

A simplified system to quantify storage of carbon dioxide, water vapor and heat within a maize canopy

Taqi Raza^{1*}, Bruce B Hicks^{1,2}, Joel N. Oetting¹ and Neal S Eash¹

¹Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville USA

²MetCorps, Norris, USA

*Corresponding author: Tagi Raza; taqiraza85@gmail.com, traza@vols.utk.edu

10 Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville
11 USA

Highlights

1. A unique multiport system simplifies measuring CO₂ and water vapor gradients in a plant canopy.
 2. The system eliminates the effects of sensor calibration differences.
 3. Field tests illustrate the ruggedness of the design, suitable for remote and demanding circumstances.
 4. Addition of temperature sensors permits application to surface heat storage and energy balance applications.

Abstract

23 The canopy storage of CO₂, latent heat, and sensible heat within agricultural crops has not yet
24 been fully examined, particularly on small farms situated in complex terrain. Reported canopy
25 storage terms are consistently smaller than those found in forest ecosystems, such that they
26 are often neglected. Our multiport profile system has been developed to examine these storage
27 terms. The system sequentially samples air from four heights to a single non-dispersive Infrared
28 Gas Analyzer (IRGA). Following laboratory testing, the system has been field proven in an east
29 Tennessee maize crop in 2023. The new system enables quantifications of CO₂, latent and

30 sensible heat atmospheric storage terms and, with supporting temperature measurements,
31 allows improved examination of the surface heat energy budget and the net air-surface
32 exchange of CO₂. It offers a valuable tool for a better understanding of gas-energy fluxes on
33 small farms on topographically varied landscapes.

34

35 **Keywords:** Multi-port system, vertical canopy profile, storage terms (CO₂ and heat), energy
36 balance, maize, carbon sequestration

37

38 **1 Introduction**

39 In the last few decades, significant work has attempted to improve our understanding of
40 gaseous exchanges between soils, plants, and the atmosphere. These improvements have been
41 incorporated in land-surface models and numerically-based weather predictions as well as in
42 assessment of atmospheric fluxes of carbon dioxide (Lamas Galdo et al., 2021), water vapor
43 (Wang et al., 2023), and heat over vegetated landscapes (e.g., Hoeltgebaum and Nelson, 2023).

44 Observations of the surface heat budget over forests have shown that the balance
45 expressed by the familiar relationship:

$$46 R_n - G = H + LE \quad (1)$$

47 Here, R_n is net radiation, G is soil heat flux, H is sensible heat flux and LE is latent heat flux (q.v.
48 Wilson et al., 2002). Measurements of the turbulent fluxes of H and LE are usually by the eddy
49 covariance (EC) methodology (Nicolini et al., 2018), which is also used to measure the flux of
50 carbon dioxide — F_{CO_2} . In practice, R_n is measured using well-accepted sensors and ground heat
51 flux plates are installed in the soil to determine G . Routine EC measurements are now made at
52 more than 1000 locations globally (c.v. Fluxnet; Pastorello et al., 2020).

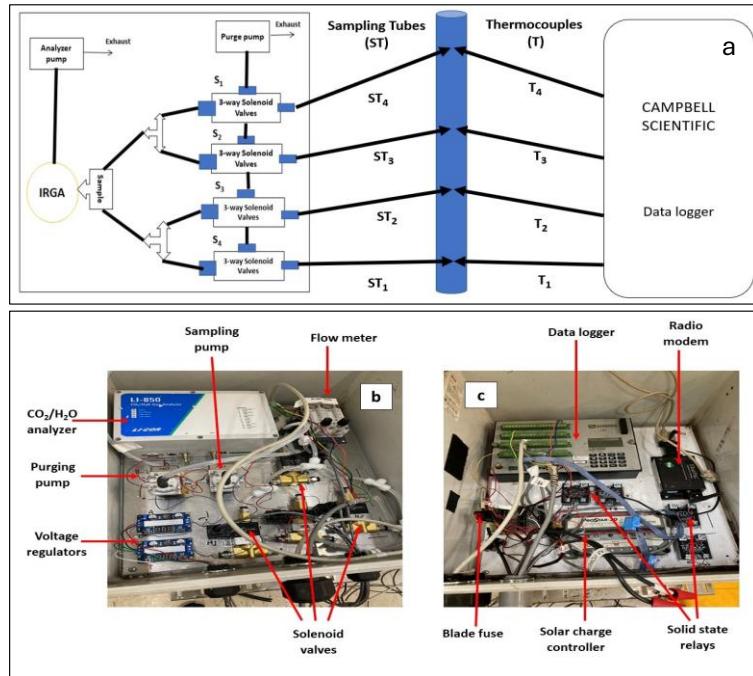
53 An important factor emerging from many experimental studies using eddy covariance is
54 that storage terms contribute substantially to energy closure of vegetated areas and to the
55 quantification of evapotranspiration (McCaughy and Saxton, 1988; Hoeltgebaum and Nelson,
56 2023). In concept, errors in the surface heat balance can be attributed to many additional

57 factors, including omission of the heat used in photosynthesis and the storage of heat in plant
58 biomass, in the air below the height of micrometeorological flux measurement and in the soil
59 layer below or above or both the depth of G measurement. If the site is not flat, horizontal and
60 homogeneous for a considerable distance upwind, then gravity flows, and advection must be
61 expected to play a role. Investigation of these various contributing factors requires
62 measurement of the relevant variables as they change with space and with time; especially
63 challenging due to temporal (particularly diurnal) changes in air temperature and humidity
64 (Varmaghani et al., 2016) as well as in concentrations of carbon dioxide (herein represented by
65 $[CO_2]$).

66 There are several other possible reasons for energy closure errors in EC
67 experimentation, such as loss of low- or high-frequency flux components, non-optimal
68 coordinate rotation, and the use of inappropriate averaging times (Massman and Lee, 2002;
69 Meyers and Hollinger, 2004; Oetting et al., 2024). Finnigan (2006) reported that the
70 atmospheric heat storage term is underestimated when the average sampling time is large.
71 Neglecting canopy storage terms in studies of Net Ecosystem Exchange (NEE) can also cause
72 substantial errors (Raza et al., 2023). Fewer than 30% of known experimental locations apply a
73 profile measurement system to calculate the temporal variations in storage terms (Papale,
74 2006). Many studies report that energy balance closure is an unsolved problem for a variety of
75 vegetation types: the sum of sensible and latent heat flux is found to be 10-30% lower than the
76 available energy (Wilson et al., 2002; Twine et al., 2000; Leuning et al. 2012; Russell et al. 2015;
77 Raza et al., 2023).

