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Abstract. The Polar Radiant Energy in the Far-InfraRed Experiment (PREFIRE) will use two 6U CubeSats to continuously 

measure spectral far-infrared (FIR) emissions for the first time in the modern satellite era. By strategically operating two 10 

CubeSats in separate sun-synchronous orbits, PREFIRE will achieve frequent orbit resampling ("intersections") that afford 

insights into the underlying polar processes that modulate FIR emissions. These orbit intersections are integral to PREFIRE 

science and will likely feature prominently in future CubeSat missions, motivating methods to characterize resampling 

distributions. In this study, we develop new methods to locate orbit intersections and extract co-located pixels within 

crossovers. Such methods are applied to simulated PREFIRE orbits to characterize the spatial and temporal distribution of 15 

hypothetical PREFIRE intersections and identify the subset with short revisit times that can be used to inter-calibrate the 

PREFIRE sensors. The analysis confirms that hundreds of intersections are anticipated each day, with the majority (> 75%) 

occurring poleward of 66.5°. Inter-calibration intersections are concentrated between 72° and 78° N/S and will be used to 

monitor changes in spectral differences between PREFIRE sensors. 

Generalizing the analysis to pairs of polar orbiting CubeSats with different equatorial crossing times, we conclude 20 

that the second CubeSat nearly quadruples the number of total intersections available for polar process studies. Spatial and 

temporal resampling coverage is clearly enhanced when more than one CubeSat is deployed, securing greater latitudinal 

representation and more diverse time differences between crossovers. The spatio-temporal profile of intersections between 

CubeSats varies with the relative offset in their equatorial crossing times. Further, when two CubeSats are placed at different 

altitudes, we find that their intersections exhibit time-varying, cyclic coverage, significantly increasing latitudinal coverage 25 

relative to two CubeSats placed at identical altitudes that resample each other in constant latitude bands. This study 

ultimately illustrates some factors to consider when designing future CubeSat science missions and outlines methods for 

conducting the associated trade studies. 

 

1. Introduction 30 

-1), generally referred to as the far-

2021). Outgoing FIR is especially pronounced in cold or elevated regions like the poles and the Tibetan Plateau, peaking at 
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over 60% in Antarctica during austral winter (L'Ecuyer et al., 2021). Despite their large contribution to the global energy 

budget, FIR emissions have not been systematically, globally constrained owing to a lack of direct FIR observations (e.g., 35

Harries et al., 2008; Feldman et al., 2014; Palchetti et al., 2020; L'Ecuyer et al., 2021). In fact, almost no terrestrial FIR 

71 Nimbus-4, which achieved the first global narrow-band FIR 

measurements from space (Huang et al., 2014). It is worth noting that the InfraRed Interferometer Spectrometer (IRIS) 

aboard Nimbus- -25 and Meteor-28 

40 

no continuous observations of terrestrial FIR in the modern satellite era. Critically, emissions at longer FIR wavelengths (> 

25  are altogether uncharted. 

This observational shortcoming can be attributed to several challenges unique to FIR spectra. Chiefly, the 

corresponding low 

integration times (Harries et al., 2008) to narrowly resolve outgoing FIR. Incomplete spectral measurements ultimately result 45 

uncertainties are compounded by persistent knowledge gaps concerning FIR emissivities, which have necessitated making 

assumptions based on observations in the mid-infrared windows (8

radiative transfer models (Chen et al., 2014), resulting in non-negligible discrepancies in calculated top of atmosphere 

(TOA) OLR, up to 10 Wm-2 in some regions (Huang et al., 2016). The extent to which such discrepancies impact energy 50 

budget reconstructions may be substantial, especially in sensitive areas such as the poles. For instance, comparing estimates 

of decadal mean annual surface flux from 2000 2009 reveals uncertainties ranging between 35 70 Wm-2 and 70 80 Wm-2 in 

the Arctic and Antarctic, respectively (L'Ecuyer et al., 2021). Reducing these uncertainties will require, among other things, 

systematic measurements in the FIR to a degree not yet seen in past Earth System observations. 

The Polar Radiant Energy in the Far-InfraRed Experiment (PREFIRE) aims to address this observational gap by 55 

pioneering passive, moderate-resolution FIR measurements from space using nascent sensor technology deployed on two 6U 

CubeSats.  PREFIRE will use these measurements to advance our understanding of AGHE in the poles and help constrain 

FIR emissivities for common polar surfaces. Together, the PREFIRE CubeSats, referred to as simply SAT1 and SAT2, will 

retrieve near-global . Launched in 

May and June 2024, both satellites achieved altitudes of approximately 530 km in separate sun-synchronous orbits, with the 60 

mean local time of the ascending nodes (MLTAN) offset by approximately four hours. This configuration follows from the 

orbital trade study undertaken by Drouin et al. (2022), which found that equatorial separation between PREFIRE CubeSats 

would yield favorable high-latitude coverage. 

Over the duration of the one-year baseline mission, PREFIRE measurements will be achieved via ambient-

temperature Thermal Infrared Spectrometers (TIRS), described in greater detail by Miller et al. (2023). The central 65

wavelengths of the TIRS channels, listed in Appendix A for reference, are not identical across detectors but cover a similar 

spectral range. Either uncooled detector will continuously collect near-nadir observations, forming swaths composed of eight 
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each scene will form footprints that are approximately 12 km wide and separated in the across-track direction by a gap 

approximately double their width. Footprints overlap considerably in the along-track direction, such that nearly every six 70 

successive footprints will be partially co-

and its seasonal variations.  

