

1	Terracing Increases Organic Carbon Content in the Loess
2	Plateau
3	Qinqin Wang ^{a,b,1} , Yuanxiao Xu ^{c,1} , Guofeng Zhu ^{a,b,*} , Siyu Lu ^{a,b} , Dongdong Qiu ^{a,b} ,
4	Yinying Jiao ^{<i>a,b</i>} , Longhu Chen ^{<i>a,b</i>} , Gaojia Meng ^{<i>a,b</i>} , Rui Li ^{<i>a,b</i>} , Xiaoyu Qi ^{<i>a,b</i>} , Wenmin Li ^{<i>a,b</i>} ,
5	Ling Zhao ^{<i>a,b</i>} , Yuhao Wang ^{<i>a,b</i>} , Eenwei Huang ^{<i>a,b</i>} , Wentong Li ^{<i>a,b</i>}
6	^a College of Geography and Environment Science, Northwest Normal University,
7	Lanzhou 730070, Gansu, China
8	^b Shiyang River Ecological Environment Observation Station, Northwest Normal
9	University, Lanzhou 730070, Gansu, China
10	^c State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems,
11	College of Pastoral Agriculture Science and Technology, Lanzhou University,
12	Lanzhou 730000, China
13	¹ These authors contributed equally to this work and should be considered co-first
14	authors
15	* Corresponding author. Email: zhugf@nwnu.edu.cn.
16	Abstract
17	Aim: Terracing is widely distributed in mountainous and hilly areas around the world
18	and can be effective in inhibiting soil erosion, increasing soil moisture, improving soil
19	quality and potentially having a positive impact on soil carbon pools.
20	Methods: To understand the impact of agricultural activities and ecological
21	restoration measures on changes in soil carbon pools in terraced areas, we set up an
22	observation system in typical terraces on the Loess Plateau and soil samples were

- 23 gathered from 0-100 cm depth in terraces (containing different crops and different
- 24 ecological restoration vegetation) and slopes.

25 **Results:** The results show that terracing can effectively increase soil organic carbon (SOC) content (7.7 g·kg-1 in terraced cropland > 4.9 g·kg-1 in sloping cropland). 26 27 Changes in the organic carbon content of the terracing is mainly due to improvements in soil and water conservation capacity and agricultural activities, loss of soil organic 28 29 carbon due to short-term abandonment and an increase in soil organic carbon due to 30 replanting of fruit trees and crops. The choice of tree species in afforestation policies 31 has also led to differences in soil organic carbon. Pinus tabuliformis Carr. has the 32 highest SOC content (9.8 g·kg-1).

Conclusions: The SOC content in 0-100 cm of terraced fields planted with wheat was 33 34 1.5 times higher than that of sloping fields planted with wheat. Compared with sloping land, terrace construction significantly increased the SOC content of 35 cultivated land, especially in the top soil layer (0-30 cm), and converting some sloping 36 land into terraces would enhance the carbon sequestration capacity. This study has 37 38 significant implications for agricultural management and ecological restoration in the terraced areas of the Loess Plateau and contributes to the development of rational 39 policies for carbon sequestration on arable land in terraced areas. 40

41 Keywords: Terracing; Soil Organic Carbon; Agricultural activities; Vegetation cover

42 1 Introduction

43 Soil is considered to be the second largest carbon reservoir next to the ocean

44	(Stockmann et al., 2013), and the soil carbon reservoir is crucial for the global carbon
45	cycle (Lal, 2004; Houghton, 2007). SOC is is a key element of the global carbon cycle
46	(Rossel et al., 2019) and serves as a significant indicator for assessing soil quality and
47	land productivity (Guillaume et al., 2021; Wang et al., 2012). To address climate
48	change and lower CO2 emissions for sustainable development, we should sequester
49	more carbon in the soil rather than releasing it into the atmosphere. This is already an
50	urgent and challenging issue for humanity (Bednar et al., 2021). Therefore,
51	understanding the variation of SOC content in different regions, especially in
52	anthropogenic landscapes, is of great importance to assess the carbon sequestration
53	potential of soils and mitigate climate change. The sequestration of large amounts of
54	CO ₂ into soils can be achieved by the ways of land use and management practices
55	policies (Smith, 2012). However, SOC reserves have been declining worldwide (Jones
56	et al., 2005). Forest destruction caused by reclaiming farmland is the main reason for
57	global SOC consumption to date, resulting in increasingly serious ecological damage
58	(Lal, 2016). Hence, how to increase soil organic carbon to maintain soil quality,
59	restore ecology, ensure food security and reduce CO2 emissions is a matter of great
60	concern in the context of global warming.

Agricultural terracing is a crucial landscape engineering measure to reduce soil erosion and maintain soil fertility and increase agricultural productivity (Doetterl et al., 2012; Zhu et al, 2021), which is one of the ways to achieve sustainable agricultural development. On the one hand, the conversion of terraces into slopes increases the cultivated area significantly. On the other hand, it helps prevent erosion problems

66	(Arnáez et al., 2015) and effectively increases food production (Tarolli et al., 2014).
67	Terraces are widely distributed and have created environmental benefits in countries
68	in East Asia, the Mediterranean, and Southeast Asia (Wei et al., 2016). Many studies
69	have shown that terracing can intercept more than 80% of rainfall runoff and sediment
70	and horizontal terracing can retain all rainfall to replenish soil moisture. The positive
71	benefits of carbon capture generated by terraces come from the collection of eroded
72	material for sloping soils. However, the conversion of natural vegetation to cropland
73	inevitably results in a reduction of biomass and therefore a significant loss of SOC
74	(Aguilera et al., 2018 and 2013). During the construction of terraces period, it is
75	inevitable stripping of topsoil and exposure of deep soil, and a large amount of new
76	subsoil covers the surface of the terraces. This severe soil disturbance may alter soil
77	organic carbon dynamics (Sidle et al., 2006), but the potential long-term benefits of
78	terrace construction are considerable (Chen et al., 2017). However, many terraces are
79	experiencing ridge damage and terrace collapse due to a lack of terrace maintenance
80	or land abandonment, which not only leads to reduce soil and water conservation
81	benefits but potentially increases erosion and carbon emissions (Arnáez et al., 2015;
82	Wen et al., 2020).

83 Agricultural land accounts for more than 30% of the global area and has great 84 potential for carbon sequestration and mitigation of global climate change (Sun et al., 2010). Agricultural soils can be improved by implementing some regulatory 85 management practices to improve soil properties and further increase organic carbon 86 content (Lal et al., 2011). However, studies from different regions have shown a 87

~~

88	global trend of decreasing organic carbon content in agricultural soils nowadays
89	(Bellamy et al. 2008; Heikkinen et al. 2013; Yli-Halla et al., 2018). How to increase
90	the SOC content of farmland is the key to promoting sustainable agriculture and
91	improving the carbon sink. In the Loess Plateau region, a large amount of arable land
92	has been converted to woodland and grassland through the implementation of
93	afforestation and reforestation policies, and these measures have increased the organic
94	carbon content of the soil (Rong et al., 2021). In the implementation of ecological
95	restoration, different vegetation types have different benefits in increasing soil carbon
96	pools (Hong et al., 2020). The agroforestry cropping pattern with other crops stores
97	more carbon than other traditional agricultural cropping patterns (Smith et al., 2022).
98	Nair et al. (2009) cited seven studies on soil carbon in tropical agroforestry systems
99	that show that this type of cropping certainly stores more carbon.

