

1 A simplified system to quantify storage of carbon dioxide, water vapor and heat within a
2 maize canopy

3 Taqi Raza^{1*}, Bruce B Hicks^{1,2}, Joel N. Oetting¹ and Neal S Eash¹

4
5 ¹Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville
6 USA

7 ²MetCorps, Norris, USA

8
9 *Corresponding author: Taqi Raza; taqiraza85@gmail.com, traza@vols.utk.edu

10 Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville
11 USA

12
13 **Highlights**

- 14 1. A new multiport system simplifies measuring CO₂ and water vapor gradients in a plant
15 canopy,
- 16 2. The system eliminates the effects of sensor calibration differences.
- 17 3. Field tests illustrate the ruggedness of the design, suitable for remote and demanding
18 circumstances.
- 19 4. Addition of temperature sensors permits application to surface heat energy balance
20 differences.

21 **Abstract**

22 The significance canopy storage of CO₂, latent heat and sensible heat within agricultural crops has
23 not yet been fully examined. Reported canopy storage terms are consistently smaller
24 than found for a forest ecosystem, such that they are often neglected. A multiport profile
25 system has been developed to examine these storage terms. The system sequentially samples air
26 from four heights to a single non-dispersive Infrared Gas Analyzer (IRGA). Following extensive
27 laboratory testing, the system has been field proven in an east Tennessee study of a maize crop
28 in 2023. The new system enables quantifications of CO₂ and latent heat atmospheric storage
29 terms provided latent with supporting temperature measurements, allows improved

Deleted: sensible

Deleted: Neal S Eash¹... Joel N. Nathaniel... Oetting¹ and
Neal S Eash¹, Bruce B Hicks²

Deleted: ¶

Formatted: Hyperlink, Font: +Headings (Calibri), 12 pt,
Pattern: Clear (White)

Formatted: Hyperlink, Font: +Headings (Calibri), 12 pt,
Pattern: Clear (White)

Field Code Changed

Field Code Changed

Deleted: ¶

¶

¶

¶

¶

¶

¶

Deleted: <#>Neglecting canopy storage terms leads to

Deleted: <#>profile s...ystems system...simplifies

Deleted: <#>the

Deleted: <#>H₂O ...radients in a plant canopy storage

Deleted: Neglecting

Deleted: The multiport system eliminates the effects of

Deleted: is considered

Deleted: . ¶

Deleted: <#>The multiport system is complementary to

Deleted: significance

Deleted: Recent attention to the imbalance

Deleted: of

Deleted: the classical surface heat

Deleted: energy

Deleted: budget observed in forest meteorological

Formatted: Justified

Deleted:

Deleted:The system sequentially directs air ...amples

Deleted: was used to measure CO₂ and H₂O within an

Deleted: a growing maize field experiment conducted in

Deleted: eastern Tennessee maize canopy in 2023. ...he

Formatted: Subscript

Deleted: was conducted involving CO₂ and

188 examination of the surface heat energy budget and the net air-surface exchange of CO₂.
189 incorporated programs

190
191 **Keywords:** Multi-port system, vertical canopy profile, storage terms (CO₂ and heat), energy
192 balance, maize, carbon sequestration

193
194 **1 Introduction**

195 In the last few decades, significant work has attempted to improve our understanding
196 of gaseous exchanges between soils, plants, and the atmosphere. These improvements have
197 been incorporated in land-surface models and numerically-based weather predictions as well
198 as in assessment of atmospheric fluxes of carbon dioxide (Lamas Galdo et al., 2021), water
199 vapor (Wang et al., 2023), and heat over vegetated landscapes (e.g., Hoeltgebaum and
200 Nelson, 2023). covariancea) 10002020

201 Observations of the surface heat budget over forests have shown that the balance
202 expressed by the familiar relationship:

203
$$R_n - G = H + LE \quad (1)$$

204
205 is not always attained. Here, where R_n is net radiation, G is soil heat flux, H is sensible heat flux
206 and LE is latent heat flux (q.v. Wilson et al., 2002). Measurements of the turbulent fluxes H and
207 LE are usually by the eddy covariance (EC) methodology (Nicolini et al., 2018), which is also
208 used to measure the flux of carbon dioxide — F_{CO_2} . In practice, R_n is measured using well-
209 accepted sensors and ground heat flux plates are installed in the soil to determine G . Routine
210 EC measurements are now made at more than 1000 locations globally (c.v. Fluxnet; Pastorello
211 et al., 2020).

212 An important factor emerging from many experimental studies using eddy covariance is
213 that storage terms contribute substantially to energy closure of vegetated areas and to the
214 quantification of evapotranspiration (McCaughy and Saxton, 1988; Hoeltgebaum and Nelson,

Formatted: Subscript
Deleted: d latent
Deleted: H ₂ O concentration measurements at four heights — three within the canopy
Deleted: and sensible heat
Deleted: one above it. Results confirm that surface heat energy imbalance is reduced when
Deleted: storage terms to be incorporated
Deleted: are taken
Deleted: into conventional field measurement programs
Deleted: account. Results verify the importance of including heat storage in the surface heat energy budget
Deleted: .
Deleted: ...energy balance closure
Deleted: been carried out...to improve our understanding of gaseous exchanges between soils, plants, and the atmosphere several... These improvements have been
Deleted: prediction...as well as in to
Formatted: Font color: Red
Deleted: to the
Deleted:
Deleted: ...water vapor (Wang et al., 2023),...and heat
Moved down [19]: Eddy
Deleted: parameterization of canopy-wide physiological
Deleted: the...widely accepted method to measure the
Deleted: At most forest experimental sites, ...he balance
Deleted: The ability of EC systems operating at some
Deleted: $R_n - G = H + LE$... (1)
Deleted: where
Deleted: Here,
Deleted:
Formatted: Left, Space After: 8 pt
Deleted:
Deleted: 1
Deleted: At most forest experimental sites, the measure
Deleted: E...dy covariance (EC) methodology is a widely
Formatted
Deleted:
Deleted: 1
Deleted: the
Deleted: forests

398 2023). In concept, errors in the surface heat balance can be attributed to many additional
399 factors, including omission of the heat used in photosynthesis and the storage of heat in plant
400 biomass, in the air below the height of micrometeorological flux measurement and in the soil
401 layer above the depth of G measurement. If the site in question is not flat, horizontal and
402 homogeneous for a considerable distance upwind, then gravity flows and advection must be
403 expected to play a role. Investigation of these various contributing factors requires
404 measurement of the relevant variables as they change with space and with time; especially
405 challenging due to temporal (particularly diurnal) changes in air temperature and humidity heat
406 (Varmaghani et al., 2016) as well as in concentrations of carbon dioxide (herein represented by
407 $[CO_2]$).

408 There are several other possible reasons for energy closure errors in EC experimentation, such as
409 loss of low- or high-frequency flux components, non-optimal coordinate rotation, and the use of
410 inappropriate averaging times (Massman and Lee, 2002; Meyers and Hollinger, 2004; Oetting et
411 al., 2024). Finnigan (2006) reported that the atmospheric heat storage term is underestimated
412 when the average sampling time is large. Neglecting canopy storage terms in studies of Net
413 Ecosystem Exchange (NEE) can also cause substantial errors (Raza et al., 2023). Fewer than 30%
414 of known experimental locations apply a profile measurement system to calculate the
415 temporal variations in storage terms (Papale, 2006). Many studies report that energy
416 balance closure is an unsolved problem for a variety of vegetation types; the sum of
417 sensible and latent heat flux is found to be 10–30% lower than the available energy
418 (Wilson et al., 2002; Twine et al., 2000; Leuning et al. 2012; Russell et al. 2015; Raza et al., 2023).

419 In the case of agricultural cropping systems, atmospheric storage terms are usually
420 considered small and are often ignored (Nicolini et al., 2018; Raza et al., 2024). Assessments of
421 storage terms within agricultural ecosystems are few and differ from those well documented by
422 researchers in the case of forest ecosystems studies (Mayocchi and Bristow, 1995; Wilson et al.,
423 2002; Hicks et al., 2020.). Most results of heat storage in forest environments focus on the
424 atmospheric component of the total heat storage.

Deleted: .

Formatted: Font: Italic

Deleted: Storage measurement is challenging

Deleted: i

Deleted: CO_2 , H_2O , and

Deleted: heat

Formatted: Subscript

Deleted: resulting from

Formatted: Justified, Indent: First line: 0"

Deleted: neglecting the canopy and soil storage terms,

Deleted:

Deleted: A standardized method for measuring these variables is needed.

Deleted: 1

Deleted:).

Deleted: Globally, only a few sites (less than 30 %)

Deleted: applied

Deleted: Studies reported

Deleted: in different

Deleted: by finding

Deleted:

Deleted: heat flux (Sensible)

Deleted:)

Deleted: Liu et al. 2017;

Deleted: 2023a). CO_2 fluxes are also strongly affected. McHugh et al. (2016) reported that at a eucalyptus (*Eucalyptus obliqua*) site there was roughly 60% underestimation of flux due to CO_2 storage, most likely due to the dense canopy.

Moved up [15]: There are several possible reasons for energy closure errors resulting from EC experimentation, such as neglecting the canopy and soil storage terms, loss of low- or high- frequency flux components, non-optimal coordinate rotation, and the use of inappropriate averaging times (Massman and Lee, 2002; Meyers and Hollinger, 2004; Oetting et al., 2024). A standardized method for measuring these variables is needed. 1

Deleted: Studies on the assessment

Deleted:

Deleted: , and the role of storage terms in surface energy balance closure is concerning for

Deleted: term

Deleted: 2002).

465 The present paper focusses on a resolution to needs for detailed measurement of
466 profiles of water vapor and carbon dioxide concentrations in the atmospheric surface
467 roughness layer, as arose in the decade-long sequence of field studies conducted by the
468 University of Tennessee in Lesotho, Zimbabwe, Ohio and Tennessee (see Eash et al, O'Dell et al;
469 Hicks et al.). The surface roughness layer is that layer of air in contact with the surface below
470 the height at which familiar micrometeorological flux/gradient relationships apply. These
471 studies have concentrated on aspects of the surface energy balance and crop carbon dioxide
472 exchange in areas different from conventional agricultural-meteorology experiments, namely in
473 areas of complex terrain and small plots as confront farming communities in Africa and much of
474 eastern North America. These experiments have increasingly indicated the importance of
475 detailed temperature and concentration measurements in the surface roughness layer.