Ultimately, a key strength of PREFIRE 

compact, fuel-free hardware naturally limit the mission duration overall, the ability to enlist multiple low-cost CubeSats 

enables the strategic use of orbit resampling to 75 

for understanding climate forcings and feedbacks. Such resampling underpins the so- PREFIRE intersections

occur when a CubeSat revisits a region previously sampled by either itself or the other satellite. Guided by the premise that 

the PREFIRE intersections will provide insights into the dynamic local conditions that influence polar energy budgets, this 

study seeks to develop methods for identifying orbit resampling and to employ them to investigate the plausible spatial and 

temporal characteristics of the PREFIRE intersections. Methods to approximate orbit intersections and extract co-located 80 

pixels are detailed in Sect. 2. The character of PREFIRE intersections will be described numerically in Sect. 3.1, spatially in 

Sect. 3.2 and temporally in Sect. 3.3 and 3.4. An additional exercise is undertaken in Sect. 4 to demonstrate the utility of the 

intersections as a tool for inter-calibration. Finally, a brief comparison of resampling coverage for different equatorial 

crossing times is summarized in Sect. 5. Although satellite resampling is not unique to this mission, the spatial and temporal 

pattern of the PREFIRE intersections is integral to achieving its process-related science goals. Further, as constellations of 85 

low-cost CubeSats are increasingly used to target specific science objectives (e.g., Stephens et al., 2020), we anticipate a 

greater need for similar strategic resampling considerations in the future. 

 

2. Methodology 

During the last two decades, the scientific value of intersections between satellites has been increasingly 90 

recognized, motivating techniques to predict and detect their occurrence. Considerable attention has been focused on 

simultaneous nadir overpasses (SNOs) in particular, which have been used for in-orbit calibration since 2001 (e.g. Cao et al. 

2002; Heidinger et al., 2002; Cao et al., 2005; Wang et al., 2007; Chander et al. 2013). Early versions of these methods 

predicted coincident footprints by generating simulated orbits and selecting sequential pairs of pixels whose Great Circle 

distance is less than a fixed threshold (Cao et al., 2004). Variations of the SNO method have followed, with different 95 

strategies for classifying co-located pixels. Iacovazzi, Jr. and Cao (2008) found that errors in SNO-based passive microwave 

calibration vary depending on whether co-located pixels are determined using simple proximity matchups or bilinear 

interpolation. 

Nagle et al. (2009) show that two orbits must intersect if the scalar product of their end points (converted from 

latitude/longitude coordinates to position vectors) are positive. In the same study, two approaches are defined for 100
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determining whether a target field of view (FOV) is overlapped by pixels from an independent orbit. Their quasi-elliptical 

approach treats the target FOV as an ellipse and defines overlapping observations as co-located if their distance from the 

center of the target FOV is less than either the semi-minor axis or an intermediate threshold (Nagle et al., 2009). The quasi-

conical approach treats the target FOV as a conical projection from the satellite and considers overlapping pixels co-located 

if the angular difference between the slant ranges of both FOVs is less than the angular half-width of the target FOV (Nagle 105 

et al., 2009).  Alternatively, recent adaptations of satellite data fusion studies have extracted co-located pixels using k-d trees 

(e.g., Weisz and Menzel, 2019; Anheuser et al., 2020), which are based on algorithms described in Bentley (1975) and 

Freidman and Bentley (1977). 

Given the standardization afforded by emerging CubeSat platforms, this study introduces new methods that use 

simple nearest-neighbor pixel matching to standardize orbit intersection analysis and the process of extracting co-located 110 

pixels. Although these methods are initially developed to support PREFIRE applications, they may broadly guide future 

CubeSat missions to promote consistent co-location strategies going forward. 

2.1 Identifying intersections 

2.1.1 Simulated PREFIRE orbits 

Absent real orbit data during mission planning, simulated orbits can be generated to facilitate an analysis of 115 

plausible intersections. To emulate the PREFIRE mission configuration, two continuous months of orbits were simulated for 

both satellites using the Simplified General Perturbations No. 4 (SGP4), a duration taken to be sufficiently long to capture 

longer-term patterns, if any. Each orbit was assigned a hypothetical timestamp over the duration extending from June 28 to 

longitude for each scene was stored in a single NetCDF file (Rew and Davis, 1990). In keeping with the orbit parameters 120 

targeted in the mission, the granules used in this study were prescribed sun-synchronous orbits. Moreover, an equatorial 

separation of eight hours, a candidate orbit configuration during early mission planning, was chosen for this study. Two 

additional assumptions influenced the definition of the satellite altitudes. First, it was assumed that neither CubeSat will 

exactly achieve the targeted altitude, an assumption nurtured by the lack of fuel with which to raise or lower the spacecrafts 

in orbit. Second, we assumed the satellites would not achieve identical altitudes. As such, we granted CubeSat 1 an altitude 125 

of 538 km and CubeSat 2 an altitude of 525 km. Table 1 summarizes the configurations of the simulated orbits. Constant 

drag was also applied to both CubeSats based on observed drag during the Time-Resolved Observations of Precipitation 

structure and storm Intensity with a Constellation of Smallsats (TROPICS; Blackwell et al., 2018). For simplicity, we used 

the BSTAR parameter for a TROPICS CubeSat at approximately 525 km. 

-
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Table 1 lists the orbit configuration prescribed in the simulations analyzed for this study. 130 

2.1.2 Fourth-scene method 

In principle, identifying intersections requires comparing hundreds of thousands of pixels for every pair of orbits. 

To optimize the process, we consider only the fourth scene of each granule. This approximately locates the center of each 

intersection by determining where the interior scenes of two orbits are co-located. 

