Camp 475
and research students and staff: Ian Galbally, Kathryn Emmerson, Gunashanhar Gunaratnam, John Kirkwood, Warren White, David 476
Griffiths, Alex Carter, Alan Griffiths, Hamish McDougall and Graham Kettlewell. 477478
Conflicts of Interest: 479
The authors declare no conflicts of interest. 480
References 481
ABARES: Australian forest profiles 2019: Eucalypt, Australian Bureau of Agricultural Resource Economics and Sciences 483
(ABARES), 2019. 484
Annesi-Maesano, I., Baiz, N., Banerjee, S., Rudnai, P., Rive, S., and the, S. G.: Indoor Air Quality and Sources in Schools 485
and Related Health Effects, J. Toxicol. Environ. Health Part B, 16, 491-550, https://doi.org/10.1080/10937404.2013.853609, 486

2013. 487
Atkinson, R.: Atmospheric chemistry of VOCs and $\mathrm{NO}(\mathrm{x})$, Atmos. Environ., 34, 2063-2101, 488
https://doi.org/10.1016/S1352-2310(99)00460-4, 2000. 489
Atkinson, R. and Arey, J.: Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review, Atmos. 490
Environ., 37, 197-219, https://doi.org/10.1016/S1352-2310(03)00391-1, 2003. 491
Au Yang, D., Bardoux, G., Assayag, N., Laskar, C., Widory, D., and Cartigny, P.: Atmospheric SO2 oxidation by NO2 492
plays no role in the mass independent sulfur isotope fractionation of urban aerosols, Atmos. Environ., 193, 109-117, 493
https://doi.org/10.1016/j.atmosenv.2018.09.007, 2018. 494
Aydin, Y. M., Yaman, B., Koca, H., Dasdemir, O., Kara, M., Altiok, H., Dumanoglu, Y., Bayram, A., Tolunay, D., Odabasi, 495
M., and Elbir, T.: Biogenic volatile organic compound (BVOC) emissions from forested areas in Turkey: Determination 496

Chen, Z., Schofield, R., Rayner, P., Zhang, T., Liu, C., Vincent, C., Fiddes, S., Ryan, R. G., Alroe, J., Ristovski, Z. D.,the Great Barrier Reef: The influence of transported continental sources, Sci. Total Environ., 690, 426-437,500
https://doi.org/10.1016/j.scitotenv.2019.07.007, 2019. 502

Dal Maso, M., Kulmala, M., Riipinen, I., and Wagner, R.: Formation and growth of fresh atmospheric aerosols: Eight years of aerosol size distribution data from SMEAR II, Hyytiälä, Finland, Boreal Environ. Res., 10, 323-336, 2005.503

Du, W., Sun, Y. L., Xu, Y. S., Jiang, Q., Wang, Q. Q., Yang, W., Wang, F., Bai, Z. P., Zhao, X. D., and Yang, Y. C.: Chemical505 characterization of submicron aerosol and particle growth events at a national background site (3295 m a.s.l.) on the 506 Tibetan Plateau, Atmospheric Chem. Phys., 15, 10811-10824, https://doi.org/10.5194/acp-15-10811-2015, 2015.

Emmerson, K., Possell, M., J. Aspinwall, M., Pfautsch, S., and G. Tjoelker, M.: Temperature response measurements from eucalypts give insight into the impact of Australian isoprene emissions on air quality in 2050, Atmospheric Chem. Phys., 20, 6193-6206, https://doi.org/10.5194/acp-20-6193-2020, 2020.

Emmerson, K. M., Galbally, I. E., Guenther, A. B., Paton-Walsh, C., Guerette, E.-A. A., Cope, M. E., Keywood, M. D., Lawson, S. J., Molloy, S. B., Dunne, E., Thatcher, M., Karl, T., and Maleknia, S. D.: Current estimates of biogenic emissions from eucalypts uncertain for southeast Australia, Atmospheric Chem. Phys., 16, 6997-7011, https://doi.org/10.5194/acp-16-6997-2016, 2016.