In the Loess Plateau, the erosion problem of sloping land has a great impact on 100 agricultural production (Ran et al., 2020). Terracing has become the most important 101 102 ways to solve the erosion problem on sloping lands. By the end of 2012, there were 37,100 km² of terraced fields on the Loess Plateau. With the further development of 103 104 terrace construction, changes in surface morphology and soil properties also lead to 105 dynamic changes in soil carbon pools, and such changes will lead to changes in soil 106 carbon storage capacity. Meanwhile, how the land use pattern of terraces and human activity factors such as abandonment and crop type affect the soil carbon pool of 107 terraces still needs to be investigated. The implementation of afforestation policies in 108 terraced areas will also lead to changes in soil carbon pools. Consequently, we 109

110	gathered soil samples from terraces and slopes, including terraces with varying land
111	use and crop types, to investigate (1) the impacts of terrace construction on SOC in
112	the Loess Plateau region and (2) the effects of different vegetation cover and tillage
113	activities on the carbon sink capacity of terraces. This study will provide a reference
114	for terrace management and is also a guide for soil carbon sequestration.

115 2 Data and Methods

116 2.1 Study Area

117 The study area is the typical terrace construction region of the Loess Plateau 118 (Zhuanglang terracing) and the construction of this area began in the 1960s. By 2005, 119 14790 km² of terraces have been built, accounting for 95.3% of the total arable land in 120 the region. The structure of the terraces is mainly horizontal terraces. Zhuanglang terraces belong to the loess hilly terrain area with gullies and complex topography, 121 and the elevation is between 1521m-1784m. The climate type is temperate continental, 122 with warm, humid summers and cold, dry winters. More than 60% of precipitation 123 occurs in summer and autumn (July - October), with an annual rainfall of 542mm and 124 125 an average annual temperature of 7.5°C. The dominant soil type in this area is fine loessial soil, the natural vegetation is mainly herbaceous, shrubs, coniferous forests, 126 and locust trees, and the crops are wheat, maize, potatoes, and apple trees. Due to the 127 128 constraints of soil properties and irrigation water sources in this region, the growth of crops depends on natural rainfall. 129

132 2.2 Terraced soil sample collection

We carried out soil sample collection at the terrace observation system in Yangpota mountain, Dazhuang Town, Zhuanglang County, with the sampling date being October 2020. The construction of terraces in this area started in 1964 and based on interviews with local farmers, it was confirmed that all the agricultural fields in the area had been constructed in 1991, and all the terraces were constructed 30 years ago. The main terracing structure built in the region is the horizontal terrace,

139	which is an agricultural field with stepped sections along contours on the slopes of
140	loess hills. The width of the terraces varies from 1.6 to 6 meters, and the height of the
141	terrace steps varies from 0.3 to 0.8 meters. The terraced slopes are slightly
142	counter-sloped to collect more precipitation and the slope ranges from 0% to 11%
143	(Chen et al., 2020).

We randomly set up 84 sampling sites in the study area, with 77 terraced 144 145 sampling sites and 7 slope sampling sites. Crop type, cropping pattern, and agricultural abandonment all affect the soil carbon pool of the terraces, so the terraces 146 147 included sampling points for different cropping patterns of apple trees (9), number of sampling points), vegetable (9), wheat (9), legume (9), potato (9), maize (9), apple 148 tree-legume (3) and apple- potato (3) (Appendix, Fig. A1). Five abandoned apple tree 149 150 terraces were included in the terraces and the apple trees were not removed from the terraces and there was a large amount of weed growth. Three types of restored 151 vegetation were planted on the terraces: Robinia pseudoacacia L. (4), Pinus 152 tabuliformis Carr. (4) and Medicago sativa L. (4). The seven slope sites included four 153 154 wheat plantations and three natural grassland sites (Table 1).

Measuring SOC concentrations in the surface layer of the soil (10 or 20 cm) alone does not imply soil changes due to tillage management, so we designed the sampling depth as 1 m. Samples were collected at 0-10 cm, 10-20 cm, 20-30 cm, 30-40 cm, 40-50 cm, 50-60 cm, 60-70 cm, 70-80 cm, 80- 90cm, and 90-100cm samples. A (2×2) m² sample square was randomly delineated in each identified sample plot and sampled along the diagonal line. The soil samples collected three

- 161 times were mixed according to different soil layers after removing plant roots and
- 162 debris, and 840 mixed soil samples were finally obtained.

163

165

164 Table1 Number of different types of sampling plots, vegetation types, number of

samples, and soil property data											
Land	Planting method	Vegetation types	Number	Soil	Soil texture fractions		Soil moisture(%)		SOC(g•kg-1)		
types			profiles	cm)	Clay (%)	Silt (%)	Sand (%)	Mean	SD	Mean	SD
		Wheat	9	0-100	11.1	80.9	8.0	24.2	10.36	7.7	2.78
		Apple trees	9	0-100	—	—	_	24.3	9.32	7.1	2.39
		Potatoes	9	0-100	—	_	—	26.8	12.98	5.2	2.32
		Legumes	9	0-100	—	—	_	23.2	15.21	4.5	2.10
		Maize	9	0-100	_	—	—	21.4	10.35	7.7	2.48
	Single vegetatio n	Robinia pseudoaca cia L.	4	0-100	10.8	79.4	9.8	18.2	5.92	8.0	2.77
Terrace		tabuliformi s Carr.	4	0-100	9.9	84.0	6.1	19.3	6.33	9.8	4.44
		Medicago sativa L.	4	0-100	10.9	80.0	9.1	20.4	13.62	5.6	1.57
		Vegetable	9	0-100	_		_	22.1	5.31	6.5	1.80
	Multiple	Apple tree- legumes	3	0-100	—	—	—	20.2	7.36	5.4	1.65
	vegetatio n	Apple tree- potatoes	3	0-100	_	_	_	22.7	10.68	6.7	1.77
Slopin	Single	Wheat	4	0-100	10.0	78.0	12.0	21.3	13.44	4.9	1.07
g land	vegetatio nd n	Grassland	3	0-100	10.4	80.1	9.5	21.0	9.62	6.0	2.26
Aband oned terrace	Multiple vegetatio n	Apple trees and weeds	5	0-100	10.6	78.5	10.8	23.7	11.35	6.4	1.85

166

6 Note: "---" represents not measured. All soil attribute data values are average values, average soil

167 texture, soil moisture, and SOC of the 0-100 cm profiles, derived from 10 samples for each

168 profile (10-cm depth intervals)

169 2.3 Experimental analysis and data statistics

170	The collected soil samples were placed in sealed plastic bags and pre-weighed
171	aluminum boxes. The soil samples in the aluminum box were dried in the bake oven
172	at 105 °C for 24 hours to measure the soil moisture. After the samples were
173	completely shade-dried in the laboratory, gravels and plant roots were removed from
174	the samples using a sieve with a particle size of 2 mm. A 0.2 g soil sample was
175	weighed and the concentration of SOC was measured using a wet oxidation method
176	with dichromate (Nelson and Sommers, 1982). The soil texture, including sand, silt,
177	and clay content, was analyzed through a laser diffraction technique utilizing a
178	Mastersizer 2000 (Malvern Instruments, Malvern, England).