It is sufficient to compile general sampling statistics by treating each scene as a point represented by its center, so, 135 

unless otherwise indicated, the coordinates of each scene correspond to the latitude and longitude of its center. Representing 

footprints as simplified objects enhances computational efficiency (e.g., Tobin et al., 2006). Additionally, owing to partial  

overlap in the along-track direction, computation time is reduced by a factor of six by skipping every six along-track 

segments for any pair of orbits. Further time savings are realized by dividing every granule into northwestern, northeastern,  

southwestern, and southeastern segments and further binning pixels into 10° longitude bands for each regional segment. This 140 

allows regions for which intersections are not possible to be quickly discarded. 

Since the TIRS swath extends some 200 km across, orbit intersections are properly detected when the fourth scenes 

of two granules are sufficiently close. There is some freedom in selecting a suitable separation for defining intersections. At 

the upper bound, one could adopt the dimension of the TIRS swath. In practice, however, a much smaller threshold is desired 

to approximate the center of an intersection rather than simply any point contained therein. On the opposite end, the smaller 145 

the selected threshold, the greater the likelihood of failing to identify an intersection altogether. To navigate between these 

extremes, we discard every pair of fourth footprints greater than 25 km apart. All pixel pairs within 25 km are retained and 

the pair yielding the smallest distance is selected as the probable intersection center. To avoid duplicates, any newly flagged 

pixel pair found to occur within 500 km of a previously identified intersection is discarded as a duplicate intersection. 

150 

along-track position for the flagged scenes for both orbits. Additionally, the simulated timestamp for either granule is 

retrieved, and the time difference calculated and retained. Since PREFIRE intends to characterize the FIR spectral signatures 

of polar processes (e.g., ice sheet melt, cloud cover change, water vapor fluxes) that occur on a range of timescales, our 

simple method identifies the approximate center of an intersection over interior Antarctica. 155 
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Figure 1 illustrates the fourth-scene method for an arbitrary simulated Antarctic intersection. 
 

Using the fourth-scene method, we identified all intersections within a rolling 48-hour window over the two-month 160 

period, starting with the granule timestamped at 48 hours of the first available granule and ending with the granule 

timestamped at 48 hours of the last available granule. Hereafter, the elapsed time between sampling, or time difference, is 

nce 

implies that the granule being considered completed the earlier (later) crossover. This sign convention is arbitrary and may 

change during the mission. This analysis separately investigates simulated intersections by a single PREFIRE CubeSat 165 

self-intersections  SAT1 SAT2 intersections  

2.1.3 Quality testing 

Systematic quality assurance was conducted to identify missed or duplicate intersections and relied largely on the 

observation that intersections come in pairs, such that every PREFIRE orbit has either two or four intersections. As such, the 

number of intersections between every combination of two orbits was enumerated. If an odd number of intersections was 170 

identified for a particular orbit pair, then that pair of orbits was flagged for review. 

Missed intersections were rare and primarily occurred in the vicinity of the prime meridian. To account for 

intersections missed, an iterative process was undertaken to repeat the fourth-scene method with more lenient requirements. 

For the first iteration, the distance threshold was increased from 25 km to 40 km. Any remaining missed intersections were 

then identified by repeating the process but testing every along-track segment rather than skipping every six as before. 175
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Extending the distance threshold and considering every along-track segment, though computationally much slower, was 

sufficient to identify all remaining missed intersections.

Duplicate intersections were found in the vicinity of the equator. This follows from the fact that equatorial 

intersections occur near the terminus of granules, such that it is possible to identify a single equatorial intersection once near 

the end of one granule and then again near the beginning of the next successive granule. Duplicates were thus identified by 180 

retrieving the time difference and coordinates for all intersections. Intersections with common coordinates and timestamps < 

90 minutes apart (the approximate duration of a single orbit) were flagged as duplicates and removed from the final analysis. 

2.1.4 Intersections v. repeating ground tracks 

There were numerous orbit combinations that yielded partially or fully repeating ground tracks. This phenomenon, 

described in previous literature (e.g., Rees,  1992), may yield valuable information content, but repeating ground tracks were 185 

excluded from this study. Instead, we required that resampling regions exhibit relatively compact diamond shapes to be 

classified as intersections. It can be shown that the equatorial proximity of two orbits and the spatial extent of their resulting 

intersections are positively correlated. All combinations of orbits were therefore tested for proximity by measuring the 

distance between the granules near the equator, using the tenth along-track segments of either granule to approximate their 

respective equatorial positions. If the fourth scene of the tenth along-track segment for two orbits was less than 700 km apart, 190 

a threshold chosen following qualitative testing, then their overlap was considered too elongated, and the granule pair was 

removed from this study. 

2.2 Defining intersections 

2.2.1 Diamond vertices 

Having identified intersection centers, we define each intersection by extracting all remaining co-located pixels 195 

from a resampling region. Our method employs the same simple distance calculations underpinning the fourth-scene method, 

beginning with the four pixels that form the vertices of the diamond-shaped intersection (Fig. 1). Note that each vertex 

represents a pair of exterior pixels that are approximately co-located. The first vertex corresponds to the first scenes of the 

overlapping granules, another corresponds to the overlap between their eighth scenes, a third constitutes the overlap between 

the first scene of one granule and the eighth scene of the other, and vice versa for the remaining vertex. To identify vertices 200 

for any arbitrary intersection, we extract segments of the first and eighth scenes from each granule centered on the along-

track index of the intersection center. Since intersections become more elongated as the equatorial proximity of their orbits  

increases, orbits that are close together (as given by testing the distance between the tenth along-track segments of an orbit 

pair) require longer segments. Depending on this proximity, segments of the first and eighth scenes range from 150 tracks 

to 600 tracks with respect to the intersection center. All pairs located within 15 km of each other were flagged as possible 205

vertices and sorted in ascending order of distance.  Indices are then identified as follows: 
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1. For each intersection, the pair of pixels with the absolute minimum separation is always taken to be one of the 

vertices.