78 In the case of agricultural cropping systems, atmospheric storage terms are usually
79 considered to be small and are often ignored (Nicolini et al., 2018; Raza et al., 2024).
80 Assessments of storage terms within agricultural ecosystems are few and differ from those well
81 documented by researchers in the case of forest ecosystems studies (Mayocchi and Bristow,
82 1995; Wilson et al., 2002; Hicks et al., 2020). Most results of heat storage in forest
83 environments focus on the atmospheric component of the total heat storage.

84 This paper focusses on the need for detailed measurements of water vapor and carbon
85 dioxide profiles and concentrations in the atmospheric surface roughness layer, as arose in the
86 decade-long sequence of field studies conducted by the University of Tennessee in Lesotho,
87 Zimbabwe, Ohio and Tennessee (see Eash et al., 2013; O'Dell et al., 2014, 2015; Hicks et al.,
88 2021, 2022). The surface roughness layer is that layer of air in contact with the surface below
89 the height at which familiar micrometeorological flux/gradient relationships apply. These
90 studies have concentrated on aspects of the surface energy balance and crop carbon dioxide
91 exchange in areas different from conventional agricultural-meteorology experiments, namely in
92 areas of complex terrain and small plots common in farming communities in Africa and much of
93 eastern North America. These experiments have increasingly indicated the importance of
94 detailed temperature and concentration measurements in the surface roughness layer.


95 A central requirement has been the need to describe water vapor and CO₂
96 concentrations in more detail than conventional micrometeorology normally provides. To this
97 end, the present paper describes an experimental procedure that builds upon air-sampling
98 systems of the past but is streamlined to provide the requisite measurements with the desired
99 time and space detail, in areas often distant from immediate technical support. Some
100 illustrations of its field utility are provided, using observations from a study of a maize canopy in
101 eastern Tennessee in 2023.

102 **2. Apparatus design and operation**

103 The measurement system described here is an outgrowth of experience with eight preceding
104 field studies, conducted at locations in Lesotho, Zimbabwe, Tennessee, and Ohio (Eash et al.,
105 2013; O'Dell et al., 2014, 2015; Hicks et al., 2021, 2022). These demonstrated the need for a
106 reliable yet technically simple system to measure gas concentrations within and above a
107 growing crop. To satisfy the basic requirements for time continuity and reliability of the data
108 record, a new multi-port sampling system was developed.

109 To avoid consequences of individual sensor offsets when gradients are computed, the
110 new system is designed to use a single detection system, in this case an infrared CO₂/H₂O gas

111 analyzer (IRGA; LI-COR-850, Lincoln, NE). Figure 1 presents a schematic description of the
 112 apparatus. The system is designed to maintain continuous airflow through all intake tubes, to
 113 cycle through all heights of measurement in one minute (7.5 seconds for each height) and to
 114 minimize the switching time between samplings.

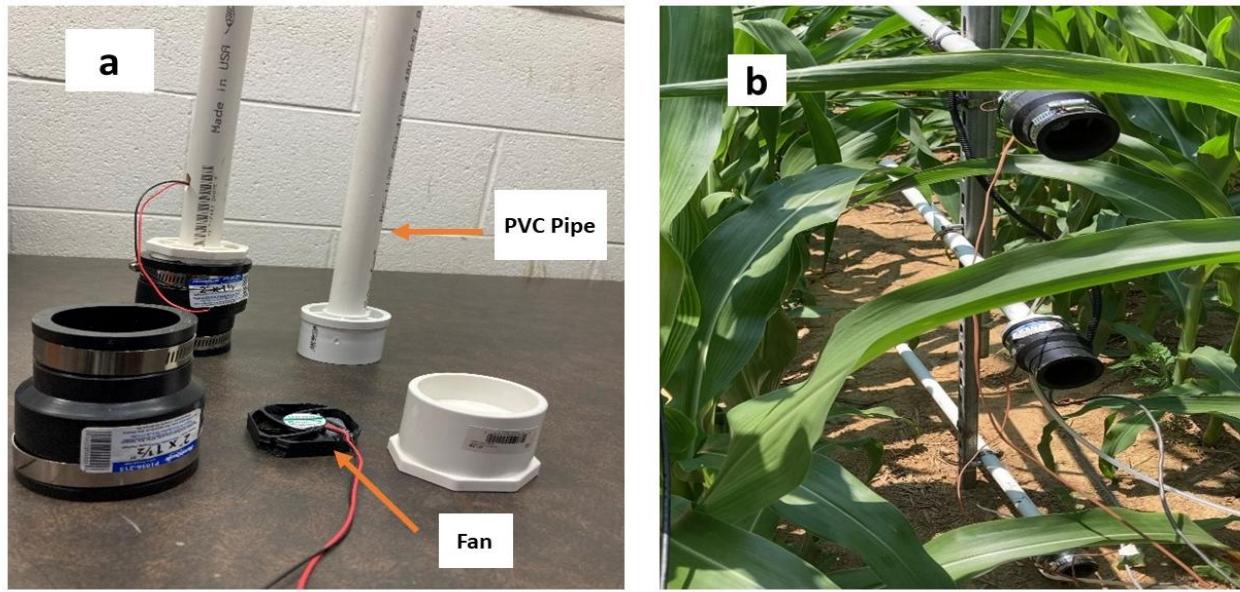
115

116 Fig. 1. Details of the multi-port sampling system: (a) schematic diagram of the manifold for
 117 profile sampling of CO₂ and H₂O, (b) a photograph of the analyzer, pump, and manifold
 118 system, (c) the data logger for data collection.

119 The system uses two small pumps [Model TD-3LSA, Brailsford & CO., Inc. Antrium. NH,
 120 USA], one pump (the purge pump) draws in air at a constant rate through all intake tubes to
 121 minimize hygroscopic interactions along the tube walls. Another pump (the sampling pump)
 122 pushes the drawn air to the IRGA. The sampling pump is mounted close to the IRGA so that air
 123 smoothly enters the IRGA at ambient pressure. When sampling the airflow through a specific
 124 tube the flow rate is maintained at 1000 ml min⁻¹. The flow rates through the other three tubes
 125 are then maintained at 700 ml min⁻¹ by flow meters [LZQ-7 flowmeter, 101.3 KPa, Hilitland,
 126 China]. The switching between sampling tubes is controlled by four three-way brass and
 127 stainless-steel solenoid valves [231Y-6, Ronkonkoma, NY, USA]. Each sampling tube is 10.5 m

128 long, to ensure samples from each sampling height have the same transit time. The purge pump
129 manifold and all sampling tubes are constructed of the same kind of urethane [BEV-A-LINE,
130 Polyethylene material, Cole Parmer, City, State]. Before entering the analyzer, the air is passed
131 through a 1- μ m pore filter [LI-6262, LI-COR, Lincoln NE, USA] to avoid the accumulation of
132 debris, dirt, particles, etc., that can cause contamination in the analyzer optical cells. The air
133 outlet of the purge pump and IRGA are open directly to the atmosphere. Digitizing is at 5 Hz
134 frequency. The data system is arranged to record averages and standard deviations at a pre-
135 arranged periodicity, depending on the research goal but typically 5, 10 or 15 minutes.