All data in this paper were analyzed by SPSS 21 statistical software. All collected data underwent normality testing using the Kolmogorov-Smirnov test and were assessed for homogeneity of variance with Levene's test, ensuring P > 0.05. Comparative analysis of various sample point types was performed utilizing a one-way ANOVA, with significance considered at $P \le 0.05$. All data are expressed as means \pm standard deviation. Graphs were made using Origin 2021 software.

185 3 Results

186 **3.1 SOC characteristics of different land use types**

187 The SOC content of the abandoned apple tree terraces were lower than that of the 188 in-use apple tree terraces, but the difference was small at $0.7 \text{ g} \cdot \text{kg}^{-1}$. The SOC content

189	of the wheat-grown sloping fields was significantly lower than that of the
190	wheat-grown terraces, with the SOC content of the terraces being 1.5 times higher
191	than that of the sloping fields, with a difference of $3.8 \text{ g}\cdot\text{kg}^{-1}$ between the two (7.7
192	$g \cdot kg^{-1} > 4.9 g \cdot kg^{-1}$). The SOC content of natural grassland was slightly higher (6.0
193	$g \cdot kg^{-1} > 5.6 g \cdot kg^{-1}$) compared to planted grassland, although natural grassland with
194	weeds had not been terraced. Slopes with natural vegetation were higher in SOC (6.0
195	$g \cdot kg^{-1}$) than those under cultivation (4.9 $g \cdot kg^{-1}$) (Table 1).

The vertical variation of SOC at 0-100 cm depth varied significantly among land 196 use types (Fig. 2). Except for the abandoned land, all land use types showed an 197 irregular decreasing change pattern from the surface layer to the deep layer of the soil. 198 In the 0-10cm soil layer, the highest SOC content was found in terraces planted with 199 200 wheat and the lowest SOC content was found in terraces planted with M. sativa. Terraces planted with fruit trees had significantly higher SOC content at 80-100cm 201 depth than terraces planted with crops, M. sativa, and natural grassland. The vertical 202 203 variation of SOC in sloping fields and terraces planted with wheat was consistent, with their greatest SOC content occurring at 0-20 cm depth and their smallest SOC 204 205 content at 90-100 cm depth. In the abandoned terraces, SOC varied between 0-80 cm, 206 with the smallest SOC content occurring in the 80 cm soil layer.

207

Fig.2 SOC Vertical variation of SOC content by land use type Bars denote the standard deviation of the mean, n represents the number of soil profiles.

211 **3.2** Characteristics of SOC in terraces of different planting patterns

Differences in SOC were smaller in terraces planted with apple trees and greater between terraces planted with a single crop. Among all crop types, legumes had the lowest SOC content (4.5 g·kg⁻¹) and maize had the highest SOC content (7.7 g·kg⁻¹).

- The SOC content of concurrent apple tree legumes and apple tree potatoes was higher than that of legumes and potatoes grown alone (5.4 $g \cdot kg^{-1} > 4.5 g \cdot kg^{-1}$ and 6.7 g $\cdot kg^{-1} > 5.2 g \cdot kg^{-1}$) (Table 1).
- The vertical distribution of SOC content across a depth of 0-100 cm showed a 218 consistent decline from the surface soil to the deeper layers for all crops. The SOC 219 220 content (15.1 g·kg⁻¹) of wheat cultivated terraces was the highest among all crops at 221 the soil surface (0-10 cm). Terraces planted with apple trees, maize, or wheat had higher SOC content in deeper soils (30-100 cm). Beans and potatoes had lower SOC 222 content at 50-100 cm depth than terraces planted with other crops. The difference in 223 SOC content between potato terraces planted alone and apple tree-potato terraces at 224 0-20 cm depth was not significant. However, below 20 cm depth, the SOC content of 225 226 the apple tree-potatoes combination was significantly higher than that of the terraces planted with potatoes alone. This difference is also reflected in the legumes and apple 227 tree-legumes (Fig.3). 228

Fig.3 Vertical distribution of SOC content in different crop types

231 Bars denote the standar	l deviation of the mean	, n represents the number of soil
-----------------------------	-------------------------	-----------------------------------

232 profiles.

233 3.3 Characteristics of SOC in terraces with different ecologically restored 234 vegetation

Comparing the SOC characteristics of the three types of ecologically restored 235 vegetation after terracing, the average SOC content of terraces planted with trees 236 237 0-100 cm was higher than that of terraces planted with forage (Table 1). This 238 difference varied at different depths, with the SOC content of alfalfa being 239 significantly lower than that of the two trees in the 0-10 cm soil surface layer, becoming smaller in the 10-20 cm depth, but increasing again in the 20-60 cm depth. 240 241 At 70-100 cm depth this difference became smaller and the SOC content between the three vegetation species became close. 242

The difference in SOC between different silvicultural species was higher in P. *tabuliformis* than in R. *pseudoacacia* at 0-100 cm depth, with a difference of 1.83 g·kg⁻¹. The significant difference in SOC between the two species was mainly at 0-70 cm depth, where P. *tabuliformis* had a higher SOC content than R. *pseudoacacia*. The difference in SOC content between the two species became smaller at the depth of 70-100 cm, and the SOC content of R. *pseudoacacia* was slightly higher than that of P. *tabuliformis* (Fig.4).

250

251 Fig.4 SOC vertical variation of different ecologically restored vegetation.

Bars denote the standard deviation of the mean, n represents the number of soil

253

profiles.

254 4 Discussion

255 4.1 Effect of terrace construction on SOC

256 In the Loess Plateau area, the average SOC content of terraces 0-100cm is 1.4 times higher than that of sloping farmland (Table 1). In Zhang et al. (2013), the SOC 257 258 stock at 0-100 cm depth was 4.97 kg·m⁻² in terraces and 3.09 kg·m⁻² in sloping fields, 259 which is 1.6 times higher than the soil organic carbon stock in sloping fields, which is 260 consistent with the results of this study. Terracing is considered an important practice to prevent water erosion and minimize the loss of SOC (Nie et al., 2017). There is a 261 positive feedback relationship between soil moisture and soil carbon (Green et al., 262 2019). Horizontal terraces are the most widespread terraces in the Loess Plateau, 263

264	which has changed the surface morphology, increased the time of rainfall storage at
265	the surface, and enhanced soil moisture in rain-dependent farming regions of the
266	Loess Plateau (Xu et al., 2021). Ecological stress caused by soil water deficit leads to
267	a decrease in biomass and net primary plant productivity. Conversely, an increase in
268	soil water has a positive effect on biological growth (McDowell et al., 2015). The
269	interception of precipitation on the terrace surface provides water for plant growth,
270	increases plant biomass, and increases the organic matter put into the soil, thus having
271	an impact on the SOC content. The interception of precipitation by the terraces means
272	that precipitation will no longer carry large amounts of fine soil particles from the soil
273	which will increase the content of clay particles in the soil. Soil clay particles have a
274	larger specific area, which can adsorb more soil organic carbon and enhance the
275	accumulation of organic carbon (Post et al., 1982). Compared to sloping land, terraces
276	have a higher content of both clay and silt in the soil. The terraces therefore further
277	contribute to carbon accumulation in the terraces by protecting the fine particles in the
278	soil. In a study on the Loess Plateau, the SOC content of 0-100 cm in unterraced date
279	palm orchards was 2.6 g·kg ⁻¹ , which was lower than the soc content of terraced
280	orchards. This evidence further demonstrates the positive effect of terracing on soil
281	organic carbon sequestration (Gao et al., 2017).