2. The remaining three vertices are identified iteratively by further considering the distance between the remaining 

pixel pairs and the other vertices. Vertices are always located at separate regions of an intersection and should 210 

therefore never be near one another. The second vertex is found by identifying the closest remaining pixel pair that 

does not land within 25 km of the first vertex. 

3. This process is repeated to find the third and fourth vertices, finding the closest remaining pixel pairs that are not 

within 25 km of any other vertex. 

4. Once four pairs are identified, one vertex for each orbit, the process concludes, and each pair is taken to represent 215 

the four vertices of a particular intersection region. 

2.2.2 Interior pixels 

With the vertices identified, the next objective is to extract the remaining co-located pixels. In theory, we can 

reality, however, available routines perform unreliably owing to the highly variable orientation of the intersections. It was 220 

shown that some intersections are not perceived as valid polygons and interior pixels were inaccurately extracted.  Further, 

the across-track discontinuities imply that many footprints located between the vertices of one orbit are not strictly co-

located with footprints from the other. As a result, a new method is required that takes this into account. 

This method begins with the observation that the perimeter of an intersection comprises segments of the first and 

eighth scenes that connect two vertices, with each orbit contributing two bounding segments. It naturally follows that all 225 

interior pixels are contained within the sequence of tracks bounded by the lower and upper tracks of the perimeter. The 

previous method described in Sect. 2.2.1 yields the segments of the first and eighth scenes that form the intersection 

boundary. To identify all other pixels within the intersection, we need only consider scenes 2 7. 

As before, we subselect each of the remaining six scenes, this time between the lower and upper track of the 

perimeter, and then use their distances with respect to the first and eighth scenes of the opposite granule to find where each 230 

interior scene intersects both exterior scenes. The full intersection region is then represented by the segments of each scene, 

starting from the nearest pixel corresponding to scene 1 of the other granule and extending to the nearest pixel corresponding 

to scene 8, including the segments between vertices that were found previously. This process yields an inclusive sample of 

 

Strictly co-235 

applications since they facilitate more direct comparisons between the two sensors. To identify common pixels, we compute 

the distances between every pair of scenes from both sensors within the intersection. The closest pixel pairs indicate where 

each of the eight scenes of the first granule approximately intersect the eight scenes of the other, resulting in 64 pixels per 
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orbit that share approximately the same coordinates. Figure 2 summarizes the methods outlined in this section and specifies 

the scene-wise overlaps that define each intersection feature.240

 

 

Figure 2 illustrates our sequential method to extract intersection pixels. Purple boxes list intersection features, 

whereas blue boxes specify the corresponding scene combination(s) used to derive them. In the context of scene 

combinations, it is implied that we are referring to their point of convergence. The format SX + SY is used to denote 245 

overlaps between scene X of one granule and scene Y of the other. Alternatively, SX + S[Y, Z] designates overlaps 

between scene X of one granule and all scenes ranging from Y to Z of the other. For either the interior or common 

pixels, some combinations are accounted for in preceding steps. 

2.3 Conceptual example 

When processes like sea ice melt, cloud cover change or moisture flux are captured by a PREFIRE intersection, 250 

comparing the spectral radiances (I ) measured during each crossover will help us constrain how such processes modulate 

top 

priority to continually inter-calibrate TIRS1 and TIRS2 to ensure their spectral differences represent changes in observed 

scenes. To illustrate inter-calibration using the methods defined previously, we consider the special case of an intersection 
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with a marginal time difference. In the event of on-orbit instrument calibration drift, we require an approach to identify 255 

impacted measurements quickly. Short present an opportunity to develop a broad, open-ended approach to 

PREFIRE inter-calibration. The technique should reliably flag spectral differences between CubeSats that result from drift 

rather than changes in underlying conditions. Two complicating factors must guide our approach: First, recall that 

the channels for TIRS1 are centered on different wavelengths than TIRS2. Additionally, the spectral response functions 

(SRFs) are both instrument- and scene-dependent. It follows that, provided identical conditions, each CubeSat will register 260 

somewhat different spectra even in the absence of instrument drift. As such, our technique must anticipate a baseline offset 

between CubeSats and monitor changes in time relative to this baseline from regular, short intersections while controlling for 

scene conditions. Varying differences between specific scene pairs imply drift and can be flagged accordingly. 

It follows that the collection of shortest intersections between the PREFIRE CubeSats are ideal candidates for inter-

calibration. The conceptual case presented here corresponds to a SAT1 SAT2 intersection with a rapid time difference of 265 

less than three minutes. Although the true lower bound on resampling time may be greater operationally, this case 

demonstrates a general procedure that will guide calibration, and it can be adopted regardless of the degree of fidelity 

between the simulated and actual PREFIRE orbits. 

As shown in Fig. 3 (left), this intersection is centered near 74.88° S, 107.35° E in East Antarctica. Figure 3 also 

shows hourly skin temperature and TCWV from the Goddard Earth Observing Systems (GEOS) for Instrument Teams 270 

(GEOS-IT), courtesy of the Global Modeling and Assimilation Office at the NASA Goddard Space Flight Center. Both 

variables have been interpolated to each of the common footprints derived for this intersection and interpolated in time to 

represent conditions between hourly timesteps. 

 

275
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Figure 3 shows the constituent granules forming the intersection featured in our conceptual case (left) as well as 

GEOS-IT skin temperatures (top right) and TCWV (bottom right) interpolated to common pixels of either granule 

during the first and second crossover. The first and second crossover are shown on the left and right, respectively. 

 

By design, the selected intersection should exhibit negligible scene differences between the first and second 280 

crossover just three minutes later. We confirm this by plotting GEOS-IT skin temperature and TCWV for every common 

pixel per granule. This is respectively shown in the top and bottom of Fig. 4. Strong overlap between the pixels of the first 

and second crossover for either variable confirms conditions are approximately static between observations. 