Emmerson, K. M., Cope, M. E., Galbally, I. E., Lee, S., and Nelson, P. F.: Isoprene and monoterpene emissions in southeast Australia: Comparison of a multi-layer canopy model with MEGAN and with atmospheric observations, Atmospheric Chem. Phys., 18, 7539-7556, https://doi.org/10.5194/acp-18-7539-2018, 2018.

Emmerson, K. M., Palmer, P. I., Thatcher, M., Haverd, V., and Guenther, A. B.: Sensitivity of isoprene emissions to drought over south-eastern Australia: Integrating models and satellite observations of soil moisture, Atmos. Environ., 209, 112-124, https://doi.org/10.1016/j.atmosenv.2019.04.038, 2019.

Fini, A., Brunetti, C., Loreto, F., Centritto, M., Ferrini, F., and Tattini, M.: Isoprene responses and functions in plants

Friedman, B. and Farmer, D.: SOA and gas phase organic acid yields from the sequential photooxidation of seven

Fry, J. L., Brown, S. S., Middlebrook, A. M., Edwards, P. M., Campuzano-Jost, P., Day, D. A., Jimenez, J. L., Allen, H. M.,

Guenther, A., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471-1492, https://doi.org/10.5194/gmd-5-1471-2012, 2012.

Heinritzi, M., Dada, L., Simon, M., Stolzenburg, D., Wagner, A. C., Fischer, L., Ahonen, L. R., Amanatidis, S., Baalbaki, R., Baccarini, A., Bauer, P. S., Baumgartner, B., Bianchi, F., Brilke, S., Chen, D., Chiu, R., Dias, A., Dommen, J., Duplissy, J., Finkenzeller, H., Frege, C., Fuchs, C., Garmash, O., Gordon, H., Granzin, M., El Haddad, I., He, X., Helm, J., Hofbauer, V., Hoyle, C. R., Kangasluoma, J., Keber, T., Kim, C., Kürten, A., Lamkaddam, H., Laurila, T. M., Lampilahti, J., Lee, C. P., Lehtipalo, K., Leiminger, M., Mai, H., Makhmutov, V., Manninen, H. E., Marten, R., Mathot, S., Mauldin, R. L., Mentler, B., Molteni, U., Müller, T., Nie, W., Nieminen, T., Onnela, A., Partoll, E., Passananti, M., Petäjä, T., Pfeifer, J., Pospisilova, V., Quéléver, L. L. J., Rissanen, M. P., Rose, C., Schobesberger, S., Scholz, W., Scholze, K., Sipilä, M., Steiner, G., Stozhkov, Y., Tauber, C., Tham, Y. J., Vazquez-Pufleau, M., Virtanen, A., Vogel, A. L., Volkamer, R., Wagner, R., Wang, M., Weitz, L., Wimmer, D., Xiao, M., Yan, C., Ye, P., Zha, Q., Zhou, X., Amorim, A., Baltensperger, U., Hansel, A., Kulmala, M., Tomé, A., Winkler, P. M., Worsnop, D. R., Donahue, N. M., Kirkby, J., and Curtius, J.: Molecular understanding of the suppression of new-particle formation by isoprene, Atmospheric Chem. Phys., 20, 11809-11821, https://doi.org/10.5194/acp-20-11809-2020, 2020.

Hu, W. W., Campuzano-Jost, P., Palm, B. B., Day, D. A., Ortega, A. M., Hayes, P. L., Krechmer, J. E., Chen, Q., Kuwata, M., Liu, Y. J., de Sá, S. S., McKinney, K., Martin, S. T., Hu, M., Budisulistiorini, S. H., Riva, M., Surratt, J. D., St. Clair, J. M., Isaacman-Van Wertz, G., Yee, L. D., Goldstein, A. H., Carbone, S., Brito, J., Artaxo, P., de Gouw, J. A., Koss, A., Wisthaler, A., Mikoviny, T., Karl, T., Kaser, L., Jud, W., Hansel, A., Docherty, K. S., Alexander, M. L., Robinson, N. H., Coe, H., Allan, J. D., Canagaratna, M. R., Paulot, F., and Jimenez, J. L.: Characterization of a real-time tracer for isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements, Atmospheric Chem. Phys., 15, 11807-11833, https://doi.org/10.5194/acp-15-11807-2015, 2015.