476 A central requirement has been the need to describe water vapor and CO₂ concentrations
477 in more detail than conventional micrometeorology normally provides. To this end, the present
478 paper describes an experimental procedure that builds upon air-sampling systems of the past but
479 is streamlined to provide the requisite measurements with the desired time and space detail, in
480 areas often distant from immediate technical support. Some illustrations of its field utility are
481 provided, using observations from a study of a maize canopy in eastern Tennessee in
482 2023. Exchange2023.. This describes observations in this test. the was inter

483 2. Apparatus design and operation

484 ~~As power. The development described here is an outgrowth of experience with eight~~
485 ~~precedingOur eight, conducted at locations in Lesotho, Zimbabwe, Tennessee, and Ohio (Eash et~~
486 ~~al., 2013; O'Dell et al., 2014, 2015; Hicks et al., 2021, 2022). These~~ demonstrated the need for a
487 reliable yet technically simple system to measure ~~gas concentrations~~ within and above a growing
488 crop. To satisfy the basic requirements for time continuity and reliability of the data record, a
489 multi-port sampling system ~~was~~ crop

490 theas To avoid consequences of individual sensor offsets when gradients are
491 computed, the new system is designed to use a single detection system, in this case an infrared

Formatted

Formatted

Formatted

Moved (insertion) [16]

Deleted: ¶

Deleted: Measurement of the

Deleted: storage terms is challenging because

Deleted: of its requirement for

Deleted: measurements are required both within the

Deleted: and above

Deleted: the canopy

Deleted: and above it to examine storage and temporal

Deleted: (Yang et al., 1999). Finnigan (2006) reported the

Deleted: larger when compared to shorter sampling times.

Deleted: Neglecting canopy storage terms in studies of

Deleted: during measuring

Deleted: Net Ecosystem Exchange

Deleted: Exchanges

Deleted: (NEE) can also cause substantial errors

Moved down [1]: Measurement procedures followed the

Deleted: in assessing NEE

Deleted: (Raza et al., 2023

Deleted: 2023b

Deleted:). To understand the role of the storage terms if

Deleted: ,

Deleted: 2014). The intent is to facilitate the routine

Deleted:

Deleted: ¶

Deleted: There are several possible reasons for energy

Deleted: A key aspect of the research program is the

Deleted: paper describes

Deleted: is to describe

Deleted: a measurement system specifically designed to

Deleted: data

Deleted: for assessing the quantities contributing to the

Deleted: . Elsewhere, similar questions have been

Deleted: instrumentation was

Deleted: now described will be

Deleted: used to extend analysis into the inter

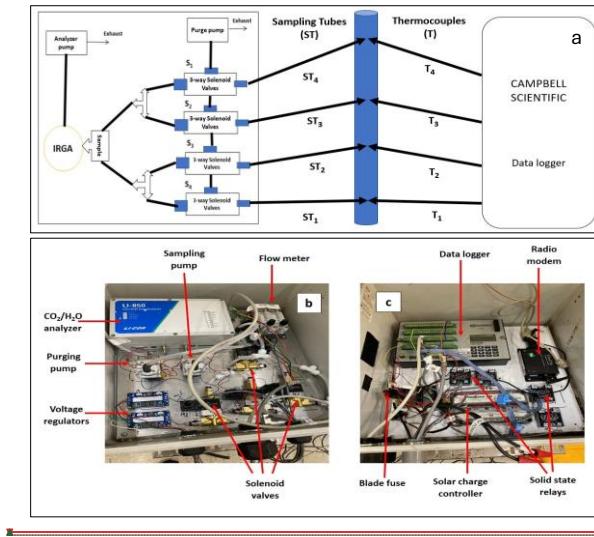
Deleted: within

Deleted: -canopy airspace, using eddy covariance

Deleted: The protocols recommended by the ICOS

Deleted: Measurement procedures followed the

Formatted


Deleted: Methodology/Configuration ¶

Deleted: ,...operation, and measurement

Formatted

Deleted: Difficult-to-

874 CO₂/H₂O gas analyzer (IRGA; LI-COR-850, Lincoln, NE.). Figure 1 presents a schematic description
 875 of the apparatus. The system is designed to maintain continuous airflow through all intake tubes,
 876 to cycle through all heights of measurement in one minute (7.5 seconds for each height) and to
 877 minimize the switching time between samplings. The system uses two small pumps [Model TD-
 878 3LSA, Brailsford & CO., InclInc, Antrium, NH, USA], one pump (the purge pump) draws in air at a
 879 constant rate through all intake tubes to minimize hygroscopic interactions along the tube walls.
 880 A wall another pump (the sampling pump) pushes the drawn air to the IRGA. The sampling
 881 pump is mounted close to the IRGA so that air smoothly enters the IRGA at ambient pressure.
 882 When sampling the airflow through a specific tube the flow rate is maintained at 1000 ml min⁻¹.
 883 The flow rates through the other three tubes are then maintained at 700 ml min⁻¹ by flow meters
 884 [LZQ-7 flowmeter, 101.3 KPa, Hilitland, China]. The switching between sampling tubes is
 885 controlled by four three-way brass and stainless- steel solenoid valves [231Y-6, Ronkonkoma, NY,
 886 USA].

887
 888 Fig. 1. Details of the multi-port sampling system: (a) schematic diagram of the manifold for
 889 profile sampling of CO₂ and H₂O, (b) a photograph of the analyzer, pump, and manifold
 890 system, (c) the data logger for data collection.

Moved down [17]: In the application considered here, the system was used to measure at four heights, three within and above a maize canopy.

Deleted: IRGA —LI-COR-850,

Deleted:) for all measurements of the gaseous quantities and resistance thermometry operating in bridges for temperature.

Deleted: , three

Deleted: and one above.

Deleted: ¶

Deleted: four

Deleted: sampling heights within 1 minute of cycle from all four heights.

Deleted: consists of

Deleted: INC

Deleted: the sampling

Deleted: t

Deleted: oto maintain constant flow through all intake tubes

Deleted: wall

Deleted: while a

Deleted: the other

Deleted:

Deleted: frequently and

Deleted: The

Deleted: .

Deleted: regulated in the sampling cell

Deleted: a

Deleted: meter (

Deleted:) at 1000 ml/min before pushing to IRGA from the manifold system with purge pump flow rate of 700 ml·min⁻¹.

Deleted: heights

Deleted: The body material of the solenoid is brass, and the internal component material is stainless steel as is required when water vapor is present. Solenoid valves are used to improve reliability relative to multi-position valves used in other experiments (e.g. Andrew et al., 2014).

Moved down [2]: The air outlet of the purge pump and

Moved down [3]: The system was visually inspected

Deleted: Each sampling tube was 10.5 m long to ensure ...

Deleted: ¶

Deleted: ¶

Formatted: Justified

972 Each sampling tube is same length (10.5 m), to ensure samples from each sampling
973 height have has the same transit time. The purge pump manifold and all sampling tubes are
974 constructed of the same kind of urethane [BEV-A-LINE, Polyethylene material, Cole Parmer,
975 City, State]. Before entering the analyzer, the air is passed through a 1- μ m pore filter [LI-6262,
976 LI-COR, Lincoln NE, USA] to avoid the accumulation of debris, dirt, particles, etc., that can cause
977 contamination in the analyzer optical cells.

Deleted: long ...o ensure samples from each
each...sampling height haves...as the same transit time. The
purge pump manifold and all sampling tubes are
constructed of the same kind of urethane [BEV-A-LINE,
Polyethylene material, Cole Parmer, City, State]. Before
entering passing through

Formatted: Left

Moved (insertion) [2]

Deleted: The 5Hz (5x/second) frequency raw data were
averaged into 15-minute runs.¶

Deleted: <#>Sampling time¶

Deleted: <#>To determine the response time and
calibration...of the multiport ...ystem for accurate ¶
Page Break
¶

Deleted: <#>minimum amount of time ...o reach a

Deleted: <#>, with results as shown in Table 1 and Fig. 2.

Deleted: The time constant of the IRGA now used was
about 3.2 second.

Deleted: of the heights

Deleted: of ...nterest (in the preliminary configuration,
sentpresent experiment,

Formatted: Justified

Deleted: , so that...each of the heights to bebewas

Deleted: a

Deleted: each

Deleted:

Deleted: The results of laboratory testing illustrated in Fig.
2 show the lags introduced by the sampling procedures,
intentionally exaggerated by illustrating results when major
step functions in concentration were introduced (± 430
ppm). Two features of the plot are of major interest. First,
the delay associated with the switching can be confirmed by
consideration of the known travel length and flow rate in
the tubes. The delay in reading by the IRGA was due to the
presence of residual air in the previous sampling tube and

Deleted: known [...O₂ concentration known [CO₂]

Deleted:],... it took approximately 1.8 seconds to achiev

Deleted: these types of

Deleted: LI-COR.

Deleted: 2

Deleted: (2012) found 11% error for a set of measureme

Deleted: ¶

Deleted: Experimental site

Formatted: Font: Bold

988 To derive a continuous record of concentrations at each height, interest (in the preliminary
989 configuration, four of them) switching between heights was set at every 7.5 seconds allowing
990 each of the heights to be sampled twice in every minute. The laboratory tests showed that
991 after the IRGA received a step change in CO₂ concentration, it took approximately 1.8
992 seconds to achieve a steady output. During the laboratory evaluation period, the recorded error
993 was less than 0.5% in [CO₂] between sampling heights. An accuracy error of less than 1% is
994 well within the acceptable range for the IRGA now used according to the specifications provided
995 by the manufacturer and much less than higher errors common in measurements of this kind
996 (Montagnani et al. 2018) 2012.

997 3. Field evaluation

998 3.