136 The performance of the system for measurement of CO₂ and H₂O profiles was examined
137 extensively before its field deployment. The apparatus was first flushed with nitrogen (N₂) gas
138 to create a zero-carbon dioxide environment. Subsequently, a known concentration of CO₂ (430
139 ppm) at ambient pressure was fed through the intake tubes sequentially and system outputs
140 were measured. This process allowed determination of the time needed to reach stable
141 measurement readings.


142 To derive a continuous record of concentrations at each height of interest (in the
143 preliminary configuration, four of them), switching between heights was set at every 7.5
144 seconds allowing each of the heights to be sampled twice in every minute. The laboratory tests
145 showed that after the IRGA received a step change in CO₂ concentration, it took approximately
146 1.8 seconds to achieve a steady output. During the laboratory evaluation period, the recorded
147 error was less than 0.5% in [CO₂] between sampling heights. An accuracy error of less than 1%
148 is well within the acceptable range for the IRGA now used according to the specifications
149 provided by the manufacturer and much less than higher errors common in measurements of
150 this kind (Montagnani et al. 2018)

151 **3. Field evaluation**

152 An ongoing field study of a maize crop in East Tennessee provided an opportunity to test the
153 new sampling system in experimentally demanding circumstances. The experiment was
154 conducted at a 23 ha plot of agricultural farmland, near Philadelphia, in Loudon County

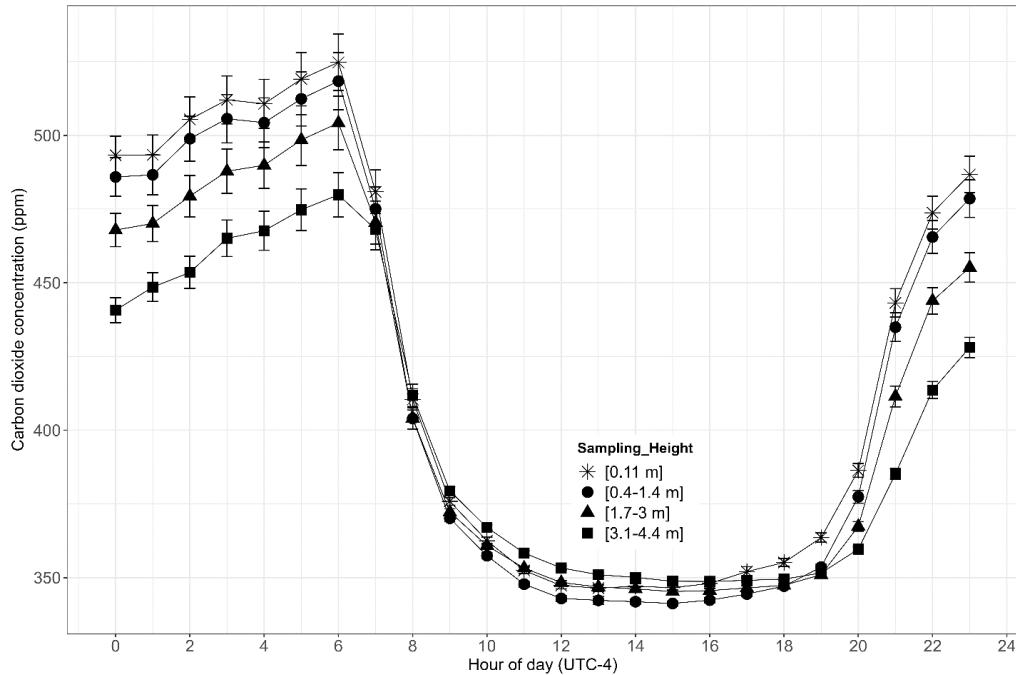
155 Tennessee (35.673° N, 84.465° W). The site is typical agricultural land used for mainly maize
156 and soybean production, in slightly rolling terrain that presents a challenge to EC
157 measurements, with local slope varying from 1% to 5% depending on location. For the present
158 purpose, it is not necessary to provide details of the experiment or of the analysis resulting
159 from it. Such detailed examination of the observations will be presented elsewhere. The mean
160 annual temperature and precipitation of the site are 13.5 °C and 140 cm respectively. The soil
161 was classified as an Alcoa Loam (fine, thermic Rhodic Paleudult) according to the USDA-NRCS
162 (2018). The experiment extended through the entire growth cycle, from which data for six
163 weeks during the months of May and June 2023 have been extracted for the present illustrative
164 purpose. Maize planting was on 25 April with Dekalb hybrid 66-06 at a density of approximately
165 81,000 plants per ha, the illustrations relate to a period of rapid growth of the canopy, from
166 soon after emergence (in early May) to tasseling (in June).

167 In the field test considered here, the system was used to measure at heights of 0.11 m,
168 0.5h, 1+h, 2+h, where h is maize canopy height (in meters) above the soil surface. Note that one
169 intake was permanently set at 0.11 m, and the three other heights were adjusted as the maize
170 grew. Sampling intakes were positioned on a 3.5 m steel mast. Thermocouples at the same
171 height as gas sample intakes were used to measure temperature gradients; these were
172 aspirated within a white PVC pipe shield of 1.9 cm diameter (Figure 2a) that also served as a
173 radiation shield.

174

175 Fig. 2. (a) Installation components at each height of the new profile system, showing the
 176 aspirated CO₂ intake tubes and thermocouples. (b) Deployment in a maize canopy; the two
 177 lowest heights are shown.

178 Two tripods and a horizontal bar supported an eddy covariance system (adjusted as the
 179 crop grew to maintain a height about 2 m above the crown) and supporting
 180 micrometeorological measurements — an IRGASON [CO₂/H₂O] open path gas analyzer system,
 181 [Campbell Scientific, Logan, Utah], a net radiometer [Kipp & Zonen, OTT HydroMet B.V. Delft,
 182 Netherlands], infrared radiometers [IRs-S1-111-SS, Apogee Instruments Inc, City, State, USA],
 183 and type T thermocouples [Omega, City, State, USA]. The entire observation system was visually
 184 inspected every week for signs of leakage, condensation, and contamination. The IRGASON gas
 185 analyzer used for eddy covariance was independent of the IRGA used for concentration
 186 gradient measurements. The availability of the EC system and its supporting measurements
 187 enabled the tests of the new sampling system to extend to investigation of such matters as the
 188 height of origin of thermal eddies, as will be reported later.