Hussein, T., Dal Maso, M., Petäjä, T., Koponen, I., Paatero, P., Aalto, P., Hämeri, K., and Kulmala, M.: Evaluation of an automatic algorithm for fitting the particle number size distribution, Boreal Environ. Res., 10, 337-355, 2005.

Kalkavouras, P., Bougiatioti, A., Grivas, G., Stavroulas, I., Kalivitis, N., Liakakou, E., Gerasopoulos, E., Pilinis, C., and Mihalopoulos, N.: On the regional aspects of new particle formation in the Eastern Mediterranean: A comparative study between a background and an urban site based on long term observations, Atmospheric Res., 239, 104911, https://doi.org/10.1016/j.atmosres.2020.104911, 2020.

Kari, E., Hao, L., Ylisirniö, A., Buchholz, A., Leskinen, A., Yli-Pirilä, P., Nuutinen, I., Kuuspalo, K., Jokiniemi, J., Faiola, C. L., Schobesberger, S., and Virtanen, A.: Potential dual effect of anthropogenic emissions on the formation of biogenic secondary organic aerosol (BSOA), Atmospheric Chem. Phys., 19, 15651-15671, https://doi.org/10.5194/acp-19-156512019, 2019.

Kerminen, V.-M., Paramonov, M., Anttila, T., Riipinen, I., Fountoukis, C., Korhonen, H., Asmi, E., Laakso, L., Lihavainen, H., Swietlicki, E., Svenningsson, B., Asmi, A., Pandis, S. N., Kulmala, M., and Petäjä, T.: Cloud condensation nuclei production associated with atmospheric nucleation: a synthesis based on existing literature and new results, Atmospheric Chem. Phys., 12, 12037-12059, https://doi.org/10.5194/acp-12-12037-2012, 2012.

Keywood, M., Selleck, P., Galbally, I., Lawson, S., Powell, J., Cheng, M., Gillett, R., Ward, J., Harnwell, J., Dunne, E., Boast, K., Reisen, F., Molloy, S., Griffiths, A., Chambers, S., Humphries, R., Guerette, E.-A., Cohen, D. (2016):, Crumeyrolle, S., Zhang, C., Zeng, J., and Fedele, R.: Sydney Particle Study 2 - Aerosol and gas data collection. v1., edited by: CSIRO, , https://doi.org/10.4225/08/57903B83D6A5D, 2016.

Kiendler-Scharr, A., Wildt, J., Maso, M. D., Hohaus, T., Kleist, E., Mentel, T. F., Tillmann, R., Uerlings, R., Schurr, U.,

Kroll, J. H., Ng, N. L., Murphy, S. M., Flagan, R. C., and Seinfeld, J. H.: Secondary Organic Aerosol Formation from

Kulmala, M., Maso, M. D., Mäkelä, J. M., Pirjola, L., Väkevä, M., Aalto, P., Miikkulainen, P., Hämeri, K., and O'dowd,https://doi.org/10.1034/j.1600-0889.2001.530411.x, 2001.

Link, M. F., Brophy, P., Fulgham, S. R., Murschell, T., and Farmer, D. K.: Isoprene versus Monoterpenes as Gas-Phase

Liu, J., D’Ambro, E. L., Lee, B. H., Lopez-Hilfiker, F. D., Zaveri, R. A., Rivera-Rios, J. C., Keutsch, F. N., Iyer, S., Kurten, T., Zhang, Z., Gold, A., Surratt, J. D., Shilling, J. E., and Thornton, J. A.: Efficient Isoprene Secondary Organic Aerosol Formation from a Non-IEPOX Pathway, Environ. Sci. Technol., 50, 9872-9880, https://doi.org/10.1021/acs.est.6b01872, 2016a.