1181 An ongoing field study of a maize crop in East Tennessee provided an opportunity to test the
1182 new sampling system in experimentally demanding circumstances. The experiment was at a 23
1183 ha plot of agricultural farmland, near Philadelphia, in Loudon County Tennessee (35.673° N,
1184 84.465° W). The site is typical of agricultural land used for mainly maize and soybean
1185 production, in slightly rolling terrain that presents a challenge to EC measurements, with local
1186 slope varying from 1% to 5% depending on location. For the present purpose, it is not necessary
1187 to provide details of the experiment or of the analysis resulting from it. Such detailed
1188 examination of the observations will be presented elsewhere. However, the maize variety was
1189 "Dekalb 66-06". The mean annual temperature and precipitation of the site are 13.5 °C and 140
1190 cm respectively. The soil was classified as an Alcoa Loam (fine, thermic Rhodic Paleudult)
1191 according to the USDA-NRCS (2018). The experiment extended through the entire growth cycle,
1192 from which data for six weeks during the months of May and June 2023 have been extracted
1193 for the present illustrative purpose. Maize planting was on 25 April, so that the illustrations to
1194 follow relate to a period of rapid growth of the canopy, from soon after emergence (in early
1195 May) to tasseling (in June).

1196 In the field test considered here, the system was used to measure four heights of 0.11 m,
1197 0.5h, 1+h, 2+h, where h is maize canopy height (in meters) above the soil surface. Note that one
1198 intake was permanently set at 0.11 m, and the three other heights were adjusted as the maize
1199 grew. Sampling intakes were positioned on a 3.5 m tall steel mast. Thermocouples at
1200 the same height as gas sample intakes were used to measure temperature gradients; these
1201 and were aspirated within a white PVC pipe shield of 1.9 cm diameter (Figure 2a) that also
1202 served as a radiation shield.

1203 The experimental program hosting this field test utilized a tripod tower to support an
1204 eddy covariance system (adjusted as the crop grew to maintain a height about 2 m above the
1205 crown) and supporting micrometeorological measurements — an IRGASON [CO₂/H₂O] open path
1206 gas analyzer system, [Campbell Scientific, Logan, Utah], a net radiometer [Kipp & Zonen, OTT
1207 HydroMet B.V. Delft, Netherlands], infrared radiometers [IRs-S1-111-SS, Apogee Instruments Inc,
1208 City, State, USA], and type T thermocouples [Omega, City, State, USA]. The entire observing

Formatted: Left

Deleted: In the application considered here, the system was used to measure at four heights within and above a maize canopy.

Deleted: ¶

The study area is twenty-three hectares of agricultural farmland cultivated with a maize cropping system near Philadelphia, in Loudon County Tennessee (35.6729° N, 84.4651° W). The maize variety was "Dekalb 66-06". The mean annual temperature and precipitation of the site are 13.5 °C and 54 in respectively. The elevation and slope of the site are 280 m and 2 – 5% respectively. The soil was classified as an Alcoa Loam (fine, thermic Rhodic Paleudult) according to the USDA-NRCS (2018). Sunrise and sunset varied at the site from 0643 LT to 0621 local time (LT) and ...

Deleted: Field measurement setup ¶ ...

Deleted: Following laboratory testing, the system

Deleted: was planted on 25 April and the

Deleted: deployed in a

Deleted: field instrumentation was installed one week ...

Deleted: study conducted at

Deleted: Four

Deleted: Loudon, Tennessee, in 2023. In this study four

Deleted: intake sampling tubes were positioned at

Deleted: (m)

Deleted: and

Deleted: three of these heights were adjusted as the cro ...

Deleted: height

Deleted: m

Deleted: . Tubes

Deleted: mounted

Deleted: 15 feet

Deleted: 10 m

Deleted: at the respective positions.

Deleted:

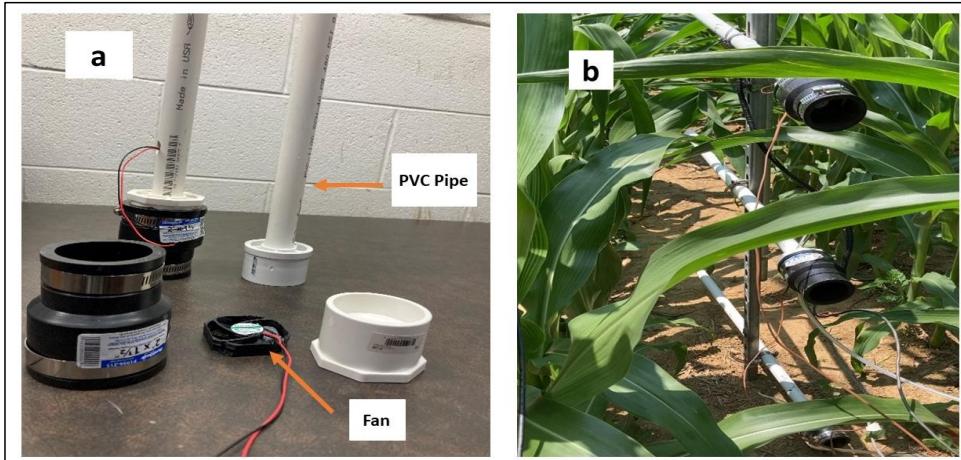
Deleted: and

Deleted: within and above the canopy CO₂ intake tubes ...

Deleted:

Deleted: through 12 volts fan in

Deleted: 3). There were four replicates of each sampling ...


Deleted: ¶

Deleted: was used

Moved (insertion) [3]

1276 system. The system was visually inspected every week for signs of leakage, condensation, and
1277 contamination. The IRGASON gas analyzer used for eddy covariance was independent of the IRGA
1278 used for concentration gradient measurements. The availability of the EC system and its
1279 supporting measurements enabled the tests of the new sampling system to extend to
1280 investigation of such matters as the height of origin of thermal eddies, as will be reported later.

1281

1282
1283 Fig. 2. (a) Installation components at each height of the new profile system, showing
1284 the aspirated CO_2 intake tubes and thermocouples. (b) Deployment in a maize canopy; the
1285 two lowest heights are shown.

1286
1287 3.1. ~~the are the minimum~~ Results — CO_2
1288 Within a nocturnal strongly stratified roughness layer, previous experiments have revealed the
1289 ubiquity of pooling of CO_2 emitted by soil biota and root respiration permitting. Fig. 3 presents
1290 average diurnal cycles of CO_2 concentrations measured over the six weeks from 18 May to 29
1291 June at four heights, two within the canopy and two above. Error bounds correspond to +/-
1292 one standard error of the mean. The variability of CO_2 was found to be higher at nighttime than

1588 in daytime. The greatest variability was recorded within the canopy, at height 1 (0.11 m) and
1589 height 2 (0.4 – 1.4 m).

1590 The observations confirm the generally accepted features of nocturnal accumulation of ← **Formatted: Left**
1591 CO₂ effluxes from the soil but with detail sufficient to warrant detailed examination. The close
1592 tracking of the records for the different measurement heights provides confidence in the
1593 performance of the sampling system and indicates that the same causative mechanisms affect
1594 all of the heights similarly. The nighttime results that are plotted
1595 ~~below~~exceeded increasing within paralleled support the assumptions made elsewhere that
1596 changes in the surface stratified atmosphere are mostly in accord with expectations of CO₂CO₂
1597 profile linearity (Galmiche and Hunt, 2002; Verma and Rosenberg, 1976), a result that is
1598 supported by close examination of CO₂ averages over shorter nighttime periods.

1599 1.

Deleted: During the night, the surface atmosphere stabilized, and wind speeds decreased allowing CO₂ emitted from the soil to accumulate. Hicks et al. (2021) also stated that during stable nighttime conditions, the [CO₂] increases at the surface. The concentrations of CO₂ observed below

Deleted: low in

Deleted: the canopy exceeded

Deleted: exceed

Deleted: those elsewhere.

Deleted: , confirming that the soil is indeed the source of the CO₂ accumulating.