189 **3.1. Results — CO₂**

190 Within a nocturnal strongly stratified surface roughness layer, previous experiments have
 191 revealed the ubiquity of pooling of CO₂ emitted by soil biota and root respiration. Fig. 3

192 presents average diurnal cycles of CO₂ concentrations measured over the six weeks from 18
193 May to 29 June at four heights, two within the canopy and two above. Error bounds correspond
194 to +/- one standard error of the mean.

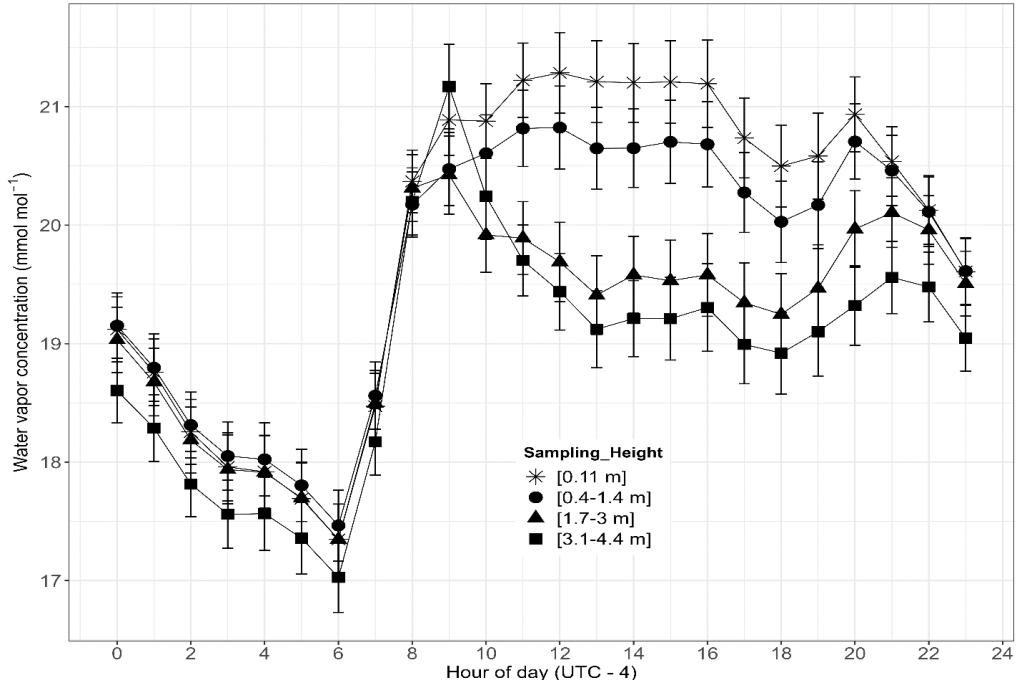
195

196

197

198 Fig. 3. Average diurnal cycle of CO₂ obtained using the new system described here, for
199 the six weeks. Symbols correspond to different heights of measurements with error bars
200 corresponding to +/- one standard error.

201 The variability of CO₂ was found to be higher at nighttime than in daytime. The greatest
202 variability was recorded within the canopy, at height 1 (0.11 m) and height 2 (0.4 – 1.4 m).


203 The observations confirm the generally accepted features of nocturnal accumulation of
204 CO₂ effluxes from the soil but with detail sufficient to warrant detailed examination. The close
205 tracking of the records for the different measurement heights provides confidence in the
206 performance of the sampling system and indicates that the same causative mechanisms affect
207 all of the heights similarly. The nighttime results that are plotted support the assumptions

208 made elsewhere that changes in the surface impacts the stratified atmosphere above, are
209 mostly in accord with expectations of CO₂ profile linearity (Galmiche and Hunt, 2002; Verma
210 and Rosenberg, 1976), a result that is supported by close examination of CO₂ averages over
211 shorter nighttime periods. Following 0600 local time (LT), about the average time of sunrise,
212 the average concentrations of CO₂ dropped rapidly as photosynthesis commenced and as
213 convection started to mix surface air with the overlying atmosphere. At all heights this initial
214 decrease was followed by a more rapid loss rate until concentrations dropped to about 350
215 ppm in the afternoon (1200 to 1800 LT), much lower than ambient concentrations thereby
216 reflecting the efficiency with which the maize crop extracted CO₂ from the air. Near sunset,
217 [CO₂] started to increase and continued to build until reaching maximum values immediately
218 before dawn. Concentrations within the canopy do not differ significantly, although the 0.11 m
219 height values always exceed those further above the soil surface. In general, [CO₂] decreased
220 with increasing height. All of these observations align well with contemporary views of the
221 post-sunrise initiation of photosynthesis and its continuation through the following daylight
222 hours.

223 The nocturnal accumulation of CO₂ observed here is not unusual. In many climatic
224 regions, nighttime soil temperatures remain high enough to sustain microbial and soil
225 respiration activities, resulting in CO₂ accumulation in the stratified air above the ground. After
226 the sun rises, increased light availability increases stomatal activity and photosynthesis rates.

227 **3.2. Results — H₂O**

228 As in Fig. 3, Fig. 4 shows the average diurnal cycle constructed from 15-minute H₂O
229 concentration observations. At all heights a sharp increase in [H₂O] was recorded in the
230 morning at the same time as the sudden decrease for [CO₂] seen in Fig. 3.

231

232

233 Fig. 4. Average diurnal cycle of the vertical profile of water vapor concentration
 234 averaged over six weeks as in Figs. 3. Symbols correspond to different heights of
 235 measurements with error bars corresponding to +/- one standard error.

236 Subsequently, $[H_2O]$ peaked at about 0900 LT and, within the canopy, maintained this
 237 concentration throughout the daylight hours. Above the canopy, average concentration
 238 decreased, and a different concentration constancy was attained. After the period around
 239 sunset had passed, at about 2000 LT, $[H_2O]$ started decreasing approximately linearly with time
 240 until sunrise approached. The H_2O concentration generally decreased as the measurement
 241 height increased for both day and night because a constant source of water vapor was the soil
 242 surface, with crop evapotranspiration adding H_2O in the daytime. Dewfall is expected to be
 243 important, a contribution that can be uniquely addressed using the new sampling system.