 

 285 

Figure 4 compares GEOS-IT skin temperature (top) and TCWV (bottom) for the common pixels during the first and 

second crossover. We note that values for the first crossover are hardly visible owing to the strong agreement 

between sampling.
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An approach for using such intersections to monitor the inter-calibration of the PREFIRE CubeSats will be further 290 

articulated in Section 4. Given that each scene has a unique SRF, the technique considers all pairs of scenes between the 

CubeSats individually. This method, which is demonstrated using simulated clear-sky radiances, I , for both granules below, 

 with respect to each of the eight scenes of TIRS2 for a representative 

sample of channels. Due to the channel offsets on each TIRS, we match the channels with the closest central wavelength for 

each sensor. Close intersections in the first month of the mission will be used to generate baseline spectral differences for all 295 

scene pairs against which statistics from subsequent months can be compared throughout the duration of the mission. We 

provide a simple conceptual example of drift below by arbitrarily increasing I  by 10% for a single TIRS2 scene. 

2.4 Methods for optimizing equatorial crossing times 

 With an eye toward informing future CubeSat missions, we also generalize the results to assess the relationship 

between equatorial crossing times and resampling coverage. To do so, our analysis identifies simulated SAT1 SAT2 300 

intersections for four pairs of hypothetical CubeSats at equal altitude (525 km), with each pair representing a 2-hour, 4-hour, 

6-hour or 8-hour MLTAN offset scenario. Each scenario is achieved by retaining the simulated orbits of one PREFIRE 

CubeSat and then adjusting the longitude coordinates 30°, 60°, 90° or 120° to represent orbits for a hypothetical second 

CubeSat. We then identify all SAT1 SAT2 intersections 12 hours for approximately one week of orbits. As before, we 

restrict our analysis to relatively compact resampling regions by discarding orbit pairs located within 700 km of each other at 305 

the equator, again calculating this distance using the fourth scene of the tenth along-track segment. Quality testing was 

undertaken in the same manner as described in Sect. 2.1.3. 

 

3. Spatial and temporal analysis of PREFIRE intersections 

The method described in Sect. 2.1.2 was applied to the two-month sample of simulated orbits, and all intersections 310 

within a rolling 48-hour window were identified and categorized by latitude and . Since the spatial and temporal patterns 

of SAT1 and SAT2 self-intersections are roughly identical, we only show results from SAT2 self-intersections and SAT1

SAT2 intersections in the spatial (Sect. 3.2) and temporal (Sect. 3.3) analyses. Additionally, given the importance of shorter-

12 hours for much of this paper. 

3.1 Numerical distribution of simulated intersections 315 

The number of intersections identified in three different sampling windows are presented in Fig. 5. For intersections 

48 hours, our analysis identified more than 200,000 combined intersections over the two-month period, with SAT1 self-

intersections, SAT2 self-intersections and SAT1 SAT2 intersections contributing 53,402, 55,398 and 109,790, respectively. 

Not surprisingly, the number of intersections is roughly halved when only those within 24 hours are considered and halved 
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again when intersections within 12 hours are considered. Self-resampling for either CubeSat accounts for approximately 320 

one-quarter of the total, and there are twice as many SAT1 SAT2 intersections as self-intersections for a single CubeSat. 

Taken together, the value of having two CubeSats is clear: A second CubeSat results in about four times as many 

intersections as one CubeSat alone. 

 

Figure 5 lists the number of intersections over the simulated two-month period for each intersection type and for 325 

three temporal categories. Counts may differ during the mission. 

 

The mean, minimum and maximum number of daily intersections and their standard deviation is summarized in 

Table 2. There are about 240 daily self-intersections for a single CubeSat with a daily minimum and maximum of 240 and 

247, respectively. Interestingly, about 180 or ¾ of those will be polar intersections (poleward of 66.5 ). For the orbits 330 

simulated, we expect an average of over 470 global SAT1 SAT2 intersections per day, nearly double the number of global 

self-intersections for a single CubeSat. Note, however, that day-to-day variations are larger for SAT1 SAT2 intersections 

than for self-intersections, varying from 451 to 523. Of these, roughly 360 will occur in polar regions.  
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Table 2 shows mean, minimum and maximum daily intersections as well as the standard deviation for each 

intersection type. Values indicate global (polar) intersections, where 66.5  is used as the polar cutoff for either 335 

hemisphere. The number of daily intersections may differ during the mission. 

3.2 Spatial distribution of simulated intersections 

Intersection coverage varies sharply depending on whether we consider self-intersections or intersections between 

CubeSats. Figure 6 shows the spatial distribution for SAT2 self-intersections in three broad sectors: low latitudes (0  N/S to 

30  N/S); mid latitudes (30  N/S to 60  N/S); and high latitudes (60  N/S to 82  N/S). The distributions are symmetric 340 

between hemispheres with about one-eighth (12.5%) of intersections occurring in low latitudes and another one-eighth 

(12.5%) centered in mid latitudes. The majority of intersections occur in the high-

science objectives, totaling approximately three-quarters (roughly 75%) overall. Figure 6 also confirms what the previous 

observations tacitly reveal: Self-intersections are anticipated within discrete latitude bands leading to latitudinal gaps in 

coverage, particularly in low- and mid-latitude sectors. 345 
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Figure 6 shows the latitudinal distribution of SAT2 self-intersections based on the simulated orbits analyzed in this 

study. For completeness, the Northern and Southern Hemisphere are considered separately. Colors signify regional 

sectors, where warm colors denote low-latitude bins; greens denote mid-latitude bins; blues denote high-latitude bins, 

excluding the bin containing the maximum sampling latitude; and purple denotes the polar-most bin containing the 350 

maximum sampling latitude for either hemisphere. 