Deleted: Moreover, note that the increasing

Deleted: rates of growth of

Deleted: concentrations within

Deleted: withing

Deleted: the pool closely paralleled

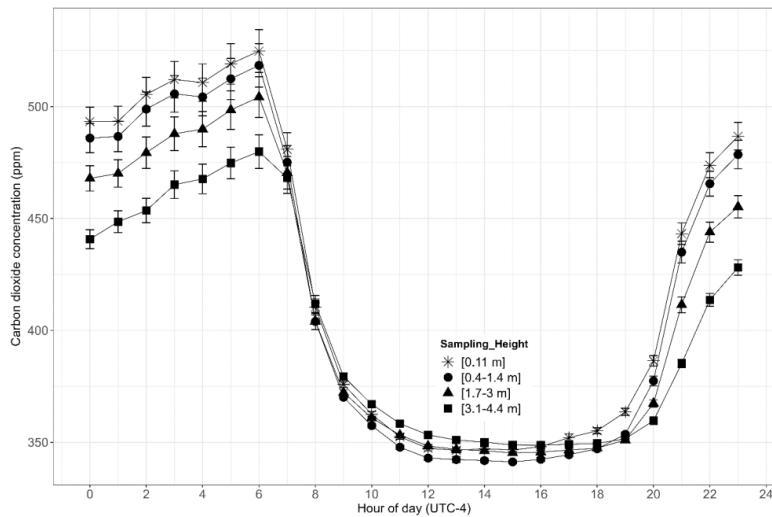
Deleted: parallel

Deleted: each other, providing

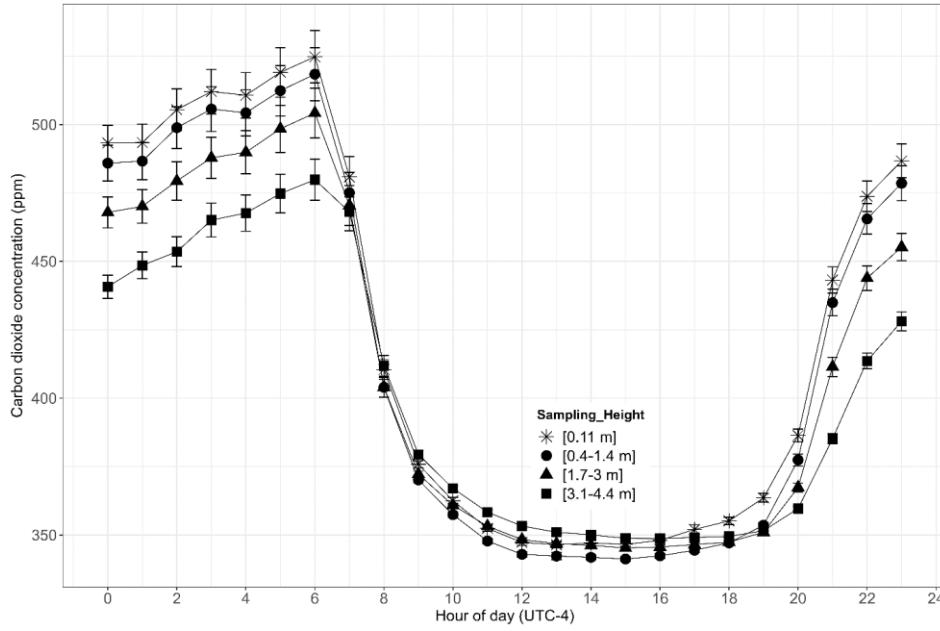
Deleted: for

Deleted: about

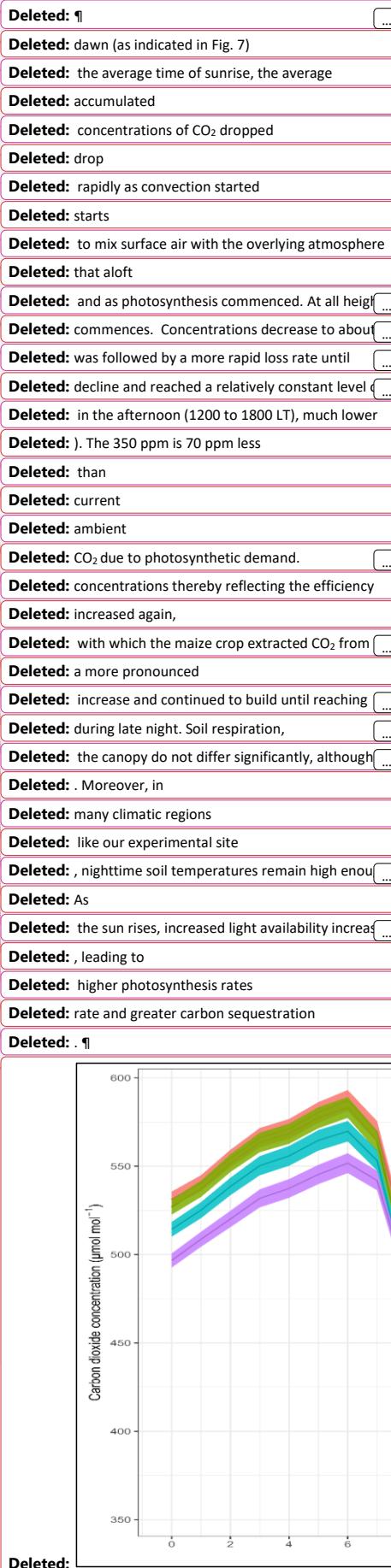
Deleted: the


Formatted: Subscript

Deleted: within the pools.


Formatted: Justified

1622


about averaged dropped started at atmosphere ppm efficiency to Concentrations within After rates

1623

1624

1773 Fig. 3, Average diurnal cycle of CO₂ obtained using the new system described here, for the
1774 six weeks as in Fig. 3. Symbols correspond to different heightsheights of measurements
1775 with error bars corresponding to +/- one standard error.
1776
1777 Following 0600 local time, about the average time of sunrise, the average
1778 concentrations of CO₂ dropped rapidly as photosynthesis commenced and as convection
1779 started to mix surface air with the overlying atmosphere. At all heights this initial decrease was
1780 followed by a more rapid loss rate until concentrations dropped to about 350 ppm in the
1781 afternoon (1200 to 1800 LT), much lower than ambient concentrations thereby reflecting the
1782 efficiency with which the maize crop extracted CO₂ from the air. Near sunset, [CO₂] started to
1783 increase and continued to build until reaching maximum values immediately before dawn.
1784 Concentrations within the canopy do not differ significantly, although the 0.11 m height values
1785 always exceed those further above the soil surface. In general, [CO₂] decreased with increasing
1786 height. All of these observations align well with contemporary views of the post-sunrise
1787 initiation of photosynthesis and its continuation through the following daylight hours.

1787 The nocturnal accumulation of CO₂ observed here is not unusual. In many climatic
1788 regions, nighttime soil temperatures remain high enough to sustain microbial and soil
1789 respiration activities, resulting in CO₂ accumulation in the stratified air above the ground. After
1790 the sun rises, increased light availability increases stomatal activity and photosynthesis rates.

1791 3.2. Results — H₂O

1792 As in Fig. 3, Fig. 4 shows the average diurnal cycle constructed fromfrom 15-minute H₂O
1793 concentration observations. At all heights a sharp increase in [H₂O] was recorded inin the
1794 morning at the same time as the sudden decrease for [CO₂] seen in Fig. 3. Subsequently, [H₂O]
1795 peaked at about 0900 LT and, within the canopy, maintained thisthis concentration throughout
1796 the daylight hours. Above the canopy average concentrations decreased and a different
1797 concentration constancy was attained. After the period around sunset had passed, at about 2000
1798 LT, [H₂O] started decreasing approximately linearly with time until sunrise approached. The H₂O
1799 concentration generally decreased as the measurement height increased for both day and
1800 nightnight because a constant source of water vapor waswas the soil surface, with crop

Deleted: Figure 7

Deleted: vertical

Formatted: Justified

Deleted: over two months

Deleted: maize canopy growth/monitoring. Times of sunrise and sunset are shown.

Formatted: Left

Formatted: Left, Indent: Left: 0", First line: 0.5", Space After: 8 pt, Line spacing: 1.5 lines

Deleted: Vertical profile of

Deleted: in a maize canopy

Formatted: Justified, Space Before: 12 pt, After: 0 pt

Deleted: 6,

Formatted: Justified

Deleted: were used to construct an average diurnal cycle for the two-month period exemplified here. During daytime,

Deleted: concentration

Deleted: significantly higher as compared to nighttime, peaking between 1200 LT and 1400 LT and then gradually decreasing. Notably, after 2000 LT, we

Deleted: a rapid decline in H₂O concentration. At 0600 LT,

Deleted: H₂O reached its minimum

Deleted: lower-

Deleted: cycle, followed by a sharp increase in the first hour....

Deleted: nighttime

Deleted: both times

Deleted: is

1823 evapotranspiration adding H_2O in the daytime. Dewfall is expected to be important, a
1824 contribution that can be uniquely addressed using the new sampling system.

1825 Figures 3 and 4 reveal considerably different cycles of CO_2 and H_2O . At night, Fig. 3 shows
1826 a more striking $[CO_2]$ gradient than does Fig. 4 for $[H_2O]$. The reason is presumed to be that CO_2
1827 continues to be emitted from the soil at night and accumulates within the stratified layer of air,
1828 whereas there is no parallel process influencing H_2O concentrations. In daytime, there is little
1829 consistent $[CO_2]$ gradient information derivable from Fig. 3, but for $[H_2O]$ in Fig. 4 there is a clearly
1830 visible $[H_2O]$ gradient structure. This suggests a slow-down of CO_2 exchange in the afternoons
1831 while evaporation continued.

Deleted: and dewfall near sunset.

Deleted: ¶

Deleted: ¶
Comparison of the diurnal

Deleted: shown in Figs. 6 and 7 indicates considerable
dissimilarity of the

Deleted: .

Deleted: cases

Deleted: .

Deleted: 45

Deleted: that the

Deleted: profile appears to be stronger

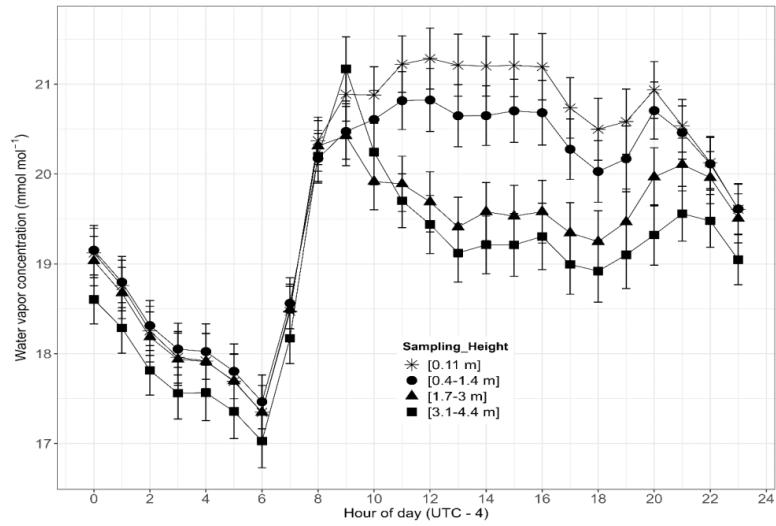
Deleted:

Deleted: 5 in the daytime. The opposite is seen,

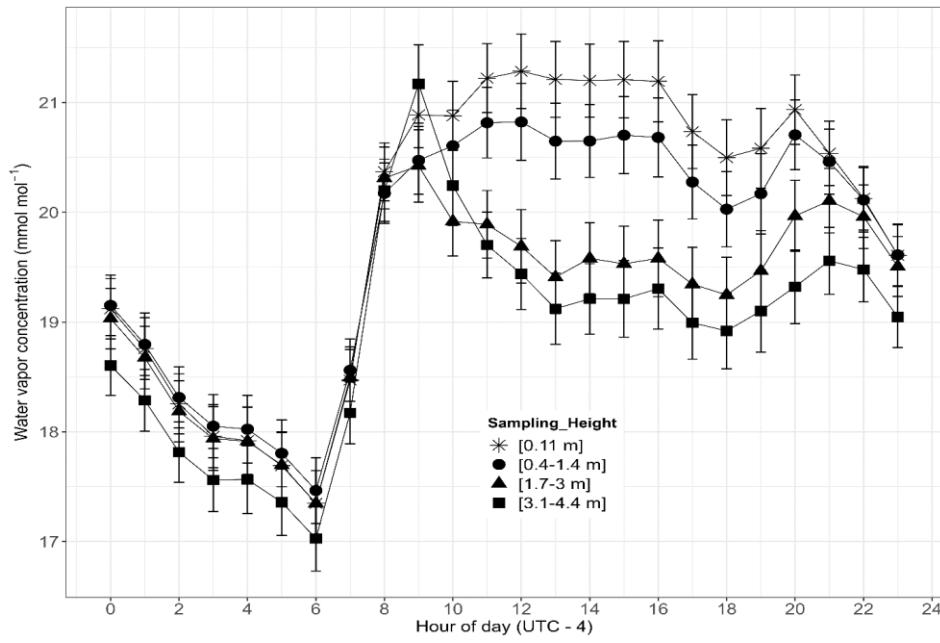
Deleted: , in Fig. 8.