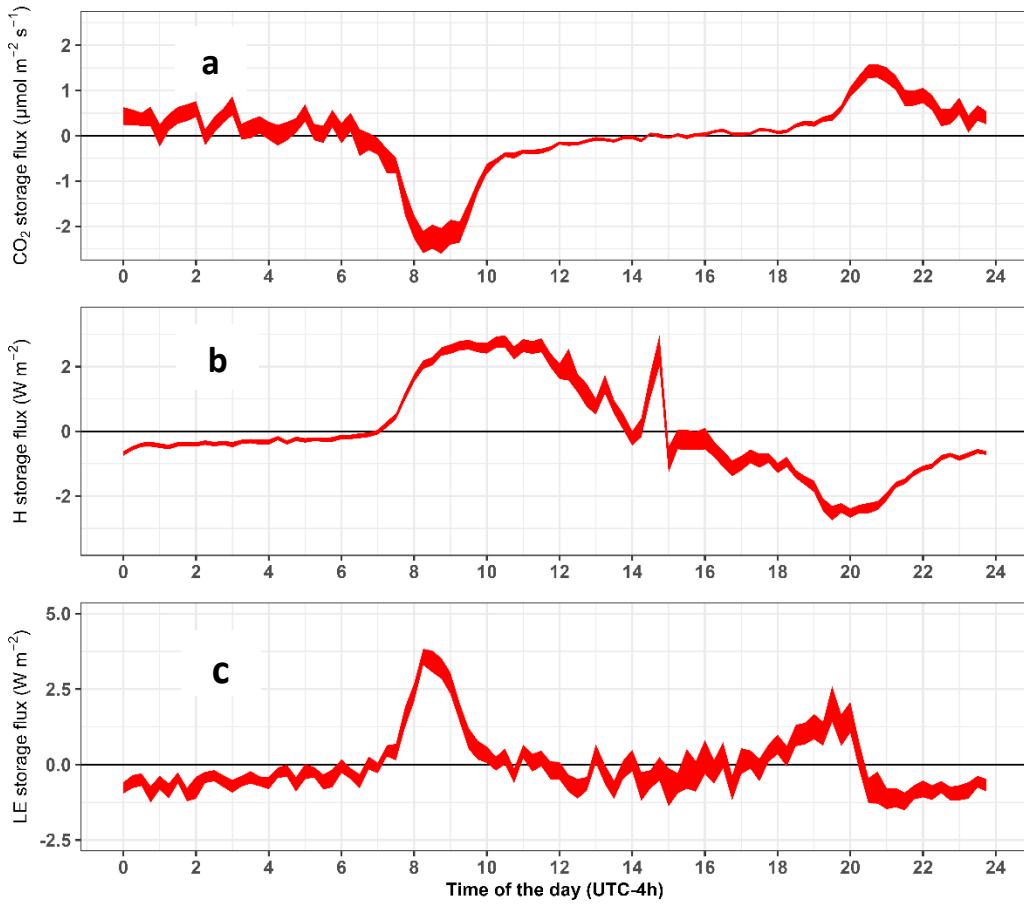
244 Figures 3 and 4 reveal considerably different cycles of CO_2 and H_2O . At night, Fig. 3
 245 shows a more striking $[CO_2]$ gradient than does Fig. 4 for $[H_2O]$. The reason is presumed to be
 246 that CO_2 continues to be emitted from the soil at night and accumulates within the stratified
 247 layer of air, whereas there is no parallel process influencing H_2O concentrations. In daytime,

248 there is little consistent [CO₂] gradient information derivable from Fig. 3, but for [H₂O] in Fig. 4
249 there is a clearly visible [H₂O] gradient structure. This suggests a slow-down of CO₂ exchange in
250 the afternoons while evaporation continued.

251 The processes of evaporation from the soil surface and evapotranspiration from leaves are
252 linked with solar radiation. Overall, the present results highlight changes in the vertical
253 distribution of water vapor and its temporal variability, indicating near simultaneity of changes
254 on CO₂ and H₂O concentrations following dawn (compare Figs. 3 and 4).

255 **3.3. Results — atmospheric storage**

256 Vertical profile data can also be used to explore how various atmospheric storage fluxes
257 influence the CO₂ status and energy budget of the maize crop. In accordance with many
258 studies of the surface energy budget using EC systems, atmospheric storage terms refer to
259 depletion or accumulation of scalar quantities (CO₂, H₂O, etc.) in a hypothetical control volume
260 beneath the height of turbulent flux measurement by EC. A storage flux is defined as the rate
261 of change of dry molar concentrations of the same variables within the same control volume.
262 Both concepts relate most directly to the conditions of “perfect” micrometeorology. In
263 practice, natural complexities of surroundings and exposures interfere to the extent that
264 measurements will be site-specific. Moreover, the covariances are statistical quantities, with
265 well-recognized error margins associated with every quantification of them. During this study,
266 the storage fluxes of scalar quantities (CO₂, water vapor, etc.) were calculated using the ICOS
267 (Integrated Carbon Observation System) methodology (Montagnani et al., 2018). For the case
268 of CO₂,


269

$$J_c = \overline{\rho_d} \sum_{i=1}^N \left(\frac{\Delta c}{\Delta t} \right)_i \Delta z_i \quad (2)$$

271

272 Here, J_c is the storage term of CO₂ (for example) within the i_{th} layer over which Δc is measured,
273 Δz_i is the thickness of this layer and Δt is the measurement time step; ρ_d is dry air density, and
274 N is the number of layers (number of measurements points). To calculate the storage terms as

275 described by Eq. 2, raw data were averaged into 15-minute periods, yielding the results plotted
276 in Fig. 5.

277
278 Fig. 5. Diurnal patterns of CO₂ atmospheric storage (a), sensible heat storage (b) and
279 latent heat storage (c) of the maize crop in early stages of growth (see Table 1). The
280 widths of the traces correspond to +/- one standard error on the means.

281 CO₂ storage (Fig. 5a) exhibited a larger magnitude and more variation at nighttime compared to
282 daytime, due to the CO₂ pooling and the intermittency of incursions from air aloft.

283 During the night, photosynthesis did not occur, and CO₂ emitted from the soil accumulated in
284 the overlying stratified atmosphere (Ryan and Law, 2005; Davidson and Janssens, 2006). Soon
285 after sunrise, the nighttime stratification began to weaken, and photosynthesis commenced.
286 The trapped CO₂ was consumed by photosynthesis and mixed with air above the canopy as
287 unstable stratification evolved. Minimal CO₂ storage during the daytime can be due to the

288 instability and strong mixing then prevailing, as well as to the photosynthetic removal of CO₂
289 from the air to which the vegetation was exposed. More efficient exchange between plant and
290 atmosphere then results in low storage of CO₂ in the air space below the uppermost height of
291 [CO₂] measurement. At night, subcanopy ventilation by intermittent gusting results in a large
292 variation between negative and positive CO₂ storage.