Liu, X., Zhu, H., Hu, Y., Feng, S., Chu, Y., Wu, Y., Wang, C., Zhang, Y., Yuan, Z., and Lu, Y.: Public's Health Risk

Liu, Z., Chen, H., Li, L., Xie, G., Ouyang, H., Tang, X., Ju, R., Li, B., Zhang, R., and Chen, J.-M.: Real-time single particle

Long, B., Bao, J., and Truhlar, D.: Reaction of SO2 with OH in the Atmosphere, Phys Chem Chem Phys, 19,

Mahilang, M., Deb, M. K., and Pervez, S.: Biogenic secondary organic aerosols: A review on formation mechanism,

Mouat, A. P., Paton-Walsh, C., Simmons, J. B., Ramirez-Gamboa, J., Griffith, D. W. T., and Kaiser, J.: Measurement

Abstract

Nestorowicz, K., Jaoui, M., Rudzinski, K. J., Lewandowski, M., Kleindienst, T. E., Spólnik, G., Danikiewicz, W., and Szmigielski, R.: Chemical composition of isoprene SOA under acidic and non-acidic conditions: effect of relative humidity, Atmospheric Chem. Phys., 18, 18101-18121, https://doi.org/10.5194/acp-18-18101-2018, 2018.

Ng, N. L., Kroll, J. H., Keywood, M. D., Bahreini, R., Varutbangkul, V., Flagan, R. C., Seinfeld, J. H., Lee, A., and Goldstein, A. H.: Contribution of First- versus Second-Generation Products to Secondary Organic Aerosols Formed in the Oxidation of Biogenic Hydrocarbons, Environ. Sci. Technol., 40, 2283-2297, https://doi.org/10.1021/es052269u, 2006.

Ng, N. L., Kwan, A. J., Surratt, J. D., Chan, A. W. H., Chhabra, P. S., Sorooshian, A., Pye, H. O. T., Crounse, J. D., Wennberg, P. O., Flagan, R. C., and Seinfeld, J. H.: Secondary organic aerosol (SOA) formation from reaction of isoprene with nitrate radicals (NO3), Atmospheric Chem. Phys., 8, 4117-4140, https://doi.org/10.5194/acp-8-4117-2008, 2008.

Nie, W., Yan, C., Yang, L., Roldin, P., Liu, Y., Vogel, A. L., Molteni, U., Stolzenburg, D., Finkenzeller, H., Amorim, A., Bianchi, F., Curtius, J., Dada, L., Draper, D. C., Duplissy, J., Hansel, A., He, X.-C., Hofbauer, V., Jokinen, T., Kim, C., Lehtipalo, K., Nichman, L., Mauldin, R. L., Makhmutov, V., Mentler, B., Mizelli-Ojdanic, A., Petäjä, T., Quéléver, L. L. J., Schallhart, S., Simon, M., Tauber, C., Tomé, A., Volkamer, R., Wagner, A. C., Wagner, R., Wang, M., Ye, P., Li, H., Huang, W., Qi, X., Lou, S., Liu, T., Chi, X., Dommen, J., Baltensperger, U., El Haddad, I., Kirkby, J., Worsnop, D., Kulmala, M., Donahue, N. M., Ehn, M., and Ding, A.: NO at low concentration can enhance the formation of highly oxygenated biogenic molecules in the atmosphere, Nat. Commun., 14, 3347, https://doi.org/10.1038/s41467-023-39066-4, 2023.