Deleted: the

Deleted: This is a feature made apparent by the profile
sampling system.

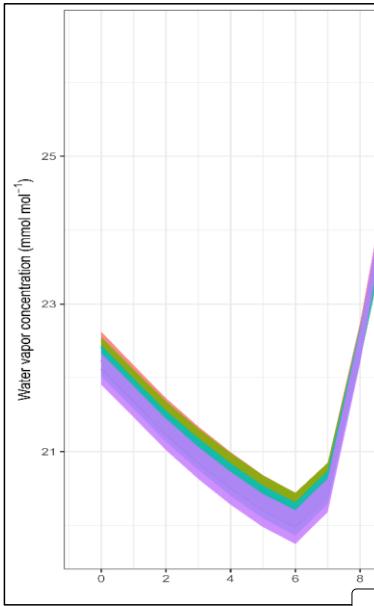

Moved down [5]: and temporal patterns of water vapor
in the canopy profile. ¶

Deleted: ¶
The processes of


Deleted: from the soil surface and evapotranspiration from
leaves are directly linked with the solar radiation because
the sun provides energy in the form of solar radiation which
leads to loss of water from the soil and plant surfaces. The
more solar radiation the surface receives the more water
evaporated from the surface and increased the
concentration in the atmosphere which is dominant during
the daylight hours. Overall, the study highlights the vertical
distribution of water vapor concentration and its temporal
variability, indicating that factors such as height and diurnal
variations significantly influence the profile/gradient?

Deleted: .

1866


1867

1868

Formatted: Centered

1869 Fig. 4. Average diurnal cycle of the vertical profile of water vapor concentration averaged
1870 over six weeks as in Figs. 3. Symbols correspond to different heights of measurements
1871 with error bars corresponding to +/- one standard error.

Deleted: pattern ...f water vapor concentration averaged

Deleted: Justified

Deleted: Left

Deleted: Line spacing: 1.5 lines

Deleted: 4... and 5

Deleted: that factors such as height and diurnal variation

Deleted: 4.3 Latent heat

Deleted: and temporal patterns of water vapor in the

Deleted: CO₂, sensible heat and latent heat

Deleted: CO₂

Deleted: storage fluxes

Deleted: of maize profile

Deleted: ¶

Deleted: Font: (Default) Calibri

Deleted: were also

Deleted: date was further

Deleted: ...sed to explore investigate

Deleted: study the

Deleted: Font: (Default) +Headings (Calibri), 12 pt

Deleted: Font: (Default) +Headings (Calibri), 12 pt

Deleted: Left, Space Before: 12 pt

Deleted: (computed as

Deleted: to investigate their role

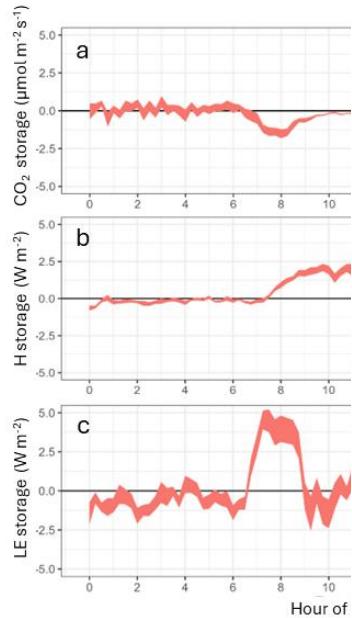
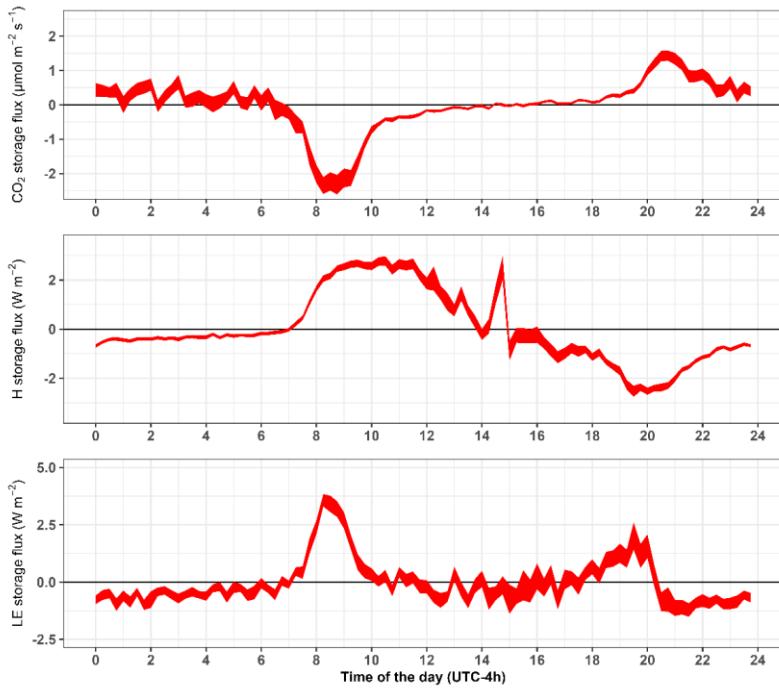
Deleted: in Eq. 2) ...nfluence the energy budget

Deleted: balance closure

Deleted: Font: (Default)

Deleted: Left

Deleted: Space Before: 12 pt



Deleted: Font: Italic

$$J_c = \overline{\rho_d} \sum_{i=1}^N \left(\frac{\Delta c}{\Delta t} \right)_i \Delta z_i \quad (2)$$

1956 in Fig. 5, CO₂ storage (Fig. 5a) exhibited a larger magnitude and more variation at nighttime
1957 compared to daytime, due to the CO₂ pooling and the intermittency of incursions from air
1958 aloft, of which behavior During the night, photosynthesis did not occur, and CO₂ emitted from
1959 the soil accumulated in the overlying stratified atmosphere (Ryan and Law, 2005; Davidson and
1960 Janssens, 2006). Soon after sunrise, the nighttime stratification began to weaken, and
1961 photosynthesis commenced. The trapped CO₂ was consumed by photosynthesis and mixed with
1962 air above the canopy as unstable stratification evolved. Minimal CO₂ storage during the
1963 daytime day can be due to the instability and strong mixing then prevailing, as well as to the
1964 photosynthetic removal of CO₂ from the air to which the vegetation was exposed. More
1965 efficient exchange between plant and atmosphere then results resulting in low less storage of
1966 CO₂ in the air space below the uppermost height of [CO₂] measurement. At night, subcanopy
1967 ventilation by intermittent gusting results in a large variation between negative and positive
1968 CO₂ storage.

1969 Observations such as these are facilitated by the profile sampling system now
1970 advocated. In the future, it is planned to use the new capability to revisit the quality assurance
1971 methodology of EC determinations by comparing atmospheric storage to the statistical
1972 uncertainty of the covariances. In this context, note that Fig. 5b indicates sensible heat
1973 atmospheric storage terms equivalent, on the average, to about 2 W m⁻² in the late morning,
1974 followed by a downward trend through the afternoon until reaching a minimum a few hours
1975 after sunset. The irregularity seen soon after noon is presently unexplained. Clearly, individual
1976 shorter-term averages could display greater averages and increased scatter, but this remains to
1977 be explored. In comparison, Finkelstein and Sims (2001) derive uncertainties associated with
1978 30-min EC evaluations of the sensible heat covariance in the range 5% to 10% in daytime.

Deleted: 6
Deleted: The average diurnal behavior
Deleted: patterns
Deleted: of these storage fluxes is
Deleted: , as
Deleted: shown in Fig. 6.
Deleted: 9.1
Deleted: effect
Formatted: Font: (Default) +Headings (Calibri), 12 pt
Deleted: higher values than sensible energy storage (Fig. 9b) and latent energy storage (Fig. 9c).
Deleted: During both early morning and late night, the CO₂ storage below the uppermost height of [CO₂] measurement increased at a rate of
Deleted: reached
Deleted: approximately 1 $\mu\text{mol m}^{-2} \text{s}^{-1}$, after which
Deleted: and
Deleted: it gradually decreased until 0730 –
Deleted: -
Deleted: 0800 LT
Deleted: ,
Deleted: when it became negative. After this, CO₂ storage
Deleted: , remaining
Deleted: close to zero until the following day. This behavior
Deleted: trend
Deleted: indicates that CO₂ storage was significantly
Deleted: During nighttime
Formatted: Font: 12 pt
Formatted: Font: (Default) Calibri
Formatted
Deleted: , dispersed, and decreased CO₂ storage
Deleted: morning, these processes were reversed, leading
Deleted: 1
Deleted: high wind speed, and enhanced convective mixing
Formatted: Subscript
Deleted: within the canopy....At night, subcanopy
Formatted: Subscript
Deleted: 6
Formatted: Superscript
Formatted: Indent: First line: 0.5", Space Before: 0 pt

2079
2080 Fig. 5. Diurnal patterns of CO₂ atmospheric storage (a), sensible heat storage (b) and
2081 latent heat storage (c) of the maize crop in early stages of growth (see Table 1 a-b). The
2082 widths of the traces correspond to +/- one standard error on the means.

2083 The nocturnal sensible (Fig. 5b) and latent (5c) heat energy storages remained low and
2084 slightly negative until sunrise, about 0600 LT. As the air cooled during the night, sensible heat
2085 storage in the air mass remained slightly negative as its temperature decreased. After sunrise,
2086 the air mass warmed and the sensible heat storage rose to a maximum value of about 2.5 W m⁻³,
2087 between 1200 LT and 1230 LT. Afterwards, the sensible heat storage rate declined,
2088 reaching negative values a few hours before sunset and attaining a minimum value (about -1.5
2089 W m⁻²) a few hours before midnight. The sensible heat storage subsequently trended to near-
2090 zero constancy until being disrupted by sunrise at about 0700 LT.