293 Observations such as these are facilitated by the profile sampling system now
294 advocated. In the future, it is planned to use the new capability to revisit the quality assurance
295 methodology of EC determinations by comparing atmospheric storage to the statistical
296 uncertainty of the covariances. In this context, note that Fig. 5b indicates sensible heat
297 atmospheric storage terms equivalent, on average, to about 2 W m⁻² in the late morning,
298 followed by a downward trend through the afternoon until reaching a minimum a few hours
299 after sunset. The irregularity seen soon after noon is presently unexplained. Clearly, individual
300 shorter-term averages could display greater averages and increased scatter, but this remains to
301 be explored. In comparison, Finkelstein and Sims (2001) derive uncertainties associated with
302 30-min EC evaluations of the sensible heat covariance in the range 5% to 10% in daytime.

303 The nocturnal sensible (Fig. 5b) and latent (Fig. 5c) heat energy storage remained low
304 and slightly negative until sunrise, about 0600 LT. As the air cooled during the night, sensible
305 heat storage in the air mass remained slightly negative as its temperature decreased. After
306 sunrise, the air mass warmed and the sensible heat storage rose to a maximum value of about 2
307 W m⁻² between 1200 LT and 1230 LT. Afterwards, the sensible heat storage rate declined,
308 reaching negative values a few hours before sunset and attaining a minimum value (about -1.5
309 W m⁻²) a few hours before midnight. The sensible heat storage subsequently trended to near-
310 zero constancy until being disrupted by sunrise at about 0700 LT.

311 Latent heat storage (Fig. 5c) fluctuated near zero for most of the daylight hours, after
312 exhibiting a major positive excursion (> 4 W m⁻²) during the few hours after sunrise. After about
313 2100 LT, latent heat storage fluctuations like the variations seen in Fig. 5a occurred until
314 sunrise, with an average of about -0.5 W m⁻². Comparison with Fig. 5a indicates that the post-
315 sunrise increases in latent heat storage coincided with the decrease in CO₂ storage. The

316 sensible heat storage appears to have been delayed by a fraction of an hour. Interpretation of
317 these observations requires consideration of dewfall and its evaporation.

318 Table 1 lists some of the plant growth characteristics during the six-weeks considered
319 here. Also listed are the magnitudes of maximum and minimum storage terms during each of
320 the sampling periods, shown here to exemplify the ability of the new sampling system to reveal
321 such extremes. Detailed examination of the plant-atmosphere interaction for the entire
322 growing season will be presented elsewhere. During the six-week evaluation period, CO₂
323 atmospheric storage increased as the plant grew and as the soil warmed (increasing subsurface
324 heterotrophic CO₂ generation) but not substantially; the highest storage rate was found at the
325 VT (tasseling) stage and the minimum at the V2 growth stage, five weeks earlier. Similarly,
326 latent heat storage increased significantly, presumably due to increasing leaf area and
327 transpiration. Latent and sensible heat storage was found higher in the VT growth stage than in
328 other growth stages. As the crop grew, different processes became prominent causes of the
329 storage of energy and CO₂. When the maize was in its early growth stage, the canopy was not
330 fully developed, the soil was cooler, and CO₂ storage did not show much change. However,
331 there were substantial variations in the sensible and latent energy storage terms as the crop
332 grew (see Table 1).

333 Height adjustment during the crop growth stage and maximum and minimum storage terms. V1
334 is the first leaf emergence, V_n is when the nth leaf fully emerged, and VT is the tasseling stage.
335 Height 1 (H₁) was kept constant throughout the experiment while the other three heights (H₂, H₃,
336 and H₄) changed as the plants grew. Negative and positive signs represent the 2.5th percentile
337 (minimum) and 97.5th percentile (maximum) quartile values observed during the different
338 periods.

Table 1. Height adjustment during the crop growth stage and maximum and minimum storage terms. V1 is the first leaf emergence, Vn is when the nth leaf fully emerged, and VT is the tasseling stage. Height 1 (H₁) was kept constant throughout the experiment while the other three heights (H₂, H₃, and H₄) changed as the plants grew. Negative and positive signs represent the 2.5th percentile (minimum) and 97.5th percentile (maximum) quartile values observed during the different periods.

Table	Measurement height (m)				Growth stage	Latent heat Storage	Sensible heat storage	CO ₂ Storage	Average precipitation	Temperature
Date	H ₁	H ₂	H ₃	H ₄		W m ⁻²	W m ⁻²	μmol m ⁻² s ⁻¹	mm	°C
May 15-May 21	0.11	0.43	0.6	2	V2-V3	-15.19 to 6.13	-5.67 to +2.59	-7.12 to +2.78	0.00	14.90-25.74
May 22-May 28	0.11	0.43	0.6	2	V3-V4	-19.45 to +8.16	-5.67 to +3.21	-7.12 to +2.87	0.031	14.59-26.63
May 29-June 4	0.11	0.43	1.72	3.07	V5-V6	-19.72 to +8.95	-11.65 to +3.74	-9.54 to +2.59	0.007	14.17-28.12
June 5-June 11	0.11	0.75	2.1	3.12	V6-V7	-19.72 to +9.01	-45.65 to +4.07	-9.67 to +2.33	0.165	12.87-29.70
June 12-June 18	0.11	0.95	2.5	3.35	V7-V8	-22.72 to +9.36	-45.65 to +3.68	-9.68 to +2.36	0.081	13.41-29.12
June 19-June 25	0.11	1.27	3	4.36	VT	-22.73 to +9.38	-15.33 to +4.84	-6.23 to +2.57	0.00	19.22-26.46

340 **4. Conclusions**

341 The field evaluation of the multi-port profile system demonstrated its effectiveness in
342 measurement of CO₂ and H₂O concentrations at different heights within the surface roughness
343 layer. The multiple-height profile system aided substantially to understanding CO₂ and H₂O
344 concentration variations and their vertical profiles, thereby facilitating precise assessments of
345 their exchanges, storage, and overall balance within the growing maize ecosystem. The
346 observations reveal that different processes became prominent at different growth stages,
347 which influenced the atmospheric storage of heat energy and gas and the associated fluxes as
348 the canopy developed. An issue remaining to be addressed is that condensation of water in the
349 sampling tubes was sometimes observed; this will affect measurement accuracy and steps to
350 eliminate the problem are presently being reviewed.

351 The 2023 field experience with the new system indicates that canopy data obtained
352 from the vertical profile observations offer potential for many applications in future studies
353 such as evaluation of soil-plant-atmospheric models that rely on the precise estimation of CO₂,
354 heat and water vapor fluxes. Note that the definition of the heat storage used here (as in Eq.
355 (2)) omits warming of the biomass. This omission accounts for the differences between the
356 storage terms now computed and those published previously (e.g., Hicks et al., 2022).