282 The SOC varies significantly in terms of the amount of plant and animal residues entering the soil and the depth of the soil under agricultural cultivation (Koga et al., 283 2020). The impact of agricultural activities on the surface soil levels was stronger 284 compared to the deeper soil levels (Li et al., 2020). In this study, we observed a 285

286	significant increase in SOC in terraces than in sloping lands, particularly in the 0-30
287	cm soil layer (Fig.5). Post-terracing, SOC sequestration in deeper soils lagged behind
288	that in surface soils. Furthermore, the rate of SOC change was more pronounced in
289	the surface layer (0-20 cm) compared to the deeper layer (20-100 cm). Precipitation in
290	the region is limited and cannot replenish deep soil water, and the erosion of
291	precipitation on the slope surface also mainly takes away the top soil layer. Therefore,
292	the soil and water conservation effect brought by terrace construction is limited, so for
293	the soil depth increases, this effect will become smaller. The impact of terracing on
294	SOC sequestration diminishes as soil depth increases (Deng, Liu, and Shangguan.,
295	2014). As soil depth increases, the water stored in the terraces cannot penetrate deeper
296	soils and deeper soils will maintain their properties. Therefore, the management and
297	conservation of terrace topsoil are important to ensure local food production and
298	enhance the carbon sink function (Li et al., 2014).

Fig.5 Effect of terrace construction on SOC, soil moisture, and soil grades.

301 (a): Variation in surface morphology by terrace construction; (b): variation in SOC

302 content; (d): variation in soil moisture; (d), (e), and(f): variation in soil grades. The

303 number of profiles is 9 for terraces and 4 for sloping fields. Bars denote the standard

304

deviation of the mean.

305 4.2 Effect of terraces abandonment on SOC

As in other parts of the world, industrialization and urbanization have led to a 306 large population flock from rural to urban areas as in China, resulting in the 307 abandonment of a large number of productive potential farmlands (Wiesmeier et al., 308 309 2012; Cai et al., 2016). Moreover, a large amount of arable land in rain-fed agricultural areas in the Loess Plateau region has been abandoned due to water 310 311 resource constraints or due to declines in soil fertility (Cao et al., 2020). Secondary 312 succession of vegetation after terraces abandonment leads to an increase in soil carbon 313 content as a potential pathway for climate change mitigation (Bell et al., 2021). When the terraced fields were abandoned in this research, the SOC content of the abandoned 314 315 terraces was lower than that of the terraces in use. This is caused by the short abandoned time. To produce significant environmental benefits, the land must remain 316 abandoned for an extended period to accumulate substantial amounts of both plant 317 biomass and the species that constitute intact ecological communities. This process 318 319 can take decades to reach levels of carbon sequestration or biodiversity comparable to 320 those of undisturbed ecosystems (Crawford et al., 2022; Poorter et al., 2016). Due to the limited water resources available in semi-arid areas, a longer natural or assisted 321 322 recovery time is required. Therefore, the duration of land abandonment is a crucial factor influencing the dynamic changes SOC (Djuma et al., 2020; Badalamenti et al., 323

324	2019). In related studies in other regions, soil carbon stocks increased by 13% and
325	16% in cropland abandoned for 15 and 35 years, respectively (Novara et al., 2014).
326	With the abandonment of disposal time extended, vegetation types gradually
327	transition to grassland, scrub, and forest and the death of plants and animals return to
328	the soil as organic matter, increasing the number of soil aggregates and further
329	increasing the carbon content of the soil (Liu et al., 2020). Therefore, ecological
330	restoration of newly abandoned terraces should be carried out as soon as possible.
331	After short-term abandonment, the terraced fields showed a special change pattern at
332	different depths in this study. SOC content first decreased and then increased with
333	increasing soil depth. The decrease in surface SOC was controlled by the decrease in
334	agricultural fertilizer inputs, while the increase in deep SOC was caused by the
335	inability to utilize deep soil nutrients due to the death of crop roots.

4.3 Effect of vegetation type and planting patterns on SOC in terraces

Vegetation types can influence SOC by modifying the soil's physicochemical 337 338 structure and altering both the input and decomposition rates of SOC (Du et al., 2022; Wiesmeier et al., 2012; Wan et al., 2019). Our study demonstrated that, compared to 339 340 terraced fields, the SOC content of afforested land at a 0-100 cm depth was higher and 341 that the forest litter biomass was more than that of farmland, which was the main 342 reason for this difference. Planted forest land reduces soil temperature, soil moisture evaporation, and soil erosion while increasing the quantity and quality of organic 343 matter input to compensate for carbon decomposition from crop cultivation (Liu et al., 344

345	2020). The afforested land is terraced forests, and the effect of preventing soil erosion
346	is more significant. Some study shows that the SOC in immature forests (10 years old)
347	is 17.91% higher than that in terraced cropland. The SOC concentration of a
348	30-year-old forest is significantly higher than that in other land covers (Xin et al.,
349	2016). These studies further proved the carbon sequestration effect of reforestation.
350	Due to the problem of ecological degradation and soil erosion, various ecological
351	measures have been taken in the Loess Plateau area, such as returning farmland to
352	forest and grass and planting trees (Hong et al., 2020). Considering the climate and
353	soil quality factors, the main species selected in the Loess Plateau region are
354	drought-tolerant types of trees, and the carbon accumulation effect of different species
355	selection also differs significantly (Li et al., 2018). P. tabuliformis has a higher SOC
356	content than R. pseudoacacia, especially in the 0-50 cm soil layer. The pine species
357	selected in this region is larch, with the arrival of winter a large number of pine
358	needles and fruits are into the soil, increasing the input of organic matter in the
359	surface layer so that the SOC content of pine forests is higher in the surface layer of
360	the soil (0-10 cm). In humid areas, some studies also show that the soil organic carbon
361	density of fir conifer forests is the largest among the different 11 middle forest
362	vegetation types (Chen et al., 2007). Other studies have shown that tree species such
363	as P. koraiensis, L. gmelinii, and P. tabuliformis increase soil organic carbon stocks
364	more as silvicultural species (Hong et al., 2020). The biomass of the herbaceous
365	plants themselves is much lower than that of trees, and the limited amount of organic
366	matter entering the soil, and the fact that <i>M. sativa</i> is mainly used as a source of

- 367 fodder for the animals raised by farmers in the region, leads to a lower SOC content in
- 368 terraces planted with *M. sativa* than in those undergoing afforestation.