Deleted:

Formatted: Justified

Deleted: diurnal patterns of

Deleted: 6b

Deleted: 9b

Deleted: show similar behavior at night, until

Deleted: During the night, both of these fluxes were small and differences between measurements above the surface

Deleted: energy storage (Fig. 9c) showed apparent characteristics. Sensible heat storage remained zero in the

Deleted: 3

Deleted: (around 2.5

Deleted: W m⁻²

Deleted:) recorded

Deleted:

Deleted: After that, this

Deleted:

Deleted: energy

Deleted: -

Deleted: until 2400 LT, becoming zero

Deleted: the following day

2119 Latent heat storage (Fig. 5c) fluctuated near zero for most of the daylight hours, after
2120 exhibiting a major positive excursion ($> 4 \text{ W m}^{-2}$) during the few hours after sunrise.
2121 After about 2100 LT, latent heat storage fluctuations like the variations seen in Fig. 6a occurred
2122 until sunrise, with an average of about -0.5 W m^{-2} . Comparison with Fig. 6a indicates that the
2123 post-sunrise increase in latent heat storage coincided with the decrease in CO_2 storage. The
2124 sensible heat storage appears to have been delayed by a fraction of an hour. Interpretation of
2125 these observations requires consideration of dewfall and its evaporation.

2126 precipitation present processes fluxes Table 1 a-b lists some of the plant growth characteristics
2127 during the six-weeks considered here. Also listed are the magnitudes of maximum and minimum
2128 storage terms during each of the sampling periods, shown here to exemplify the ability of the
2129 new sampling system to reveal such extremes. Detailed examination of the plant-atmosphere
2130 interaction for the entire growing season will be presented elsewhere. During the six-week
2131 evaluation period, CO_2 atmospheric storage increased as the plant grew and as the soil warmed
2132 (increasing heterotrophic CO_2 generation, subsurface) but not substantially significantly; the
2133 highest storage rate was found at the VT (tasseling) stage and the minimum at the V2 growth
2134 stage, five weeks earlier. Similarly, latent heat storage increased significantly, presumably due
2135 to increasing leaf area and transpiration. Latent and sensible heat storage was found higher in
2136 the VT growth stage than in other growth stages. As the crop grew, different processes became
2137 prominent causes of the storage of energy and CO_2 . When the maize was in its early growth stage,
2138 the canopy was not fully developed, the soil was cooler, and CO_2 storage did not show much
2139 change. However, there were substantial variations in the sensible and latent energy storage
2140 terms as the crop grew (see Table 1 a-b).

2141
2142 Table 1 a-b. Height adjustment during the crop growth stage and maximum and minimum
2143 storage terms. V1 is the first leaf emergence, V_n is when the n^{th} leaf fully emerged, and VT is the
2144 tasseling stage. Height 1 (H_1) was kept constant throughout the experiment while the other three
2145 heights (H_2 , H_3 , and H_4) changed as the plants grew. Negative and positive signs represent the

Deleted: Similarly, latent energy storage exhibited
Deleted: pattern like sensible energy storage but with comparatively higher values. The maximum latent energy storage
Deleted: occurred between 0700 LT and 0730 LT, followed by a rapid decrease and negative storage until 2000 UTC. After a brief increase (around 4 W m^{-2}) for thirty minutes, rapid decline ensued, leading to negligible values
Formatted: Subscript
Deleted: After about 2100 LT, similar fluctuations occurred until sunrise, with an average of about -0.5 W m^{-2} .
Deleted: late nighttime until the next morning.
Deleted: The diurnal variations in sensible and latent energy storage are influenced by, for example, the stability of the surface boundary layer,
Deleted: various factors, including
Deleted: solar radiation, ground heat flux, precipitation
Deleted: temperature fluctuations,
Deleted: and plant physiology. The variation in canopy structure, biology and microclimate changed the canopy storage and influenced the daily integrated fluxes. Forest studies report that the exchange of CO_2 and H_2O between ...
Deleted: physiological processes. The
Deleted: results provide valuable insights into the energy ...
Deleted: plants
Deleted: during different periods of the day. Net radiati ...
Deleted: L
Deleted: latent and sensible heat fluxes
Deleted: storage
Deleted: are the
Deleted: two
Deleted: most important atmospheric components of the ...
Deleted: are
Deleted: primarily influenced by important environment ...
Deleted: .
Deleted: measurement
Deleted: the
Deleted: significantly
Formatted: Subscript
Deleted:,
Deleted:, consequently,
Deleted: occurred
Formatted: Superscript

2208 2.5th percentile (minimum) and 97.5th percentile (maximum) quartile values observed during the
 2209 different periods.

Table a	Measurement height (m)				Growth stage	Latent heat Storage	Sensible heat storage
	Date	H ₁	H ₂	H ₃	H ₄		
May 15-May 21	0.11	0.43	0.60	2.00	V2-V3	-15.19 to 6.13	-5.67 to +2.59
May 22-May 28	0.11	0.43	0.60	2.00	V3-V4	-19.45 to +8.16	-5.67 to +3.21
May 29-June 4	0.11	0.43	1.72	3.07	V5-V6	-19.72 to +8.95	-11.65 to +3.74
June 5-June 11	0.11	0.75	2.10	3.12	V6-V7	-19.72 to +9.01	-45.65 to +4.07
June 12-June 18	0.11	0.95	2.50	3.36	V7-V8	-22.72 to +9.36	-45.65 to +3.68
June 19-June 25	0.11	1.27	3.00	4.36	VT	-22.73 to +9.38	-15.33 to +4.84

2210

2211

2212

Table b	Measurement height (m)				Growth stage	CO ₂ Storage	Average precipitation	Temperature
	Date	H ₁	H ₂	H ₃	H ₄			
May 15-May 21	0.11	0.43	0.60	2.00	V2-V3	-7.12 to +2.78	0.00	14.90 to 25.74
May 22-May 28	0.11	0.43	0.60	2.00	V3-V4	-7.12 to +2.87	0.031	14.59 to 26.63
May 29-June 4	0.11	0.43	1.72	3.07	V5-V6	-9.54 to +2.59	0.007	14.17 to 28.12
June 5-June 11	0.11	0.75	2.10	3.12	V6-V7	-9.67 to +2.33	0.165	12.87 to 29.70
June 12-June 18	0.11	0.95	2.50	3.36	V7-V8	-9.68 to +2.36	0.081	13.41 to 29.12
June 19-June 25	0.11	1.27	3.00	4.36	VT	-6.23 to +2.57	0.00	19.22 to 26.46

2213

2214 4. Conclusions

2215 The field evaluation of the ~~multijs~~-port profile system demonstrated its effectiveness in
 2216 measurement of CO₂ and H₂O concentrations at different heights ~~within the surface roughness~~
 2217 ~~layer, were~~ ~~The multiple-height profile system aided substantially to~~ ~~to~~ understanding CO₂ and
 2218 H₂O concentration variations ~~and their~~ ~~their~~ vertical ~~profiles~~ ~~profiles~~, thereby facilitating precise

Deleted: .

Formatted Table

Formatted Table

Moved down [18]: Note that the definition of the heat storage used here (as in Eq. (2)) omits warming of the biomass. This omission accounts for the differences between the storage terms now computed and those published previously (e.g., Hicks et al., 2020).
 ¶
 ¶
 ¶
 ¶
 ¶
 ¶
 ¶
 ¶

Figure 9abc

Diurnal pattern of CO₂ storage ($\mu\text{mol m}^{-2} \text{s}^{-1}$), sensible energy storage ($\text{J m}^{-2} \text{s}^{-1}$) and latent energy storage ($\text{J m}^{-2} \text{s}^{-1}$) of over two-month old maize canopy ¶
 ¶

The development of this system will aid the micrometeorology community in calculating canopy storage terms that can improve the surface energy balance closure. This system enables researchers to measure gas and energy fluxes from different canopy heights which aids in studying the vertical gradient and fluxes. This will help track how respiration, evaporation, photosynthesis, etc. vary across the canopy height. This study will also help to validate micrometeorological models, especially those working on EC measurement theory. micrometeorology

Deleted: ¶
 ¶

Deleted:

Deleted: and summary

Deleted: This m

Deleted: Th

Deleted: e new

Deleted: multi

Deleted: the

Deleted: ..

Deleted: CO₂ concentrations were recorded greater during late night and early morning until 0600 LT. H₂O

...

Deleted: Its development

Deleted: significantly higher during the daytime compared to nighttime, peaking between 1200 LT and 1400 LT and

...

Deleted: aids in

Deleted: in the

Deleted: profile of a rapidly growing maize crop

2349 assessments of their exchanges, storage, and overall balance within the growing maize
2350 ecosystem. The observations reveal that different processes became prominent at different
2351 growth stages, which influenced the atmospheric storage of heat energy and gas and the
2352 associated fluxes as the canopy developed. An issue remaining~~An issue to be addressed is that~~
2353 condensation of water in the sampling tubes was sometimes observed; this will affect
2354 measurement accuracy and steps to eliminate the problem are presently being reviewed.

2355 The 2023 field experience with the new system indicates that canopy data obtained
2356 from the vertical profile observations offer offers potential for many many applications in future
2357 studies such as evaluation of soil-plant-atmospheric models that rely on the precise estimation
2358 of CO₂, heat and water vapor fluxes. Note that the definition of the heat storage used here (as
2359 in Eq. (2)) omits warming of the biomass. This omission accounts for the differences between
2360 the storage terms now computed and those published previously (e.g., Hicks et al., 2022).

2361 The simplicity of the sampling system device contributes to its success — it suffered few
2362 disruptions during the testing period. This new measurement system will be employed in future
2363 studies of air-surface exchange when moderated by the presence of a crop and especially when
2364 operation in remote locations is required. Measurements made will permit improved
2365 quantification of storage terms — atmospheric, biological, in the soil, and all contributing to a
2366 better understanding of the surface heat energy balance. Sub-canopy measurements, in
2367 particular, will help track how respiration, evaporation, photosynthesis, etc. vary through the
2368 depth of the canopy. Such studies will also help to evaluate micrometeorological models, such
2369 as those describing the variation of gases, temperature, and water vapor within a canopy. This
2370 new device is now being used for the assessment of canopy gas emissions, starting with carbon
2371 dioxide but in the future intended to include nitrous oxide. In summary, this new device has the
2372 potential to improve our understanding of soil-plant-atmosphere interactions, particularly
2373 within the plant canopies.