357 The simplicity of the sampling system device contributes to its success — it suffered few
358 disruptions during the testing period. This new measurement system will be employed in future
359 studies of air-surface exchange when moderated by the presence of a crop and especially when
360 operation in remote locations is required. It requires less power, a single IRGA and has a low
361 maintenance cost as compared to traditional systems (e.g. EC). These features reduce
362 operation complexity and maintenance requirement, making it more suited for resource limited
363 or remote locations, particularly small farms holder. Measurements made will permit improved
364 quantification of storage terms — atmospheric, biological, in the soil, and all contributing to a
365 better understanding of the surface heat energy balance. Sub-canopy measurements will help
366 track how respiration, evaporation, photosynthesis, etc. vary through the depth of the canopy.
367 Such studies will also help to evaluate micrometeorological models, such as those describing

368 the variation of gases, temperature, and water vapor within a canopy. This new device is now
369 being used for the assessment of canopy gas emissions, starting with carbon dioxide but future
370 studies will include nitrous oxide. In summary, this new device has the potential to improve our
371 understanding of soil-plant-atmosphere interactions, particularly within plant canopies.

372 **Author contribution statement**

373 **TR:** Data curation, Formal analysis, Methodology, Visualization, Writing – original draft. **BBH:** Supervision,
374 Methodology, Visualization, Writing – revision and editing. **NSE:** Supervising, Funding acquisition, Project
375 administration, Writing – review & editing. **JNO:** Formal analysis, writing and reviewing.

376 **Funding**

377 This work was supported by DuPont Tate & Lyle Bio Products Company.

378 **Declaration of competing interest**

379 Authors declare no competing interest associated with this submission.

380 **Acknowledgment**

381 This work was supported by the University of Tennessee, Knoxville. The authors thank David R.
382 Smith (Senior Technical Specialist, BESS, UTK), Wesley C. Wright (Senior Research Associate,
383 BESS, UTK), Scott Karas Trucker (Senior Technical Specialist, BESS, UTK) and Josh Watson
384 (Farmer) for their support.

385 **References**

386 Davidson, E., and Janssens, I.: Temperature sensitivity of soil carbon decomposition and
387 feedbacks to climate change. *Nature*, 440, 165–173,
388 <https://doi.org/10.1038/nature04514>, 2006.

389 Eash, N.S., O'Dell, D., Sauer, T.J., Hicks, B.B., Lambert, D.L. and Thierfelder, C.: Real-time carbon
390 sequestration rates on smallholder fields in Southern Africa. Institute of Agriculture,
391 University of Tennessee, Knoxville, TN., 2013.

- 392 Finkelstein, P.L. and Sims, P.F.: Sampling error in eddy correlation flux measurements. *J.
393 Geophys. Res.: Atmospheres*, 106(D4), 3503–3509,
394 <https://doi.org/10.1029/2000JD900731>, 2001.
- 395 Finnigan, J.: The storage flux in eddy flux calculations, *Agric. For. Meteorol.*, 136(3–4), 108–113,
396 <https://doi.org/10.1016/j.agrformet.2004.12.010>, 2006.
- 397 Galmiche, M. and J. C. R. Hunt.: The formation of shear and density layers in stably stratified
398 turbulent flows: linear processes. *J. Fluid Mech.*, 455, 243–262,
399 <https://doi.org/10.1017/S002211200100739X>, 2002.
- 400 Hicks, B.B., Eash, N.S., O'Dell, D.L. and Oetting, J.N.: Augmented Bowen ratio analysis I: site
401 adequacy, fetch and heat storage (ABRA), *Agric. For. Meteorol.*, 290, 108035,
402 <https://doi.org/10.1016/j.agrformet.2020.108035>, 2020.
- 403 Hicks, B.B., Lichiheb, N., O'Dell, D.L., Oetting, J.N., Eash, N.S., Heuer, M. and Myles, L.: A
404 statistical approach to surface renewal: The virtual chamber concept. *Agrosys. Geosci.
405 Environ.*, 4(1), p.ee20141, <https://doi.org/10.1002/agg2.20141>, 2021.
- 406 Hicks, B.B., Oetting, J.N., Eash, N.S. and O'Dell, D.L.: Augmented Bowen ratio analysis, II: Ohio
407 comparisons. *Agric. For. Meteorol.*, 313, 108760,
408 <https://doi.org/10.1016/j.agrformet.2021.108760>, 2022.
- 409 Hoeltgebraum, L.E.B. and Nelson L.D.: Evaluation of the storage and evapotranspiration terms of
410 the water budget for an agricultural watershed using local and remote-sensing
411 measurements, *Agric. For. Meteorol.*, 341, 109615,
412 <https://doi.org/10.1016/j.agrformet.2023.109615>, 2023.
- 413 Lamas Galdo, M.I., Rodriguez García, J.D. and Rebollido Lorenzo, J.M.: Numerical model to
414 analyze the physicochemical mechanisms involved in CO₂ absorption by an aqueous
415 ammonia droplet. *Int. J. Environ. Res. Public Health*, 18(8), p.4119,
416 <https://doi.org/10.3390/ijerph18084119>, 2021.