The SOC content of grassland at a depth of 0-100cm is lower than that of 369 farmland. Although the grassland has organic matter after the withered herbs enter the 370 371 soil, the main planting type in the terrace area is apple trees, and a large amount of fruit tree leaves will also enter the soil. Grassland is a sloping land that has not been 372 373 terraced, leading to slope erosion that removes a significant amount of organic matter 374 from the soil surface. As a result, the SOC content in grassland is lower than in 375 terraced fields (Fig.2). The ecological advantages of sequestering SOC and enhancing 376 soil fertility could be significant, largely thanks to the widespread implementation of reforestation and various land use strategies in terraced fields across China and 377 378 numerous other mountainous areas globally (Hong et al., 2020).

Crops may differ in their ability to increase SOC content due to differences in 379 their photosynthetic capacity and root characteristics (Wegener et al., 2015). The 380 pattern of intercropping in this area is typical of Agroforestry systems (AFS), where 381 382 other crops are planted between the rows of apple trees. The SOC content of apple trees in combination with other crops was higher than in monocultures, especially in 383 the lower and middle layers of the soil (30-100 cm). The amount of tree litter and root 384 decomposition are important reasons for this (Pardon et al., 2017). The fallen leaves 385 386 of fruit trees and some rotting apples are not removed, and these organic materials decompose to replenish SOC after entering the soil. In addition, carbon input can be 387 achieved by decomposing (fine) tree roots and root secretions (Nair et al., 2009). For 388

389	soils below 30 cm depth, tree roots produce an important role in the accumulation of
390	soil organic carbon. When potato or legume crops are harvested, all the fruit and plant
391	roots are removed and these lands will be tilled to grow other crops, so the input of
392	organic matter is very limited. Agroforestry systems increase the distribution of roots
393	in the soil and increase the recalcitrant compounds which slow the rate of
394	mineralization through the input of organic matter (Recous et al., 2008).

395 4.4 Study limitations

396 The results of the study are based on field data collected over a relatively short 397 period of time. Due to the complexity of field conditions, the number of soil profiles in some of the comparative studies in the sampling frame design was not entirely 398 399 consistent, and future studies will need to expand the study area to achieve balanced sampling. This study examined differences in SOC at individual time points, and 400 follow-up assessments are needed to confirm long-term trends. Factors such as soil 401 bulk density, soil ph, root biomass, fertilizer management, and tillage practices also 402 403 affect soil organic carbon in terraced areas, and more indicator measurements and studies are necessary. We need to do more work to understand the SOC characteristics 404 of terraced agricultural areas and how to better utilize the terraces for carbon storage 405 406 and realize the economic and ecological value of terraces.

407 **5** Conclusions

408 The results showed that the SOC content in 0-100 cm of terraced fields planted

409	with wheat was 1.5 times higher than that of sloping fields planted with wheat.
410	Compared with sloping land, terrace construction significantly increased the SOC
411	content of cultivated land, especially in the top soil layer (0-30 cm), and converting
412	some sloping land into terraces would enhance the carbon sequestration capacity.
413	Abandonment, vegetation type and planting structure affect the SOC of terraces.
414	planting other crops between rows of apple trees can increase the SOC content. Since
415	vegetation restoration takes a long time, short-term abandonment will lead to a
416	decrease in terrace SOC, and some abandoned terraces can be planted with ecological
417	restoration vegetation. Among the ecologically restored plant species, the vegetation
418	with the highest SOC content is Pinus oleifera. The SOC content of terraces planted
419	with artificial forage is lower than that of natural grassland, so it is necessary to
420	protect the natural grassland left behind and choose tree species with better ecological
421	benefits when planting trees. In the face of China's huge food pressure and the goal of
422	increasing carbon sinks to mitigate global climate change, terraces have significance
423	and importance. Continuous strengthening of terraces management will give full play
424	to their carbon sequestration role.

425 **Data Availability Statement**

426 The data that support the findings of this study are available on request from the corresponding author, soil organic carbon data are not publicly available due to 427 428 privacy or ethical restrictions.

429 Acknowledgments

430	This research was financially supported by the National Natural Science
431	Foundation of China(42371040, 41971036), Key Natural Science Foundation of
432	Gansu Province(23JRRA698), Key Research and Development Program of Gansu
433	Province(22YF7NA122), Cultivation Program of Major key projects of Northwest
434	Normal University(NWNU-LKZD-202302), Oasis Scientific Research achievements
435	Breakthrough Action Plan Project of Northwest normal
436	University(NWNU-LZKX-202303).

437 Conflict of Interest Statement

438 The authors declare no conflicts of interest.

439 Author contributions

Guofeng Zhu and Qinqin Wang conceived the idea of the study; Siyu Lu, Xiaoyu Qi and Ling Zhao analyzed the data; Dongdong Qiu, Longhu Chen and Rui Li were responsible for field sampling; Qinqin Wang and Yuanxiao Xu participated in the experiment; Yinying Jiao, Gaojia Meng and Wenmin Li participated in the drawing; Qinqin Wang wrote the paper; Yuhao Wang, Wentong Li and Eenwei Huang checked and edited language. All authors discussed the results and revised the manuscript.

446

447 References

- 448 Aguilera, E., Guzmán, G.I., Álvaro-Fuentes, J., Infante-Amate, J., García-Ruiz, R.,
- Carranza-Gallego, G., Soto, D., González de Molina, M., 2018. A historical
 perspective on soil organic carbon in Mediterranean cropland (Spain,
 1900–2008). Sci. Total Environ. 621, 634–648.
- 452 https://doi.org/10.1016/j.scitotenv.2017.11.243
- 453 Aguilera, E., Lassaletta, L., Gattinger, A., Gimeno, B.S., 2013. Managing soil carbon
- 454 for climate change mitigation and adaptation in Mediterranean cropping systems:
 455 a meta-analysis. Agr. Ecosyst. Environ. 168, 25–36.
 456 https://doi.org/10.1016/j.agee.2013.02.003.
- 457 Aquino, L. S., Timm, L. C., Reichardt, K., Barbosa, E. P., Parfitt, J. M. B., Nebel, A.
- 458 L. C., & Penning, L. H. (2015). State-space approach to evaluate effects of land
- 459 leveling on the spatial relationships of soil properties of a lowland area. Soil
- 460 Tillage Res. 145, 135-147. https://doi.org/10.1016/j.still.2014.09.007
- 461 Arnáez, J., Lana-Renault, N., Lasanta, T., 2015. Effects of farming terraces on
 462 hydrological and geomorphological process. A review. Catena 128, 122–134.
 463 https://doi.org/10.1016/j.catena.2015.01.021.
- 464 Arnáez, J., Lana-Renault, N., Lasanta, T., Ruiz-Flaño, P., Castroviejo, J. (2015).
- 465 Effects of farming terraces on hydrological and geomorphological processes. A
- 466 review. Catena, 128, 122–134. https://doi.org/10.1016/j.catena.2015.01.021
- 467 Badalamenti, E., Battipaglia, G., Gristina, L., Novara, A., Ruhl, J., Sala, G.,... La
- 468 Mantia, T. (2019). Carbon stock increases up to old growth forest along a secondary

succession

in

469

14(7).

https://doi.org/10.1371/journal.pone.0220194
Bednar, J., Obersteiner, M., Baklanov, A., Thomson, M., Wagner, F., Geden, O.,...
Allen, M. (2021). Operationalizing the net-negative carbon economy. Nature

ecosystems.