2374 **Author contribution statement**

- Deleted:** agricultural ecosystems. The new system
- Deleted:** that
- Deleted:** designed to provide the capability to change
- Deleted:** heights simply, as crops grow, while relying on a single measurement device and thereby minimizing level-to-level biases. The instrumentation is simple yet maintains the integrity of the data stream. This is in reaction to the observation that frequency of failures of field measurement systems increases with their complexity. The experimental goal is to provide an uninterrupted time series of relevant observations for subsequent analysis, over the course of a maize growing season.
- Formatted:** Left
- Deleted:** sources hold
- Deleted:** various
- Moved (insertion) [20]**
- Formatted:** Left, Indent: First line: 0.5"
- Deleted:** ¶
The 2023 field experience with the new system indicates that canopy data obtained from the vertical profile observations offers potential for many applications in future studies such as evaluation of soil-plant-atmospheric models that rely on the precise estimation of CO₂, heat and water vapor fluxes. In studies now being contemplated, the new device will be used for assessment of canopy nitrous oxide emissions.
- Deleted:** Note that the definition of the heat storage used here (as in Eq. (2)) omits warming of the biomass. This omission accounts for the differences between the storage terms now computed and those published previously (e.g., Hicks et al., 2020).¶
The development of this system will aid the micrometeorology community in calculating canopy storage terms that can improve the surface energy balance closure. This system enables researchers to measure gas and energy fluxes from different canopy
- Deleted:** , and H₂O concentrations at leaf level. The system completes one cycle of measurement over four heights
- Deleted:** which aids in studying the vertical gradient and fluxes. This will help track how respiration, evaporation, photosynthesis, etc. vary across the canopy height. This study will also help to validate micrometeorological models, especially those working on EC
- Deleted:** in one minute. This rapid-measurement
- Deleted:** theory. micrometeorology communities can use this system to monitor real-time microclimate (variation
- Deleted:** property allows examination of short-term sub-canopy fluctuations of CO₂ and H₂O concentrations, as
- Deleted:** ¶

		Moved down [6]: JNO: Formal analysis, writing and
2434	TR: Data curation, Formal analysis, Methodology, Visualization, Writing – original draft. BBH: Supervision, Methodology, Visualization, Writing – revision and reviewediting. NSE: Supervising, Funding acquisition, Project administration, Writing – review & editing. JNO: Formal analysis, writing and reviewing.	Deleted: ew...eview &
2435		Moved (insertion) [6]
2436		Deleted: BBH: Supervision, Writing – review & editing.
2437	Funding	Deleted: utationcomputation
2438	This work was supported by DuPont Tate & Lyle Bio Products Company.	Deleted: penetrating
2439	Declaration of competing interest	Deleted: are very thankful to...David R. Smith (Senior
2440	Authors declare no competing interest associated with this submission.	Formatted
2441	Acknowledgment	Deleted: continuous ...upport during this
2442	This work was supported by the University of Tennessee, Knoxville. The authors thank David R. Smith (Senior Technical Specialist, BESS, UTK), Wesley C. Wright (Senior Research Associate, BESS, UTK), Scott Karas Trucker (Senior Technical Specialist, BESS, UTK) and Josh Watson (Farmer) for their support this.	Deleted: throughout the research
2443		Deleted: work
2444		Moved down [8]: For. Meteorol.
2445		Deleted: ¶
2446	References	Deleted: 101(4), 265-289, https://doi.org/10.1016/S0168-0194(01)00168-1
2447	Davidson, E., and Janssens, I.: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. <i>Nature</i> , 440, 165–173, https://doi.org/10.1038/nature04514 , 2006.	Deleted: 35, 281-297, https://doi.org/10.1016/S0168-0194(01)00168-1
2448		Deleted: Berbigier, P., Bernhofer, C.H., Cescatti, A., Granier, A., Grünwald, T.H., Havrankova, K.,
2449	AnZModeling canopywatermultilayeredmeadowEash, N. https://doi.org/10.1007/s42106-019-00074-4 . 2020., O'Dell, D., Sauer, T.J., Hicks, B.B., Lambert, D.L. and Thierfelder, C.; Real-time carbon sequestration rates on smallholder fields in Southern Africa. <i>Institute of Agriculture, University of Tennessee, Knoxville, TN</i> , 2013.	Formatted
2450		Deleted: Granier, A., Grünwald, T.H., Havrankova, K.,
2451		Formatted
2452		Deleted: Berbigier, P., Bernhofer, C.H., Cescatti, A., Granier, A., Grünwald, T.H., Havrankova, K.,
2453	Finkelstein, P.L. and Sims, P.F.: Sampling error in eddy correlation flux measurements. <i>J. Atmospheres</i> , 106(D4), 3503–3509, https://doi.org/10.1029/2000JD900731 , 2001.	Deleted: on measuring net ecosystem
2454		Deleted: carbon
2455	Finnigan, J.: The storage flux in eddy flux calculations, <i>Agric. For. Meteorol.</i> , 136(3–4), 108–113, https://doi.org/10.1016/j.agrformet.2004.12.010 , 2006.	Deleted: exchange over tall vegetation on complex
2456		Moved down [12]: Meteorol., Moved down [13]: For. Meteorol.,
		Deleted: 96, 257-291,
		Deleted: and
		Deleted: future, <i>Glob. Change Biol.</i> , 9(4): 479–
		Deleted: fluxes
		Deleted: from an enclosed gas analyzer
		Deleted: using a multilayered
		Deleted: an instantaneous mixing ratio, <i>Glob. Change</i>
		Deleted: model
		Deleted: that includes a laminar boundary layer, <i>Agric.</i>
		Deleted: over a temperate meadow
		Deleted: 54(2-4), 107-136.
		Deleted: in Inner Mongolia. <i>Int. J. Plant Prod.</i> , 14, 141–
		Deleted: stable but not in variable
		Formatted

2730	<u>Galmiche, M. and J. C. R. Hunt.: The formation of shear and density layers in stably stratified turbulent flows: linear processes. <i>J. Fluid Mech.</i>, 455, 243–262.</u>		Formatted	...
2731			Deleted: ...62, ,	...
2732			Deleted: , 2002.	...
2733	<u>Hicks, B.B., Eash, N.S., O'Dell, D.L., and Oetting, J.N.: Augmented Bowen ratio analysis I: site adequacy, fetch and heat storage (ABRA). <i>Agric. For. Meteorol.</i>, 290, 108035.</u>		Formatted	...
2734			Deleted: Fuehrer, P.L., and Friehe, C.A.: Flux Correctio...	...
2735			Deleted: Goulden, M.L., Munger, J.W., Fan, S.M., Dau...	...
2736	<u>Hicks, B.B., Lichiheb, N., O'Dell, D.L., Oetting, J.N., Eash, N.S., Heuer, M. and Myles, L.: A statistical approach to surface renewal: The virtual chamber concept. <i>Agrosys. Geosci. Environ.</i>, 4(1), p.ee20141. https://doi.org/10.1002/agg2.20141, 2021.</u>		Deleted: ..,	...
2737			Deleted: ,	...
2738			Deleted: ,	...
2739	<u>Hicks, B.B., Oetting, J.N., Eash, N.S. and O'Dell, D.L.: Augmented Bowen ratio analysis, II: Ohio comparisons. <i>Agric. For. Meteorol.</i>, 313, 108760.</u>		Deleted: , 2021	...
2740			Formatted	...
2741			Field Code Changed	...
2742			Deleted:
2743	<u>Hoeltgebaum, L.E.B. and Nelson L.D.: Evaluation of the storage and evapotranspiration terms of the water budget for an agricultural watershed using local and remote-sensing measurements. <i>Agric. For. Meteorol.</i>, 341, 109615.</u>		Deleted: , 2022.	...
2744			Moved (insertion) [7]	...
2745			Formatted	...
2746			Moved (insertion) [8]	...
2747	<u>Lamas Galdo, M.I., Rodriguez García, J.D. and Rebolledo Lorenzo, J.M.: Numerical model to analyze the physicochemical mechanisms involved in CO₂ absorption by an aqueous ammonia droplet. <i>Int. J. Environ. Res. Public Health</i>, 18(8), p.4119, 2021. https://doi.org/10.3390/ijerph18084119, 2021.</u>		Deleted: ,	...
2748			Deleted: Irmak, S., Skaggs, K.E.	...
2749			Deleted: ,	...
2750			Deleted: and Chatterjee, S.: A review of the Bowen ra...	...
2751			Deleted: , 2021..., 2021..	...
2752	<u>Leuning, R.: Estimation of scalar source/sink distributions in plant canopies using lagrangian dispersion analysis: corrections for atmospheric stability and comparison with a multilayer canopy model, <i>Boundary Layer Meteorol.</i>, 96:293–314.</u>		Field Code Changed	...
2753			Deleted: Jäggi, M., Ammann, C., Neftel, A., and Fuehr...	...
2754			Deleted: , 102, 28953-	...
2755			Formatted	...
			Deleted:Layer.Bound. Lay.... <i>Meteorol.</i> , 96:293–314	...
			Deleted: , 2012	...
			Deleted: 2000	...
			Deleted:
			Formatted	...
			Formatted	...