- 417 Leuning, R.: Estimation of scalar source/sink distributions in plant canopies using lagrangian
418 dispersion analysis: corrections for atmospheric stability and comparison with a
419 multilayer canopy model, *Boundary Layer Meteorol.*, 96:293–314,
420 <https://doi.org/10.1023/A:1002449700617>, 2012.
- 421 Massman, W. and Lee, X.: Eddy covariance flux corrections and uncertainties in long-flux
422 studies of carbon and energy exchanges, *Agric. For. Meteorol.*, 113(1–4), 121–144,
423 [https://doi.org/10.1016/S0168-1923\(02\)00105-3](https://doi.org/10.1016/S0168-1923(02)00105-3), 2002.
- 424 Mayocchi, C.L. and Bristow, K.L.: Soil surface heat flux: some general questions and comments
425 on measurements, *Agric. For. Meteorol.*, 75(1–3), 43–50 (1995).
426 [https://doi.org/10.1016/0168-1923\(94\)02198-S](https://doi.org/10.1016/0168-1923(94)02198-S), 1995.
- 427 McCaughey, J.H. and Saxton, W.L.: Energy balance storage fluxes in a mixed forest, *Agric. For.*
428 *Meteorol.*, 44(1), 1–18, [https://doi.org/10.1016/0168-1923\(88\)90029-9](https://doi.org/10.1016/0168-1923(88)90029-9), 1988.
- 429 Meyers, T. P. and Hollinger, S. E.: An assessment of storage terms in the surface energy balance
430 of maize and soybean, *Agric. For. Meteorol.*, 125(1–2), 105–115,
431 <https://doi.org/10.1016/j.agrformet.2004.03.001>, 2004.
- 432 Montagnani, L., Grünwald, T., Kowalski, A., Mammarella, I., Merbold, L., Metzger, S., Sedlák, P.
433 and Siebicke, L.: Estimating the storage term in eddy covariance measurements: the
434 ICOS methodology, *Int. Agrophysics.*, 32 (4), 551–567, <https://doi: 10.1515/intag-2017-0037>, 2018.
- 436 Nicolini, G., Aubinet, M., Feigenwinter, C., Heinesch, B., Lindroth, A., Mamadou, O., Moderow,
437 U., Mölder, M., Montagnani, L., Rebmann, C. and Papale, D.: Impact of CO₂ storage flux
438 sampling uncertainty on net ecosystem exchange measured by eddy covariance. *Agri.*
439 *For. Meteorol.*, 248, 228–239, <http://dx.doi.org/10.1016/j.agrformet.2017.09.025>, 2018.
- 440 O'Dell, D., Sauer, T.J., Hicks, B.B., Thierfelder, C., Lambert, D.M., Logan, J. and Eash, N.S.: A
441 short-term assessment of carbon dioxide fluxes under contrasting agricultural and soil
442 management practices in Zimbabwe. *J. Agri. Sci.* 7(3),
443 <http://dx.doi.org/10.5539/jas.v7n3p32>, 2015.

- 444 O'Dell, D., Sauer, T.J., Hicks, B.B., Lambert, D.M., Smith, D.R., Bruns, W.A., Basson, A., Marake,
445 M.V., Walker, F., Wilcox, M.D. and Eash, N.S.: Bowen ratio energy balance measurement
446 of carbon dioxide (CO₂) fluxes of no-till and conventional tillage agriculture in Lesotho.
447 Open J. Soil Sci. 4(3): 87–97, <http://hdl.handle.net/10919/70228>, 2014.
- 448 Oetting, J., Hicks, B. and Eash, N.: On recursive partitioning to refine coordinate rotation in Eddy
449 covariance applications. Agri. For. Meteorol., 1;346:109873,
450 <https://doi.org/10.1016/j.agrformet.2023.109873>, 2024.
- 451 Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C., Kutsch, W. and Yakir, D.:
452 Towards a standardized processing of Net Ecosystem Exchange measured with eddy
453 covariance technique: algorithms and uncertainty estimation, Biogeosci., 3(4), 571–583,
454 <https://doi.org/10.5194/bg-3-571-2006>, 2006.
- 455 Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, D., Cheah, Y.W., Poindexter, C.,
456 Chen, J., Elbashandy, A., Humphrey, M. and Isaac, P.: The FLUXNET2015 dataset and the
457 ONEFlux processing pipeline for eddy covariance data. Sci. Data, 7(1), 225,
458 <https://doi.org/10.6084/m9.figshare.12295910>, 2020.
- 459 Raza, T., Oetting, J., Eash, N., Hicks, B. and Lichiheb, N.: Assessing energy balance closure over
460 maize canopy using multiport system and canopy net storage, in: Proceedings of the
461 104th AMS Annual Meeting, Baltimore, Maryland, USA, 28 January to 1 February, 2024.
- 462 Raza, T., Hicks, B., Oetting, J. and Eash, N.: On the agricultural eddy covariance storage term:
463 measuring carbon dioxide concentrations and energy exchange inside a maize canopy,
464 in: Proceedings of the 103rd AMS Annual Meeting, Denver, Colorado, USA, 8–12
465 January, 2023.
- 466 Russell, E.S., Liu, H., Gao, Z., Finn, D. and Lamb, B., Impacts of soil heat flux calculation methods
467 on the surface energy balance closure. Agricultural and Forest Meteorology, 214, 189–
468 200, <https://doi.org/10.1038/nature04514>, 2015.

- 469 Ryan, M., Law, B. Interpreting, measuring, and modeling soil respiration. *Biogeochemistry* 73,
470 3–27, <https://doi.org/10.1007/s10533-004-5167-7>, 2005.
- 471 Twine, T.E., Kustas, W.P., Norman, J.M., Cook, D.R., Houser, P.R., Meyers, T.P., Prueger, J.H.,
472 Starks, P.J. and Wesely, M.L.: Correcting eddy-covariance flux underestimates over a
473 grassland, *Agric. For. Meteorol.*, 103 (3), 279–300, [https://doi.org/10.1016/S0168-1923\(00\)00123-4](https://doi.org/10.1016/S0168-1923(00)00123-4), 2000.
- 475 USDA-NRCS (2018). Soil Survey Staff, Natural Resources Conservation Service, United States
476 Department of Agriculture. Web Soil Survey. Available at:
477 <https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx>, Accessed November
478 2018.
- 479 Varmaghani, A., Eichinger, W.E. and Prueger, J.H.: A diagnostic approach towards the causes of
480 energy balance closure problem. *Open J. Mod. Hydrol.*, 6(02), 101,
481 <https://doi.org/10.4236/ojmh.2016.62009>, 2016.
- 482 Verma, S.B. and Rosenberg, N.J.: Vertical profiles of carbon dioxide concentration in stable
483 stratification. *Agric. Meteorol.*, 16(3), 359–369, [https://doi.org/10.1016/0002-1571\(76\)90005-4](https://doi.org/10.1016/0002-1571(76)90005-4), 1976.
- 485 Wang, X., Zhong, L., Ma, Y., Fu, Y., Han, C., Li, P., Wang, Z. and Qi, Y.: Estimation of hourly actual
486 evapotranspiration over the Tibetan Plateau from multi-source data. *Atmos. Res.*, 281,
487 106475, <https://doi.org/10.1016/j.atmosres.2022.106475>, 2023.
- 488 Wilson, K.B., Goldstein, A., Falge, E., Aubinet, M., Baldocchi, D., Berbigier, P., Bernhofer, C.,
489 Ceulemans, R., Dolman, H., Field, C., Grelle, A., Ibrom, A., Law, B., Kowalski, A., Meyers,
490 T., Moncrieff, J., Monson, R., Oechal, W., Tenhunen, J., Valentini, R. and Verma, S.:
491 Energy balance closure at FLUXNET sites, *Agric. For. Meteorol.*, 113, 223–243,
492 [https://doi.org/10.1016/S0168-1923\(02\)00109-0](https://doi.org/10.1016/S0168-1923(02)00109-0), 2002.