Ormeño, E., Mévy, J. P., Vila, B., Bousquet-Mélou, A., Greff, S., Bonin, G., and Fernandez, C.: Water deficit stress induces different monoterpene and sesquiterpene emission changes in Mediterranean species. Relationship between terpene emissions and plant water potential, Chemosphere, 67, 276-284, https://doi.org/10.1016/J.CHEMOSPHERE.2006.10.029, 2007.

Padhy, P. K. K. and Varshney, C. K. K.: Emission of volatile organic compounds (VOC) from tropical plant species in India, Chemosphere, 59, 1643-1653, 2005.

Parworth, C., Fast, J., Mei, F., Shippert, T., Sivaraman, C., Tilp, A., Watson, T., and Zhang, Q.: Long-term measurements of submicrometer aerosol chemistry at the Southern Great Plains (SGP) using an Aerosol Chemical Speciation Monitor (ACSM), Atmos. Environ., 106, 43-55, https://doi.org/10.1016/j.atmosenv.2015.01.060, 2015.

Paton-Walsh, C., Rayner, P., Simmons, J., Fiddes, S. L., Schofield, R., Bridgman, H., Beaupark, S., Broome, R., Chambers, S. D., Chang, L. T.-C., Cope, M., Cowie, C. T., Desservettaz, M., Dominick, D., Emmerson, K., Forehead, H., Galbally, I. E., Griffiths, A., Guérette, É.-A., Haynes, A., Heyworth, J., Jalaludin, B., Kan, R., Keywood, M., Monk, K., Morgan, G. G., Nguyen Duc, H., Phillips, F., Popek, R., Scorgie, Y., Silver, J. D., Utembe, S., Wadlow, I., Wilson, S. R., and Zhang, Y.: A Clean Air Plan for Sydney: An Overview of the Special Issue on Air Quality in New South Wales, Atmosphere, 10, 774, 2019.

Paton-Walsh, C., Emmerson, K. M., Garland, R. M., Keywood, M., Hoelzemann, J. J., Huneeus, N., Buchholz, R. R., Humphries, R. S., Altieri, K., Schmale, J., Wilson, S. R., Labuschagne, C., Kalisa, E., Fisher, J. A., Deutscher, N. M., van Zyl, P. G., Beukes, J. P., Joubert, W., Martin, L., Mkololo, T., Barbosa, C., de Fatima Andrade, M., Schofield, R., Mallet,
M. D., Harvey, M. J., Formenti, P., Piketh, S. J., and Olivares, G.: Key challenges for tropospheric chemistry in the Southern Hemisphere, Elem. Sci. Anthr., 10, 00050, https://doi.org/10.1525/elementa.2021.00050, 2022.
Petit, J.-E., Favez, O., Sciare, J., Crenn, V., Sarda-Estève, R., Bonnaire, N., Močnik, G., Dupont, J.-C., Haeffelin, M., and
Leoz-Garziandia, E.: Two years of near real-time chemical composition of submicron aerosols in the region of Paris using an Aerosol Chemical Speciation Monitor (ACSM) and a multi-wavelength Aethalometer, ATMOSPHERIC Chem. Phys., 15, 2985-3005, https://doi.org/10.5194/acp-15-2985-2015, 2015.
Phillips, F. A., Naylor, T., Forehead, H., Griffith, D. W. T., Kirkwood, J., and Paton-Walsh, C.: Vehicle Ammonia Emissions Measured in An Urban Environment in Sydney, Australia, Using Open Path Fourier Transform Infra-Red Spectroscopy, Atmosphere, 10, 208, 2019.
Pope, C. A. and Dockery, D. W.: Health effects of fine particulate air pollution: Lines that connect, J. Air Waste Manag.
Pöschl, U.: Atmospheric Aerosols: Composition, Transformation, Climate and Health Effects, Angew. Chem. Int. Ed.,

Poulain, L., Spindler, G., Grüner, A., Tuch, T., Stieger, B., van Pinxteren, D., Petit, J.-E., Favez, O., Herrmann, H., and Wiedensohler, A.: Multi-year ACSM measurements at the central European research station Melpitz (Germany) - Part 1: Instrument robustness, quality assurance, and impact of upper size cutoff diameter, Atmospheric Meas. Tech., 13, 4973-4994, https://doi.org/10.5194/amt-13-4973-2020, 2020.