PLOS

ONE.

Mediterranean island

- 473 (London), 596(7872), 377-383. https://doi.org/10.1038/s41586-021-03723-9
- 474 Bell, S. M., Terrer, C., Barriocanal, C., Jackson, R. B., & Rosell-Mele, A. (2021). Soil
- 475 organic carbon accumulation rates on Mediterranean abandoned agricultural
- 476 lands. Sci. Total Environ. 759. https://doi.org/10.1016/j.scitotenv.2020.143535
- 477 Bellamy, P.H., Loveland, P.J., Bradley, R.I., Lark, R.M., Kirk, G.J.D., 2008. Carbon
- 478 losses from all soils across England and Wales 1978–2003. Nature 437, 245–248.
- 479 https://doi.org/10.1038/nature04038
- 480 Bruins, H. J. (2012). Ancient desert agriculture in the Negev and climate-zone
- 481 boundary changes during average, wet and drought years. J. Arid Environ. 86(17),
- 482 28-42. https://doi.org/10.1016/j.jaridenv.2012.01.015
- 483 Cai, A., Feng, W., Zhang, W., & Xu, M. (2016). Climate, soil texture, and soil types
- 484 affect the contributions of fine-fraction-stabilized carbon to total soil organic
 485 carbon in different land uses across China. J. Environ. Manage. 172, 2-9.
- 486 https://doi.org/10.1016/j.jenvman.2016.02.009
- 487 Cao, J., Wei, C., Adamowski, J. F., Zhou, J., Liu, C., Zhu, G.,... Feng, Q. (2020).
- 488 Could arid and semi-arid abandoned lands prove ecologically or economically
- 489 valuable if they afford greater soil organic carbon storage than afforested lands in
- 490 China's Loess Plateau? Land use policy, 99, 105027.

491	https://doi.org/10.1016/j.landusepol.2020.105027
492	Crawford, C. L., Yin, H., Radeloff, V. C., & Wilcove, D. S. (2022). Rural land
493	abandonment is too ephemeral to provide major benefits for biodiversity and
494	climate. Science Advances, 8(21), eabm8999.
495	https://science.org/doi/10.1126/sciadv.abm8999
496	Chao, Z., Liu, G., Xue, S., & Sun, C., 2013. Soil organic carbon and total
497	nitrogen storage as affected by land use in a small watershed of the loess plateau,
498	china. European Journal of Soil Biology, 54(none), 1624.
499	https://doi.org/10.1016/j.ejsobi.2012.10.007
500	Chen, D., Wei, W., Daryanto, S., & Tarolli, P. (2020). Does terracing enhance soil
501	organic carbon sequestration? A national-scale data analysis in China. Sci. Total
502	Environ. 721, 137751. https://doi.org/10.1016/j.scitotenv.2020.137751
503	Deng, L., Liu, G., & Shangguan, Z. (2014). Land-use conversion and changing soil
504	carbon stocks in China's 'Grain-for-Green' Program: a synthesis. Glob. Change
505	Biol. 20(11), 3544-3556. https://doi.org/10.1111/gcb.12508
506	Djuma, H., Bruggeman, A., Zissimos, A., Christoforou, I., Eliades, M., Zoumides, C.
507	(2020). The effect of agricultural abandonment and mountain terrace degradation
508	on soil organic carbon in a Mediterranean landscape. CATENA, 195.
509	https://doi.org/10.1016/j.catena.2020.104741
510	Doetterl, S., Six, J., Van Wesemael, B., & Van Oost, K. (2012). Carbon cycling in
511	eroding landscapes: geomorphic controls on soil organic C pool composition and
512	C stabilization. Glob. Change Bio. 18(7), 2218-2232.

534

513	https://doi.org/10.1111/j.1365-2486.2012.02680.x
514	Du, J., Liu, K., Huang, J., Han, T., Zhang, L., Anthonio, C. K., Zhang, H. (2022).
515	Organic carbon distribution and soil aggregate stability in response to long-term
516	phosphorus addition in different land-use types. Soil Tillage Res. 215.
517	https://doi.org/10.1016/j.still.2021.105195
518	Durán, Z.V.H., Rodríguez, P.C.R., Martin, P.F.J., de Graaff, J., Francia, M.J.R.,
519	Flanagan, D.C. (2011). Environmental impact of introducing plant covers in the
520	taluses of terraces: implications for mitigating agricultural soil erosion and runoff.
521	Catena 84 (1-2), 79-88. https://doi.org/10.1016/j.catena.2010.10.004
522	Gao, X., Meng, T., & Zhao, X (2017). Variations of soil organic carbon following
523	land use change on deep-loess hillsopes in china. Land Degradation &
524	Development 28: 1902–1912. https://doi.org/10.1002/ldr.2693
525	Green, J. K., Seneviratne, S. I., Berg, A. M., Findell, K. L., Hagemann, S., Lawrence,
526	D. M., Gentine, P. (2019). Large influence of soil moisture on long-term
527	terrestrial carbon uptake. Nature 565(7740), 476.
528	https://doi.org/10.1038/s41586-018-0848-x
529	Guillaume, T., Bragazza, L., Levasseur, C., Libohova, Z., & Sinaj, S. (2021).
530	Long-term soil organic carbon dynamics in temperate cropland-grassland
531	systems. Agric. Ecosyst. Environ. 305.
532	https://doi.org/10.1016/j.agee.2020.107184
533	Han, X., Zhao, F., Tong, X., Deng, J., Chen, L., Kang, D. (2017). Understanding soil

carbon sequestration following the afforestation of former arable land by

535	physical	fractionation.	Catena	150,	317-32	.7.
536	https://doi.org	g/10.1016/j.catena.201	6.11.027.			
537	Heikkinen, J., Ket	oja, E., Nuutinen, V.,	Regina, K. (201	3). Declining tr	end of carbo	on
538	in Finnish c	ropland soils in 1974	4–2009. Glob. C	Chang. Biol. 19	, 1456–146	<i>.</i> 69.
539	https://doi.org/10.1111/gcb.12137					
540	Hong, S., Yin, G., Piao, S., Dybzinski, R., Cong, N., Li, X., Chen, A. (2020))).	
541	Divergent respo	nses of soil organic c	arbon to afforest	ation. Nat. Susta	ain. 3(9), 69	94.
542	https://doi.org/1	0.1038/s41893-020-05	557-у			
543	Houghton, R. A. (2007). Balancing the g	global carbon bud	dget. Annu. Rev	. Earth Pl. S	sc.,
544	35(1), 313-34	17. https://doi.org/10.1	146/annurev.eart	h.35.031306.14	0057	
545	Jones, C., McCo	nnell, C., Coleman,	K., Cox, P., Fa	ulloon, P., Jenk	inson, D.,	&
546	Powlson, D.	(2005). Global clima	te change and so	oil carbon stock	s; prediction	ns
547	from two co	ntrasting models for	the turnover of o	organic carbon	in soil. Glo	ob.
548	Chang. Biol.	11(1), 154-166. https:	//doi.org/10.1111	/j.1365-2486.20	04.00885.x	
549	Kabiri, V., Raiesi	, F., & Ghazavi, M.	A. (2016). Tilla	age effects on s	soil microbi	ial
550	biomass, SO	M mineralization and	enzyme activity	in a semi-arid	Calcixerept	ts.
551	Agric. Ecosy	st. Environ. 232, 73–8	4. https://doi.org	/10.1016/j.agee.	2016.07.022	2
552	Koga, N., Shimoo	la, S., Shirato, Y., Ku	ısaba, T., Shima	, T., Niimi, H.,	Atsumi, I	K.
553	(2020). Asse	ssing changes in soil	carbon stocks af	ter land use con	nversion fro	m
554	forest land	l to agricultural	land in	Japan. Geod	lerma 37	7.
555	https://doi.org	g/10.1016/j.geoderma.	2020.114487			

Lal, R. Beyond COP 21: potential and challenges of the "4 per Thousand" initiative. J.