2886	Massman, W. and Lee, X.: Eddy covariance flux corrections and uncertainties in long-flux	Deleted: Liang, J.N., Zhang, L., Cao, X.J., Wen, J., Wang, J., 2002.
2887	studies of carbon and energy exchanges, Agric. For. Meteorol., 113(1-4), 121-144, 2002.	Deleted: Meteorol., 130(3-4), 193-206, 2002.
2888	https://doi.org/10.1016/S0168-1923(02)00105-3 , 2002.	Formatted
2889	Mayocchi, C.L. and Bristow, K.L.: Soil surface heat flux: some general questions and comments	Deleted: ..., 121-144, 2002.
2890	on measurements, Agric. For. Meteorol., 75(1-3), 43-50 (1995).	Deleted: Mayer, J.C., Bargsten, A., Rummel, U., Meixner, A., 1995.
2891	https://doi.org/10.1016/0168-1923(94)02198-S , 1995.	Deleted: ..., 43-50 (1995)..
2892	McCaughey, J.H. and Saxton, W.L.: Energy balance storage fluxes <ins>fluxes</ins> in a mixed forest, Agric.	Deleted: ..., 1995.
2893	For. Meteorol., 44(1), 1-18, https://doi.org/10.1016/0168-1923(88)90029-9 , 1988.	Deleted: ..., and Saxton, W.L.: Energy balance storage ..., 1988.
2894	Meyers, T. P. and Hollinger, S. E.: An assessment of storage terms in the surface energy balance	Deleted: ..., 1988.
2895	of maize and soybean, Agric. For. Meteorol., 125(1-2), 105-115, 2004.	Deleted: McGuire, A.D., Sitch, S., Clein, J.S., Dargaville, P., 2004.
2896	https://doi.org/10.1016/j.agrformet.2004.03.001 , 2004.	Deleted: ..., 105-115, 2004.
2897	Montagnani, L., Grünwald, T., Kowalski, A., Mammarella, I., Merbold, L., Metzger, S., Sedláček, P. and Siebické, L.: Estimating the storage term in eddy covariance measurements: the	Field Code Changed
2898	ICOS methodology, Int. Agrophysics., 32 (4), 551-567, https://doi: 10.1515/intag-2017-0037 , 2018.	Deleted: ..., 551-567, 2018.
2901	Nicolini, G., Aubinet, M., Feigenwinter, C., Heinesch, B., Lindroth, A., Mamadou, O., Moderow, U., Mölder, M., Montagnani, L., Rebmann, C. and Papale, D.: Impact of CO ₂ storage flux	Deleted: ..., 2018.
2902	sampling uncertainty on net ecosystem exchange measured by eddy covariance. Agric.	Deleted: ..., 2018.
2903	For. Meteorol., 248, 228-239, http://dx.doi.org/10.1016/j.agrformet.2017.09.025 , 2018.	Deleted: ..., 2018.
2904	http://dx.doi.org/10.1016/j.agrformet.2017.09.025 , 2018.	Moved (insertion) [10]
2905	http://dx.doi.org/10.1016/j.agrformet.2017.09.025 , 2018.	Deleted: Monteith, J., and Unsworth, M. (Eds.): ..., 2018.
2906	O'Dell, D., Sauer, T.J., Hicks, B.B., Thierfelder, C., Lambert, D.M., Logan, J. and Eash, N.S.: A	Deleted: ..., 2018.
2907	short-term assessment of carbon dioxide fluxes under contrasting agricultural and soil	Deleted: ..., Hicks, B., 2015.
2908	management practices in Zimbabwe. J. Agri. Sci. 7(3),	Deleted: ..., 2015.
2909	http://dx.doi.org/10.5539/jas.v7n3p32 , 2015. http://dx.doi.org/10.5539/jas.v7n3p32 , 2015.	Deleted: ..., 2015.
2911	O'Dell, D., Sauer, T.J., Hicks, B.B., Lambert, D.M., Smith, D.R., Bruns, W.A., Basson, A., Marake, M.V., Walker, F., Wilcox, M.D. and Eash, N.S.: Bowen ratio energy balance measurement	Deleted: ..., Smith, D., Bruns, W.A., Basson, A., 2015.
2912		Field Code Changed

3125 of carbon dioxide (CO₂) fluxes of no-till and conventional tillage agriculture in Lesotho. [Open J. Soil Sci. 4\(3\): 87–97, http://hdl.handle.net/10919/70228, 2014.](http://hdl.handle.net/10919/70228)

3126

3127 Oetting, J., Hicks, B. and Eash, N.: On recursive partitioning to refine coordinate rotation in Eddy covariance applications. *Agri. For. Meteorol.*, 1346:109873, [https://doi.org/10.1016/j.agrformet.2023.109873, 2024.](https://doi.org/10.1016/j.agrformet.2023.109873)

3128

3129

3130

3131 Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C., Kutsch, W. and Yakir, D.: Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation, *Biogeosci.*, 3(4), 571–583, [https://doi.org/10.5194/bg-3-571-2006, 2006.](https://doi.org/10.5194/bg-3-571-2006)

3132

3133

3134

3135 Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, D., Cheah, Y.W., Poindexter, C., Chen, J., Elbashandy, A., Humphrey, M. and Isaac, P.: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. *Sci. Data*, 7(1), 225, [https://doi.org/10.6084/m9.figshare.12295910, 2020.](https://doi.org/10.6084/m9.figshare.12295910)

3136

3137

3138

3139 Raza, T., Oetting, J., Eash, N., Hicks, B. and Lichiheb, N.: Assessing energy balance closure over maize canopy using multiport system and canopy net storage, in: Proceedings of the 104th AMS Annual Meeting, Baltimore, Maryland, USA, 28 January to 1 February, 2024.

3140

3141

3142 Raza, T., Hicks, B., Oetting, J. and Eash, N.: On the agricultural eddy covariance storage term: measuring carbon dioxide concentrations and energy exchange inside a maize canopy, in: Proceedings of the 103rd AMS Annual Meeting, Denver, Colorado, USA, 8–12 January, 2023.

3143

3144

3145

3146 *Agricultural and Forest Meteorology*, Ryan, M., Law, B. Interpreting, measuring, and

3147 modeling soil respiration. *Biogeochemistry*, 73, 3–27, [https://doi.org/10.1007/s10533-004-5167-7, 2005.](https://doi.org/10.1007/s10533-004-5167-7)

3148

3149 Twine, T.E., Kustas, W.P., Norman, J.M., Cook, D.R., Houser, P.R., Meyers, T.P., Prueger, J.H., Starks, P.J. and Wesely, M.L.: Correcting eddy-covariance flux underestimates over a

3150

Deleted: ...Open J. ...oil Sci. 4(3):; 04, ...
Deleted: ...7., ...
Deleted: ... 2014.
Formatted
Moved (insertion) [14]
Deleted: Overdieck, D., and Forstreuter, M.: ...
Deleted: ...
Field Code Changed
Deleted: ..
Deleted: 2024
Deleted: ..
Formatted
Deleted: ...83., ...
Deleted: , 2006.
Formatted
Formatted
Deleted: ..
Deleted: , 2020
Formatted
Formatted
Formatted
Deleted: Prueger, J.H., Hatfield, J.L., Parkin, T.B., Kustas, W.P., Twine, T.E., Cook, D.R., Houser, P.R., Meyers, T.P., and Wesely, M.L.: Correcting eddy-covariance flux underestimates over a ...
Deleted: B., ...
Deleted: ..
Deleted: -1...2-12
Deleted: Raza, T., Oetting, J., Eash, N., and Hicks, B. B.: ...
Deleted: .., and Lamb, B., Impacts of soil heat flux on eddy covariance fluxes over a ...
Deleted: , Agric., For. Meteorol. 214, 189...-200...
Deleted: 1016/j.agrformet.2015.08.255" t "blank" o
Deleted: 1016/j.agrformet.2015.08.255, 2015.¶
Formatted
Formatted
Formatted
Deleted: 1
Deleted: Santos, E.A., Wagner-Riddle, C., Warland, J.S., ...
Deleted: ..

3311 grassland, Agric. For. Meteorol., 103 (3), 279–300, [https://doi.org/10.1016/S0168-1923\(00\)00123-4](https://doi.org/10.1016/S0168-1923(00)00123-4), 2000.

3312

3313 USDA-NRCS (2018). Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Web Soil Survey, Available at: <https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx>, Accessed November 2018.

3314

3315

3316

3317 Varmaghani, A., Eichinger, W.E. and Prueger, J.H.: A diagnostic approach towards the causes of energy balance closure problem. Open J. Mod. Hydrol., 6(02), 101, <https://doi.org/10.4236/ojmh.2016.62009>, 2016.

3318

3319

3320 Verma, S.B. and Rosenberg, N.J.: Vertical profiles of carbon dioxide concentration in stable stratification. Agric. Meteorol, 16(3), 359–369, [https://doi.org/10.1016/0002-1571\(76\)90005-4](https://doi.org/10.1016/0002-1571(76)90005-4), 1976.

3321

3322

3323 Wang, X., Zhong, L., Ma, Y., Fu, Y., Han, C., Li, P., Wang, Z. and Qi, Y.: Estimation of hourly actual evapotranspiration over the Tibetan Plateau from multi-source data. Atmos. Res., 281, 106475, <https://doi.org/10.1016/j.atmosres.2022.106475>, 2023.

3324

3325

3326

3327

3328 Wilson, K.B., Goldstein, A., Falge, E., Aubinet, M., Baldocchi, D., Berbigier, P., Bernhofer, C., Ceulemans, R., Dolman, H., Field, C., Grelle, A., Ibrom, A., Law, B., Kowalski, A., Meyers, T., Moncrieff, J., Monson, R., Oechal, W., Tenhunen, J., Valentini, R. and Verma, S.: Energy balance closure at FLUXNET sites, Agric. For. Meteorol., 113, 223–243, [https://doi.org/10.1016/S0168-1923\(02\)00109-0](https://doi.org/10.1016/S0168-1923(02)00109-0), 2002.

3329

3330

3331

3332

Deleted: .

Field Code Changed

Deleted: [https://doi.org/10.1016/S0168-1923\(00\)00123-4](https://doi.org/10.1016/S0168-1923(00)00123-4)

Deleted: , 2000.

Formatted: Justified

Deleted:

Deleted: online

Deleted: the following link

Formatted: Font color: Custom Color(RGB(0,102,255))

Deleted: Accessed [10/12/2018]

Deleted: .

Deleted: , 2016.

Formatted: Hyperlink, Font: +Headings (Calibri), 12 pt

Deleted: -

Deleted: ,

Deleted: , 1976.

Formatted: Hyperlink, Font: +Headings (Calibri), 12 pt

Formatted: Font: (Default) Calibri, 11 pt

Formatted: Portuguese (Brazil)

Deleted: .

Formatted: Portuguese (Brazil)

Formatted: Portuguese (Brazil)

Field Code Changed

Field Code Changed

Deleted: , 2023

Formatted: Portuguese (Brazil)

Deleted: Verstraeten, W.W., and Veroustraete, F., and ...

Deleted: ..

Deleted: .

Deleted: .

Field Code Changed

Deleted: [https://doi.org/10.1016/S0168-1923\(02\)00109-0](https://doi.org/10.1016/S0168-1923(02)00109-0)

Deleted: .

Deleted: Wilson, T.B., Norman, J.M., Bland, W.L., and ...

Deleted: Yang, P.C., Black, T.A., Neumann, H.H., Nova ...

Deleted: .

Deleted: and Blanken, P.D.: Spatial and temporal ...

Deleted: Zelitch, I.: The close relationship between ne ...