Ren, Y., Qu, Z., Du, Y., Xu, R., Ma, D., Yang, G., Shi, Y., Fan, X., Tani, A., Guo, P., Ge, Y., and Chang, J.: Air quality and health effects of biogenic volatile organic compounds emissions from urban green spaces and the mitigation strategies, Environ. Pollut., 230, 849-861, https://doi.org/10.1016/j.envpol.2017.06.049, 2017.

Riva, M., Heikkinen, L., Bell, D. M., Peräkylä, O., Zha, Q., Schallhart, S., Rissanen, M. P., Imre, D., Petäjä, T., Thornton, J. A., Zelenyuk, A., and Ehn, M.: Chemical transformations in monoterpene-derived organic aerosol enhanced by inorganic composition, Npj Clim. Atmospheric Sci., 2, 2, https://doi.org/10.1038/s41612-018-0058-0, 2019.

Schlag, P., Kiendler-Scharr, A., Blom, M. J., Canonaco, F., Henzing, J. S., Moerman, M., Prévôt, A. S. H., and Holzinger, R.: Aerosol source apportionment from 1-year measurements at the CESAR tower in Cabauw, the Netherlands, Atmospheric Chem. Phys., 16, 8831-8847, https://doi.org/10.5194/acp-16-8831-2016, 2016.

Shi, L. H., Zanobetti, A., Kloog, I., Coull, B. A., Koutrakis, P., Melly, S. J., and Schwartz, J. D.: Low-Concentration PM2.5 and Mortality: Estimating Acute and Chronic Effects in a Population-Based Study, Environ. Health Perspect., 124, 4652, https://doi.org/10.1289/ehp.1409111, 2016.

Simmons, J. B., Paton-Walsh, C., Mouat, A. P., Kaiser, J., Humphries, R. S., Keywood, M., Griffith, D. W. T., Sutresna, A., Naylor, T., and Ramirez-Gamboa, J.: Bushfire smoke plume composition and toxicological assessment from the 2019-2020 Australian Black Summer, Air Qual. Atmosphere Health, 15, 2067-2089, https://doi.org/10.1007/s11869-022-01237-5, 2022.

Smit, R., Kingston, P., Neale, D. W., Brown, M. K., Verran, B., and Nolan, T.: Monitoring on-road air quality and measuring vehicle emissions with remote sensing in an urban area, Atmos. Environ., 218, 116978, https://doi.org/10.1016/j.atmosenv.2019.116978, 2019.

Song, M., Zhang, C., Wu, H., Mu, Y., Ma, Z., Zhang, Y., Liu, J., and Li, X.: The influence of OH concentration on SOA

Stangl, C. M., Krasnomowitz, J. M., Apsokardu, M. J., Tiszenkel, L., Ouyang, Q., Lee, S., and Johnston, M. V.: Sulfur

Takami, A., Miyoshi, T., Shimono, A., and Hatakeyama, S.: Chemical composition of fine aerosol measured by AMS at 678 Fukue Island, Japan during APEX period, Atmos. Environ., 39, 4913-4924, 679 https://doi.org/10.1016/j.atmosenv.2005.04.038, 2005.

Topping, D., Coe, H., McFiggans, G., Burgess, R., Allan, J., Alfarra, M. R., Bower, K., Choularton, T. W., Decesari, S., and Facchini, M. C.: Aerosol chemical characteristics from sampling conducted on the Island of Jeju, Korea during ACE Asia, Atmos. Environ., 38, 2111-2123, https://doi.org/10.1016/j.atmosenv.2004.01.022, 2004.