557	Soil Water Conserv. 71, 20A–25A (2016). https://doi.org/10.2489/jswc.71.1.20a
558	Li, L., Yao, Y.F., Qin, F.C., 2014. Distribution and affecting factors of soil organic
559	carbon of terraced fields in Chifeng, Inner Mongolia. Chinese J. Ecol. 33
560	(11),2930-2935. https://doi.org/10.13292/j.1000-4890.20141022.013
561	Li, Q., Li, A., Dai, T., Fan, Z., Luo, Y., Li, S., & Wilson, J. P. (2020).
562	Depth-dependent soil organic carbon dynamics of croplands across the Chengdu
563	Plain of China from the 1980s to the 2010s. Glob. Chang. Biol. 26(7), 4134-4146.
564	https://doi.org/10.1111/gcb.15110
565	Liu, C. A., & Zhou, L. M. (2017). Soil organic carbon sequestration and fertility
566	response to newly-built terraces with organic manure and mineral fertilizer in a
567	semi-arid environment. Soil Tillage Res. 172, 39-47.
568	https://doi.org/10.1016/j.still.2017.05.003
569	Liu, M., Han, G., & Zhang, Q. (2020). Effects of agricultural abandonment on soil
570	aggregation, soil organic carbon storage and stabilization: Results from observation
571	in a small karst catchment, Southwest China. Agric. Ecosyst. Environ. 288, 106719.
572	https://doi.org/10.1016/j.agee.2019.106719
573	Luo, Z., Feng, W., Luo, Y., Baldock, J., & Wang, E. (2017). Soil organic carbon
574	dynamics jointly controlled by climate, carbon inputs, soil properties and soil
575	carbon fractions. Glob. Chang. Biol. 23(10), 4430-4439.
	https://doi.org/10.1111/gch.13767

Nair, P.K.R., Kumar, B.M., Nair, V.D. (2009a). Agroforestry as a strategy for carbon
sequestration. J. Plant Nutr. Soil Sci. 172, 10–23.

- 579 <u>http://dx.doi.org/10.1002/jpln.200800030</u>.
- 580 Nelson, D.W., Sommers, L.E. (1982). Total carbon, organic carbon and organic matter.
- 581 In: Page, A.L., Miller, R.H., Keeney, D. (Eds.), Methods of Soil Analysis, Part 2.
- 582 Chemical and Microbiological Properties. Agronomy Monograph, vol. 9. ASA
- 583 and SSSA, Madison, WI, pp. 539–579.
- 584 Nie, X., Li, Z., Huang, J., Huang, B., Xiao, H., & Zeng, G. (2017). Soil organic
- 585carbon fractions and stocks respond to restoration measures in degraded lands by586watererosion.Environ.Manage.59(5),816-825.
- 587 https://doi.org/10.1007/s00267-016-0817-9
- 588 Novara, A., La Mantia, T., Ruehl, J., Badalucco, L., Kuzyakov, Y., Gristina, L.,...
- 589 Laudicina, V. A. (2014). Dynamics of soil organic carbon pools after agricultural
- 590 abandonment. Geoderma 235, 191-198.
- 591 https://doi.org/10.1016/j.geoderma.2014.07.015
- 592 McDowell, N. G., & Allen, C. D. (2015). Darcy's law predicts widespread forest
- 593 mortality under climate warming. Nat. Clim. Change, 5(7), 669-672.
- 594 https://doi.org/10.1038/nclimate2641
- 595 Pardon, P., Reubens, B., Reheul, D., Mertens, J., De Frenne, P., Coussement, T., ... &
- 596 Verheyen, K. (2017). Trees increase soil organic carbon and nutrient availability
- 597 in temperate agroforestry systems. Agric. Ecosyst. & Enviro., 247,
- 598 98-111.http://dx.doi.org/10.1016/j.agee.2017.06.018
- 599 Pietsch, D., Mabit, L. (2012). Terrace soils in the Yemen Highlands: using physical:
- 600 chemical and radiometric data to assess their suitability for agriculture and their

622

601	vulnerability to degradation. Geoderma 185–186, 48–60.
602	https://doi.org/10.1016/j.geoderma.2012.03.027
603	Poorter, L., Bongers, F., Aide, T. M., Almeyda Zambrano, A. M., Balvanera, P.,
604	Becknell, J. M., & Rozendaal, D. (2016). Biomass resilience of Neotropical
605	secondary forests. Nature, 530(7589), 211-214.
606	https://doi.org/10.1038/nature16512
607	Post, W. M., Emanuel, W. R., Zinke, P. J., & Stangenberger, A. G. (1982). Soil carbon
608	pools and world life zones. Nature, 298(5870), 156-159.
609	https://www.nature.com/articles/298156a0
610	Ran, Q. , Chen, X. , Hong, Y. , Ye, S. , & Gao, J (2020). Impacts of terracing on
611	hydrological processes: a case study from the loess plateau of china. J. Hydrol.
612	588, 125045. https://doi.org/10.1016/j.jhydrol.2020.125045
613	Rong, G., Zhang, X., Wu, H., Ge, N., & Wei, X (2021). Changes in soil organic
614	carbon and nitrogen mineralization and their temperature sensitivity in response
615	to afforestation across china's loess plateau. Catena, 202, 105226.
616	https://doi.org/10.1016/j.catena.2021.105226
617	Rossel, R. V., Lee, J., Behrens, T., Luo, Z., Baldock, J., & Richards, A. (2019).
618	Continental-scale soil carbon composition and vulnerability modulated by
619	regional environmental controls. Nat. Geosci. 12(7), 547-552.
620	https://doi.org/10.1038/s41561-019-0373-z
621	Sidle, R.C., Ziegler, A.D., Negishi, J.N., Nik, A.R., Siew, R., Turkelboom, F., 2006.