 

This shortcoming is remedied when considering intersections between CubeSats. Figure 7 illustrates the 

hypothetical spatial distribution of SAT1 SAT2 intersections in each hemisphere, immediately underscoring the unique 

nature of this type of resampling. Whereas self-intersections occupy discrete latitude bands, SAT1 SAT2 intersections 355 

exhibit continuous coverage from the equator to our maximum sampling latitude. Despite this continuity, the nature of the 

polar orbit results in a majority of SAT1 SAT2 intersections being centered in high latitudes, just as we found earlier for 

self-intersections. In fact, over 75% of SAT1 SAT2 intersections are found at or poleward of 60 , with the number of 

intersections increasing monotonically in the direction of either pole. Intersections are particularly dense near the maximum
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sampling latitude, where we encounter roughly twice as many SAT1 SAT2 intersections compared to self-intersections for a 360 

single CubeSat.

 

 

Figure 7 is the same Fig. 6 but for SAT1 SAT2 intersections. Note the y-axis is nearly double compared to Fig. 6. 

3.3 Temporal distribution of simulated intersections 365 

wide range of time scales. Figure 8 shows SAT2 self-intersections for a randomly selected CubeSat 2 granule. The centers of 

every self-intersection for the selected granule have been plotted, up to 12 hours. The number of self-intersections 

hovers near our imposed upper limit of 370

theoretical minimum of about 1.5 hours (the orbital period) near the maximum sampling latitude. Additionally, self-

https://doi.org/10.5194/egusphere-2024-2040
Preprint. Discussion started: 22 July 2024
c© Author(s) 2024. CC BY 4.0 License.



17

intersections are found in ascending-

latitude in the opposite hemisphere. To avoid redundancy, we note that this ascending-descending pairing is observed for all 

intersection types. Moreover, a nearly identical temporal pattern was found for SAT1 self-intersections (not shown). 375 

 

Figure 8 shows an arbitrary CubeSat 2 granule and the centers of all 12-hour self-intersections specific to that orbit. 

Each CubeSat 2 orbit yielded a constant number of self-intersections over the study period, totaling 32, as shown. 

Colors represent the elapsed time between crossovers.

380
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These insights are key to interpreting statistics from all SAT2 self-intersections within 12 hours over the two-

month period, shown in Fig. 9. The pattern that emerges is one of time-invariant spatial coverage. In either hemisphere, we 

n 

that intersections get shorter temporally as we climb to the highest latitudes is confirmed, with the longest and shortest 

intersections wrapped tightly in latitude bands near the equator and maximum sampling latitude, respectively. Although 385 

atmospheric drag on the satellite will eventually decrease its altitude and shift the latitude bands and time differences from 

the results shown here, these results highlight a significant limitation of self-intersections: In addition to gaps in coverage, 

specific timescales will only be observable at specific latitudes. 

Figure 9 shows the centers of all SAT2 self-intersections observed over the simulated two-month period. Colors 390

represent the elapsed time between crossovers.

18
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Previously, we determined that SAT1 SAT2 intersections have relatively high variability on daily timescales, 

ranging by as many as 72 intersections per day globally. To understand this large spread, we narrow our scope and consider 

the number of SAT1 SAT2 intersections per granule. Unlike self-intersections, the number of SAT1 SAT2 intersections per 395 

orbit is not fixed and varies from 30 to 34 intersections per granule. Figure 10 shows a CubeSat 1 granule that has 34 

intersections with CubeSat 2 within 12 hours, thereby illustrating the upper bound per orbit. A cursory glance reveals 

notable temporal differences compared to self-

we traverse from low to high latitudes. Instead, we find a staggering of time differences as we move poleward from the 

-hour range. In the highest 400 

-orbit period) timescales up to 

our maximum of 12 hours. 
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Figure 10 shows an arbitrary CubeSat 1 granule and the centers of all 12-hour intersections it encountered with 405 

CubeSat 2. The number of SAT1 SAT2 intersections per granule varied between 30 and 34 over the study period. 

This example illustrates the upper bound of SAT1 SAT2 intersections, totaling 34. Center colors represent the 

elapsed time between crossovers. 

We can better qualify the differences in coverage relative to self-intersections by reviewing all SAT1 SAT2 

intersections over the two-month period. The resulting mosaic of intersection centers, captured in Fig. 11, reveals a far more 410 

diverse temporal and spatial pattern to that encountered previously. In place of the discrete latitude bands we witnessed for

self-intersections, we now find a cyclic patchwork of resampling. Coverage is no longer time-invariant, evident from the 

generously resampled between CubeSats, such that the impacts of polar processes on emission spectra can be studied.
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 415 

 

Figure 11 shows the centers of all SAT1 SAT2 intersections observed over the simulated two-month period. Colors 

represent the elapsed time between crossovers. 

3.4 Simulated short-term revisits 

Suppose the PREFIRE CubeSats register different I  when they intersect over a mutual region. To ensure we can 420 

interpret their spectral differences as true indicators of the impact of variable conditions on thermal emissions, we must 

account for any calibration differences between the instruments. Intersections over relatively homogeneous scenes with very 

-calibrating TIRS1 and TIRS2 and are therefore characterized separately in this section. 
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Although such intersections are sometimes referred to as near-simultaneous nadir overpasses, this study hereafter refers to 

-425

For an intersection to qualify as a short-term revisit useful for calibration, conditions should remain practically 

static from the first crossover to the second. 