Uusitalo, H., Kontkanen, J., Ylivinkka, I., Ezhova, E., Demakova, A., Arshinov, M., Belan, B. D., Davydov, D., Ma, N.,
Petäjä, T., Wiedensohler, A., Kulmala, M., and Nieminen, T.: Occurrence of new particle formation events in Siberian and Finnish boreal forest, https://doi.org/10.5194/acp-2021-530, 2021.

Wang, J., Li, J., Ye, J., Zhao, J., Wu, Y., Hu, J., Liu, D., Nie, D., Shen, F., Huang, X., Huang, D. D., Ji, D., Sun, X., Xu, W.,
Y., Ge, X., and Jacob, D. J.: Fast sulfate formation from oxidation of SO 2 by NO 2 and HONO observed in Beijing haze,

Wang, X., Gemayel, R., Hayeck, N., Perrier, S., Charbonnel, N., Xu, C., Chen, H., Zhu, C., Zhang, L., Wang, L., Nizkorodov, S. A., Wang, X., Wang, Z., Wang, T., Mellouki, A., Riva, M., Chen, J., and George, C.: Atmospheric Photosensitization: A New Pathway for Sulfate Formation, Environ. Sci. Technol., 54, 3114-3120, https://doi.org/10.1021/acs.est.9b06347, 2020b.

Wang, Z., Zhang, C., Lv, G., Sun, X., Wang, N., and Li, Z.: Synergistic Reaction of SO2 with NO2 in Presence of H2O

Xu, L., Tsona, N. T., and Du, L.: Relative Humidity Changes the Role of SO2 in Biogenic Secondary Organic Aerosol Formation, J. Phys. Chem. Lett., 12, 7365-7372, https://doi.org/10.1021/acs.jpclett.1c01550, 2021.

Yu, F. and Luo, G.: Simulation of particle size distribution with a global aerosol model: contribution of nucleation to aerosol and CCN number concentrations, Atmospheric Chem. Phys., 9, 7691-7710, https://doi.org/10.5194/acp-9-7691-
https://doi.org/10.5194/egusphere-2024-2062
Preprint. Discussion started: 22 July 2024
(c) Author(s) 2024. CC BY 4.0 License.
Zhang, H., Yee, L. D., Lee, B. H., Curtis, M. P., Worton, D. R., Isaacman-VanWertz, G., Offenberg, J. H., Lewandowski, 702M., Kleindienst, T. E., Beaver, M. R., Holder, A. L., Lonneman, W. A., Docherty, K. S., Jaoui, M., Pye, H. O. T., Hu, W., 703Day, D. A., Campuzano-Jost, P., Jimenez, J. L., Guo, H., Weber, R. J., de Gouw, J., Koss, A. R., Edgerton, E. S., Brune, W., 704Mohr, C., Lopez-Hilfiker, F. D., Lutz, A., Kreisberg, N. M., Spielman, S. R., Hering, S. V., Wilson, K. R., Thornton, J. A., 705
and Goldstein, A. H.: Monoterpenes are the largest source of summertime organic aerosol in the southeastern United 706
States, Proc. Natl. Acad. Sci., 115, 2038-2043, https://doi.org/10.1073/pnas.1717513115, 2018. 707

[^0]: Figure 7: Time series of all selected variables during the NPF event during 2020-02-10. NO $=$ Nitric oxide, NO2 $=$ Nitrogen dioxide, $\mathrm{SO} 2=$

[^1]: Figure 8: Time series of all selected variables during the NPF event during 2020-02-05. NO $=$ Nitric oxide, $N O 2=$ Nitrogen dioxide, $\mathrm{SO} 2=$

[^2]: Figure 9: Time series of all selected variables during the NPF event during 2020-02-23. $\mathrm{NO}=$ Nitric oxide, NO2 $=$ Nitrogen dioxide, $\mathrm{SO} 2=$
 Sulphur dioxide, Org = Organic mass fraction, NH4 = Ammonium mass fraction, NO3 = Nitrates mass fraction, SO4 = Sulphates mass fraction,