Erosion processes in steep terrain - truths, myths, and uncertainties related to

- 623 forest management in Southeast Asia. For. Ecol. Manage. 224, 199-225.
- 624 https://doi.org/10.1016/j.foreco.2005.12.019
- 625 Smith, L. G., Westaway, S., Mullender, S., Ghaley, B. B., Xu, Y., & Lehmann, L.
- 626 M., et al. (2022). Assessing the multidimensional elements of sustainability in
- 627 european agroforestry systems. Agricultural Systems, 197.
- 628 https://doi.org/10.1016/j.agsy.2021.103357
- 629 Smith, P., 2012. Agricultural greenhouse gas mitigation potential globally, in Europe
- and in the UK: what have we learnt in the last 20 years? Glob. Chang. Biol. 18,
- 631 35–43. <u>https://doi.org/10.1111/j.1365-2486.2011.02517.x</u>
- 632 Stockmann, U., Adams, M. A., Crawford, J. W., Field, D. J., Henakaarchchi, N.,
- 633 Jenkins, M., ... & Zimmermann, M. (2013). The knowns, known unknowns and
- 634 unknowns of sequestration of soil organic carbon. Agric. Ecosyst. Environ. 164,
- 635 80-99. doi: https://doi.org/10.1016/j.agee.2012.10.001
- 636 Sun, W., Huang, Y., Zhang, W., & Yu, Y. (2010). Carbon sequestration and its
- 637 potential in agricultural soils of China. Global Biogeochem. Cycles 24(3).
 638 https://doi.org/10.1029/2009gb003484
- 639 Tarolli, P., Preti, F., Romano, N. (2014). Terraced landscapes: from an old best
- 640 practice to a potential hazard for soil degradation due to land abandonment.
- 641 Anthropocene, 6, 10–25. https://doi.org/10.1016/j.ancene.2014.03.002
- Wang, Z., Liu, G. B., Xu, M. X., Zhang, J., Wang, Y., & Tang, L. (2012). Temporal
 and spatial variations in soil organic carbon sequestration following revegetation
- 644 in the hilly Loess Plateau, China. Catena 99, 26-33.

645	https://doi.org/10.1016/j.catena.2012.07.003
646	Wegener, F., Beyschlag, W., & Werner, C. (2015). Dynamic carbon allocation into
647	source and sink tissues determine within-plant differences in carbon isotope
648	ratios. Functional Plant Biology, 42(7), 620-629.
649	https://doi.org/10.1071/FP14152
650	Upson, M. A., & Burgess, P. J. (2013). Soil organic carbon and root distribution in a
651	temperate arable agroforestry system. Plant and soil, 373(1), 43-58.
652	https://doi.org/10.1007/s11104-013-1733-x
653	Wan, Q., Zhu, G., Guo, H., Zhang, Y., Pan, H., Yong, L., & Ma, H. (2019). Influence
654	of vegetation coverage and climate environment on soil organic carbon in the
655	Qilian Mountains. Scientific reports, 9(1), 17623.
656	https://doi.org/10.1038/S41598-019-53837-4
657	Wei, W., Die, C., Wang, L., Daryanto, S., Liding, C., Yang, Y., Tianjiao, F. (2016).
658	Global synthesis of the classifications, distributions, benefits and issues of
659	terracing. Earth Sci. Rev. 159, 388-403.
660	https://doi.org/10.1016/j.earscirev.2016.06.010
661	Wen, Y., Kasielke, T., Li, H., Zhang, B., & Zepp, H (2020). May agricultural
662	terraces induce gully erosion? a case study from the black soil region of northeast
663	china. Sci. Total Environ. 141715.
664	https://doi.org/10.1016/j.scitotenv.2020.141715
665	Wiesmeier, M., Spoerlein, P., Geuss, U., Hangen, E., Haug, S., Reischl, A.,
666	Koegel-Knabner, I. (2012). Soil organic carbon stocks in southeast Germany

37

667	(Bavaria) as affected by land use, soil type and sampling depth. Glob. Chang.
668	Biol. 18(7), 2233-2245. https://doi.org/10.1111/j.1365-2486.2012.02699.x
669	Wiesmeier, M., Spoerlein, P., Geuss, U., Hangen, E., Haug, S., Reischl, A.,
670	Koegel-Knabner, I. (2012). Soil organic carbon stocks in southeast Germany
671	(Bavaria) as affected by land use, soil type and sampling depth. Glob. Chang. Biol.
672	18(7), 2233-2245. https://doi.org/10.1111/j.1365-2486.2012.02699.x
673	Wiesmeier, M., Spoerlein, P., Geuss, U., Hangen, E., Haug, S., Reischl, A.,
674	Koegel-Knabner, I. (2012). Soil organic carbon stocks in southeast Germany
675	(Bavaria) as affected by land use, soil type and sampling depth. Glob. Chang. Biol.
676	18(7), 2233-2245. https://doi.org/10.1111/j.1365-2486.2012.02699.x
677	Xin, ZB, Qin, YB, & XX. (2016). Spatial variability in soil organic carbon and its
678	influencing factors in a hilly watershed of the loess plateau, china. CATENA,
679	2016,137(-), 660-669. https://doi.org/10.1016/j.catena.2015.01.028
680	Xu, G., Lu, K., Li, Z., Li, P., Wang, T., & Yang, Y. (2015). Impact of soil and water
681	conservation on soil organic carbon content in a catchment of the middle Han
682	River, China. Environ. Earth Sci. 74(8), 6503-6510.
683	https://doi.org/10.1007/s12665-015-4749-0
684	Xu, Y., Zhu, G., Wan, Q., Yong, L., Ma, H., Sun, Z., Qiu, D. (2021). Effect of
685	terrace construction on soil moisture in rain-fed farming area of Loess Plateau. J.
686	HydrolReg. Stud. 37, 100889. https://doi.org/10.1016/j.ejrh.2021.100889
687	Yan, X. Y., Cai, Z. C., Wang, S. W., & Smith, P. (2011). Direct measure-ment of
688	soil organic carbon content change in the croplands of China. Glob. Chang.

689	Biol. 17(3), 1487–1496. https://doi.org/10.1111/j.1365-2486.2010.02286.x
690	Yli-Halla, M., Rimhanen, K., Muurinen, J., Kaseva, J., & Kahiluoto, H (2018).
691	Low black carbon concentration in agricultural soils of central and northern
692	ethiopia. Sci. Total Environ. s 631–632(AUG.1), 1-6.
693	10.1016/j.scitotenv.2018.02.284
694	Zhang, J. H., Wang, Y., & Li, F. C. (2015). Soil organic carbon and nitrogen losses
695	due to soil erosion and cropping in a sloping terrace landscape. Soil Res. 53(1),
696	87-96. https://doi.org/10.1071/SR14151
697	Zhu, G., Qiu, D., Zhang, Z., Sang, L., Liu, Y., Wang, L., & Wan, Q. (2021).
698	Land-use changes lead to a decrease in carbon storage in arid region, China.
699	Ecological Indicators, 127, 107770.
700	https://doi.org/10.1016/j.ecolind.2021.107770

39

701 Appendix

702

703 Fig.A1 Detailed distribution of randomly placed sampling points in the study area. These sampling

704	points cover various crop types, including apple trees, vegetable, wheat, legume, potato,
705	maize, apple tree-legume, and apple-potato. Additionally, the figure also displays the
706	distribution of sampling points under different planting patterns, specifically terraced
707	sampling points, sloping land sampling points, and abandoned terraced sampling points.