30 

minutes. The centers of intersections that satisfy this threshold are emphasized in red in Fig. 12. In the resulting mosaic, we 

note meandering bands of short-term revisits that encircle the highest latitudes, extending from approximately 72° to 78° in 430 

either hemisphere. It follows that this latitude range would be appropriate to target for inter-calibration, with the important 

caveat that the precise location will need to be reassessed using true orbit altitudes after launch. The temporal pattern 

moreover implies that we achieve progressively shorter revisits as we move radially inward from the outermost latitudes of 

range, approaching near-instantaneous timescales near 75°. 435 

 

 

Figure 12 is the same as Fig. 11 (bottom) but emphasizes intersections with t less than 30 minutes, shown in red. 

These intersections will be ideal candidates for inter-calibration. 

 440 

4. Conceptual Calibration Approach 

We now return to the conceptual example provided in Section 2.3 to illustrate a potential approach for inter-

calibrating the PREFIRE CubeSats. Based on the preceding analysis, we anticipate that the PREFIRE CubeSats will achieve 

several intersections on rapid timescales, forming a set of short-term revisits like those characterized in Sect. 3.4. By virtue 
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of their tendency to sample static conditions, these short-term revisits lend themselves to developing a general strategy to 445 

identify instrument drift.

Figure 13 shows the mean I  for either crossover for the hypothetical intersection described in Sect. 2.3. Missing 

sensors channels are excluded. The shaded regions denote the maximum and minimum I  observed for either sensor in the 

intersection domain, confirming the homogeneity and static conditions in this intersection. More importantly, we observe 

that the spectra for each instrument converge to lie on roughly the same (incomplete) Planck function despite the channel 450 

offsets between them. Although we do not interpolate between spectral gaps in this study, doing so would yield a full Planck 

-calibration strategy may include generating mean I  for select short-

term revisits and confirming whether their implicit Planck functions remain reasonably congruent. 

 

 455 

Figure 13 shows mean spectral radiances for all common pixels from either crossover. From Section 2.3, the sampled 

region has a mean skin temperature of -71°C and mean TCWV of 0.1 kg m-2. As before, squares denote the central 

wavelengths for TIRS1 (orange) and TIRS2 (purple). Minimum and maximum spectral radiances are indicated for 

TIRS1 and TIRS2 pixels by the shaded orange and purple regions, respectively. Missing channels correspond to 

spectral gaps in either sensor. We note that the resulting spectra form (incomplete)Planck functions, as noted. 460 

 for each scene of TIRS1 compared to the eight scenes of TIRS2 for the hypothetical 

 

results solely from the combined differences in channel centers and spectral response functions. What emerges from such a 

comparison early in the mission is, therefore, the baseline spectral offset across instruments per scene, referenced to select 465

and instead focus more broadly on the degree of consistency 
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across scenes. Repeating this exercise for several intersections provides confidence in the reproducibility of the baseline 

offset between scenes on both sensors and provides an estimate of its variability. 

 

Figure 14 shows the nominal differences in spectral radiances between TIRS1 and TIRS2, where differences in each 470 

panel are taken with respect to a single TIRS1 scene and each TIRS2 scene. Triangles indicate the target wavelengths 

for which differences are computed. Note that the actual wavelengths for either sensor are not strictly identical to 

those targeted, such that the differences are calculated between the TIRS1 channels and the TIRS2 channels nearest 

the target wavelengths, which are not equal across sensors (hence the nonzero differences shown).
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After establishing baseline conditions early in the mission, continuous monitoring of subsequent intersections 475 

should provide an early indication of instrument drift. As an idealized demonstration of sudden drift, we apply a 10% 

increase in I   for the same scene. Figure 15 is the same as Fig. 14 but 

 sequence. In this case, 

 is negative for every wavelength, a distinct feature of the impacted scene vis-à-vis the remaining seven. This "drift 

) 480 

is nonzero in the event of instrument drift and can therefore guide inter-calibration adjustments between PREFIRE CubeSats. 

Figure 15 shows the differences in spectral radiances between TIRS1 and TIRS2 when idealized constant drift (10%) 

is applied to all channels of the eighth scene of TIRS2. As before, each panel represents differences between a single 
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TIRS1 scene and every scene of TIRS2. Note that the y-axis has been modified compared to Figure 14 to adequately 485 

show the spectral differences in the drift-affected scene.

 

5. Optimizing equatorial crossover times 

Figure 16 illustrates the results for each MLTAN offset scenario described in Sect. 2.4. SAT1 SAT2 intersections 

exhibit discrete latitudinal coverage when both CubeSats share a common orbital altitude. This is an obvious departure from 490 

the coverage observed in the analysis in Sect. 3, for which different altitudes were prescribed to each satellite. This implies a 

critical finding: Time-varying resampling between two or more CubeSats requires placing the satellites at different altitudes. 

Figure 16 represents the global distribution of simulated SAT1 SAT2 intersections for each of the four MLTAN 

offset scenarios. Colors again represent the elapsed time between crossovers. Histograms are shown next to each 495 

global projection, with Southern Hemisphere latitudes shaded. 

 

To summarize the spatial and temporal sampling across scenarios, we plot time versus latitude for the simulated 

SAT1 SAT2 intersections from each configuration in Fig. 17. For reference, Fig. 17 also shows simulated self-intersections. 

Our results confirm that unique SAT1 SAT2 resampling coverage can be achieved by adjusting the equatorial crossing time 500

of one satellite relative to the other. Comparing the four scenarios, we find that low- and mid-latitude intersections tend to be 
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shorter for the scenarios with greater equatorial separation between CubeSats. There are also subtle spatial shifts across 

offset. Although SAT1 SAT2 resampling enhances intersection coverage in each scenario, observers will note strong spatial 

and temporal agreement between self-intersections and SAT1 SAT2 intersections for an MLTAN offset of 2 hours. In that 505 

scenario, simulated SAT1 SAT2 -

intersections. Conversely, the remaining scenarios exhibit less agreement between self-intersections and SAT1 SAT2 

intersections, suggesting that greater (smaller) differences in equatorial crossover times may give rise to more diverse 

(repetitive) resampling coverage. 

 510 

Figure 17 shows time versus latitude for simulated SAT1 SAT2 intersections for each scenario (shown in color). 

Simulated self-intersections for a CubeSat at the same altitude (525 km) have been superimposed for reference. 

 

6. Conclusions  

This study underscores the novel scientific applications of PREFIRE afforded by two CubeSats in orbits with 515 

distinct equatorial crossing times. Understanding the processes that influence polar energy balance will rely heavily on the 

frequent resampling the mission's CubeSats provide. By simulating representative orbits and approximating where and when 

their ground tracks intersect, we establish a preliminary record of plausible PREFIRE resampling or "intersections." 

Retrieving intersection centers by examining the distance between the fourth scenes of each CubeSat allows resampling 

statistics to be quickly assessed. This informs more detailed processing to extract co-located pixels from intersection regions. 520
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The procedures prescribed in this study therefore empower us to estimate mission resampling before launch and may help 

guide future CubeSat missions tasked with similar objectives.

PREFIRE resampling will take three forms: SAT1 self-intersections, SAT2 self-intersections and SAT1 SAT2 

intersections. Assuming fidelity between simulated and achieved orbits, we can reasonably expect hundreds of intersections 

per day for each intersection type. Approximately one-quarter will constitute self-intersections for a single CubeSat, while 525 

SAT1 SAT2 intersections will account for the remaining half. These ratios are preserved when we restrict our sample of 

intersections to include only the polar subset. Taken together, we conclude that intersection frequency nearly quadruples 

with the addition of a second CubeSat, which alternatively suggests that about 75% of intersections will be lost in the event 

that one satellite becomes inoperable. Note that the number of self-intersections is nearly identical for both CubeSats, 

indicating that an altitude difference on the order of 10 km has little impact on self-intersection frequency. 530 

The analysis further suggests that about three-quarters of both the self-intersections and SAT1 SAT2 intersections 

will occur at high latitudes, with the remaining quarter evenly split between low- and mid-latitude sectors. Self-intersections 

mutually coalesce in discrete, time-invariant latitude bands, forming eight bands in either hemisphere with latitudinal gaps in 

coverage. In addition, the elapsed time between self-intersection crossovers decreases monotonically as intersections move 

poleward, ranging from roughly 12 hours near the equator to the theoretical lower bound of 1.5 hours near the maximum 535 

sampling latitude.  

By comparison, we expect to achieve much greater spatial and temporal coverage with intersections between 

CubeSats. As simulated, the PREFIRE CubeSats resample one another in a cyclic, time-varying fashion rather than in 

discrete latitude bands. SAT1 SAT2 intersections exhibit staggered modes that oscillate meridionally over time. Similarly, 

the elapsed time between SAT1 SAT2 intersections will not decrease monotonically with increasing latitude. Instead, 540 

resampling between CubeSats will oscillate between various time differences, sampling the greatest range of timescales near 

the maximum sampling latitude. While more than 75% of intersections occur poleward of 60°, the remaining intersections 

cover all latitudes, with the resulting distribution exhibiting a monotonic decrease in frequency approaching the equator. 

Unlike self-intersections, some intersections between satellites exhibit time differences less than a full orbit period. This 

includes a region between roughly 72° and 78° in either hemisphere where so-called "short-term revisits" occur. These short-545 

term revisits are ideal candidates for monitoring the inter-calibration between CubeSats and will be used accordingly during 

the mission. 

These results are based on the satellite altitudes used in the orbit simulations. The cyclic resampling observed in the 

simulations follows from the slightly different orbital periods of the satellites, providing excellent spatial and temporal 

coverage. This can be contrasted with the scenarios from Sect. 5, for which hypothetical CubeSat pairs were prescribed 550 

identical altitudes. In those simulations, SAT1 SAT2 intersections occurred in discrete latitude bands, similar (though not 

identical) to the coverage associated with self-intersections. Additionally, the spatio-temporal profile of intersections 

between CubeSats can be shown to vary based on the offset in their equatorial crossing times, with a smaller (greater) offset

yielding SAT1 SAT2 intersections having more (less) coverage agreement with self-intersections. Together, these results 
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have strong implications concerning CubeSat utility in studying atmospheric processes, informing us that resampling may be 555 

optimized by staggering the altitudes of two or more CubeSats. They also inform us that the MLTAN combinations selected 

will affect resampling coverage between CubeSats. We note that, for any of the analyses undertaken here, SAT1 SAT2 

intersections enhance the spatial and temporal coverage compared to self-intersections alone. 

One appealing consequence of the short-term revisits formed by two satellites is the emergence of a technique for 

inter-calibrating the two satellites. Monitoring intersections on timescales sufficiently small so as to ensure conditions 560 

remain virtually static between crossovers provides a means for rapidly identifying drifts in instrument performance. Initial 

differences in spectral radiances between the eight scenes of TIRS1 and the eight scenes of TIRS2 establish a baseline offset 

against which future differences can be compared. Drift in any scene on either TIRS may be identified when differences for 

that scene relative to the other TIRS deviate from the baseline. More generally, for homogeneous scenes, spectral radiances 

565 

would be indicative of drift in one of the scenes from the two sensors. Ultimately, operational inter-calibration will 

undoubtedly present greater challenges than those accounted for in this study. The fundamental premises described in this 

study will nonetheless help guide PREFIRE calibration and, we hope, future generations of CubeSat missions. 

 

APPENDIX A: TIRS channels 570 
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Table A1 lists central wavelengths for each channel of the PREFIRE TIRS. 
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